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Abstract: Osteoarthritis (OA) is the most frequent worldwide cause of adult population disabilities.
The study evaluated the effects of a 21-day individual rehabilitation exercise training program focused
on improving patients’ functional capacity. The study analyzed the changes in irisin, chemerin, and
BDNF serum levels in 36 OA patients subjected to an individually-adjusted rehabilitation program
90 days after surgical hip or knee replacement. The changes in irisin, chemerin, and BDNF serum
levels were measured using enzyme-linked immunosorbent assay (ELISA) kits. A 21-day individual
rehabilitation exercise training program significantly increased irisin and BDNF, and decreased
chemerin serum levels. The presented study indicates that individually-adjusted exercise training is
an important modulator influencing serum levels of anti- and pro-inflammatory factors, leading to
positive clinical outcomes in osteoarthritis therapy. Selected factors are considered potential markers
of various pathophysiological conditions. The presented study brings new details to the discussion.

Keywords: brain-derived neurotrophic factor (BDNF); chemerin; hip or knee replacement surgery;
irisin; individual rehabilitation exercise training; osteoarthritis

1. Introduction

Osteoarthritis (OA) is the most prevalent degenerative joint disease affecting the adult
population. It is also one of the most important causes of adult disabilities worldwide.
Osteoarthritis prevalence is associated with different factors, with metabolic syndrome
being one of them [1]. Metabolic syndrome in OA patients influences biomechanics,
dysregulates chondrocyte metabolism, and interplays between metabolic regulation and
immune response, leading to further clinical complications [2].

Irisin is one of the recently discovered myokines identified as a marker of muscle
weakness and atrophy [3]. It is mainly expressed and secreted by skeletal muscles as a
product of the fibronectin type III domain containing 5 (FNDC5) cleavage [4]. Irisin levels
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depend on PPAR-γ (peroxisome proliferator-activated receptor gamma) coactivator-1-α
(PGC1α), which is expressed after physical exertion. Increased PGC1α levels upregulate the
expression of FNDC5, from which irisin is eventually derived [5,6]. Therefore, post-exercise
irisin production exerts positive effects on the metabolism, and may play a beneficial
role in treatment of obesity and obesity-related diseases, type 2 diabetes mellitus (T2DM),
or non-alcoholic fatty liver disease (NAFLD) [6], especially since decreased irisin levels
accompany obesity, type 2 T2D, and other diseases like chronic renal failure and prolonged
hypothyroidism [7]. Some studies show that irisin is also produced by adipose tissue, and
acts as adipokine [5–7]. As irisin levels decrease with age, irisin seems to be associated with
a wide range of aging-related diseases [8–11].

Chemerin is an adipokine secreted by adipose, endothelial, synovial cells, and chon-
drocytes, and might show chemotherapeutic activity through the chemerin receptor 23
(Chem23) and increased TNF, IL1-β, IL-6, MMP-1, and MMP-8 expression [12]. It was
reported that chemerin is associated with obesity, disease severity, inflammation, and
cartilage destruction in patients with knee OA. The study showed that it was linked to
obesity, BMI, joint inflammation, and cartilage degradation, independent of mechanical
factors [13].

Brain-derived neurotrophic factor (BDNF) is a protein found in the brain and, pe-
ripherally, in the blood [14]. Peripherally, it is expressed by skeletal [15], adipose [16],
and endothelial cells [17], and stored in a form bound to platelets in the blood, liver, and
spleen [18]. As a highly conserved neurotrophic protein, it regulates synapses, affecting
various brain regions structurally and functionally. It promotes neuron survival, neurite
growth (the process by which developing neurons form new processes), and synapse
formation [19–21], ensuring neuroplasticity, learning, and memory. It also plays a role in
the hypothalamic signaling pathway: it controls body weight, decreases food intake, and
lowers blood glucose levels, thus controlling energy homeostasis [22,23]. About 70–80% of
circulating plasma BDNF originates from the brain, both during exercise and recovery [22].

Each of the above-mentioned factors seems to be related to physical activity, age-related
diseases, or energy homeostasis. Different types of physical activity increase the release of
myokines, including irisin, which, aside from other functions, stimulates the metabolism of
energy-related signaling and memory formation-related signaling like BDNF [24].

New therapies of degenerative disorders, like rheumatoid arthritis (RA), include
nanomedical management [25]. However, we hypothesized that physical therapy, which
usually provides good results for OA patients [26], in the form of moderate, controlled
exercise training after hip or knee replacement in OA patients with chronic pain would
improve the profile of irisin, chemerin, and brain-derived neurotrophic factor (BDNF).
The study aimed to determine the efficacy of individual rehabilitation exercise training
in improving the functional capacity of patients who underwent hip or knee replacement
surgery, and the accompanying changes in irisin, chemerin, and BDNF levels after a 21-day
individually-adjusted exercise rehabilitation program.

2. Materials and Methods
2.1. Ethical Statement and Permissions

The study followed the Declaration of Helsinki guidelines and was approved by the
Ethics Committee of the Medical University of Silesia in Katowice (N◦ KNW/002/KB1/106/
17; 3 October 2017). Every participant of the study received the study protocol description,
was informed about its benefits and possible risks, and returned the written informed
consent before the study started.

2.2. Study Group

The participants were recruited over 2017–2018 from the outpatient clinic and the
Department of Rehabilitation at the 3rd Specialist Hospital in Rybnik. The clinical interview
carried out during the recruitment process excluded patients with inflammatory disorders,
infections, renal or hepatic insufficiency, active coronary artery disease, diabetes, heart
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failure, hormonal replacement therapy, or supplementation with antioxidants taken up to
3 months before the study. Eventually, 41 patients after total hip (n = 29) or knee (n = 12)
replacement, aged 61.0 ± 8.1 years, 22 men and 19 women, were included in the study
(Table 1). On the initial rehabilitation day, the patients were 89.6 ± 9.7 days after the joint
replacement surgery. On the first day they arrived at the outpatient clinic, the resting
electrocardiogram (ECG) and blood pressure measurement were recorded, and the body
mass and height measurements were taken. Later on, five patients were excluded from
the irisin, chemerin, and BDNF analyses, due to health conditions that occurred during
the study.

Table 1. The inclusion and exclusion criteria for osteoarthritis (OA) patients after hip or knee
replacement surgery enrolled to a 21-day individual rehabilitation exercise training.

Inclusion Criteria Exclusion Criteria

≥18 years old inflammatory disorders
osteoarthritis active infection

hip or knee replacement surgery in the past 90 days active coronary artery disease
heart failure

renal or hepatic insufficiency
diabetes

hormonal replacement therapy
antioxidants supplementation in the last 3 months

2.3. Individual Rehabilitation Exercise Training

All patients underwent a 21-day individual rehabilitation exercise training program.
The daily rehabilitation sessions started between 8:00 and 8:45 a.m. The individual rehabili-
tation exercise training mainly consisted of physiotherapy, and living activities training
focused on improving the patients’ walking functionality: lengthening stride, increasing
pace, walking backward and on uneven surfaces, climbing stairs, and Nordic walking.
Additionally, the rehabilitation program included patients’ nutritional education. The
individual rehabilitation sessions comprised 30–45 min of aerobic walking, 20–30 min of
strength training, 30–45 min of rotor/bicycle training, and a 15 min cool-down phase. The
patients were instructed to continue the learned activities at home, to keep their physical
fitness and biochemical parameters at the beneficial level [27]. The choice of exercises
(different strength and balance exercises) and training modalities (number and sets of
repetitions as well as the duration of resting time) were individually adjusted to each
patient, then monitored in the rehabilitation by the responsible physiotherapist.

2.4. Samples Collection

Blood samples were collected before the initial and after the final (after the patient’s
HR returned to the resting value) rehabilitation sessions. A blood sample (5 mL) from the
ulnar vein was collected to the standard blood tubes with a clot activator (S-Monovette,
SARSTEDT). The samples for serum analysis were centrifuged at 4000 rpm for 10 min
at 4 ◦C and then subsequently frozen and stored at −80 ◦C until further analyses could
be performed.

2.5. Irisin, Chemerin, and Brain-Derived Neurotrophic Factor (BDNF) Assessment

Irisin and chemerin concentrations were assessed using an enzyme-linked immunoab-
sorbent assay (ELISA) kit (cat. no. RAG018R and RD191136200R, respectively, BioVendor,
Brno, Czech Republic). BDNF concentration was assessed using an enzyme-linked im-
munoabsorbent assay (ELISA) kit (cat. no. SEA011Hu, Cloud Clone Corp., Katy, TX, USA).
The serum samples and all reagents were prepared and processed as per the manufacturers’
guidelines. The color change in the samples was measured spectrophotometrically using
the microplate reader (BioTek Synergy HTX Multimode Reader, BioTek® Instruments, Inc.,
Winooski, VT, USA). The results were calculated as per the manufacturers’ guidelines,
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using dedicated Gen 5 Microplate Data Collection and Analysis Software ver. 3.14.03
(BioTek® Instruments, Inc., Winooski, VT, USA). The results for irisin were read against
an 8-point calibration curve ranging from 0.001–5 µg irisin/mL. Intra-assay precision was
CV < 7%, inter-assay precision was CV < 10%, and the lower limit of detection was 1 ng
irisin/mL. The results for chemerin were read against a 6-point calibration curve ranging
from 0.25–8 ng chemerin/mL. Intra-assay precision was CV = 6%, inter-assay precision
was CV = 7.6%, and the lower limit of detection was 1 ng irisn/mL.

The results for BDNF were read against a 7-point calibration curve ranging from
0.156–10 ng BDNF/mL. Intra-assay precision was CV < 10%, inter-assay precision was
CV < 12%, and the lower limit of detection was 0.061 ng BDNF/mL.

2.6. Statistical Analysis

The analysis was performed, and graphs were created, using Statistica ver. 13.0 (TIBCO
Software Inc., Palo Alto, CA, USA). Data distribution was assessed using the Shapiro–Wilk
test and quantile–quantile plots. The mean values with standard deviation (SD) were
calculated for normally distributed data, and the median and lower-upper quartile (Me
(Q1–Q3)) for non-normal distributed data. The non-normal distributed data were log-
transformed. The t-test for related samples was used to compare the parameters before and
after rehabilitation. All tests were two-tailed. Statistical significance was set at p < 0.05.

3. Results

A 21-day individual rehabilitation exercise training program significantly changed
irisin levels in patients after hip or knee replacement (Table 2). Irisin levels increased after
the rehabilitation (p < 0.05) by about 0.06 ± 0.16 µg/mL (95%CI: 0.01–0.12) (Figure 1).
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Table 2. Irisin, chemerin, and brain-derived neurotrophic factor (BDNF) concentrations in the serum
of patients after hip or knee replacement surgery, before and after a 21-day individual rehabilitation
exercise training program.

Analyzed Factor Concentration before Rehabilitation Concentration after Rehabilitation t p

Irisin (µg/mL) 0.43 ± 0.15 0.49 ± 0.13 2.41 <0.05
Chemerin (ng/mL) * 247.5 (193.0–345.3) 164.1 (103.9–264.4) 7.20 <0.001

BDNF (ng/mL) 1.54 ± 1.1 3.4 ± 2.25 5.84 <0.001

Legend: * log-transformed data, BDNF—brain-derived neurotrophic factor.

Chemerin levels also significantly differed before and after a 21-day individual re-
habilitation exercise training program (p < 0.001). The rehabilitation decreased chemerin
concentration by about 60.9 (33.1–128.5) ng/mL (Figure 2, Table 2).
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Figure 2. Chemerin concentration [ng/mL] in the serum of patients after hip or knee replacement
surgery enrolled to a 21-day individual rehabilitation exercise training program.

In case of BDNF, we observed its statistically significant increase in the patients
serum after a 21-day individual rehabilitation exercise training program, compared to its
concentration before the rehabilitation started to (p < 0.001). In the course of 21 days, BDNF
levels increased by about 1.86 ± 1.96 ng/mL (95%CI: 1.22–2.51) (Figure 3, Table 2).

A pairwise comparison of pre-treatment irisin, chemerin, and BDNF serum concen-
trations results was made, and no correlations were found. A pairwise comparison of
post-treatment results for the same factors showed a weak negative correlation for irisin
and BDNF (rho = −0.351, p < 0.05), and for chemerin and BDNF (rho = −0.416, p < 0.01)
serum concentrations.
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Figure 3. Brain-derived neurotrophic factor (BDNF) concentration [ng/mL] in the serum of pa-
tients after hip or knee replacement surgery enrolled to a 21-day individual rehabilitation exercise
training program.

4. Discussion

Hip or knee arthroplasty constitutes a significant percentage of orthopedic surgeries.
Arthroplasty improves patients’ motor capacity and their quality of life [28,29]. A hip
arthroplasty procedure is recognized as one of the most common and most significant
operations improving patients’ quality of life [30]. According to OECD data, access to
arthroplasty treatment improved by about 7% from 2000 to 2009. Günsche et al. calculated
the age-standardized incidence rates for total hip or knee replacements based on OECD
data [31]. The authors found that the age-standardized incidence rates for total hip replace-
ment is positively related to incidence and length of stay of coxarthrosis, age-standardized
incidence rates for total knee replacement, health expenditures, number of nurses, and
social insurance. On the other hand, diabetes prevalence, gross domestic product, and
the number of doctor consultations negatively influence the age-standardized incidence
rates. In contrast, the total knee replacement rate is positively influenced by health expen-
ditures and the incidence rate of gonarthrosis, and negatively by the number of primary
practitioners [31]. In Poland, the number of arthroplasty surgeries increased by 20% in
2017 [32]. Unfortunately, data on osteoarthritis (OA) prevalence, the frequency of its clinical
phenotypes, and the physical disabilities it generates, or on the OA’s economic impact on
the health system in Poland are non-existent.

In the presented study, we observed that a 21-day individual rehabilitation exercise
training program led to a significant increase in irisin and brain-derived neurotrophic
factor (BDNF), and a decrease in chemerin serum concentration in patients after hip or
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knee replacement surgery. Exercise is an effective non-pharmacological intervention that
improves physical capacity, body functions, and health. Since the correlation between the
beneficial effects of exercise and exercise intensity or duration shows the dose–response
relationship, it seems that individually-adjusted rehabilitation exercise training is crucial for
patients after hip or knee replacement surgery. In vitro and in vivo studies demonstrated
that irisin influences bone cells [33–36].

Irisin’s effect on bone cells was demonstrated in several in vitro and in vivo studies [27–30].
Irisin stimulates osteoblasts’ differentiation, their activity, and increases osteocytes’ via-
bility. Simultaneously, irisin affects the osteoclasts in two ways: indirectly, through the
increased expression of osteoprotegerin (OPG) in osteoblasts, and directly, as a counter-
regulatory hormone increasing osteoclast progenitors differentiation and promoting bone
resorption [33,34,36,37]. Colaianni et al. [38] have demonstrated that irisin affects all stages
of osteoblast differentiation: the early stage, by increasing the number of ALP+ colonies,
and the late stage, by enhancing the mineralized nodules formation [38]. In adults, irisin
levels are affected by age, gender, obesity, and muscle mass [39]. Apart from improving
the bone strength, irisin has also more broad effects, like increasing energy expenditure
and improving cognition [38,40,41]. Anastasilakis et al. [42] demonstrated that the basic
irisin level did not depend on the degree of physical activity, but it increased after 20 min of
intense muscle exercise [42]. Kurdiova et al. [43] also reported that irisin levels are related
to the usual degree of physical activity and to muscular strength, contractility, and vol-
ume [43]. According to Anastasilakis et al. [42] and Loffler et al. [39], acute and strenuous
exercise increase irisin blood concentration, but they do not change after long-term exercise
(6 weeks/1 year).

In the past decade, scientific reports have focused on the responses of irisin to various
exercise patterns and types of physical activity. Sprint-type exercises led to an acute increase
in the peripheral concentration of irisin in Greyhound dogs [44] and in humans [45,46].
Some studies showed that high-volume resistance exercises engaging all muscle groups
led to an increase in the irisin concentration 1 h after exercise [45,47,48], whereas irisin
concentration remained unchanged when the exercise engaged only one muscle group [49].
Similarly, the chronic whole-body vibration exercise also increased irisin concentration [50].

However, the meta-analysis [51] of three randomized controlled trials showed that
chronic resistance exercise training has a moderate and significant effect on circulating
irisin and decreases it compared with the control, and endurance exercise training has only
a similar but not significant trend. Similar analysis [51] of nine non-randomized studies
revealed that regular exercise training was associated with a small and non-significant
overall effect and decreased irisin levels compared with the baseline. On the other hand,
Gaudio et al. [52] reported that physical activity positively increased serum irisin levels
and bone turnover markers in competitive footballers, when compared to similar subjects
with a predominantly sedentary lifestyle [52]. However, in pathophysiological conditions,
reduced circulating irisin levels were reported in patients with chronic kidney disease or
T2DM, preeclamptic women during gestation, and osteoporotic patients [53].

Here, we report that a 21-day individual rehabilitation exercise training program
increased irisin serum concentrations. The assumption of the applied individual rehabil-
itation exercise training was to ensure that each of the patients, for 21 consecutive days,
completed the individually-adjusted exercise sessions that consisted of 30–45 min of aer-
obic walking, 20–30 min of strength training, and 30–45 min of rotor/bicycle training.
The physiotherapy and the living activity training focused on improving the patient’s
walking functionality, and engaged all body muscle groups. The obtained results agree
with the studies that reported increased levels of irisin after high-volume resistance exer-
cises engaging all muscle groups [45,47,48]. Due to its numerous biological roles, irisin
is a prospective therapeutic target, and it offers a new potential foundation for physical
therapy [54]. Nevertheless, further studies are needed to determine clinical significance of
irisin as the potential marker of successful rehabilitation exercise training of OA patients.
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Chemerin presence is related to inflammatory processes such as psoriasis, obesity,
metabolic syndrome, hypertension, angina, and cancer [55]. High chemerin concentrations
induce MMP-2, MMP-3, MMP-13, and IL8, which accompany joint cartilage degrada-
tion [56]. However, studies on chemerin in OA patients are infrequent, and give diverse
results. Valcamonica et al. [57] observed high chemerin levels in patients with knee OA.
In this study, chemerin levels were related to C-reactive protein, IL-6, and TNF-α levels.
The authors suggested that chemerin comprises an inflammatory component [57]. In
their previous study, Valcamonica et al. [57] reported contradictory results, showing no
significant difference in serum chemerin levels in 11 OA patients, 8 psoriatic arthritis, and
18 rheumatoid arthritis patients. On the contrary, Ma et al. [58] observed higher chemerin
levels at the synovial fluid and membrane level in patients with knee OA than in the control
group. Similarly, Huang et al. also reported increased chemerin levels in the serum and
synovial fluid of patients with knee OA [59]. Bozaoglu et al. [60] related serum chemerin
levels to metabolic syndrome components because, in glucose tolerant subjects, plasma
chemerin levels were significantly associated with BMI, circulating triglycerides, and blood
pressure. We noted a significant decrease in chemerin levels in patients after knee or hip
replacement surgery, who underwent the 21-day individual rehabilitation exercise training
program. Our findings are similar to the results by Stefanov et al. [61], who reported that a
6-month exercise program combining endurance and resistance exercises led to a statisti-
cally significant reduction in serum chemerin concentration in middle-aged, overweight or
obese, non-diabetic individuals [61].

Physical exercise (muscle contraction) is an important modulator influencing the pro-
duction of cytokines such as BDNF [62]. Systematic reviews [59,63] and meta-analyses [64,65]
conclude that an acute bout of physical activity transiently increases BDNF peripheral
levels. Additionally, chronic physical activity increases BDNF response to an acute bout of
physical activity [65]. On the other side of the spectrum, physical inactivity determines the
activation of systemic inflammatory pathways in chronic diseases [62]. Low BDNF levels
are associated with aging and several diseases: neurologic [65], psychiatric [66], frailty
syndrome [67], and impaired cognitive function [68]. Elevated BDNF concentrations that
follow intervention (like physical therapy) [69] and physical activity [70] suggest that BDNF
may be an important regulatory factor in the elderly population. The results presented here
demonstrate increased BDNF serum concentrations after 21 days of regular and moderate
exercise. Our previous study showed that the 21-day general alternative rehabilitation
exercise training also improved the clinical parameters, such as blood morphology, dyslipi-
demia, BMI, oxidative stress markers, and the patient’s overall fitness measured with the
six-minute walking test (6MWT) of elderly patients after hip or knee replacement surgery
due to OA [71]. Since the studies on BDNF plasma concentrations and inflammatory
diseases are scarce, it may also be possible that initially low BDNF serum levels are not
related to OA, but are instead associated with chronic inflammatory conditions related to
aging, as suggested by Gomes et al. [72] and Vasto et al. [73]. Nevertheless, even in light of
this possibility, the presented study brings novel data to this discussion.

We are aware of two limitations of the presented study. The first one is related to the
number of patients included in the study. It was mostly due to successive loss of patients or
withdrawals. For some patients, it was difficult to comply with the rehabilitation program
schedule due to personal reasons, or problems with mobility or transport. The second
limitation is related to the study design, which does not include a control group consisting
of healthy individuals.

5. Conclusions

A 21-day individual rehabilitation exercise training program led to a significant in-
crease in irisin and brain-derived neurotrophic factor (BDNF), and a decrease in chemerin
serum concentration in patients after hip or knee replacement surgery. Selected markers are
widely studied in the context of various diseases, and considered potential new markers
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of these pathophysiological conditions. Irisin and BDNF seem best choice for that use,
however, more research in this area is necessary.
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