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A B S T R A C T   

Forest fragmentation is commonly characterized using indices derived from analyses of classified land cover 
maps. An alternative is to use data obtained from sampling, such as those from a national forest inventory (NFI). 
The main objective of the current study is fill knowledge gaps on the performance of sample-based forest 
fragmentation metrics calculated with different cluster plot designs and under different forest conditions. A set of 
NFI cluster plot designs, each with different geometric properties, was created from Swedish NFI data. Each 
member of the set was used to calculate the fragmentation metrics mean patch size (MPS) and perimeter-area 
ratio (PA). Impacts of plot design parameters on metric estimates and their precision were assessed. 

Important differences in metric values were observed both within and between regions under different plot 
design scenarios; within regions, ranges of PA and MPS values were large, and confidence intervals for the 
minimum and maximum metric values did not overlap. Weighted least squares regression significance testing 
results suggest that subplot separation distance was an impactful design factor whereas number of subplots and 
cluster shape were less important. However, cluster plots with more and widely-separated subplots yielded es-
timates that were more precise (lower relative sampling errors) than smaller, more compact clusters. We suggest 
that care should be taken when interpreting the physical meaning of the metrics under study.   

1. Introduction 

Forest ecosystems play an important role in protecting biodiversity 
(Corona et al., 2019). However, their integrity has been threatened by 
forest fragmentation due to human activities, including forest manage-
ment, agriculture, industrialization, and urbanization (Grantham et al., 
2020). Forest fragmentation is a dynamic process in which a contiguous 
tract of forest is broken into smaller and more-isolated patches (Tol-
entino & Anciães, 2020). Fragmentation has many negative impacts on 
vegetation, wildlife, biodiversity, and ecosystem services provided by 
forested landscapes (Lister et al., 2019; Shapiro et al., 2016). It is also 
recognized that climate change and fragmentation may have combined 
effects on habitat loss (Pyke, 2004). Therefore, it is important that 
fragmentation be accurately quantified for management and monitoring 
purposes, as well as for its potential to inform forest degradation ana-
lyses for countries interested in participating in deforestation and 
degradation reduction incentives programs (Lister et al., 2019). 

The most common method of quantifying forest fragmentation is 
using Geographic Information System (GIS) software to analyze raster 
data, such as a satellite or aerial images, in which pixels have been 
assigned a land cover or use class (Hassett et al., 2011; Lister et al., 2019; 
McGarigal & Marks, 1995). Other methods involve delineating cover 
type patches manually or with Object-Based Image Analysis (OBIA) on 
high resolution imagery. These methods are not without problems. For 
instance, manual patch delineation and classification on aerial photos 
can be extremely labor-intensive, and OBIA requires fine-tuning of 
segmentation parameters and can require post-processing to manually 
adjust maps (Ye et al., 2018). By contrast, automatic techniques like 
supervised or unsupervised classification are more time-efficient than 
using manual approaches, but costs can increase due to the time 
required for correction (Ramezani et al., 2013). Furthermore, land cover 
maps based on medium-resolution satellite imagery often have low ac-
curacy for certain rare classes (Fang et al., 2006), and it is costly to 
obtain information from high-resolution imagery such as Quickbird or 
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IKONOS (Hassett et al., 2011). In some cases, existing raster maps may 
not be available for the area or time period of interest, or, if available, 
they might use landscape class definitions that do not align with the 
desired ones. Finally, some maps are created with different methods, 
resolutions, or definitions for different time periods, making trend an-
alyses very difficult (Nelson et al., 2009). 

Many countries use cluster plot designs for their national forest in-
ventories (NFIs) (Ramírez et al., 2022; Tomppo et al., 2010), and these 
can have different designs in different subpopulations within a country 
(Axelsson et al., 2009; Fridman et al., 2014). In addition, cluster plot 
protocols using ocular interpretation of high-resolution imagery, such as 
Collect Earth Online, have recently played important parts in global 
efforts to monitor deforestation (Saah et al., 2019). An interesting 
alternative to estimation of fragmentation metrics using raster maps is to 
use data obtained from sampling with cluster plots like these. 

One important issue in sample-based estimation of the metrics is that 
many raster-based metrics cannot be estimated using sampling data like 
those obtained with NFI plots. This is due to the fact that many of the 
metrics were originally developed for wall-to-wall categorical maps 
such as land cover or use maps. NFI plots, on the other hand, were not 
originally designed to measure fragmentation. However, Kleinn (2000) 
developed an approach that allows for the calculation of mean patch size 
(MPS) and perimeter-area (PA) metrics from forest inventory cluster 
plots (which are commonly used in NFIs), and Nelson et al. (2009) used 
that method with NFI data from the United States. Ramezani and 
Ramezani (2015) proposed a point vector-based contagion metric (C) 
based on similar methods, where calculation of C relies on land cover 
class assignments made at subplot centers, and Lister et al. (2019) 
calculated several sample-based landscape metrics using NFI data from 
the US state of Maryland. 

To our knowledge, there have been few or no previous studies un-
dertaken to understand the impacts of cluster plot design factors on 
forest fragmentation metric values. There is therefore a knowledge gap 

in the forest monitoring community regarding the calculation and 
interpretation of fragmentation statistics using NFI and similar cluster 
plots with different designs under different landscape heterogeneity 
scenarios. The main objective of the present study is to fill this gap by 
determining how variation in NFI cluster plot designs can influence the 
magnitude and precision of estimates of sample-based fragmentation 
metrics mean patch size (MPS) and perimeter-area ratio (PA) in regions 
with different spatial patterns of forest. We hypothesized that there 
would be important variation in MPS and PA values under different 
cluster plot design scenarios and across regions with different forest 
patterns. The overall goal is to fill the knowledge gaps we identified and 
improve the capacity of practitioners to calculate and interpret sample- 
based fragmentation metrics. 

2. Materials and methods 

2.1. Study site characteristics 

A dataset from a subset of one five-year cycle (2007–2011) of the 
Swedish NFI was used for the analyses. Sweden’s forests, which occupy 
approximately 60% of the country, are comprised of large areas of pine, 
wetland, and spruce forest types with a smaller area comprised of a 
mixture of hardwood and mixed species forest types. Nonforest areas are 
mostly agricultural and a smaller area of developed land uses (Olsson & 
Ledwith, 2021). The country is divided into six forest inventory 

Fig. 1. Locations of Swedish national forest inventory regions, with regions 4 
and 5 with bold outline. Imagery credit: Earthstar Geographics World Imag-
ery service. 

Table 1 
Description of the sample and plot designs (permanent and temporary) associated with data used in the study, including the total area of the region and percent of the 
total area that is forest land area. The original plot size shown is the distance between the centers of the subplots located in the corners of the square plot. Sample sizes 
are for a five-year cycle (with count of subplots per cluster in parenthesis). The NFI cycle used was 2007–2011 in each inventory region.  

Inventory region Total area (km2) (Forest land %) Original cluster plot side length (km) Cluster plot sample size (number of subplots)   

Permanenta Temporaryb Permanent Temporary 

4 116,848.48 (60%) 0.8 × 0.8 0.8 × 0.4 1185 (8) 1064 (6) 
5 34,476.76 (50%) 0.3 × 0.3 0.6 × 0.3 849 (4) 369 (6)  

a Subplots have a radius of 10 m. 
b Subplots have a radius of 7 m. 

Table 2 
Information on the cluster plot designs used in the study for inventory regions 4 
and 5. Original (**), permanent (P) and temporary (T) plot designs are labeled. 
Total # of subplots in each plot design = Total # of plots × number of subplots in 
design. The maximum distance (d) is calculated as the maximum distance be-
tween subplot centers in the design, and separation distance is between adjacent 
subplot centers.  

Inventory 
region 

Cluster 
plot size 
(m× m) 

Maximum 
distance (m) 

Number of 
subplots in a 
cluster (Total # 
of plots) 

Subplot 
Separation 
distance (m) 

Region 4 

1**P 800 × 800 1130 8 (1185) 400 
2**T 400 × 800 890 6 (1064) 400 
3 P 800 × 800 1130 4 (1185) 800 
4 T 400 × 400 570 4 (1064) 400 
5 P 400 × 800 890 4 (1185) 400,800 
6 P 400 × 800 1130 5 (1185) 400 
7 P 800 × 800 1130 3 (1185) 800 
8 P 800 × 800 570 3 (1185) 400 
9 P 800 800 3 (1185) 400 
10 P 400 400 2 (1185) 400 

Region 5 

11**T 600 × 300 670 6 (369) 300 
12 T 600 × 300 670 4 (369) 300,600 
13**P 300 × 300 420 4 (849) 300 
14 P 300 × 300 420 3 (849) 300 
15 T 600 600 3 (369) 300 
16 T 300 300 2 (369) 300  
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Fig. 2. Illustration of the sixteen cluster shapes and subplot separation distances (in meters) applied in the study. Region 4 figures have black points and region 5 
figures have grey points. Cluster plots 1, 2, 11, and 13 are the original NFI cluster plot shapes, while other cluster plot designs were extracted from the originals. 
Detailed plot characteristics can be seen in Table 2. 

Fig. 3. The analysis workflow, depicted for region 5. Subsets of original Swedish NFI plots (T = temporary plots, P = permanent plots) are created, land cover is 
assigned to each subplot center in each of the six cluster plot designs, and fragmentation metrics (PA and MPS) are calculated as described in the text and re-
lationships between these and design factors are assessed. 
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administrative regions that are distributed from north to south, with 
lower sample intensities toward the north of the country. 

Data from inventory regions 4 and 5, which are located in the south 
of the country (Fig. 1), were used in the study. Region 4, which is 
approximately 117,000 km2, is approximately 60% forest that consists 
mostly of pine and spruce forest types as well as lesser amounts of mixed 
and deciduous forests. Nonforest cover types include predominantly 
agricultural areas, water, sparsely-vegetated natural areas, and human- 
impacted areas (Olsson & Ledwith, 2021). Region 5, which is approxi-
mately 35,200 square kilometers and 50% forest, has a similar forest 
composition, but a higher proportion of agricultural and nonforest 
vegetated land than region 4 (Olsson & Ledwith, 2021). Both regions 
have a mix of both conifer and deciduous tree species, including pine, 
spruce, ash, elm, and oak, as well as many species of shrubs, grasses, and 
herbs that can be found in the forest and many wetland areas. Both re-
gions have relatively flat topography and climate is milder than in other 
parts of the country. 

2.2. National forest inventory (NFI) data 

The Swedish NFI consists of a systematically distributed set of a 
combination of temporary and permanent cluster plots, with intensity 
varying by region. Beginning in the 1950s, a square cluster plot design 
(tract) was introduced into the NFI. Modifications to the design occurred 
over the years, but since the 1980s, when permanent square cluster plots 
with circular subplots were established, the plot and sample designs 
have essentially remained the same. The temporary cluster plots have 
different spacing than the permanent ones (Table 1), and their subplots 
have smaller radii (7 vs 10 m); despite these differences, plot types were 
intermingled for all analyses and thus distinctions between them are not 
considered. In inventory regions 4 and 5, the number of circular subplots 
per plot varies from 4 to 8 (Table 1). 

2.3. Analysis strategy 

2.3.1. Analysis goals 
In this study, we applied a sample-based forest fragmentation mea-

surement method (Kleinn, 2000) to a set of different plot designs derived 
from subsets of the original NFI plot designs and assessed the relation-
ship between the metric values and plot design parameters. The forest 
patch characteristics with which the metrics are associated (mean patch 
size and patch perimeter:area ratio) are commonly linked to ecological 
processes such as species richness (Saura & Carballal, 2004). Our first 
goal was to test our hypothesis that cluster plot design has important 
influences on metric values. A second goal was to clarify the mechanisms 
behind metric performance, and how these relate to landscape pattern 
and plot design. 

Enhancing the clarity of the information will aid in making better- 
informed decisions regarding the interpretation and use of metrics. 

2.3.2. Plot design subset creation 
Due to the unique structure of the Swedish NFI cluster plots, it is 

possible to extract subsets of subplots from each cluster with specific 
shapes. For example, an L-shape cluster can be made with a subset of the 
original square shape cluster. The full set of subplot designs used in the 
study is described in Table 2 and can be seen in Fig. 2. Fig. 3 gives a 
stylized example of the analysis framework for two original NFI plot 
designs in region 5. In the example, cluster plot design 11, which is the 
original temporary plot design from the NFI in region 5 (Table 2 and 
Fig. 2), is composed of six subplots, each of which has the land cover 
class (forest or nonforest) assigned. Three subset designs can be 
extracted from the original design to create a set of 4 designs in total. For 
each design, P̂A and M̂PS (and their sampling errors) were calculated 
using the land cover assignments and plot design parameters in the 
equations given in Appendix A. An identical process is shown in Fig. 3 

Table 3 
Summary of inventory design characteristics and estimates of M̂PS (km2) and P̂A (km/km2) (and their components) for each of 16 forest inventory plot designs in two 
inventory regions in Sweden. SE % in parenthesis of two last columns is standard error of the estimate (Eqs. A7 and A8) as a percent of the estimate.  

Inventory 
Region 

Design ID ( 
Fig. 1) 

Total subplots in 
forestland 

Number of Subplots 
in Design 

Percent Forest 
(p̂) (%) 

Pint 

(%) 
Pincl Maximum separation 

distance (d) (km) 
M̂PS (SE 
%) 

P̂A (SE 
%) 

4 1**P 4606 8 49 69 0.90 1.1 0.52 
(3.8) 

1.38 
(2.6) 

4 2**T 3321 6 52 66 0.86 0.9 0.37 
(2.0) 

1.65 
(2.4) 

4 3 P 2447 4 52 46 0.90 1.1 1.33 
(6.4) 

0.87 
(6.2) 

4 4 T 2198 4 52 55 0.90 0.6 0.23 
(4.7) 

2.08 
(4.5) 

4 5 P 2430 4 51 59 0.86 0.9 0.44 
(3.4) 

1.51 
(3.5) 

4 6 P 3041 5 51 58 0.77 1.1 0.58 
(2.0) 

1.31 
(1.8) 

4 7 P 1804 3 51 52 0.77 1.1 0.73 
(3.1) 

1.17 
(2.0) 

4 8 P 1826 3 51 40 0.77 0.6 0.31 
(3.6) 

1.8 (2.7) 

4 9 P 1815 3 51 42 0.64 0.8 0.38 
(4.0) 

1.62 
(3.5) 

4 10 P 1204 2 51 27 0.64 0.4 0.23 
(7.1) 

2.08 
(7.0) 

5 11**T 801 6 36 51 0.86 0.7 0.17 
(6.0) 

2.46 
(5.0) 

5 12 T 546 4 37 43 0.86 0.7 0.25 
(6.5) 

2.02 
(6.0) 

5 13**P 532 4 36 39 0.90 0.4 0.12 
(6.5) 

2.84 
(6.5) 

5 14 P 918 3 36 33 0.77 0.4 0.13 
(5.5) 

2.81 
(4.8) 

5 15 T 403 3 36 34 0.64 0.6 0.16 
(7.3) 

2.47 
(7.0) 

5 16 T 264 2 36 20 0.64 0.3 0.12 
(8.0) 

2.91 
(10.0)  

H. Ramezani and A. Lister                                                                                                                                                                                                                    



Applied Geography 158 (2023) 103045

5

for cluster plot design 13, and replicated for all other plot designs shown 
in Fig. 2 and Table 2). 

2.3.3. Analyses conducted 
Descriptive statistics and scatter plots were used to summarize re-

sults and identify relationships between metric values and design pa-
rameters, and a weighted least squares (WLS) regression (Draper & 
Smith, 1981) was used with the base R lm function (R Core Team, 2020) 
to test our null hypothesis of no relationship between the metrics 
(dependent variables) and their constituents and associated plot design 
parameters. WLS regression was used because the metric values had 
different levels of precision for each design, and weights were assigned 
as the inverse of the variances of the estimates. Confidence intervals 
were generated for P̂A and M̂PS, and the overlap of these confidence 
intervals between all pair combinations of plot designs was assessed to 
provide evidence for the significance of differences between metric 
values generated with different designs. 

3. Results 

3.1. General results for P̂A, M̂PS, p̂, pincl., and pint 

Summary statistical results (̂PA, M̂PS and their sampling errors), as 
well as mean values for metric components are shown in Table 3. There 
are important differences in metric values both between and within 
regions. For example, the percent differences between the highest and 
lowest P̂A in regions 4 and 5 are 139% and 44%, respectively, and those 
for M̂PS are even larger (491% and 118%, for regions 4 and 5 respec-
tively). In addition, confidence intervals for the highest and lowest 
values in each region do not overlap (Tables C1 and C2). This supports 
our conclusion that plot design choices are important when designing 
and analyzing results of sample-based fragmentation analyses using 
these metrics. 

When averaged across all plot designs by region, the proportion 

Fig. 4. Relationships between the landscape metrics Perimeter-area ratio (PA, km/km2) and Mean Patch Size (MPS, km2) and their components p̂int., pincl., and p̂. 
Grey points are for inventory region 5 and black points are for region 4. 
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forest (p̂) and proportion of plots that cross nonforest boundaries (pint.) 
for region 5 were 29% lower than those for region 4 (Table 3, Fig. 4). 
However, the coefficient of variation (CV) of the p̂ values for both re-
gions (1.7% and 1.1% for regions 4 and 5, respectively) were much 
lower than those of pint. (24.9% and 28.5%), suggesting that forest area 
estimates are much less impacted by plot design than are measures like 
pint., which are tied to the geometric properties of forest patch 
configuration. 

3.2. Estimation of P̂A 

Results for P̂A indicate important relationships between metric 

values, some of their components, and associated plot design factors. 
The relationships between the components of Eq. (A1) and P̂A are shown 
in Figs. 4 and 5. Within each region, Fig. 4 suggests no or weak, negative 
relationships between P̂A and p̂int., pincl., and p̂, and WLS regression re-
sults support this. The only significant regression (p ≤ 0.02, R2 = 0.78) is 
for p̂, and it occurs in region 5 (Table 4). However, Fig. 5 suggests that 
P̂A showed a strong decreasing trend with increasing maximum subplot 
separation distance (d). This conclusion aligns with the WLS results; 
there is a significant (p ≤ 0.02) regression that contains d for region 4, 
and a nearly significant (p < 0.08) regression for region 5, with high R2 

values (0.58 and 0.75, respectively). This suggests that subplot separa-
tion distance is an impactful plot design parameter. 

With respect to number of subplots in the design, inspection of Fig. 5 
suggests that the number of subplots in the design is weakly associated 
with the magnitude of P̂A. However, inspection of Table C1 reveals that 
there often exists overlap between confidence intervals (CIs) that are in 
the same or similar separation distance classes, suggesting a lack of 
significant differences in P̂A values. For example, looking at plot designs 
with the largest maximum subplot separation distance of approximately 
1.1 km (Fig. 5), CIs for design 1 (8 subplots) and design 6 (5 subplots) 
overlap, whereas designs 3 and 7 do not overlap (Table C1). This 
ambiguous pattern repeats for other separation distance classes, and 
suggests that number of subplots is a less impactful plot design variable. 

3.3. Estimation of M̂PS 

As with P̂A, Fig. 4 suggests no or weak relationships between M̂PS 
and its components p̂int., pincl., and p̂, and this again aligns with WLS 
regression results (Table 4). The only significant regression model made 
with these M̂PS components contained ̂p (p ≤ 0.04, R2 = 0.72) (Table 4). 
However, M̂PS generally showed a strong increasing trend with d in 
both inventory regions (Fig. 6), and WLS results indicate significant 
regressions when using d as a predictor in both regions (p ≤ 0.05, R2 >

0.69). Again, as with P̂A, there existed an ambiguous relationship be-
tween M̂PS and number of subplots (Fig. 6, Table C2). 

3.4. Sampling errors 

Relative standard errors (sampling errors) were higher in region 5 
than in region 4, and were generally lower for designs with more sub-
plots and greater separation distance (Fig. 7). In region 4, sampling er-
rors are smaller than in region 5 for a given number of subplots. For a 
separation distance of 1.1 km, a square cluster shape with four subplots 
results in the highest sampling errors for both metrics. 

4. Discussion 

4.1. Summary statistical results for P̂A, M̂PS, p̂, pincl., and pint 

To begin, results suggest that region 5 has less forest and more forest 
fragmentation than region 4 (Table 4, Fig. 4). It is known that inventory 
region 5 has less, more fragmented forest and more agricultural land, 
and region 4 has a more homogeneous, mostly-forested landscape 
(Olsson & Ledwith, 2021). Previous studies that assessed the fragmen-
tation status of inventory regions 4 and 5 using the fragmentation 
metrics contagion (C) and aggregation index (AI) support this conclu-
sion as well (Ramezani & Ramezani, 2015, 2021). 

Lack of overlapping confidence intervals support the hypothesis that 
plot design has an important impact on the outcome of sample-based 
fragmentation assessments using certain metrics. This aligns with the 
conclusion that plot design is a crucial factor to consider when inter-
preting results and that metric values should not necessarily be inter-
preted as having a direct physical meaning Kleinn (2000). 

Fig. 5. Relationship between landscape metric Perimeter-area ratio (PA, km/ 
km2) and maximum subplot center separation distance (d) of the corresponding 
cluster design. Grey points are for inventory region 5 and black points are for 
region 4. 

Table 4 
Weighted least squares regression models, F statistics, p values, and R2. Re-
gressions represent the impacts of metric components and related plot design 
factors (Dist = maximum distance between subplots; Numsp = number of sub-
plots in design; Pctfor = proportion forest (p̂), Pint = the proportion of plots 
crossing forest/nonforest boundaries; and Pincl is the parameter linked to plot 
shape (Table A1)) on the dependent variables, P̂A and M̂PS. Lines in bold are 
considered significant.  

Region Model F P value R2 

4 PA ¼ -1.34(Dist) þ 2.73 24.464 0.001 0.75 
4 PA = 0.02(Numsp) + 1.28 0.16 0.70 0.02 
4 PA = 0.03(Pctfor) - 0.21 0.08 0.78 0.01 
4 PA = 0.0007(Pint) + 1.33 0.005 0.95 <0.01 
4 PA = 0.027(Pincl) + 1.35 0.0004 0.98 <0.01 

5 PA ¼ -0.53(Pctfor) þ 21.61 14.425 0.02 0.78 
5 PA = − 1.81(Dist) + 3.52 5.586 0.08 0.58 
5 PA = − 1.47(Pincl) + 3.55 1.203 0.33 0.23 
5 PA = − 0.01(Pint) + 2.92 0.728 0.44 <0.01 
5 PA = − 0.03(Numsp) + 2.47 0.055 0.83 0.01 

4 MPS ¼ 0.54(Dist) - 0.06 21.071 0.002 0.72 
4 MPS = − 0.08(Pctfor) + 4.29 1.605 0.24 0.17 
4 MPS = 0.003(Pint) + 0.20 0.762 0.41 0.09 
4 MPS = 0.024(Numsp) + 0.27 0.675 0.44 0.08 
4 MPS = − 0.15(Pincl) + 0.50 0.074 0.79 0.01 

5 MPS ¼ 0.11(Pctfor) - 3.69 9.053 0.04 0.69 
5 MPS ¼ 0.18(Dist) þ 0.06 7.63 0.05 0.66 
5 MPS = 0.002(Pint) + 0.08 2.528 0.19 0.39 
5 MPS = 0.012(Numsp) + 0.11 1.27 0.32 0.24 
5 MPS = 0.1655(Pincl) + 0.03 1.143 0.34 0.22  
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Our results suggest that the maximum distance between subplots in a 
design (d) is the most impactful plot design factor, particularly in region 
4, while the other design parameters (number of subplots and pincl., 
which is related to shape) are generally less important. Plot design 

factors and metric components can impact metric estimates (Fig. 8). 
Increasing d and the number of subplots in a design should increase the 
likelihood that the plot will cross a forest/nonforest boundary. In region 
5, where forests are sparser and more fragmented, p̂ had a significant 
impact on the metrics, more so than the maximum distance between 
subplots. 

The factors that affect the magnitudes of estimators also affect their 
variances (Fig. 7). Larger plots with more dispersed subplots capture 

Fig. 6. Relative standard errors (% sampling error) of landscape metrics Perimeter-area ratio (PA, km/km2) and Mean Patch Size (MPS, km2) for designs with 
differing numbers of subplots and maximum separation distance (d) scenarios. Grey points are for inventory region 5 and black points are for region 4. 

Fig. 7. Relationship between landscape metric Mean Patch Size (MPS, km2) 
and maximum subplot center separation distance (d) of the corresponding 
cluster design. Grey points are for inventory region 5 and black points are for 
region 4. 

Fig. 8. Conceptual model of the process that affects changes in landscape 
metrics PA and MPS due to plot design. a) A hypothetical patch, with a 4- and 6- 
subplot design superimposed. b) Equations 1 through 3. c) Arrow diagram 
representing the effects of the relationship between d and p̂int. on P̂A and M̂PS. 
Size and boldness of vertical arrows represent strength of impact or 
relationship. 

H. Ramezani and A. Lister                                                                                                                                                                                                                    



Applied Geography 158 (2023) 103045

8

more information and have values closer to the sample mean, leading to 
lower variance. This aligns with previous findings on the impact of plot 
design on the precision of estimates (Kleinn, 2000; Lister & Leites, 
2021a). 

4.2. Alignment with results of other studies and future opportunities 

Kleinn’s (2000) method was also applied by Nelson et al. (2009) to 
estimate P̂A and M̂PS using cluster plots from the United States national 
forest inventory. As with our study, the authors found that sample-based 
estimation of metrics has potential to detect fragmentation regions with 
different spatial patterns of forest. They also found that sample-based 
results were comparable to those using raster-based metrics, as did 
Lister et al. (2019). 

The expansion of ground-based forest inventories as well as moni-
toring systems relying on ocular interpretation of high-resolution sat-
ellite imagery (e.g., Saah et al., 2019) have created many opportunities 
to use sample-based tools like those we present to monitor forest frag-
mentation or degradation, which may be a key contributor to climate 
change. For example, remeasurement of permanent inventory plots 
would allow for monitoring in changes of P̂A and M̂PS , and corre-
sponding inferences about fragmentation dynamics. Traditional ap-
proaches to measuring forest fragmentation, such as raster analytics, 
have their advantages but do not provide estimates with uncertainty 
metrics that are interpretable through the lens of sampling theory, nor 
are they necessarily compatible with existing forest inventory plot net-
works on which other ground data are collected. Our study provides 
tools and greater understanding of how sample-based methods can 
improve the science of forest fragmentation and degradation 
monitoring. 

Our study provides insights that can guide decisions on design of 
sample-based studies and interpretation of results from such studies. For 
example, the variability of the metrics’ values under different plot 
design scenarios suggests these methods are more suitable for regional 
comparisons (as we showed with comparisons of region 4 and 5), and 
potentially for monitoring relative change in fragmentation status on 
remeasured plots. It also highlights opportunities for how sample-based 
forest monitoring networks in general might be used to characterize 
landscape dynamics, and suggests that more research, such as simula-
tion studies, is needed to help determine optimal plot design guidelines 
under different landscape fragmentation levels and types. 

4.3. Caveats 

There are several caveats to consider when either designing a 
sample-based fragmentation monitoring system or adapting existing 
data for this purpose. First, P̂A and M̂PS consist of a ratio between two 
random variables multiplied by a scalar. When using ratio estimators in 
a sampling context, there is a small bias introduced, of order 1/n 
(Cochran, 1977, p. 155); the bias is therefore small with reasonably 
large sample sizes. The results of Ramezani et al. (2010) agree with this 

assessment. 
Second, acceptable allowable error of estimates (e.g., 10% error at 

the 95% confidence level), is often a forest inventory design require-
ment. Although our results suggest that larger plots with more widely- 
separated subplots will lead to better precision estimates, one must 
factor in the impacts of cost when designing an inventory. There is a 
point of diminishing returns from separating subplots and enlarging 
plots beyond which precision improves little but costs increase greatly, 
and thus subsampling experiments like ours or factorial simulation ex-
periments can shed light on this important consideration and help 
planners make better decisions (Lister & Leites, 2021b). 

Third, Kleinn (2000) points out that M̂PS in Eq. (A3) is a metric 
related to the mean size of patches, not to be interpreted as a direct 
estimate of mean patch area, and it and P̂A assume that curvature of 
patch boundaries does not occur at a scale finer than d. In other words, 
spatial information that occurs at distances less than d are not observ-
able by this method, and can lead to smaller P̂A and larger M̂PS values 
than expected. In addition, if adjacent patches are less than distance 
d from each other, and if patch boundaries are not straight lines over 
distance d, the assumptions underpinning the relevance of pincl. become 
less valid. 

5. Conclusions 

In this study, we have revealed how plot design has important effects 
on estimates of two landscape metrics that are commonly applied to 
raster data but have been adapted to use with cluster plots. Through a 
case study that uses data from the Swedish NFI, we found that subplot 
separation distance has important impacts on metric values. While other 
factors, such as percent forest on the landscape, also impact metric 
values, plot shape and number of subplots in the design have a much 
smaller impact. 
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Appendix A 

Calculation of PA and MPS and corresponding variance estimators 

Landscape metrics 
The P̂A and M̂PS estimation equations (Eq. 1 and 2) rely in part on land cover class assignments made at subplot centers by field crews. These 

assignments allow for the calculation of two measures needed to calculate P̂A and M̂PS: ̂p, the proportion of subplot centers in the population that are 
labeled as forest, and ̂pint., the proportion of cluster plots that cross forest boundaries. This method is based on a virtual buffer with a fixed width d (d/2 
on either side of the boundary), which is assumed on both sides of the forest boundary. Buffer width d corresponds to the diagonal length of the cluster 
plot (the maximum distance between two subplot centers for a given plot design). See Appendix B for an example of the calculation procedure for ̂pint. 
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Perimeter-area ratio (P̂A) 
Because the NFI uses subplots separated in space, it is impossible to estimate P̂A for individual forest patches. As an alternative, the ratio can be 

estimated at the landscape level with information from all sampled cluster plots. According to Kleinn (2000), a landscape level estimator of P̂A is 
defined as 

P̂A =
p̂int.

p̂
•

1
d • pincl.

, (A1)  

where p̂int. is the proportion of cluster plots that the cross forest patch boundaries (see Appendix B), p̂ is the proportion of subplot centers that fall in 
forestland (i.e., the estimated proportion forest), d is the virtual buffer width (km), and pincl. is the conditional inclusion probability of an edge 
intersecting a buffer of a specified shape. 

The inclusion probability is a function of cluster shape; in other words, regardless of cluster size, as long as the shape remains in the same pro-
portions, pincl. remains the same. However, buffer width (d) is a function of both cluster size and shape because it corresponds to the diameter of the 
circumcircle of the cluster plots (the longest distance between two points on a certain geometric shape). For instance, for a given rectangular shape 
(Fig. A1), d can be calculated by (2 • (a+b))/(π •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
) where a and b are the sides of a rectangular cluster. Table A1 gives values for pincl. for 

several common shapes, including those used in this study. 

Mean patch size (M̂PS) 
M̂PS is based on a relation between estimates of forest patch area and perimeter. One advantage of this metric is that its calculation is not affected 

by patch shape. The estimator of M̂PS is defined by Kleinn (2000) as 

M̂PS
′
=

p̂
p̂int.

• pincl.. (A2)  

Since M̂PS
′ 
depends on buffer width (cluster size) through the pincl. term, it is impossible to compare inventory regions with different cluster con-

figurations. To overcome this problem, Kleinn (2000) suggested a standardized M̂PS metric that is independent of the size of the clusters. A stan-
dardized M̂PS metric can be estimated by incorporating information on the buffer width d: 

M̂PS = M̂PS
′2
• d2. (A3)  

Variance estimation 
In the present study, a conventional variance estimator was used to estimate variance of P̂A and M̂PS. In Eqs. A1 and A2 there are two random 

variables, ̂p (the estimated proportion of forest land) an ̂pint. (the proportion of clusters that partially intersect forest patch boundaries) in the form of a 
ratio estimator. According to Thompson (2002, p. 70) the estimator of variance of an estimate of a ratio is 

v̂(R̂)=
1

n • x2 •

∑n

i=1
(yi − R̂xi)

2

(n − 1)
. (A4) 

Let ̂pint. =
1
n
∑n

i=1yi, where = 1 if cluster plot i crosses a forest border and = 0 otherwise. Let ̂p = 1
n
∑n

i=1xi, where = 1 if subplot i is in forest land and 

= 0 otherwise. Then R̂ =

∑n
i=1

yi∑n
1=1

xi
. 

Thus, the variance estimator of P̂A is 

v̂(P̂A)= v̂(R̂)
(

1
d2 • p2

incl.

)

. (A5) 

The variance of M̂PS, where R̂MPS =
p̂

p̂ int.
, is estimated as 

v̂(M̂PS)= v̂(R̂MPS•pincl.)= p2
incl. v̂(R̂MPS). (A6) 

Relative sampling error (SE %) for P̂A and M̂PS is calculated as 
̅̅̅̅̅̅̅̅̅̅̅

v̂(P̂A
√

)

P̂A
• 100 (A7)  

and 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v̂(M̂PS
√

)

M̂PS
• 100, (A8) 

respectively. 
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Appendix B 

Calculation of p̂int.

For example, assume that the study area contains 50 square cluster plots with eight subplots each, like for cluster plot design number 1 in Fig. 2. 
There are three possible positions of the cluster plot relative to a forest patch boundary that are found in this dataset: 1) seven cluster plots have all 
eight subplot centers in forest, 2) thirteen cluster plots have all eight subplot centers in non-forest, and 3) thirty cluster plots have some of their eight 
subplots in forest and some in nonforest. That means that thirty cluster plots cross the forest boundary, as determined by a virtual line drawn that 
connects all subplots. Thus, p̂int. can easily be calculated as 

p̂int. =
# of cluster plots that cross the forest boundary

total number of cluster plots
=

30
50

= 0.6  

Appendix C  

Table A1 
The inclusion probability of intersection (pincl.) for 
different geometric shapes, based on Kleinn (2000).  

Geometrics shapes Inclusion probability 

Circle 1 
Square 0.9003 
Rectangle 0.8545 
Triangle 0.8269 
L-shape 0.7685 
Line 0.6366   

Table C1 
Pairwise comparison of the P̂A 95% confidence interval (CI) overlap of subplot designs 1–16. Sampling errors were converted to 95% CIs (SE% × P̂A × 1.96/100). O 
indicates overlap, NO indicates no overlap. For example, the CI for design 1overlaps with itself and that of designs 5 and 6 (designs are described in Fig. 2 and Table 2). 
Bolded region (designs 11–16) are region 5, non-bold design (1–10) are from region 4.   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 O NO NO NO O O NO NO NO NO NO NO NO NO NO NO 
2  O NO NO O NO NO O O NO NO NO NO NO NO NO 
3   O NO NO NO NO NO NO NO NO NO NO NO NO NO 
4    O NO NO NO NO NO O O O NO NO O NO 
5     O NO NO NO O NO NO NO NO NO NO NO 
6      O NO NO NO NO NO NO NO NO NO NO 
7       O NO NO NO NO NO NO NO NO NO 
8        O O O NO O NO NO NO NO 
9         O NO NO NO NO NO NO NO 
10          O O O NO NO O O 
11           O O O O O O 
12            O NO NO O NO 
13             O O O O 
14              O O O 
15               O O 
16                O   

Table C2 
Pairwise comparison of the M̂PS confidence interval (CI) overlap of subplot designs 1–16. Sampling errors were converted to 95% CIs (SE% × M̂PS × 1.96/100). O 
indicates overlap, NO indicates no overlap. For example, the CI for design 1 overlaps with itself and that of design 6 (designs are described in Fig. 2 and Table 2). Bolded 
region (designs 11–16) are region 5, non-bold design (1–10) are from region 4.   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 O NO NO NO NO O NO NO NO NO NO NO NO NO NO NO 
2  O NO NO NO NO NO NO O NO NO NO NO NO NO NO 
3   O NO NO NO NO NO NO NO NO NO NO NO NO NO 
4    O NO NO NO NO NO O NO O NO NO NO NO 
5     O NO NO NO NO NO NO NO NO NO NO NO 
6      O NO NO NO NO NO NO NO NO NO NO 
7       O NO NO NO NO NO NO NO NO NO 
8        O NO NO NO NO NO NO NO NO 
9         O NO NO NO NO NO NO NO 
10          O NO O NO NO NO NO 

(continued on next page) 
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Table C2 (continued )  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

11           O NO NO NO O NO 
12            O NO NO NO NO 
13             O O NO O 
14              O O O 
15               O O 
16                O  

Fig. A1. An example of rectangular cluster plot, where d (the maximum distance between two subplot centers) is the diameter of the circumcircle of a rectangle.  
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