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Abstract: Due to climate change, treelines are moving to higher elevations and latitudes. The
estimation of biomass of trees and shrubs advancing into alpine areas is necessary for carbon
reporting. Remotely sensed (RS) data have previously been utilised extensively for the estimation of
forest variables such as tree height, volume, basal area, and aboveground biomass (AGB) in various
forest types. Model-based inference is found to be efficient for the estimation of forest attributes using
auxiliary RS data, and this study focused on testing model-based estimations of AGB in the treeline
ecotone using an area-based approach. Shrubs (Salix spp., Betula nana) and trees (Betula pubescens
ssp. czerepanovii, Sorbus aucuparia, Populus tremula, Pinus sylvestris, Picea abies) with heights up to
about five meters constituted the AGB components. The study was carried out in a treeline ecotone in
Hol, southern Norway, using field plots and point cloud data obtained from airborne laser scanning
(ALS) and digital aerial photogrammetry (DAP). The field data were acquired for two different
strata: tall and short vegetation. Two separate models for predicting the AGB were constructed for
each stratum based on metrics calculated from ALS and DAP point clouds, respectively. From the
stratified predictions, mean AGB was estimated for the entire study area. Despite the prediction
models showing a weak fit, as indicated by their R2-values, the 95% CIs were relatively narrow,
indicating adequate precision of the AGB estimates. No significant difference was found between the
mean AGB estimates for the ALS and DAP models for either of the strata. Our results imply that RS
data from ALS and DAP can be used for the estimation of AGB in treeline ecotones.

Keywords: aboveground biomass; airborne laser scanning; image matching; model-based inference;
treeline vegetation; uncertainty estimation

1. Introduction

Forests play a major role globally as carbon sinks. Hence, afforestation may be
important for climate change mitigation through carbon sequestration [1]. However, there
are large differences in the capacity of different forest types to sequester carbon and produce
biomass. These differences depend on key environmental factors such as the available
nutrients in the soils and the climatic conditions. In the Nordic countries, the lowland
and low-latitude forests constitute the most productive areas and the largest pools of tree
biomass, but even high-elevation ecosystems are known to store large amounts of carbon
in vegetation and the soil [2–4].

Remote Sens. 2023, 15, 3508. https://doi.org/10.3390/rs15143508 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15143508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2460-5843
https://orcid.org/0000-0001-5534-049X
https://orcid.org/0000-0002-5948-0833
https://orcid.org/0000-0002-3403-057X
https://orcid.org/0000-0002-7492-8608
https://doi.org/10.3390/rs15143508
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15143508?type=check_update&version=1


Remote Sens. 2023, 15, 3508 2 of 18

Climate changes affect the establishment, growth, and mortality of trees and other
woody vegetation [5–8], and the effects might be more pronounced in the transition zones
between the boreal and alpine zone (i.e., the treeline ecotone), where trees grow at their
tolerance limit in terms of temperature compared to productive forests at lower eleva-
tions [9,10]. Therefore, in the treeline ecotone, even a moderate increase in temperature or
change in precipitation might lead to the increased growth of existing trees and promote
the establishment of pioneer trees in currently treeless areas [11,12]. According to Bryn
et al. [13], the alpine areas in Norway where pioneer trees potentially could establish
constitutes between 25 and 30% of the total land area (excluding bare rock and barren
areas). These are potential areas for forest expansion where the potential impact of carbon
sequestration is substantial. An increase in tree vegetation into the current alpine areas
will also have an impact on albedo [14–16], especially during winter as previously entirely
white surfaces will have scattered dark areas which absorb more incoming solar radiation.

There are several other factors apart from climate change that could induce changes in
the treeline ecotone, such as herbivory [17,18]. In Norway, where the current study was
carried out, it has been common in the past for domestic animals to graze and browse
in montane areas during the summer months (summer farming), in some areas more
intensively than others. Considering the large areas in play, the decline in summer farming
and herbivory can have a substantial effect on the biomass and carbon stocks in high-
elevation forests. Previous research seeking to disentangle and quantify the importance
of the different factors affecting the treeline ecotone has highlighted the complexity of the
causal relationships of treeline dynamics [5,17–19]. Even though both climate and herbivory
have been suggested as important factors, they only explain a small proportion of the
variation in the observed changes in the treeline ecotone. This likely means that the climatic
and herbivory variables fail to fully represent the true effects of these factors and that there
are context-dependent local factors that go unaccounted for in such analyses [9,10,20–23].
Since climate-induced responses in the treeline ecotone are difficult to predict, the future
development of biomass stock is highly uncertain. A monitoring system where objective
data are collected on a regular basis that enables the estimation of actual biomass and
carbon stocks is therefore important to fulfil national obligations with regard to carbon
reporting.

Accurately estimating and monitoring changes in forest biomass and carbon content
is crucial for meeting the requirements of both the Kyoto Protocol and the Paris Agree-
ment [24]. In Norway, the national forest inventory (NFI) is the primary source for biomass
and carbon estimates. For forest areas, the sampling grid of the NFI is 3 km × 3 km, but for
montane regions, it is 3 km × 9 km [25], which is sparse in terms of providing precise local
and overall country-wide estimates. However, with the use of auxiliary remotely sensed
(RS) data, the acquisition of data with wall-to-wall coverage for large regions has, in many
cases, been shown to be effective in terms of obtaining precise estimates of variables of
interest [26–41]. Compared to pure field-based samples, RS data offer the advantage of
quickly providing coverage over large areas, and wall-to-wall RS data are often available
over the entire area of interest (AOI). Another advantage of RS data is their ease of use in
remote or inaccessible areas, which is often the case where treeline ecotones are found.

Numerous studies have demonstrated the versatility of three-dimensional (3D) point
cloud data obtained through airborne laser scanning (ALS) for estimating the properties of
forest and vegetation (e.g., [34,37,39,42–47]). Næsset and Nelson [48] found that almost all
treeline trees with a height of 1 m or taller could be detected using ALS data. However,
trees below 1 m in height were often not detected because a laser pulse needs to intercept
a minimum surface area before an echo is triggered. With point data, the probability of
detecting trees will also depend on the point density. They also found that ground features
like rocks could yield echoes with positive height values because they were misclassified
as vegetation echoes. Thus, although detecting the smallest trees in the treeline ecotone
using ALS presents challenges, there is potential for developing an effective monitoring
system for AGB based on ALS, particularly for trees and shrubs taller than 1 m. Despite
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the steep decline in detection rates of single trees shorter than 1 m, an area-based approach
may still be a viable option for estimating AGB. Some studies have already used bi- and
multi-temporal ALS for estimating changes in height among treeline trees [49,50], and
the results from these studies are encouraging, showing the potential utility of ALS for
monitoring purposes.

The use of 3D point cloud data from digital aerial photogrammetry (DAP) is an
alternative to ALS, especially because of the potential finer spatial resolution. Aerial images
are cheaper to acquire and can therefore be more frequently collected compared to ALS
data [31]. Therefore, DAP data has emerged as an alternative to ALS in operational forest
inventories when both cost and utility are taken into account [30,51,52]. Studies that have
applied DAP for detection and estimation purposes related to small trees are still few,
although Puliti et al. [53] studied the use of aerial images from a drone platform for the
estimation of biophysical properties in productive forests under regeneration. In the latter
study, it was found that the height values of DAP point clouds tended to underestimate
tree height more than those from ALS. It was also found that solitary single trees were more
likely to be smoothed from the DAP point cloud. Whether or not these results were directly
related to the settings and algorithms used in the matching of the images was not identified.
Therefore, further investigation into the use of DAP for vegetation attribute estimations in
such transitional zones was recommended.

The uncertainties associated with estimates of state and changes in the AGB using aux-
iliary RS data have been studied for mature forest stands [29,54–60], montane forests [46],
and young forests [61]. The estimation of AGB using auxiliary RS data can be accomplished
through design-based or model-based inferences, which have been discussed in detail in
Ståhl et al. [33]. The model-based inference is independent of the probability sampling as-
sumptions, which makes it advantageous for inaccessible and remote study sites. However,
the accuracy of the estimates is solely dependent on the applied model. Thus, correctly
specified models are important to avoid systematic model prediction errors [33,43,62,63].
For informed decision making, it is also important that estimates of precision are provided
along with the estimates of AGB. In a study by Næsset et al. [31], the height of treeline
vegetation was estimated, and the efficiency of ALS and DAP RS data was compared by
characterising the uncertainty in the height estimations using root mean squared error.
However, to the best of our knowledge, there have been no studies where the uncertainty
of AGB estimates in treeline ecotone sites has been estimated. Therefore, further research
is needed to better understand the uncertainties associated with estimating AGB in this
region.

Objective

In the current study, AGB for a treeline ecotone site was estimated with corresponding
estimates of precision using an area-based approach and model-based inference. Models
for field measured AGB were constructed using metrics calculated from both ALS and
DAP data. The study area was divided into two strata (tall and short vegetation), and
separate models were fitted for each stratum with both ALS and DAP metrics. Along with
the estimates of total AGB based on both sets of metrics, standard error estimates were
obtained by means of parametric bootstrapping (PB). The main objective was to evaluate
and compare the precision of AGB estimates obtained utilising ALS and DAP as auxiliary
data and to assess the possibilities of using the area-based approach aided by these RS data
sources to estimate AGB in treeline ecotones.

2. Materials and Methods
2.1. Study Area

The AOI (7◦58′E, 60◦42′N; Figure 1) is located in the municipality of Hol, Norway, at
elevations between 1050 and 1320 m above sea level [21]. The dominant treeline species
in this region is mountain birch (Betula pubescens ssp. czerepanovii), along with a few
individuals of rowan (Sorbus aucuparia), aspen (Populus tremula), Scots pine (Pinus sylvestris),
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and Norway spruce (Picea abies). The shrub species considered in this study were Salix
lapponum, Salix glauca subsp. glauca, and Betula nana. Other woody dwarf shrubs, such as
Vaccinium spp. and Empetrum sp., are present in the area but not considered in the current
study. For an overview of all plant species and their abundances within the study area,
see [64].
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A graphical overview of the workflow is displayed in the chart in Figure 2. The data
collection, modelling, and estimation procedures are discussed further in the following
sections.
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2.2. Field Methods

There are both destructive and non-destructive methods available for measuring the
aboveground biomass (AGB) of trees; they differ in terms of resource requirements and
operational considerations [65,66]. In this study, our decision to employ a non-destructive
method for measuring AGB values in the field was primarily driven by resource limita-
tions. Destructive sampling, while providing more precise biomass estimates, would have
required significant additional resources that were not available to us. Furthermore, in an
operational setting, where resource allocation is constrained, the use of destructive sam-
pling would not be feasible or practical. Lastly, it is worth noting that, in this specific case,
we also faced restrictions and did not have permission to perform destructive sampling. As
a result, we utilised a predictive approach, leveraging field measurements to estimate the
total AGB for each plot. Despite the inherent limitations, this approach enabled us to derive
biomass estimates effectively while avoiding the challenges associated with destructive
sampling. The field data were collected partly using wall-to-wall ALS data to guide the
location of the sample plots. The area was tessellated into 100 m2 grid cells, and the average
height (Hmean) of first echoes of the ALS pulses within each grid cell was calculated. Based
on the Hmean values, the study area was split into two strata. Grid cells where Hmean < 1 m
were categorised as ‘short woody vegetation’ (SHORT), and grid cells where Hmean ≥ 1 m
were categorised as ‘tall vegetation’ (TALL). After classification into SHORT and TALL, the
SHORT grid cells were further tessellated into 16 equally sized squares (6.25 m2).

Twenty TALL grid cells with Hmean values evenly distributed over the entire range
of Hmean values were selected to establish field reference plots to initiate modelling. The
selection process involved dividing the Hmean range between 1 m and the maximum
value into 10 equally sized bins. Then, we randomly selected two grid cells from each
bin. The fieldwork was carried out in summer 2019. A Topcon HiPer SR geodetic-grade
GNSS receiver in real-time kinematic (RTK) mode was used to navigate to the centre of
each selected grid cell, where a circular plot with a radius of 5.64 m (area = 100 m2) was
established. Within each plot, all trees with diameter at breast height (dbh) > 0 were
calipered. Breast height was defined at 1.3 m above ground. Tree height was measured
using a folding rule or a Vertex hypsometer on two subjectively selected height-sample
trees in each plot. The selection was made so that the 40 selected trees (two trees per
plot) covered a range of dbh values. In addition, a 1.5 m radius (7.07 m2) sub-plot was
established at the centre of each plot to sample shrubs and tree saplings with a height (h)
< 1.3 m. All tree species were sampled, including juniper (Juniperus communis), as well as
the shrubs species willow (Salix spp.) and dwarf birch (Betula nana). The sub-plot was
divided into four quadrants by two perpendicular lines that intersected at the plot centre
in north–south and east–west directions (Figure 3). In each quadrant, the tree sapling or
shrub closest to each of the points 1 m from the plot centre in the directions that were 45,
135, 225, and 315 degrees relative to north (Figure 3) was measured for height and diameter
at root collar. In the southeast and northwest quadrants, the number of saplings and shrubs
were counted.

The field measurement for the SHORT stratum took advantage of 180 previously
established vegetation monitoring plots [20]. The original vegetation plots were squares
of 0.25 m2, but we established 1.5 m radius plots in the NW corner of each square. Two
additional plots were purposely established in tall Salix vegetation, since this was poorly
covered by the 180 prepositioned plots. The same measurements as those described for the
sub-plots of the 20 plots of the tall vegetation were carried out. The position at the centre of
each plot was registered with the same Topcon receiver described above in RTK-mode.
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Figure 3. Visual representation of the 1.5 m radius plot for the sampling of shrubs and tree saplings
with h < 1.3 m. In the NW and SE quadrants (hatched areas), all shrubs and saplings were counted.
Four heights were sampled, one in each quadrant, as the closest individual to a point 1 m from the
plot centre in directions 45, 135, 225, and 315 degrees, respectively.

For each plot, total AGB was predicted as the sum of individual tree AGB, following
the same procedure as in [67,68]. For the TALL plots, the predictions were separate for trees
with h < 1.3 m and those with h ≥ 1.3 m. For trees with h ≥ 1.3 m, the base heights were
first predicted using the base height models of Fitje et al. [69]. Then, single-tree biomass
models [70] with field-measured dbh and predicted base height as inputs were used to
predict the base biomass values (b1) of each tree. For each of the height-sample trees, a
second biomass (b2) value was predicted using measured dbh and measured h. Then, a
common correction factor k for the base-biomass was calculated from all the height sample
trees as the ratio between the sum of b2 and the sum of b1. Biomass for each tree was
predicted as b1 × k. Single-tree biomass predictions were summed for each plot and scaled
to a per hectare value. For trees and shrubs with h < 1.3 m observed on the 1.5 m radius
sub-plots, a mean diameter at the root collar and a mean height were calculated from the
measurements in each plot. These mean values were used as inputs in the single-tree
biomass model of Kolstad et al. [71] to predict mean-tree biomass and then multiplied with
the number of individuals and scaled to a per hectare value. The predicted biomass for
trees with h < 1.3 m was added to the biomass prediction for the taller trees. For the SHORT
vegetation plots, the total biomass was calculated using the same procedure used for the
1.5 m radius sub-plots of the TALL vegetation stratum. A summary of field reference data
is presented in Table 1.
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Table 1. Summary of field reference data collected in 2019.

Stratum n Mean AGB (Mg ha−1) SD (Mg ha−1) Min (Mg ha−1) Max (Mg ha−1)

TALL 20 30.2 17.5 8.48 65.8
SHORT 182 1.61 2.68 0.00 18.3

2.3. Remotely Sensed Data
2.3.1. Data Acquisition and Initial Processing

The sensor and flight information for the RS data is provided in Table 2. ALS data were
collected by the contractor, Terratec AS, as part of national scanning, with a point density of
2 points/m2. The raw point clouds were pre-processed by the contractor, and laser echoes
were classified as “ground”, “unclassified”, “noise”, “bridge”, or “snow”. Planimetric
coordinates and orthometric heights were computed for all echoes. A triangulated irregular
network (TIN) was then generated from the laser echoes classified as “ground” using the R
package “lidR” [72,73]. Since the study aimed to provide estimates of the biomass of shrubs
and trees whose lower stems often grow parallel to the ground due to snow pressure, all
vegetation echoes were included without setting a threshold on echo height. Thresholds of
<2 m have commonly been used in previous studies to omit falsely classified vegetation
echoes [50,74,75].

Table 2. Summary of sensor and flight information for ALS and DAP.

ALS DAP

Sensor system Riegl VQ-1560i Sensefly S.O.D.A. camera
Platform Piper PA-31-350 Chieftain Sensefly eBee
Acquisition dates 8 and 25 June 2018 7–10 July 2019
Flight altitude (m a.g.l) * 3400 120
Flight speed (m s−1) NA 15
Point repetition frequency (KHz) 350 NA
Scan frequency (Hz) 162 NA
Point density (points m−2) 2 55
Half scan angle (degrees) 20 NA

* above ground level.

The DAP data were collected following a flight plan with perpendicular flight lines
with lateral and longitudinal overlaps of 80%. Across the entire study area, 43 orange
wooden crosses (30 cm width) were distributed uniformly and positioned and used as
ground control points (GCP) to enable computation of the position and orientation of
the images. The DAP point cloud was thinned from a mean density of 55 points m−2 to
38 points m−2 using the R package “lidR” [72,73] to obtain a uniform point density over
the entire area. Examples of ALS and DAP point clouds are presented in Figure 4 for two
grid cells, one in each of the TALL and the SHORT strata. The higher point density of the
DAP point clouds is clearly visible.

2.3.2. Correction of the DAP Point Cloud

An initial inspection of the normalised DAP point cloud revealed many points with
negative normalised height values. Regions with no observable vegetation, meaning they
should have heights of 0 m, were observed to contain points with both positive and negative
heights. These were observed to be in the magnitude of 0–2 m. This indicated that the error
was not simply a global vertical shift and that this error was too large to be solely due to
the inaccuracy of the DAP system. The most likely culprit was the positioning accuracy
of the GCP markers. Positioning errors could result in either rotation or translation in the
DAP registration and thus errors in both the horizontal and vertical directions.
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Figure 4. The point clouds for one 100 m2 area in each stratum with a side-by-side comparison of
point clouds obtained by ALS and DAP, respectively. The heights above ground for the points are
illustrated using a colour scale from blue (ground) to red (highest point). The different panels display
(a) ALS–TALL, (b) DAP–TALL, (c) ALS–SHORT, and (d) DAP–SHORT.

The ALS and DAP point clouds did not share any GCP markers. Furthermore, the
density of the ALS data made the extraction of natural terrain features that could be applied
as GCPs too inaccurate. As a result, the DAP point cloud registration could not be corrected
by simply using shared tie points in the ALS and DAP point clouds. As an alternative to
this approach, the local vertical errors between the point clouds were estimated and used
to correct the original DAP point cloud. This approach can be summarised in three steps:
(i) ground points in the DAP point cloud were classified using the software TerraS-
can [76], (ii) the ALS ground point heights were interpolated at the XY coordinates of
the DAP ground points so that the vertical shift between ALS and DAP ground heights
could be computed, and (iii) the correction of the entire DAP point cloud was interpo-
lated from the results of the previous step. The interpolation was performed using the
“scipy.interpolation.griddata” Python package. If the point to be interpolated was lo-
cated inside the convex hull of the input points, linear interpolation was used; otherwise,
nearest-neighbour interpolation was employed.

2.3.3. Computation of Metrics

For both the ALS and DAP point clouds, metrics that represented the height distribu-
tion and the density of the point cloud for each plot and grid cell were computed using
the echoes classified as “first of many” and “single”. The normalised ALS and DAP point
clouds were clipped to the spatial extent of the plots and grid cells, and the points with neg-
ative heights were removed from further processing for the TALL stratum. For the SHORT
stratum, the DAP points with negative heights were kept to account for small height shifts
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still present in the point cloud after correction. We considered this to be important because,
for the SHORT stratum, most of the AGB was growing close to the ground. Removing
negative heights could possibly equalise the variation in the DAP point cloud in areas
where AGB actually varies. The metrics representing height were heights at the deciles of
the echo height distribution. The densities were the ratios between the number of echoes
above 10 different height-levels and the total number of echoes. In addition, the standard
deviation of the heights, skewness, and kurtosis were computed; all together, 23 metrics for
each of the ALS and DAP point clouds were considered.

2.4. Model Construction

Since AGB was small within our study area, the values of both the ALS and DAP
metrics were zero for many of the field plots, which was a limitation concerning variable
transformations and model forms. After some preliminary tests with different modelling
approaches, such as zero-inflated and log-transformation of the response variable, we chose
to construct linear models fitted using ordinary least squares. Linear models were suitable
in this case because the training dataset contained extreme AGB values, which reduced the
need for extrapolation. The models were constructed separately for the TALL and SHORT
strata. For the TALL stratum, the explanatory variables for the ALS and DAP datasets
were separately selected through a stepwise procedure based on the Bayesian information
criterion (BIC) and adj-R2 [77]. The general form of the models for the TALL stratum was
as follows:

AGB = β0 + β1X1 + · · ·+ β jXj + ε (1)

where j is the number of explanatory variables (X), β0, β1, . . . , β j are the parameter
estimates, and ε is the random error term.

As indicated in Section 2.2, there was a difference in the area of the field plots for the
short vegetation (7.07 m2) and the area of the grid cells (6.25 m2). Thus, a scale-independent
explanatory variable was purposely chosen for the models for the SHORT stratum. The
metric chosen for both the ALS and DAP models was the mean point height (Hmean), which
was retained even if the parameter estimate was statistically non-significant.

For the SHORT stratum, the models were formulated as follows:

AGB = β0 + β1Hmean + ε (2)

where Hmean is the average height of either the ALS or DAP points, β0 and β1 are the model
coefficients, and ε is the random error term.

The models’ training accuracies were assessed using the root mean square residual
error (RMSE) and relative RMSE (rel.RMSE) [78]:

RMSE =

√√√√∑n
i=1

(
ÂGBi −AGBi

)2

n
(3)

rel.RMSE =
RMSE

∑n
i=1(AGBi)/n

× 100 (4)

where ÂGBi is the model-predicted AGB for field plot i, AGBi is the corresponding field
reference AGB, and n is the number of observations in the reference data used to train the
models.

2.5. Estimation of Mean AGB

The final AGB—ALS and AGB—DAP models were applied to the grid cells belonging
to the stratum for which they were constructed. Mean AGB was estimated separately for

both strata and with both models (ÂGBTALL, ÂGBSHORT) as the means of the respective

stratified AGB predictions. Mean AGB values for the entire area (ÂGBH) using both models



Remote Sens. 2023, 15, 3508 10 of 18

were estimated as area weighted means for both strata individually for ALS and DAP
as [79]:

ÂGBH =
ÂGBTALL. ATALL + ÂGBSHORT . ASHORT

AH
(5)

where A is the area, and the subscripts TALL, SHORT, and H denote the TALL stratum,
SHORT stratum, and the entire area, respectively.

2.6. Variance Estimation via Parametric Bootstrapping

Estimation of the standard error (se) for the AGB estimates was carried out using
parametric bootstrapping (PB). PB is based on Monte Carlo simulation and is convenient
within the model-based inference framework [80]. It enables the statistical inference of
the variable of interest when the true distribution is unknown [81], and the Monte Carlo
errors become negligible when the PB samples are large [46]. In this study, the number
of bootstrap samples (NPB) was set to 50,000, and for each iteration (k), the mean of AGB

predictions (ÂGBk) was calculated. The standard error for the AGB predictions (ŝe) was
obtained separately for each stratum as [46]:

ŝe =

√√√√ 1
NPB − 1

NPB

∑
k=1

(
ÂGBk − ÂGBPB

)2
(6)

where ÂGBPB is the mean of the ÂGBk values of the NPB samples. To assess whether
the number of iterations was sufficient to accurately estimate the uncertainty of AGB
predictions, we calculated a standard error stabilisation indicator (se.s). This indicator
evaluates the change in the standard deviation of mean predicted AGB as additional
bootstrap iterations are conducted. The se.s value was determined after each iteration as
the maximum difference between the standard deviation of mean predicted AGBs obtained
during the last 50% of iterations and the standard deviation of all mean predicted AGBs
obtained in the final iteration. According to the authors of [80], an se.s of <0.5% of the se
after the last iteration indicates that the se has stabilised sufficiently.

The area-weighted standard error for the entire study area (ŝeH) combining both
stratum estimates can be estimated as [79]:

ŝeH =

√√√√(
ŝe2

TALL.A2
TALL + ŝe2

SHORT .A2
SHORT

)
A2

H
(7)

The 95% confidence intervals (CI) were obtained for the mean estimate of predicted
AGB for the respective strata and the total area as [82]:

CI = ÂGB ± (ŝe× 1.96) (8)

CIH = ÂGBH ± (ŝeH × 1.96) (9)

3. Results

For both of the TALL stratum models, the 9th height decile (H90) was selected as the
only explanatory variable, while for the SHORT stratum, the scale-independent Hmean was
selected. The estimated parameter coefficients for all models are displayed in Table 3 along
with the corresponding adjusted R2 (adj-R2) and root mean squared error (RMSE). For all
models, the adj-R2 values were relatively small, indicating moderate to weak model fit.
The relatively large proportion of unexplained AGB variation can also be seen in Figure 5,
where field-observed AGB is plotted against the model fitted values for all four models.
There were no large differences in model fit between the models based on ALS and DAP
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data, but substantial model fit differences between the strata were observed. Table 3 also
shows that the slope parameter values for the prediction models are smaller for the DAP
model for both strata compared to those of the ALS models, indicating that the two point
clouds have different height distributions.

Table 3. The table displays the explanatory variables, model coefficients, adj-R2, RMSE, and relative
RMSE (rel.RMSE) of the AGB prediction models for both strata and data sources.

Stratum Model Explanatory
Variable Prediction Model adj-R2 RMSE (Mg ha−1) rel.RMSE (%)

TALL
AGB-ALS H90 −15.09 + 11.64H90 0.47 12.4 41.1
AGB-DAP H90 −0.388 + 8.25H90 0.43 12.8 43.8

SHORT
AGB-ALS Hmean 0.74 + 32.3Hmean 0.15 2.47 154.2
AGB-DAP Hmean 0.96 + 28.41Hmean 0.27 2.28 118.1
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Figure 6 displays the se.s after each bootstrap iteration for both model types and
both strata. In all data types and stratum combinations, the se.s dropped below 0.5%
before reaching 50,000 iterations. However, in some instances and to a varying degree, se.s
increased in value after the stabilisation criterion was first reached; however, at the final
iteration of all four simulations, the se.s remained below the threshold of 0.5% for at least
10,000 of the last iterations.
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Figure 6. The standard error stabilisation indicator (se.s) after each of the 50,000 bootstrap iterations
for (a) ALS–TALL, (b) DAP–TALL, (c) ALS–SHORT, and (d) DAP–SHORT. To enhance the display of
se.s close to the critical value of se.s stabilisation, the y-axis has been truncated at se.s = 5% and the
red horizontal line represents 0.5%.

Table 4 displays the results from the estimations for each stratum and model, as well
as for the entire study area. There were no significant differences between the values of

ÂGB between models or within strata. Due to the large difference in the size of the area

regarding the two strata, the area-weighted values of ÂGB for the entire study area were
similar to those for the SHORT stratum.

Table 4. Estimation results of the AGB prediction models. ÂGB is the estimated mean, ŝe the
corresponding standard error estimate, and ĈI the 95% confidence interval.

Stratum * Model ÂGB (Mg ha−1) ŝe (Mg ha−1) ĈI (Mg ha−1)

TALL
A = 0.97 ha

AGB-ALS 26.5 3.16 23.4–29.7
AGB-DAP 29.2 3.13 22.9–35.5

SHORT
A = 270.75 ha

AGB-ALS 2.05 0.20 1.66–2.45
AGB-DAP 1.93 0.17 1.59–2.27

Total
A = 271.72 ha

AGB-ALS 2.14 0.39 1.75–2.53
AGB-DAP 2.03 0.34 1.68–2.37

* A = area in ha.
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4. Discussion

This study employed a model-based approach with data from ALS and DAP as
auxiliary information to estimate AGB and its corresponding precision. In contrast to other
comparable studies [46,74], our AOI was exclusively covered by shrubs and short trees. As
a result, this research has expanded the boundaries of RS technology in terms of supporting
AGB estimation. Despite the small AGB values in our AOI, the widths of the CIs were
encouraging in terms of operationalising AGB estimation in the treeline ecotone using both
ALS and DAP as auxiliary information. The 95% CIs around the estimated mean AGBs
overlapped for ALS and DAP in both strata (Table 4 and Figure 5), indicating that the
estimates derived from ALS and DAP were not statistically significantly different. However,
the relative uncertainties were larger compared to those obtained in previous studies for
productive (e.g., [40,41,54,83]) and montane forests [46] due to the irregular shapes of stems
and tree crowns in our AOI, which created weaker relationships between AGB and the RS
data and led to higher relative measurement errors. Compared to productive and montane
forests, where trees are substantially taller than in our AOI, the relative magnitude of the
measurement errors of the RS data was also expected to be larger.

Preprocessing of the DAP point cloud was carried out to correct varying degrees of
shifts in point heights or horizontal errors over the study area. Since our AOI comprised
mostly short vegetation, this preprocessing was deemed highly important. The corrected
values of the original DAP ground points were centred around 0, and both negative and
positive corrections were carried out, indicating that the approach was at least partly
successful at correcting erroneous height values at ground level. Errors still present after
correction were considered to be random. A weakness of our approach was that it assumed
vertical errors only. However, errors in the XY directions also must be expected, although
they were most likely small. The impact of such potential horizontal errors would have
been larger with a reduced size of the field reference plots used for modelling [84,85]
and would have been manifested by larger uncertainties in the model parameters. The
uncertainty will increase with increasing spatial heterogeneity of the vegetation over the
AOI. In the current study, there is reason to believe that such errors had the greatest impact
on the SHORT stratum since the field plot size was small. In the prediction phase, the
horizontal errors will be less important since there is no direct requirement of spatial
coherence. However, the precision of the predictions would still be affected by the errors
associated with the model.

Judging by adj-R2, the model relationships were weaker in the current study compared
to studies carried out on boreal productive forests (e.g., [34]) mainly composed of conifer
trees with regular conical crown shapes. Due to the irregularity and large variability of
stem and crown shapes in our AOI, in addition to our population comprising mainly of
shrub species and small individual trees, this difference was not surprising. In the SHORT
stratum, most of the trees and shrubs were short and extended their stems partly along the
ground, whereas the trees that constituted the TALL stratum were often snow-bent with
stems that were both crooked and growing partly along the ground. As a result, a large
part of the AGB was found within the uncertainty range of the TIN surface, which is often
around 20–30 cm [86].

The positional errors of the plots would have had similar effects as those from the
horizontal shift in the point cloud, as discussed above. However, in the open montane
landscape of our AOI, the conditions for GNSS positioning were generally excellent, re-
ducing the potential for positional errors. Nonetheless, potential positional errors are of
greater importance for the SHORT stratum than the TALL stratum due to the smaller plot
size used.

Furthermore, vegetation near the plot boundary can cause edge effects [85] as trees
and shrubs rooted just outside the plots may intersect with the plots. In such cases, the
trees or shrubs would not be measured in the field; therefore, they would not be part of the
measured AGB, but they would still affect the properties of the point clouds for these plots.
Conversely, trees and shrubs inside the plots close to the plot edge could lean out of the
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plot and still be included in the AGB estimate, affecting the properties of the point clouds
of these plots but only to a small degree. Therefore, such edge effects may generally be
larger in the treeline ecotone due to the irregularly shaped stems that are seldom vertical.
Like the positional errors, edge effects will be relatively larger with decreasing plot size.
The effects from trees leaning in and out of the plot, as well as growing inside and outside
the plot, will decrease with an increase in the spatial homogeneity of the trees and shrubs.

The graphical display of the AGB se.s (%) at each iteration (Figure 5a–d) indicates that
the number of iterations were sufficient for both the TALL and SHORT strata. For all model
and stratum combinations, the se.s oscillated around the 0.5% stabilisation criterion after
around 10,000 iterations. However, for the SHORT and TALL strata, the se.s values were
not stable until after iterations 30,000 and 40,000, respectively. As many as 50,000 bootstrap
iterations are quite rare in comparable studies where biomass or other forest attributes
are estimated [29,87,88]. The reason is for this is partly because many studies do not use
an evaluation criterion for standard error stabilisation. However, the required number of
iterations depends on several factors such as the sample size and variability of the original
dataset used to fit the model, the complexity of the prediction model used, the desired
level of precision of the se estimate, and the uncertainty of the model parameters [89]. In
our study, the estimates of the model parameters were characterised by a high level of
uncertainty, resulting in a large number of necessary iterations.

Previous studies carried out in productive forests [30,50] have shown that models
relying on ALS metrics generally outperform those relying on DAP metrics [52] in terms
of prediction accuracy. However, based on the 95% confidence intervals, our study did
not find evidence of such a difference. While the R2 values indicated weaker relationships
between the AGB and DAP metrics compared to the corresponding relationships with the
ALS metrics, these weaker relationships were not reflected in the uncertainty estimates.
Additionally, the smaller slope parameter values of the DAP models for both strata com-
pared to those of ALS suggest that the DAP point cloud primarily represents the vegetation
surface without penetrating the canopies [30,31].

For the modelling, the challenges with the site conditions discussed above meant that
we had to choose a robust and simple modelling approach [74]. Even though models for
biomass based on point cloud metrics usually include metrics representing both forest
height and density, our models only included one statistically significant explanatory
variable (H90 or Hmean). Thus, the variation in tree and shrub density, as expressed by
the density metrics, was weakly correlated to AGB, and most of the variation could be
explained by just the height metrics of our AOI. This might make the models less useful in
cases where extrapolation outside the range of variability of the reference data is needed. In
our case, however, extrapolation was not extensive as extreme observations were purposely
included in our reference data by the way the plots were selected using the ALS data as
prior information to guide the sample selection. This was especially important since we
relied on linear models [90]. Such a strategy could be adopted in any study area where RS
data are available prior to fieldwork.

5. Conclusions

This study indicates that both ALS and DAP data can be used as auxiliary information
in area-based AGB estimation with respect to treeline ecotones. We found no significant
differences in terms of precision using the two data sources, both at the individual stratum
level and for the total area. Although, based on the RMSE and rel.RMSE values, the models
for the TALL stratum were more precise than those of the SHORT stratum, the 95% CIs for
the models had similar widths in relative terms. This research indicates that area-based
biomass estimation can also be carried out operationally in treeline ecotones. However,
further studies should be carried out to assess if the proposed method can support repeated
surveys for the purpose of AGB change estimation.
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