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Abstract
Forage crops are a cornerstone of the agricultural industry in Nordic countries. Eco-

nomic and ecological performances are directly linked to adapted farming practices,

which require timed and precise information on the nutritive value of the forage.

Field spectrometers could offer an interesting alternative to time-consuming labora-

tory measurements, as they provide near real time information. We used a handheld

version of a field spectrometer already commercialized for cereal adjustable rate fer-

tilization, to evaluate its potential for grassland nutritive quality estimation. Spectral

data and samples were acquired over experimental fields and plots in four locations

in Northern Sweden; samples were analyzed using wet chemistry to determine the

crude protein concentration, the in vitro true digestibility, the neutral detergent fiber

and the neutral detergent fiber digestibility. Grid-based adjusted spectral indices, par-

tial least squares, random forest and support vector machine were tested to link the

spectral data to the nutritive traits. Partial least squares and support vector machine

outperformed the adjusted spectral indices and random forest. Best predictions were

obtained with partial least squares for in vitro true digestibility and neutral deter-

gent fiber (R2 of 0.64 and 0.78 and normalized root mean square error [nRMSE] of

2.1 and 8.0%, respectively) and with support vector machine for crude protein and

neutral detergent fiber digestibility (R2 of 0.49 and 0.65 and nRMSE of 13.0 and

3.8%, respectively). These results suggests that there is a potential for this afford-

able, industry-ready spectrometer to be used as a practical farming tool, although

more comprehensive datasets are needed to ensure that robust models are developed.

Abbreviations: CP, crude protein; DM−1, per dry matter; IVTD, in vitro

true digestibility; MR, multivariate regression models; NDF, neutral

detergent fiber; NDFD, neutral detergent fiber digestibility; NDI,

normalized difference quality indices; NIR, near infrared; PLS, partial least

squares; PLSR, partial least squares regression; RF, random forest; RMSE,

root mean square error; SRI, simple ratio quality indices; SVM, support

vector machine; YNS, Yara N-sensor.
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1 INTRODUCTION

Forage crops are of high importance in food production sys-

tems, especially for the dairy and meat sectors. In the Nordic

countries, leys (harvested grasslands as part of a crop rota-

tion) are a very important part of the agricultural landscape

and can represent up to 70% of the land use (Jordbruksverket,

2019) as, for example, in Northern Sweden. Quantity and

quality of produced forage have a direct influence on the eco-

nomic and ecological performances of the meat and dairy
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production industries. Forages with low protein or energy con-

centrations require the use of concentrates to maintain the

productivity, and low harvest yield needs to be compensated

for by purchasing extra feed.

Farmers largely rely on laboratory-based estimations of

nutritive value, such as wet chemistry or near infrared (NIR)

spectrometry. Although providing robust and accurate results,

laboratory analysis is time-consuming, as it can take from sev-

eral days to weeks for the farmer to obtain results. Solutions

that would allow a near real time estimation of the digestibil-

ity would be more adapted to the needs of farmers, who need

an almost immediate response to efficiently schedule their

harvest.

In recent years, field spectrometers have become increas-

ingly used in both research and industry. These sensors deliver

rich spectral information, usually encompassing the visible

and NIR parts of the light spectrum. In the case of crops,

field spectrometers measure the plant-reflected light, which

is directly linked with the physical and chemical properties of

the canopy. This link can further be utilized using appropriate

mathematical approaches, such as inversion of radiative trans-

fer models, machine learning, or simple regression based on

vegetation indices.

From the grassland perspective, Darvishzadeh et al. (2008)

performed an inversion of PROSAIL on data obtained from

a GER 3700 spectroradiometer to estimate leaf area index

and canopy chlorophyll content in heterogeneous grasslands

in Italy. They concluded that this approach performs with

satisfactory accuracy, although the performance is largely

dependent on the heterogeneousness of the sward composi-

tion. Zhou et al. (2019) used a multivariate regression-based

approach and performed a comparison of support vector

machines (SVMs) and partial least squares (PLS) regression

to link Yara N-sensor (YNS) spectral data with crude protein

(CP) concentration, dry matter yield, and nitrogen (N) uptake

of leys in Northern Sweden. Their results showed that both

modelling approaches provided satisfactory results, yet SVM-

based models tended to outperform PLS. Fava et al. (2009)

performed an exhaustive grid search to compute adjusted veg-

etation indices using spectral data acquired from an ASD

Fieldspec HandHeld spectroradiometer over Mediterranean

grasslands to estimate fresh biomass, leaf area index, N con-

tent, and N concentration. They concluded that adjusted,

narrow-band vegetation indices perform significantly better

than traditional vegetation indices such as the normalized dif-

ference vegetation index and other broad band indices. Other

examples of applications of spectroradiometers for temper-

ate grassland monitoring can be found in Wachendorf et al.

(2018), with all studies concluding that field spectrometers

can be used to assess agronomic performances of grasslands.

It is worth noting that most of the studies that evaluated

field spectrometers to retrieve nutrition quality or the yield

of grasslands used research-grade field spectrometers, such

Core Ideas
∙ A commercial spectrometer, used for cereal fertil-

ization, has been tested for on-field forage quality

estimation.

∙ Reflectance spectra were matched against lab mea-

surements using several multivariate regression

models.

∙ Partial least squares and support vector machine

showed best performances.

∙ The tested field spectrometer has good potential for

practical applications with grasslands.

as the FieldSpec 4 (ASD Inc.). These instruments provide

data with a large number of narrow spectral bands (usually

several hundreds) that cover the visible, NIR, and short-wave

infrared spectral ranges and provide a comprehensive view of

the spectral characteristics of plants. However, they require

specific knowledge on spectral measurements and process-

ing. This, and their elevated cost, makes them unsuitable for

developing ready-to-use solutions for farmers. Industry-grade

field spectrometers, on the other hand, usually explore a more

restricted spectral range (including the visible and part of the

NIR ranges) with coarser spectral resolution and less spec-

tral bands. However, their design makes them relatively easy

to use and more affordable for private end users. The YNS

is an already commercialized field spectrometer mounted on

tractors and primarily used to evaluate the N needs of cereal

crops. As of 2019, there were 1,000 YNS units used in Europe,

of which 280 are used in the Nordic countries (K. Nissen,

personal communication, 27 May 2021). As this sensor is

already used by farmers, there is potential for a relatively easy

implementation of YNS-based solutions for ley management.

As mentioned earlier, different mathematical approaches

used to link spectral information with plant traits have shown

various accuracy and robustness performances, depending on

the agronomic and environmental contexts. Here we focused

on the use of three multivariate regression models (MR; PLS,

random forest [RF], and SVM) and on a spectral index-based

approach for estimating forage qualitative traits. The reason

why the inversion of radiative transfer models was not tested

is that the absence of spectral information in the short-wave

infrared range drastically limited the possibility to take full

advantage of this approach.

Spectral indices have the advantage of simplicity, as they

only involve a small number of spectral bands, which carry

most of the information linked to the variability of vege-

tation traits. Although many vegetation indices have been

developed to monitor the biomass accumulation of vegeta-

tion or the chlorophyll content of a canopy (e.g., Boegh et al.,
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F I G U R E 1 Sites used in the study

2012; Clevers & Gitelson, 2013; Tucker, 1979), to the best of

our knowledge there is no vegetation index specific for for-

age qualitative assessment of vegetation. A grid-based search

of optimal combinations of spectral bands into a vegetation

index, similar to what was proposed by Thenkabail et al.

(2000) could lead to quality-specific indices that could fur-

ther be used to develop simplified (i.e., with only a few narrow

spectral bands), more affordable sensors.

Therefore, the objective of this paper is to evaluate the per-

formances of PLS, RF, SVM, and spectral indices for the

estimation of forage nutritive value traits (including CP, in

vitro true digestibility [IVTD], neutral detergent fiber [NDF],

and neutral detergent fiber digestibility [NDFD]) from field

data obtained from a hand-held version of the YNS.

2 MATERIALS AND METHODS

Agronomic and spectral data were acquired between 2017 and

2019 on experimental plots and production fields with mix-

tures of grass (timothy; Phleum pratense L.) and legume (red

clover; Trifolium pratense L.) at four sites in Northern Swe-

den (Figure 1). Samples were taken from both experimental

plots and production fields, with a range of harvest times (1st,

2nd, and 3rd harvest), compositions (grass and clover), and

fertilizer management practices (organic and mineral), over-

all representing a diverse dataset typical of ley management in

Northern Sweden. Nitrogen fertilizer rates are not presented,

because the N supply from organic amendments preceding the

ley is difficult to assess, and the amount of mineral N applied

for different harvests is not directly comparable.

As the objective of this research was to develop a system

to help farmers to decide on when to harvest, samples were

collected over many days around the actual harvest date to

obtain a range of forage qualities. A 76-cm diameter hoop was

used to delineate the samples for both spectral measurements

and harvest. In total, 336 samples were acquired and used in

this study.

2.1 Spectral data

The YNS captures the canopy-reflected light in 60 discrete

bands ranging from 400 to 1,000 nm. The commercial version

of the YNS is tractor-mounted. In this study, we used a hand-

held version that includes (a) an incoming light sensor used to

measure the incoming radiant flux and (b) the reflected light

sensor, which has a 25˚ field of view.

All measurements were taken using a zenithal viewing

angle of 45˚ on clear sky days and close to the solar

noon to ensure comparability of results. Measurements were

taken with a 90˚ azimuthal angle with respect to the sun.

This choice was motivated by the fact that, to be suit-

able for practical farming applications, the measurement

should as simple and rapid as possible. Using the incom-

ing light information, canopy-reflected light was converted
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F I G U R E 2 Violin plots and boxplots of the distribution of the values of the crude protein (a), in vitro true digestibility (b), neutral detergent

fiber (c), and neutral detergent fiber digestibility (d) concentrations

to hemispherical-conical reflectance factor, as defined by

Schaepman-Strub et al. (2006). Resulting canopy reflectance

information was used for developing vegetation indices-based

and multivariate regression-based models.

2.2 Agronomic data

Once spectral data were acquired, vegetation samples were

harvested at 7 cm above ground, stored in cool boxes and

taken back to the laboratory for hand separation of grass and

legume fractions and drying (at 60 ˚C until weight stabi-

lizes, approximately 48 h). Dried samples were then ground,

passed through a 1-mm sieve and analyzed for nutritive value

using wet chemistry. In vitro true digestibility and NDFD

were determined using subsamples incubated in F57 ANKOM

digestion bags at 39 ˚C for 48 h following a modified ANKOM

procedure (Valentine et al., 2019) with a Daisy II 200/220

incubator (ANKOM Technology). Neutral detergent fiber was

obtained from subsamples using sodium-dodecyl-sulfate in

the ANKOM system as proposed by Van Soest et al. (1991).

Nitrogen was analyzed with a Leco FP-528 N analyzer (Leco

Corp.) using the methodology proposed in Helrich (1990).

Crude protein was determined by applying a 6.25 factor to

the measured N. Crude protein, IVTD, and NDF are reported

as fractions of dry matter, whereas NDFD is reported as a

fraction of NDF.

2.3 Adjusted spectral indices-based
regression models

Adjusted spectral indices computed from the YNS data

were used to estimate IVTD, NDF, and NDFD. We used

two types of spectral indices: simple ratios and normalized

differences.

Simple ratios are formalized as follows

SRI =
𝑅𝑏1
𝑅𝑏2

where SRI is simple ratio quality indices, and Rb1 and Rb2 are

the reflectance from two spectral bands of the sensor.

Normalized difference quality indices (NDI) were calcu-

lated using the following formula:

NDI =
(
𝑅𝑏1 −𝑅𝑏2

)

(
𝑅𝑏1 +𝑅𝑏2

)

To define the optimal wavebands for each qualitative

variable-specific ND, a grid search was performed by exhaus-

tively combining the 60 available spectral bands, similarly

to what was done by, for example, Inoue et al. (2012), Jay,

Gorretta, et al. (2017), and Thenkabail et al. (2000). Each

band combination was used to build a linear regression with

each trait of interest and evaluate the capability of the adjusted

spectral index to account for changes in quality.

2.4 MR

Multivariate regression models are versatile mathematical

tools that account for the influence of several explanatory

variables on a given response variable. Many types of mod-

els exist, with various framework assumptions, mechanisms,

and so on, which means that different models can yield differ-

ent performances when estimating the value of an agronomic

trait based on spectral data. In this study, three types of mod-

els were assessed: partial least square regression, SVM, and

RF.
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Partial least squares regression (PLSR) is a prominent mul-

tivariate data analysis method, which can effectively deal

with multicollinearity among explanatory variables. Several

latent variables can be extracted to replace original explana-

tory variables for eliminating redundant information. Partial

least squares regression has great prediction ability, espe-

cially when the number of samples is less than the number of

explanatory variables. The principle of PLSR is described in

Geladi and Kowalski (1986). The pls package (Liland et al.,

2021) available in R (R Core Team, 2020) was used in this

study. Models were adjusted using the plsr function, which

automatically performs a mean-centering of the data for better

results. For each iteration, an optimal number of latent vari-

ables was selected to reduce the risk of overfit. Root mean

square error (RMSE) was used as a cost function to evalu-

ate the performances of every iteratively adjusted PLS as a

function of the number of latent variables. The optimal num-

ber of latent variables was determined based on the slope of

the RMSE and considered to be reached when the slope value

became superior to −0.2.

Random forests is a widely used machine learning tree-

based method that was introduced by Leo Breiman in the early

2000s (Breiman, 2001). It basically works considering a given

number of decision trees and nodes randomly constructed

through the explanatory variables. As such, they do not rely

on Euclidean Distance and do not require any mean-centering

of data. In this study, RF algorithms was also implemented

in R software (R Core Team, 2020), using the randomForest

package (Liaw & Wiener, 2002). Here we built a RF model

based on 150 trees, because there is still not a consensus on

how to choose the initial number of trees (Speiser et al., 2019).

Since their development by Vapnik (1982), SVM have

become largely used for various classification and regression

tasks. The reader is referred to Cristianini and Shawe-Taylor

(2000) for a detailed presentation of the theory of SVM. Here,

we used the liquidSVM package (Steinwart & Thomann,

2017) in R software (R Core Team, 2020). This package was

chosen (a) because of its efficiency with the time of compu-

tation and (b) because of its automated grid search for C and

γ hyperparameters selection. The svm function of liquidSVM

automatically performs a scaling of the data to improve its

accuracy.

For each variable of interest and regression approach,

an iterative (n = 100) calibration and validation approach

was used. For each iteration, the calibration step was per-

formed by randomly selecting two-thirds of the complete

dataset and using the remaining third for validating the

performances. The purpose of the randomized iterative pro-

cess was to evaluate the robustness of each approach by

taking full advantage of the available dataset, which repre-

sents different managements, years, locations, and harvests,

hence providing a representative case-study of ley farm-

ing in Northern Sweden. This iterative process also results

in a range of potential accuracies rather than an individual

value as obtained from the traditional individual calibra-

tion/validation approach. The iterative approach used here

allows to compare distributions of accuracies and detect

potential overfit and outliers. Model performances were

evaluated for both calibration and validation using three met-

rics: the coefficient of determination (R2), RMSE, and the

nRMSE.

Codes used for calibrating and testing the models are

available from the authors on request.

3 RESULTS AND DISCUSSION

The distributions and quartiles of the different quality vari-

ables are summarized in Figure 2. The CP concentration of the

samples had minimum and maximum values of 97 and 248 g

kg per dry matter (DM−1), respectively, with an average value

of 164 g kg DM−1.

The IVTD ranged between 791 to 950 g kg DM−1, with a

mean value of 894 g kg DM−1. The NDF ranged between 222

and 636 g kg DM−1 (mean value of 462 g kg DM−1). The

NDF digestibility ranged between 60 and 87 g kg DM−1 with

a mean value of 76 g kg DM−1.

Figure 3 shows the average and standard deviation values

of every canopy spectrum acquired in this study.

The spectra show low reflectance in the visible range

(400–700 nm) with a slight increase around the green region

(550 nm), related to the canopy chlorophyll content. A sharp

increase in reflectance is observed in the red edge region

(around 700 nm), followed by a stabilization around 0.6

reflectance factor in the NIR range (750– 925 nm) and a con-

cave shape around 950 nm linked to the canopy water content

(Peñuelas et al., 1993).

The results of adjusted simple ratio quality indices (SRIs)

for each quality variable are presented in Figure 4. Note that

NDI results were very similar to the ones obtained for SRIs

and are thus not presented here. The most important spectral

regions change depending on the assessed quality variable,

but the overall results show low R2 and RMSE values for every

variable (Table 1).

For CP, the visible region carried most of the informa-

tion, especially the blue and green regions, although the best

combination was obtained for the blue region only (410 and

430 nm, R2 = 0.24). For IVTD, the green, red-edge, and

near-infrared regions carried most information, the best com-

bination including the 760 and 800 nm bands, with an R2 of

0.40. The results obtained for NDF show similar trends as

for IVTD, although the importance of the red-edge and near-

infrared regions increased compared with IVTD, whereas the

importance of the visible region decreased. The best combina-

tion was obtained for 750 and 790 nm bands and R2 of 0.50.

For NDFD, the most important regions were located in the
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F I G U R E 3 Average (full line) and standard deviation (dashed lines) of the spectra acquired in the study

F I G U R E 4 Heatmaps of the coefficient of determination (R2) of simple ratio quality indices for estimations of crude protein (CP), in vitro true

digestibility (IVTD), neutral detergent fiber (NDF), and neutral detergent fiber digestibility (NDFD) for every combination of bands. All values are

averages of the 100 models built during the iterative calibration/validation process
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T A B L E 1 Comparison of the performances of the different

models

Variable Model R2 RMSE nRMSE
CP (g kg DM−1) PLS 0.49 21.4 13.0

RF 0.24 26.0 15.9

SRI 0.24 25.7 15.7

SVM 0.49 21.3 13.0

IVTD (g kg DM−1) PLS 0.64 18.6 2.1

RF 0.41 23.6 2.6

SRI 0.40 23S.9 2.7

SVM 0.63 18.8 2.1

NDF (g kg DM−1) PLS 0.78 37.1 8.0

RF 0.48 56.8 12.3

SRI 0.50 55.6 12.0

SVM 0.76 39.1 8.5

NDFD (g kg DM−1) PLS 0.58 3.1 4.1

RF 0.37 3.8 5.0

SRI 0.44 3.6 4.7

SVM 0.65 2.9 3.8

Note. CP, crude protein; DM, dry matter; IVTD, in vitro true digestibility; NDF,

neutral detergent fiber; NDFD, neutral detergent fiber digestibility; nRMSE, nor-

malized root mean square error; PLS, partial least squares; RF, random forest;

RMSE, root mean square error; SRI, simple ratio quality indices; SVM, support

vector machine. All values are averages of the validation RMSE and R2 obtained

from the 100 models built during the iterative calibration/validation process.

visible range and red-edge regions, with the best combination

obtained for the 550 and 710 nm bands, with an R2 of 0.44.

Estimated values of each quality variable were computed as

the average of the iteratively adjusted MR. Each type of model

showed different estimation performances for each quality

variable (Figure 5, Table 1). For IVTD and NDF, the best

results were obtained with PLS regression (validation RMSE

of 18.6 and 38.2 g kg DM−1, respectively). For CP and NDFD,

the best results were obtained with SVMs (validation RMSE

of 21.2 and 2.8 g kg DM−1, respectively).

Overall, PLS and SVM showed similar ranges of estima-

tion performances and systematically outperformed SRI and

RF. Figure 6 shows the scatterplots of observed vs. estimated

values for each quality variable as computed by the best mod-

els; that is, PLS for IVTD and NDF, and SVM for CP and

NDFD.

Each variable shows a good fit between laboratory-

measured and spectrometry-estimated values. Linear regres-

sion lines show a slope and intercept very close to the 1:1 line,

which suggests that no bias affects the regression models. The

95% confidence intervals of each model confirmed that there

was no statistical significance of slopes being different to 1

or intercepts different to 0. The differences of performances

reported in Table 1 are also illustrated in Figure 6, with

more scatter for CP than for the other variables. On the other

hand, NDF appears to have the least dispersion around the

1:1 line.

Comparison of model performances is summarized in

Table 1. Simple ratios and RFs show similar accuracies with

low R2 and relatively high RMSE for all variables. Partial

least squares and SVM can also be grouped in terms of per-

formances, with validation R2 ranging between 0.49 and 0.78.

Root mean square error were consistently lower than the ones

obtained for SRI and RF.

Four types of models were tested in this study: SRIs, PLS,

RF, and SVM. Simple ratio quality indices and, surprisingly,

RF, showed poor performances in terms of R2 and RMSE,

whereas PLS and SVM showed relatively good performances.

It is interesting to note that, despite the fact that the impor-

tant regions of the light spectrum for estimating the nutrition

quality of forages is located in the short-wave infrared range,

that is, between 1,400 and 2,400 nm (Norris et al., 1976), it

was possible to estimate CP, IVTD, NDF, and NDFD with

reasonable accuracy from a sensor measuring light informa-

tion between 400 and 1000 nm only, as previously reported by

Biewer et al. (2009).

Simple ratio quality indices showed poor estimation per-

formances (Table 1), yet similar to what was reported in

Biewer et al. (2009). The bands of importance were mostly

located in the visible and red edge spectral regions. Crude

protein-adjusted SRI was obtained with information from the

blue spectral region. Kawamura et al. (2008) isolated the

most important bands from a PLS model to estimate CP and

reported that both the blue and red edge regions were of

importance. This could be explained by the fact that CP is

indirectly linked to the chlorophyll canopy content (Evans,

1989), which can itself be linked to the spectral information

contained in the blue region (Curran, 1989). In vitro true

digestibility and NDF showed similar patterns in terms of

important spectral regions, with an emphasis over the 700–

850 nm range (red edge and NIR). It is possible that the

relatively good estimation performances obtained in this study

are due to the inverse relationship between both IVTD and

NDF with the biomass accumulation (Lemaire & Belanger,

2019). Indeed, the red edge and NIR regions are the ones sen-

sitive to the leaf surface increase and, by extent, to the changes

in biomass. Most important regions for NDFD are clustered

in the green and red edge areas of the light spectrum. Simi-

lar to IVTD and NDF, there is an inverse relationship between

biomass accumulation and NDFD. This could explain why the

red edge region is of importance, as the interest of this region

for biomass estimation has been reported in various studies

(e.g., Mutanga & Skidmore, 2004)

Random forest showed the poorest estimation perfor-

mances, with similar or even slightly higher ranges of RMSE

compared with SRIs. To the best of our knowledge, this

is the first time that such poor performances are reported.

Fernández-Habas et al. (2022) noted that PLS outperformed
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F I G U R E 5 Distributions (violin plots) and main quartiles (boxplots) of the iterative validation performances of the simple ratio approach and

the three multivariate regression models, for each quality criteria. PLS, RF, SRI, and SVM stand for partial least square, random forest, simple ratio

index and support vector machines, respectively

RF for CP and NDF estimations from FieldSpec measure-

ments of Mediterranean grasslands—yet the discrepancy of

R2 values between PLS and RF was smaller than in the

present study (e.g., 0.79 and 0.60 for CP estimated by PLS

and RF, respectively). Interestingly, RF performances dra-

matically increased when applying a simple Savitzky-Golay

smoothing filter (results not presented here). This could sug-

gest that, in this specific case, the noise included in the

spectral data is limiting the performances of RF, yet it has

been reported that RF showed good resistance against the

effects of noise (Agjee et al., 2018). Nevertheless, in this

study, we intentionally used the reflectance data without any

preprocessing other than scaling for PLS and SVM. The influ-

ence of denoising techniques such as smoothing algorithms

and wavelength transformations will be further investigated

in an upcoming study with a larger dataset.

Although SVM tended to yield the highest accuracies for

calibration, validation results suggest that performances are

balanced between PLS and SVM. Sun et al. (2021) used Field-

Spec 4 data from a subset of the current dataset and showed

that PLS was more robust than SVM for estimating vari-

ous quality traits. However, opposite results were obtained

by Zhou et al. (2019), where the authors showed that SVM

systematically outperformed PLS to estimate dry matter yield

and CP content of leys from YNS spectral data. Partial least

squares and SVM both require fine tuning to limit the risk

of overfit, through the selection of an optimal number of

latent variables (PLS) or the adjustment of the hyperparam-

eters (SVM). The differences of performances between both

methods shown in this study might be due to their respec-

tive tuning approaches. More generally, Chlingaryan et al.

(2018) reported that the relative performances of MR (e.g.,

PLS, SVM, RF, and artificial neural networks) for N esti-

mations are largely changing between studies; that is, thus

far, there is no algorithm that is expected to systematically

stand out for N (and, by extension, CP) estimations. Inter-

estingly, the range of accuracies obtained in both the current

study and Sun et al. (2021) are similar, although the spectral

range of the YNS is much smaller, and the spectral sampling

much coarser, compared with what is obtained from a Field-

Spec 4. The authors reported that, of the different spectral

regions measured by the FieldSpec 4, the most important ones

for CP, IVTD, NDF, and NDFD were all located in the vis-

ible range. This could explain why similar accuracies were
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F I G U R E 6 Scatter plots of spectrometry-estimated (x axis) vs laboratory-measured (y axis) values of each quality variable. Estimated values

of in vitro true digestibility (IVTD)and neutral detergent fiber (NDF) were determined using partial least squares (PLS) models, and estimated values

of crude protein (CP) and neutral detergent fiber digestibility (NDFD) were determined using support vector machine (SVM). All x values are

averages of the 100 models built during the iterative calibration/validation process. The red dashed lines show the regression line, the black lines

show the 1:1 line

obtained despite much poorer spectral information, as the vis-

ible range is also measured by the YNS. More generally, the

ranges of accuracies (R2 and RMSE) obtained in this study

for CP and NDF are similar to those reported in previous

studies. Biewer et al. (2009) reported an R2 of 0.83 and a stan-

dard error of cross validation of 31.2 g kg DM−1 (i.e., 15%

of error) for CP prediction with a FieldSpec Pro. Duranovich

et al. (2020) obtained R2 of 0.77 and 0.55 for CP and NDF,

respectively, from an ASD FieldSpec 4 High-Resolution spec-

troradiometer. Similarly, Fernández-Habas et al. (2022) used

an ASD FieldSpec spectroradiometer and obtained R2 of 0.70

to 0.79 for CP estimations using PLS and RF, respectively,

and R2 of 0.52 to 0.6 for NDF using PLS and RF, respectively.

Smith et al. (2020) also used an ASD FieldSpec Hi-Res 4 to

evaluate the several nutrition traits, including CP and NDF.

Their results showed R2 of 0.41 and 0.30 for PLS-estimated

CP and NDF, respectively. Kawamura et al. (2008) used an

ASD FieldSpec Pro FR and a PLS model to estimate CP and

NDF, and obtained R2 of 0.38 and 0.24, respectively. Pul-

lanagari et al. (2012) used the same device and regression

model and obtained R2 of 0.78 and 0.75 for CP and NDF,

respectively.

Results obtained for the current dataset suggest that

machine learning algorithms could provide an acceptable

accuracy for important quality traits. Although CP showed a

validation error of 13%, IVTD, NDF and NDFD could be pre-

dicted with less than 8% error. These validation performances

are considered as acceptable for practical applications. How-

ever, these models, despite being built upon a dataset of

reasonable size (n = 336), are only representative of the

soil, light, and farming conditions typically encountered in

Northern Sweden. This greatly limits the reliability of the

models developed in the current study and their transferabil-

ity toward a practical farming application at a larger scale.

One solution would be to increase the training dataset, as

the robustness of machine learning algorithms, and more
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generally, any statistical-based method, strongly depends on

the size and representativeness of the input data. In this

case, the training dataset should include more soil types,

slopes, fertilization rates, species mixes, botanical composi-

tions, latitudes, and hours of measurement to build a robust

solution.

4 CONCLUSION

With validation nRMSE of 13.0, 2.1, 8.0, and 3.8% for CP,

IVTD, NDF, and NDFD, respectively, the results suggest

that the industry-ready YNS field spectrometer, which has

been designed to estimate N needs for cereals, has good

potential for estimating quality traits of forages. However,

the dataset used here is only representative of ley condi-

tions of Northern Sweden. As the robustness of statistical

models (especially machine learning such as SVM) strongly

depends on the representativeness of the calibration dataset,

it is necessary to collect a larger and more comprehensive

dataset before aiming for any practical application. From an

academic perspective, more work is needed to understand

why RF failed at estimating the traits with a satisfactory

accuracy. The influence of signal preprocessing on the per-

formances of the different models should also be further

investigated.
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