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ABSTRACT
Compositional breakpoints of freshwater plant communities across continents

Unravelling patterns and mechanisms of biogeographical transitions is crucial if we are to understand compositional gradients
at large spatial extents, but no studies have thus far examined breakpoints in community composition of freshwater plants across
continents. Using a dataset of almost 500 observations of lake plant community composition from six continents, we examined,
for the first time, if such breakpoints in geographical space exist for freshwater plants and how well a suite of ecological factors
(including climatic and local environmental variables) can explain transitions in community composition from the subtropics
to the poles. Our combination of multivariate regression tree (MRT) analysis and k-means partitioning suggests that the most
abrupt breakpoint exists between temperate to boreal regions on the one hand and freshwater plant communities harbouring
mainly subtropical or Mediterranean assemblages on the other. The spatially structured variation in current climatic conditions
is the most likely candidate for controlling these latitudinal patterns, although one cannot rule out joint effects of eco-evolutiona-
ry constraints in the harsher high-latitude environments and post-glacial migration lags after Pleistocene Ice Ages. Overall, our
study supports the foundations of global regionalisation for freshwater plants and anticipates further biogeographical research
on freshwater plant communities once datasets have been harmonised for conducting large-scale spatial analyses.

Key words: aquatic macrophytes, biogeography, latitudinal patterns, regionalisation

RESUMEN
Puntos de inflexion en los gradientes de composicion de las comunidades de plantas acudticas de diferentes continentes

Desentraiiar los patrones y mecanismos que subyacen a las transiciones biogeogrdficas es un requisito fundamental a la
hora de comprender los gradientes de composicion de las comunidades ecologicas a grandes extensiones espaciales, si bien
ningun estudio ha examinado explicitamente estos puntos de inflexion para comunidades de plantas acudticas de diferentes
continentes. Utilizando una completa base de datos que condensa un total de casi 500 observaciones individuales sobre las
comunidades floristicas lacustres de seis continentes, este trabajo pretende delinear las transiciones biogeograficas en plantas
acudticas a escala global, asi como valorar el papel que desempeiian diversos mecanismos ecolégicos (a saber, las condiciones
climaticas y las caracteristicas locales del habitat) sobre estos puntos de inflexion en el espacio geogrdfico comprendido entre
las latitudes subtropicales y los polos. Nuestros resultados obtenidos mediante la ejecucion simultanea de arboles de regresion
multivariante (MRT) y algoritmos de agrupacion por k-medias demuestran la existencia de un punto de inflexion entre las
regiones templadas y boreales y los lagos localizados en las bandas subtropicales y en las inmediaciones del Mediterraneo. La
estructura espacial que subyace a la distribucion de los condicionantes climdaticos en nuestro planeta parece ser el principal
mecanismo de control de dichas transiciones biogeogrdficas, si bien estos patrones latitudinales también podrian explicarse
en base a constricciones eco-evolutivas en las regiones mas septentrionales y a la colonizacion diferencial de los territorios
norteiios antaiio cubiertos por el hielo durante el Ultimo Mdximo Glacial. En sintesis, nuestro estudio proporciona una base
teorica preliminar para futuras investigaciones encaminadas a delimitar las unidades geogrdficas de los principales compo-
nentes de la flora acudtica contempordanea y también anticipa un creciente interés por los estudios de cardcter fitogeogrdfico en
las aguas continentales, si bien los andlisis venideros deberan prestar especial atencion a la armonizacion de datos biologicos
potencialmente heterogéneos en naturaleza y con origenes dispares.

Palabras clave: biogeografia, macrdfitos acuaticos, patrones latitudinales, regionalizacion
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INTRODUCTION

Freshwater plants are a widely distributed group
of photosynthetic organisms that play essen-
tial functional roles in freshwaters (Carpenter &
Lodge, 1986, Chambers et al., 2008, Moi et al.,
2022). For instance, together with microalgae,
freshwater plants are responsible for the primary
production of continental waters (Krause-Jensen
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& Sand-Jensen, 1998) and are an important food
source for many other organisms (Carpenter &
Lodge, 1986). Freshwater plants also act as eco-
system engineers by providing habitats and shel-
ter to a variety of organisms (van Donk & van
de Bund, 2002) and modulate the diversity and
compositional variation of other aquatic animal
communities (Garcia-Girén et al., 2020a). Since
freshwater plants are taxonomically and ecolo-
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gically well known, and occur in almost all fresh-
water ecosystems worldwide, a better understand-
ing of the patterns and mechanisms affecting their
distributions at global and continental extents
would be valuable from both basic and applied
perspectives (Alahuhta et al., 2021, Iversen et al.,
2022, Lind et al., 2022).

Explanations for biogeographical patterns of
freshwater organisms when the focus is on local
communities are still elusive. This is partly due to
the lack of comparable regional survey data over
large geographical areas. This is unfortunate be-
cause better knowledge of species diversity and
distributions at large spatial extents, such as con-
tinents, is intimately related to understanding and
predicting ecosystem functioning and resilience
(e.g., Pessarrodona et al., 2019). This knowledge
is also critical for delineating areas for sustainable
management and conservation (Bailey, 2010, Vil-
mi et al., 2017). Explaining and testing hypotheses
related to compositional gradients across conti-
nents require comparative analyses of multiple
datasets, which rarely exist. In consequence, it is
still difficult to draw comprehensive conclusions
about the existence of breakpoints in community
composition as well as the role of climatic gradi-
ents (e.g., temperature and precipitation) and lo-
cal environmental features (e.g., mineral content
and nutrients) on these biogeographical transitions
in freshwater plants. These empirical exercises
would not only provide insightful information
about eco-evolutionary constraints and physiolo-
gical trade-offs associated with important ecologi-
cal gradients, but also offer a means of testing the
very foundations of global regionalisation for fresh-
water plants (Alahuhta & Garcia-Girén, 2022).

While a relatively large number of stud-
ies have examined variation in freshwater plant
richness and diversity across large spatial ex-
tents (e.g., Murphy et al., 2019, Alahuhta et al.,
2020, Garcia-Giron et al., 2020b, 2021), virtu-
ally no studies have yet examined composition-
al breakpoints (sensu Heino & Alahuhta, 2015)
based on high-resolution resolution data (e.g., a
local community from an individual lake) world-
wide. Simultaneous comparison of multiple study
regions from different continents and environ-
mental settings should, however, lead to a better
understanding of such breakpoints in geographi-

cal space, helping to elucidate whether marked
thresholds in community composition are mould-
ed predictably by a set of ecological factors. Here,
we test if global compositional breakpoints exist
for freshwater plants using a standardised fine-
grained database of individual lakes across 16 re-
gions from six continents. More specifically, we
addressed the following question: What are the
contributions of climatic and local environmental
variables to compositional gradients in freshwa-
ter plant communities across continents, if such
biogeographical transitions exist? Similar to what
has been found for different groups of New World
vertebrates (Castro-Insua et al., 2016) and Fen-
noscandian beetles (Heino & Alahuhta, 2015), we
hypothesised that the existence of composition-
al breakpoints in freshwater plant communities
would be mediated by spatially structured varia-
tion in current climatic conditions from the sub-
tropics to the poles.

METHODS

Our study was based on local community data
of lake plants compiled for 16 regions (ca., 30
different lakes within each region) with variable
sizes from around the world (Fig. 1) and covering
all major continents inhabitable for freshwater
plants (see Chambers et al., 2008). The species
presence-only observations (i.e., species X sites
matrix) were obtained from field surveys using
broadly the same methods within each study
region, including submerged (e.g., elodeids),
floating-leaved, free-floating (e.g., lemnids), and
emergent forms (Cook, 1999). This dataset is one
of the world’s few available repositories of local
freshwater plant communities across continents
and has already been described in detail to inves-
tigate the global variation of beta diversity (Ala-
huhta et al., 2017, Garcia-Girdn et al., 2020b) and
community-environment relationships (Alahuhta
et al., 2018, Garcia-Girén et al., 2020c). Local
environmental variables consisted of lake area
(km2), Secchi depth (m), and water total phos-
phorus concentration (ug/l). Local variables were
surveyed and determined following similar meth-
ods within each study region (see Alahuhta et al.,
2017, 2018 and Garcia-Girdn et al., 2020b, 2020c
for details). Climate variables included atmos-

Limnetica, 42(2): 291-301 (2023)



294

Garcia-Giron et al.

Erozil constal inkes (Aoige)
ool Forono raver Noosdpion
Chinn

Gemmerk

Cxiuriy

Findgne

Einriaa

Hungary

Mimnesata

Maooip

Wew Jepivnd

Mo vy

Pl

Lpalin

Lwenen

o Wsoonsin

EEEFEEEFF

FEREEPF

[

Figure 1. Study regions are indicated as coloured triangles with photographs of some representative study lakes in (from left to right)
the Laurentian Mixed Forest Province of Wisconsin (USA), Norway, Finland, China, the Upper Parana River floodplain, the Brazilian
eastern coast, Florida, Morocco, and Spain (see Alahuhta et al., 2017, 2018 and Garcia-Girén et al., 2020b, 2020c for details). Photo-
graphs are courtesy of (from left to right): Laura Sass, Hékan Sansten, Jun Xu, Roger P. Mormul, Sarian Kosten, Mark V. Hoyer, Laila
Rhazi, and Jorge Garcia-Girdn. Se indican las regiones estudiadas con triangulos de colores y anexas al mapa algunas fotografias de
lagos representativos en (de izquierda a derecha) los Bosques Mixtos de la Provincia Laurentina en Wisconsin (EE. UU.), Noruega,
Finlandia, China, la llanura aluvial del Rio Parana, la costa este de Brasil, Florida, Marruecos y Espaiia (consultar Alahuhta et al.,
2017, 2018 y Garcia-Giron et al., 2020b, 2020c para detalles adicionales). Las fotografias aqui expuestas son cortesia de (de izquier-
da a derecha) Laura Sass, Hakan Sansten, Jun Xu, Roger P. Mormul, Sarian Kosten, Mark V. Hoyer, Laila Rhazi y Jorge Garcia-Giron.

pheric annual mean temperature (°C), atmosphe-
ric annual temperature range (°C), and annual pre-
cipitation (mm) defined for each study lake based
on 30 years average values (1-km resolution data)
obtained from WorldClim (Hijmans et al., 2005).
We examined breakpoints of community vari-
ation along climatic and local environmental gra-
dients using multivariate regression tree analysis
(MRT, De’ath, 2002). MRT forms clusters of
species and sites (i.e., individual lakes) modelled
from species and environmental relationships by
the repeated splitting of the data, minimising the
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dissimilarity of local communities within clus-
ters and the within-group sums of squares (Bor-
card et al., 2011). This method retains a solution
with the greatest predictive power and can handle
situations where community-environment rela-
tionships are non-linear (Legendre & Legendre,
2012). We applied MRT based on Euclidean dis-
tance of y2-transformed multivariate species data
(i.e., response variables) and climatic and local
environmental variables as explanatory variables.
We also ran trial analyses with latitude and lon-
gitude included among the predictor variables to
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account for potential effects of dispersal barriers
across regions (Heino & Alahuhta, 2015). Our re-
sults, however, remained largely the same when
latitude and longitude were forced into the set
of constraining variables, and their inclusion did
not increase the explanatory power of the MRTs.
Thus, for simplicity, we focused only on findings
based on the remaining climatic and local envi-
ronmental variable alone. The final MRT mod-
el with the minimum cross-validated error (CV
Error) was selected as the ‘best’ tree after 10 000
cross-validations.

The MRT was based on pooled community
composition data where freshwater plant survey
methods were not strictly identical (although still
comparable) among the regions. However, all the
survey methods used have similar features for
which they all should be considered as transect
surveys, following the suggestions of Kolada et
al. (2009). MRTs are robust enough to describe
and explore complex relationships between po-
tentially imbalanced, but still comparable local
community composition data (De’ath, 2002). We
then used a combination of k-means partitioning
and y2 tests to assess the robustness of the MRT
results (Heino & Alahuhta, 2015). K-means par-
titioning clustered the study sites based on the
number of groups corresponding to those from
the MRT at the first node and the number of final
MRT leaves. Finally, we compared the matches
between the MRT and k-means clusters using y2
tests (Borcard et al., 2011). MRTs were compu-
ted using the R library MVPART-wrap (Ouellette
& Legendre, 2014), whereas k-means clustering
and y2 tests were performed with R packages Rc-
mdr (Fox et al., 2022) and coin (Hothorn et al.,
2021), respectively.

RESULTS

The MRT analysis showed that temperature vari-
ables were most clearly associated with composi-
tional breakpoints of freshwater plant communi-
ties across the world (Fig. 2). Mean temperature
was associated with the strongest community
breakpoint, accounting for 8.7 % of the variation
in species composition, followed by temperature
range (6.8 %) and total phosphorus (ca., 1-2 %).
In the first drop, lakes were split by a mean annual

temperature of 9.1 °C. On the left were relative-
ly warm regions ranging between > 40° S and
40° N, whereas on the right-hand side of the plot
were rather cold regions from the northern tem-
perate realms. Interestingly, geographical pat-
terns in the location of the thresholds in species
composition along the latitudinal gradient re-
mained largely the same considering the terminal
MRT leaves (Fig. 2). 2 tests found a statistically
significant relationship between MRT results and
k-means clustering (MRT first node, %2 = 148.7
and p-value < 0.001; MRT final leaves,y2 = 113.6
and p-value < 0.001), supporting the robustness
of such biogeographical transitions in our regre-
ssion trees.

DISCUSSION

Similar to what has been found for several groups
of New World vertebrates (Castro-Insua et al.,
2016) and Fennoscandian beetles (Heino & Ala-
huhta, 2015), our findings supported the notion
that compositional breakpoints in freshwater
plants are driven by the spatially structured vari-
ation in current climatic conditions across the
world. Perhaps more importantly, our results
extend the views of previous biogeographical
studies of freshwater plants (e.g., Chappuis et
al., 2012, Murphy et al., 2019, Alahuhta et al.,
2020, Lobato-de Magalhaes et al., 2021) and sup-
port the foundations of global regionalisation for
these organisms (see Alahuhta & Garcia-Girdn,
2022 for a tentative example on freshwater floras
of Greenland, continental Canada and the USA).
This reasoning is intuitive given that a biogeo-
graphical transition exists between temperate
to boreal regions occurring north of 40° N and
communities harbouring mainly subtropical and
southernmost Mediterranean species between
>40° S and 40° N (Fig. 2).

Local environmental variables are alone un-
likely to account for breakpoints in community
composition across continents (Heino, 2011). Ins-
tead, climatic conditions are a more likely candi-
date for controlling these latitudinal patterns. The
spatially structured variation in mean annual tem-
perature and temperature range is thought to be of
paramount importance for terrestrial (e.g., Kreft
& Jetz,2007) and freshwater (e.g., Alahuhta et al.,
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2021) plants. This is because average tempera-
ture and its seasonal variability affect dormancy,
turion formation, seed germination, and seasonal
growth rate (Lacoul & Freedman, 2006), poten-
tially affecting their geographical distributions.
This observation agrees with the empirical results
presented here, suggesting that climatic factors
may act universally across terrestrial and fresh-
water plants, at least when it comes to large-scale
compositional breakpoints in geographical space

Garcia-Giron et al.

(e.g., Hawkins et al., 2003, Whittaker et al., 2007).
In practice, although we could not provide direct
tests of these changes, we can tentatively suggest
that current trends of climate warming are likely
to modify freshwater plant ranges worldwide (cf.
Garcia-Girdn et al., 2021; Lind et al., 2022), and
consequently dissociate biogeographical transi-
tions through climate-driven shifts across conti-
nents (e.g., Dobrowski et al., 2021).
Alternatively, the major compositional break-
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Figure 2. Multivariate regression tree (MRT) for freshwater plants using data from almost 500 lakes across the world. This is the "best”
tree with minimum cross-validated error. Histograms under each node indicate the distribution of multiple subsets of plant species
within site groups. Insets are the main geographical regions of the Earth’s surface for each site group. Colour chart for major latitudinal
bands follows that for histograms. The statistics at the bottom of the plot are: the coefficient of determination (%, R2), the residual error
(Error), the cross-validated error (CV Error), and the standard error (SE). Arbol de regresion multivariante para las comunidades de
plantas acudticas de un total de casi 500 lagos distribuidos en diferentes partes del mundo. Se incluye el resultado con menor error
por validacion cruzada. Los histogramas localizados bajo los nodos del arbol indican la distribucion de multiples subconjuntos de
especies dentro de cada grupo. También se incluyen las bandas latitudinales ocupadas por los lagos de cada grupo utilizando una
escala de color consistente con los ya citados histogramas. Los valores estadisticos del grafico son los siguientes. coeficiente de de-
terminacion (%, R?), error residual (Error), error de validacién cruzada (CV Error) y error estandar (SE).
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points found here between temperate/boreal vs.
subtropical/southern Mediterranean regions (Fig.
2) could also reflect eco-evolutionary constraints
linked to withstanding colder conditions (e.g.,
harsh winter conditions and sediment freezing)
and shorter development periods for freshwater
plants at increasingly higher latitudes. This expla-
nation is consistent with trait-dependent adapta-
tions to high-latitude environments and differen-
tial selection for sets of more generalist species in
northern regions (Heino et al., 2009). Late Qua-
ternary climate change may also have imprinted
biogeographical transitions between the harsh-
er north and the more benign south. Freshwater
plants were eliminated at high latitudes during
the Pleistocene Ice Ages, and these regions have
been gradually recolonised after the retreat of
the ice sheets (Sawada et al., 2003). The biogeo-
graphical transition towards northern areas may,
indeed, indicate that northernmost biomes might
not have had enough time to become recolonised
by some species following the onset of the most
recent interglacial period (Dehling et al., 2010),
particularly some rare and potentially more spe-
cialist ones (Garcia-Giron et al., 2021). However,
the degree to which freshwater plant distributions
agree with this hypothesis is still open to intense
debate (e.g., Alahuhta et al., 2020, Murphy et al.,
2020, Garcia-Girén et al., 2021). Whatever the
case, the relatively low coefficients of determina-
tion (RZ ~ 30 %) from our MRT models, although
still ecologically meaningful, emphasise that
some ecogeographical mechanisms beyond those
measured in our study likely contributed to com-
positional gradients of freshwater plants across
continents. For example, alkalinity (Iversen et
al., 2019) and water availability (Chappuis et al.,
2012) have been found to strongly drive distribu-
tions and community composition of freshwater
plants at different spatial scales, although consist-
ent community-environment relationships seem
to be the exception rather than the rule at sub-con-
tinental extents (Garcia-Girén et al., 2020c). On
the other hand, overseas dispersal of propagules
by migratory birds is also known to lead to either
range expansion or shifts (Viana et al., 2016), and
therefore has also the potential to help explain
freshwater plant species distributions (Reynolds
etal., 2015; Green et al., 2016).
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The general lack of statistical power (see Ala-
huhta et al., 2021) does not compromise the va-
lidity of our findings. Instead, it should provide
yet another incentive to join efforts in an attempt
to understand the causal mechanisms and factors
underlying freshwater plant distributions. For in-
stance, seemingly simple tasks such as compil-
ing comprehensive multi-trait inventories of the
world’s freshwater plant species proved daunting
(Iversen et al., 2022), and even obtaining fine-
grained observational data of local communities
across continents has been a challenge (Alahuhta
et al., 2017). Hopefully, there will be an increase
in the quality and quantity of standardised field
surveys beyond botanical research perspectives
(especially in geographically less-studied regions
of Africa, eastern Europe, southern Asia, and Aus-
tralasia) that should allow further evaluations of
biogeographical rules in freshwater plants. These
future exercises should pay special attention to
harmonisation of potentially heterogeneous da-
tasets to be analysable in the same research con-
text and include local community samples (i.c.,
presence-only or abundance-based records) from
strictly comparable field surveys across different
spatial levels of interest (Pan et al., 2023). For
the moment, we hope that our findings here will
contribute to ongoing discussions in freshwater
plant research by showing that large-scale biogeo-
graphical transitions exist for these organisms and
that such breakpoints may be formed by either
curent climatic conditions, eco-evolutionary cons-
traints in the harsher high-latitude environments,
post-glacial migration lags, or (more likely) their
combined effects on species potential ranges.
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