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Abstract: The advent of genetic methods has led to the discovery of an increasing number of species that previously could
not be distinguished from each other on the basis of morphological characteristics. Even though there has been an ex-
ponential growth of publications on cryptic species, such species are rarely considered in ecotoxicology. Thus, the particular
question of ecological differentiation and the sensitivity of closely related cryptic species is rarely addressed. Tackling this
question, however, is of key importance for evolutionary ecology, conservation biology, and, in particular, regulatory eco-
toxicology. At the same time, the use of species with (known or unknown) cryptic diversity might be a reason for the lack of
reproducibility of ecotoxicological experiments and implies a false extrapolation of the findings. Our critical review includes a
database and literature search through which we investigated how many of the species most frequently used in ecotox-
icological assessments show evidence of cryptic diversity. We found a high proportion of reports indicating overlooked
species diversity, especially in invertebrates. In terrestrial and aquatic realms, at least 67% and 54% of commonly used
species, respectively, were identified as cryptic species complexes. The issue is less prominent in vertebrates, in which we
found evidence for cryptic species complexes in 27% of aquatic and 6.7% of terrestrial vertebrates. We further exemplified
why different evolutionary histories may significantly determine cryptic species' ecology and sensitivity to pollutants. This in
turn may have a major impact on the results of ecotoxicological tests and, consequently, the outcome of environmental risk
assessments. Finally, we provide a brief guideline on how to deal practically with cryptic diversity in ecotoxicological studies
in general and its implementation in risk assessment procedures in particular. Environ Toxicol Chem 2023;42:1889–1914.
© 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCING THE PHENOMENON OF
CRYPTIC SPECIES IN METAZOA

Traditional ecotoxicological testing often determines a
concentration–response relationship for a given contaminant
and a certain endpoint (e.g., survival or reproduction) at a
specific point in time (Walker et al., 2012). Environmental risk

assessment is based on comparing contaminant exposure ex-
pected or measured in the environment and the effects in-
duced by the contaminant for a certain species by considering
some uncertainty through an assessment factor. For this pur-
pose, standardized test methods have been developed, which
often make use of laboratory‐reared organisms. The use
of animals from the wild is an attractive alternative to extend
the spectrum of study organisms within the framework of pro-
spective risk assessment (Chapman, 2002). When one is using
wild organisms, current guidelines advise collection of the
species from relatively uncontaminated sites and identification
of species using an appropriate taxonomic key (Amiard‐Triquet
et al., 2015). This approach has been challenged in recent years
by the routine large‐scale use of molecular methods that have
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uncovered a large number of previously unrecognized
“cryptic” species, not identifiable by morphological charac-
teristics employed in taxonomic keys. As a result, the use
of field‐sampled individuals may increase the uncertainty of
test results because (at least so far) the taxonomic similarity of
newly caught individuals with already used test specimens is
not always secure.

In general, the term “cryptic species” refers to two or more
species that are very similar or identical in appearance and thus
difficult or impossible to recognize by morphology, but that
have reproductively well‐isolated and phylogenetically distinct
evolutionary lineages (Fišer et al., 2018; Sáez & Lozano, 2005).
In some cases, molecular studies can provide a basis for finding
fine morphological diagnostic features that can separate the
formerly indistinguishable species—these are often termed
“pseudocryptic species” (Jabłońska et al., 2018; Rudolph
et al., 2018). A recent example comes from the freshwater
amphipod crustacean Gammarus fossarum, once considered a
single species widespread in Europe, which turned out to be a
species complex of at least 84 cryptic species (Wattier
et al., 2020), with some known to be syntopic without any re-
cent gene‐flow between them (Bystřický et al., 2022; Lagrue
et al., 2014). Another example is one of the most common
terrestrial test organisms, the lumbricid earthworm Eisenia
fetida (in the past often spelled “foetida”), which is now con-
sidered to contain at least two morphologically similar species
(E. fetida and E. andrei; Römbke et al., 2016). These two ex-
amples are by no means exceptional phenomena; it appears
that cryptic species can be found across almost all extant
taxonomic groups and probably represent a significant portion
of a yet largely undiscovered biodiversity (Pérez‐Ponce de León
& Poulin, 2016). Cryptic species seem to be most common in
taxa occurring in isolated environments, presumably because
allopatric isolation prevents gene flow between habitats (as in
lumbricids, King et al., 2008; or amphipods, Wattier
et al., 2020). Hence cryptic species could be of profound sig-
nificance to our understanding of biodiversity, biogeography,
and also ecotoxicology (Bickford et al., 2007; Fišer & Ko-
selj, 2022; Struck et al., 2018). To account for this largely
overlooked diversity, various molecular species delimitation
methods have been widely incorporated into ecological and
evolutionary studies. Based on genetic data, molecular op-
erational taxonomic units (MOTUs) are delimited and used as
approximate and handy species equivalents allowing for iden-
tification of possible cryptic species. The most commonly used
markers for molecular species identification of metazoans are
gene fragments within mitochondrial DNA, also referred to as
DNA barcodes (Kress et al., 2015)—particularly the universally
employed cytochrome oxidase subunit I (COI; Hebert
et al., 2003), cytochrome b (cyt b; Hsieh et al., 2001; Parson
et al., 2000), or 12S and 16S ribosomal (r)RNA (Cawthorn
et al., 2012; Shu et al., 2021). These markers proved to be
reliable for species delimitation, as has been demonstrated in
case studies on invertebrates such as earthworms (Oligochaeta:
Lumbricidae; James et al., 2010), springtails (Collembola; Hogg
& Hebert, 2004), butterflies (Lepidoptera; Dincă et al., 2021),
mayflies (Ephemeroptera; Ball et al., 2005), and black flies

(Diptera: Simuliidae; Rivera & Currie, 2009), as well as on ver-
tebrates such as fish (Kumar et al., 2022; Ward et al., 2009), or
mammals (Clare et al., 2007). Genetic markers also help in
opposite cases, for example, in phenotypic polymorphic mol-
lusks, with different shell morphs turning out to belong to the
same lineage (Osikowski et al., 2018).

However, despite their frequency, the phenomenon of
cryptic species has so far rarely been addressed in ecotox-
icology but has been considered to be important for inter-
pretation of data (Feckler et al., 2013; Novo et al., 2015;
Otomo et al., 2013; Römbke et al., 2016; Spurgeon et al., 2020;
Weston et al., 2013). Thus, the question arises as to how many
of the species regularly used in ecotoxicological testing pro-
cedures could harbor cryptic species contributing to data var-
iability. Significant genetic differentiation including different
evolutionary histories of lineages within a cryptic species
complex may result in a wide range of stress responses (see
Beermann et al., 2021) that can make the results of ecotox-
icological assessments less accurate than expected. In the
present review, we describe and discuss current ecotoxico-
logical approaches and address two main aspects. First, we
evaluate the level of attention cryptic species have received in
ecotoxicology and provide an overview of regularly used or-
ganisms followed by examination of evidence for potential
cryptic diversity. Second, we provide guidance on the im-
plementation of cryptic species in routine ecotoxicological
study and discuss the absorption of the knowledge into regu-
latory ecotoxicology.

THE ECOLOGICAL SIGNIFICANCE OF
CRYPTIC SPECIES

Ecotoxicological outcomes are inherently connected to
species' ecology, which is encapsulated in the concept of the
ecological niche, often perceived and studied through two
complementary views, the so‐called Grinellian and Eltonian
ecological niches (Peterson, 2011). The Grinellian niche aims
to disentangle the relationship between an individual and the
environment, such that it considers the limits of ecological
space where species thrive and reproduce. Translated to
ecotoxicology, this approach looks for the thresholds of a
suite of environmental parameters beyond which the envi-
ronment for a species becomes uninhabitable. Thus, it is
linked to the ecotoxicological approach that looks for the
concentrations above which studied parameters or chemicals
become lethal or affect other population‐relevant endpoints
such as growth, development, and reproduction. By contrast,
the Eltonian view considers individuals within the community
context and looks for the individual's role within it. From an
ecotoxicological and environmental safety point of view, the
Eltonian niche can predict secondary changes in community
structure and ecosystem functioning in the case of pollution
and local extinctions.

Ecological differentiation of cryptic species is puzzling.
Under the premise that these species are either young or they
evolved under similar selective regimes (Fišer et al., 2018;
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Struck et al., 2018), it seems reasonable to expect that pairs of
cryptic species retained similar ecological niches and play
similar roles in ecosystems. However, this hypothesis has no
ground in experimental data. It was tested mainly in correlative
studies, using two approaches: (1) ecological niche modeling,
and (2) experimental approaches that test for sensitivity
differences. Many of these studies use the first approach and
calculate species' ecological niches using the environmental
factors in combination with data on species' occurrence. Vir-
tually all these studies imply that cryptic species differ in their
ecological niches (Eisenring et al., 2016; Fišer et al., 2015;
Macher et al., 2016). This approach, however, cannot reliably
tell apart the species' ecological differentiation from the dif-
ferences rooted in biogeography and depends on many as-
sumptions, including unlimited dispersal (Warren et al., 2014).
Indeed, explicit studies that tested how well ecological niche
models depict species' physiological limits advise caution with
interpretation because approximately one‐third of such studies
inadequately estimated the true niches (Lee‐Yaw et al., 2016).
Other studies found differences among cryptic species in
feeding biology, habitat use, and even host choice (Hebert
et al., 2004; Kaliszewska et al., 2005; Marchán et al., 2018;
Scriven et al., 2016; Zittel et al., 2018). Experimental studies of
differential sensitivity of pairs of cryptic species to ecological
parameters are scarce, but consistent with correlative studies
(Dallinger & Höckner, 2013; Feckler et al., 2013, 2014;
Otomo et al., 2013). Therefore, most studies imply that
cryptic species differ in their ecological niches, pointing toward
further experimental approaches clarifying mechanisms and
consequences of observed differentiation.

Fewer studies have questioned whether cryptic species play
similar roles in the ecosystem, investigating their functional
redundancy, with cryptic species acting as functional replicates
of each other (De Meester et al., 2016; Fišer et al., 2018). This
can be translated to the problem of species' coexistence.
Cryptic species were commonly found co‐occurring in the same
habitat patch (Bystřický et al., 2022; Fišer et al., 2018; Weigand
et al., 2020). The comparative analyses of coexisting cryptic
species most commonly suggested that co‐occurrence is an
outcome of partial niche differentiation in combination with
differential dispersal or predation (Montero‐Pau & Serra, 2011;
Scriven et al., 2016; Wellborn & Cothran, 2004). In some cases,
observed patterns are seemingly consistent with the com-
petitive exclusion scenario (Vodă et al., 2015a, 2015b). So far,
only two studies experimentally addressed whether cryptic
species play a similar role in a specific ecosystem, and con-
cluded that there is no ground to treat them as functionally
equivalent a priori (De Meester et al., 2011, 2016). To our
knowledge, no study has tested community‐level responses to
the replacement of one cryptic species with another.

The scattered evidence suggests that morphological
crypsis does not predict ecological similarity or equivalency.
This calls for a systematic research program at the junction
of ecology and ecotoxicology. Experimental approaches
routinely used in ecotoxicology should more accurately
detect species' sensitivity to environmental factors and refine
the calculation of ecological niches. In addition, mesocosm

experiments could more accurately estimate whether cryptic
species really play a similar role in the ecosystem and whether
the surviving cryptic species can functionally replace the ex-
tinct one. Both types of information, along with spatial dis-
tributions and population genetics, could be used in
predictive models to discriminate the regions that are more
sensitive to anthropogenic stressors, either because of more
sensitive inhabitants or due to the irreplaceability of cryptic
species in a community.

CRYPTIC SPECIES IN ECOTOXICOLOGY
Relevance of cryptic species in ecotoxicology

Millions of years of independent evolutionary pathways may
have caused members of a cryptic species complex to respond
very differently to stressors either because mechanisms to cope
with a stressor have been lost or because such mechanisms
never evolved. Consequently, being aware of the variability
within a cryptic species complex and understanding the plas-
ticity among members of such a complex allow for a more
realistic reflection on the severity of ecological responses. In
addition to the call to include microevolutionary processes in
ecotoxicology (Coutellec & Barata, 2011), the framework of
evolutionary ecotoxicology should also consider deep‐rooted
phylogenetic relationships to understand and interpret pat-
terns of responses to pollutants.

In general, the physiological traits of a species determine
the toxicokinetics (uptake, distribution, metabolism, and ex-
cretion) and toxicodynamics (interaction with the target sites) of
chemicals and eventually, the organismal chemical sensitivity
(Spurgeon et al., 2020). The extent to which ecological differ-
ences between cryptic species manifest in the outcome of
ecotoxicological studies has rarely been investigated, even
though their relevance has been recognized for more than two
decades (see Duan et al., 1997; Fišer et al., 2018). There are a
few studies that show the link between physiological (molec-
ular) characteristics and chemical sensitivity. For example, two
cryptic species of the polychaete annelid Capitella capitata
were shown to exhibit a different ability of polycyclic aromatic
hydrocarbon fluoranthene biotransformation by the over-
expression of specific cytochrome P450 biotransformation en-
zymes in one of these species (Li et al., 2004). Similarly, in the
lumbricid earthworm Lumbricus rubellus, different regulators of
calcium physiology were determined in studied cryptic species,
resulting also in different lead sensitivity (Andre et al., 2010).
The most striking example comes from the amphipod species
complex Hyallela azteca, which is widespread across North and
Central America. Individuals of H. azteca of various origins are
kept in many laboratories and used extensively in ecotoxico-
logical bioassays. Since the 1990s, it has been recognized
that H. azteca is a species complex (Duan et al., 1997). How
differently the cryptic species within H. azteca respond
to stressors was shown by evaluating the stress response of
four different lineages toward the pyrethroid insecticide cyflu-
thrin. The results showed that the cryptic species studied
differed by at least 550‐fold in their sensitivity (Weston
et al., 2013). By sequencing the primary pyrethroid target site,
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the voltage‐gated sodium channel, Weston et al. (2013) also
identified the exact point mutations that led to increased tol-
erance to the pyrethroid in certain lineages. Hyalella azteca
stocks are also regularly supplemented with wild‐caught
animals (Weston et al., 2013). The identification of resistance
alleles in cryptic H. azteca species and their populations
shows that mixing with other species/populations can sig-
nificantly influence the outcomes of ecotoxicological studies.
As a consequence, standardization of toxicity testing between
laboratories—an essential component of our current environ-
mental risk assessment—is challenged.

The example of the H. azteca species complex shows us
that ignoring the existence of cryptic species can lead to a
misinterpretation of the respective ecotoxicological data.
As a result, the following three scenarios of falsification can
be introduced, taking as an example two cryptic species
(Figure 1). (1) Both cryptic species clearly differ in their toler-
ance (Figure 1A). Depending on which species is chosen,
the species‐specific tolerance may underestimate toxicity
(Figure 1B). From a precautionary perspective, the most sen-
sitive population/species would ideally be tested. If both
species are transferred to a common stock (i.e., pooled), the
tolerance of both species is taken into account, which in-
creases the variance and might blur the overall results
(Figure 1C). (2) The variance in species‐specific susceptibility
(i.e., population‐specific differentiation; Grethlein et al., 2022)
may differ significantly, resulting in a wider range of tolerance
(Figure 1E). If the species with high variance is considered
(Figure 1F), the species with low variance is covered. If the
low‐variance species is chosen, the most tolerant/sensitive
populations might not be detected (Figure 1H). Increased
variability (e.g., Figure 1G or when the more variable Species
1 is used) will impact hypothesis testing and result in a higher
no‐observed‐effect concentration, due to higher variability of
the control. Increased variability also translates into increased
confidence intervals of x% effective concentration values (i.e.,
estimated concentration for x% effect relative to the control).
(3) Even when cryptic species are recognized, there may
also be an erroneous assumption that one has worked with
Species 2, although one has actually worked with Species 1
(Figure 1J). The tolerance is then attributed to the wrong
species. Such a case could occur when a species complex is
insufficiently characterized because only fractions of the
geographic range have been studied.

Overview of cryptic species used in
ecotoxicology

To identify which species are most commonly used in eco-
toxicological studies, we looked in the US Environmental Pro-
tection Agency database, searching for publication entries
from the year 2000 until March 29, 2022. We distinguished
between vertebrates and invertebrates, as well as between
aquatic and terrestrial taxa. In each group of organisms, we
selected the 15 species with the highest publication numbers
and searched again for the number of publications in the Web

of Science (Query: (ALL=(toxicology)) AND ALL=(Species
name) Publication Date January 1, 2000 to April 7, 2022). We
further checked whether each of the species was included in
standard testing guidelines such as those of the Organisation
for Economic Co‐operation and Development (OECD), the In-
ternational Organization for Standardization (ISO), and the
ASTM International (ASTM; Tables 1–4).

For the 15 most commonly used species, we then again
conducted a literature search to find evidence for cryptic di-
versity within species. At least one of the following search
terms had to be present within the publication in addition to
the respective species name: cryptic, cryptic diversity, cryptic
complex, phylogeography, sibling species, genetic diver*sity/
gence or barcod*e/ing. We screened the first 25 results from
the Google Scholar and Web of Science search. In case we
found evidence for clear molecular structuring at the mi-
tochondrial level backed up by evidence deriving from either
nuclear molecular markers and/or detailed morphometric
analyses within given morphospecies, the species was classi-
fied as a cryptic species complex. Species that are described
as different species but cannot be distinguished from
each other on the basis of morphological characteristics are
marked accordingly, and are also classified as “cryptic
species.” When only one line of molecular evidence was
supporting the presence of cryptic diversity without secondary
molecular or morphological analyses included, we classified a
given taxon as a “potential cryptic species complex.” If no
evidence for cryptic diversity was found in the first 25 results in
Google Scholar or Web of Science, we classified the species
as noncryptic.

Our literature search revealed that 54% of the most used
aquatic invertebrates (Table 1) and 67% of terrestrial in-
vertebrates (Table 2) contain cryptic species. For vertebrates,
the proportion was lower, with 27% of aquatic vertebrates
(Table 3) and 6.7% of terrestrial vertebrates (Table 4) containing
cryptic species (Figure 2).

The most commonly used aquatic invertebrate test or-
ganism, Daphnia magna, shows no cryptic species, although
D. magna from China and Japan are genetically different from
the European ones (Bekker et al., 2018; De Gelas et al., 2005).
However, because there are also morphological differences in
Chinese D. magna, the populations in China could likely rep-
resent a separate species (Ma et al., 2020). The most commonly
applied terrestrial invertebrate test organism is the honeybee
(Apis mellifera), which is divided into at least 33 subspecies that
are subdivided into five evolutionary lineages (Ilyasov
et al., 2020). Different subspecies and populations are adapted
to a wide range of geographic regions and hence, environ-
mental conditions (Devillers, 2002), so it can be assumed that
responses to stressors may be subspecies‐specific (c.f. Weston
et al., 2013). Zebrafish (Danio rerio) are the most commonly
used aquatic vertebrates in ecotoxicology. Danio rerio is widely
distributed over the Indian subcontinent and inhabits lowland
flood plains (Spence et al., 2008). So far, there is no evidence
for cryptic species within D. rerio. However, the large natural
range of the species (Spence et al., 2008) suggests that there
may be some differentiation at the population level with

1892 Environmental Toxicology and Chemistry, 2023;42:1889–1914—Jourdan et al.
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adaptation to different local conditions (as described for other
teleost fishes; Jourdan et al., 2016; Torres‐Dowdall
et al., 2012). Laboratory strains of cosmopolitan Norway rats
(Rattus norvegicus) are the most commonly used terrestrial

vertebrates in ecotoxicology. A total of 13 evolutionary clusters
have been described worldwide (Puckett et al., 2016), but their
differentiation does not exceed a normal level of intraspecific
diversity. The situation is somewhat different for the related

(I)

(B)(A) (C) (D)

(E) (F) (G) (H)

(J) (K) (L)

FIGURE 1: The use or mixing of a cryptic species complex in an ecotoxicological experimental setup can cause various errors. (A) The cryptic
species may consist of a more sensitive and a more tolerant species, depending on which one is used (B–D); this will change the outcome of the test.
(E) Cryptic species may also differ in variance, that is, the variance within a cryptic species is greater than the variance in another species. Depending
on which species/population is used, (F–H) variance may be underestimated and sensitive populations may be at risk of being overlooked. Finally,
(I–L) incorrect species identification can also cause a falsification. If researchers think they are using one species but have actually used the other,
they attribute the results to the wrong species.

Cryptic species in ecotoxicology—Environmental Toxicology and Chemistry, 2023;42:1889–1914 1893
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house mouse (Mus musculus). The house mouse diverged into
three major lineages approximately 350 000–500 000 years
ago (Fujiwara et al., 2021). Morphological differentiation of the
three distinct lineages is not possible due to a high phenotypic
variability within lineages, which is further complicated by
secondary contact and hybridization of lineages (Boursot
et al., 1993; Fujiwara et al., 2021). Therefore we classified
M. musculus as a cryptic species complex. Although some
authors consider these distinct lineages to be separate species
(see Geraldes et al., 2008), they are mostly referred to as three
subspecies, the North Eurasian Mus musculus musculus, South
Asian Mus musculus castaneus, and western European Mus
musculus domesticus. Inbred laboratory strains originate from
all three wild subspecies (Didion & de Villena, 2013; Fujiwara
et al., 2021).

Test species and strains in standardized
ecotoxicity tests

Standardized test procedures (e.g., OECD and ISO) play a
central role in ecotoxicology. These regulations are in place to
ensure that results of environmental risk assessment are legally
binding and recognized by different national and supranational
authorities. The regulations also prevent unnecessary multiple
testing of the same toxicant. This is not only for economic and
ethical reasons but also follows the assumption that stand-
ardization provides more robust, ecosystem‐relevant results
(Chapman, 2002; Walker et al., 2012).

The standardization procedures also include specific re-
quirements for the test organisms. In most tests, individuals from
standardized laboratory strains are used. Wild‐caught animals
are more commonly used in so‐called higher tier tests such as
soil ecotoxicology field tests, which are presently required, for
example, as part of the registration process of pesticides
(Römbke et al., 2017). In contrast, the guidelines for laboratory
tests stipulate that the test organisms should come from labo-
ratory cultures and not from the field, although exceptions are
possible, such as in the case of OECD test guidelines 221
(2006a) for Lemna sp., 239 (2014) for Myriophyllum spicatum,
and 243 (2016e) for Lymnaea stagnalis. Some test guidelines
allow the use of several alternative types. For example, OECD
test guideline 202 (2004a) allows use of other “suitable Daphnia
species” in addition to D. magna, such as Daphnia pulex. The
OECD test guidelines 201 (2011a), 203 (2019a), and 208 (2006b)
list numerous species, specifically 5 algae, 11 fish, and 52 plant
species, respectively, that can be used as alternatives
for the tests. However, even then, as for example in the
case of OECD test guidelines 201 (2011a), 211 (2012a),
and 242 (2016d), the use of specific and clearly defined
strains or even clones or haplotypes is prescribed or at least
recommended.

Although numerous organisms from various taxonomic
groups with well‐known cryptic species are frequently used
(Tables 1–4), the relevant guidelines have so far not required any
genetic characterization of the test organisms to verify the
identity of cryptic species. Earthworms of the genus Eisenia,
which are among the most commonly used test organisms in
terrestrial ecotoxicology, serve as a prime example (Table 2). In
1984, OECD test guideline 207 (1984c) listed Eisenia fetida and
E. andrei as subspecies, whereas in test guideline 222 (2016a)
from 2016 they are already delineated as separate species.
However, both taxa cannot be reliably differentiated on the
basis of morphological differences according to Römbke et al.
(2016). The same authors also report results of a DNA barcoding
survey of Eisenia samples from 28 ecotoxicological laboratories
in 15 countries: two cryptic species within the E. fetida species
complex were identified. Based on morphology, those samples
were identified as E. fetida, even including distinct E. andrei
molecular clusters (Römbke et al., 2016). Accordingly, the au-
thors recommend inclusion of a regular DNA barcoding step in
all ecotoxicological tests with Eisenia earthworms. Although it is
still unclear whether the cryptic species of the E. fetida/andrei
complex differ in terms of their sensitivity to certain toxicants,

FIGURE 2: Results of the literature review investigating whether there
is evidence for the presence of cryptic species in the 15 most com-
monly used species in ecotoxicology. The evaluation was performed
within the following organisms' groups: (A) aquatic invertebrates, (B)
terrestrial invertebrates, (C) aquatic vertebrates, and (D) terrestrial
vertebrates. The pie charts represent the share of cryptic, potentially
cryptic, and noncryptic species within a certain organism group. Photos
show a cryptic representative of each organism group: the cryptic
species complexes Hyalella azteca (aquatic invertebrate), Apis mellifera
(terrestrial invertebrate), Pimephales promelas (aquatic vertebrate;
picture by Frank Schäfer), and Mus musculus (terrestrial vertebrate;
picture by Paul Norwood).
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this finding shows the high relevance of considering intraspecific
genetic variability, particularly when cryptic diversity has already
been reported.

Learning from cryptic species: Similar challenges
below the species level

Although the variability within cryptic species is indeed a
challenge for risk assessment of chemicals, it is also a reflection of
a general problem at the subspecies level: evolution operates on
a population level, and a well‐supported species may not be a
homogenous entity. The processes of divergence may take place
well below the emergence of cryptic species, and the challenges
are identical to those related to cryptic species. Populations can
differ significantly, sometimes over small geographic distances,
and the effect can be reinforced by laboratory inbreeding.
Adaptive processes have repeatedly been identified in chroni-
cally exposed populations, in which concentration–response
patterns have differed across populations, which can be ex-
plained by microevolutionary processes (see Barata et al., 2002;
Grethlein et al., 2022; Jourdan et al., 2019; Morgan et al., 2007;
Shahid et al., 2018; Weston et al., 2013). In contrast, cryptic
species usually represent much older evolutionary splits and thus
reflect macro‐evolutionary processes. Resolving the issue of
cryptic species may eventually also improve ecotoxicological
testing of the standard, noncryptic species that are genetically
divergent and possibly locally adapted.

ACCOUNTING FOR CRYPTIC SPECIES IN
ROUTINE ECOTOXICOLOGICAL STUDY
Laboratory approaches: Genetic characterization
of your test organism

Taxonomists have traditionally defined species based on
morphological criteria. Thus the limited morphological differ-
entiation or lack thereof among cryptic species poses a sig-
nificant challenge for their identification. This is further
exacerbated by the declining number of taxonomists worldwide
(Engel et al., 2021). Nevertheless, speciation is a heterogenous
process that often involves divergence along multiple axes of
differentiation (genetic, physiological, ecological, behavioral,
etc.; De Queiroz, 2007), providing researchers with plenty of
other potential means of species identification besides mor-
phology. Consequently, cryptic species have been differentiated
by various approaches ranging from molecular genetics (Fišer
et al., 2018), to proteomics (Wilke et al., 2020), to pheromones
(Lassance et al., 2019), and acoustic signals (Stiffler et al., 2018),
to name a few. Naturally, some methods are taxon specific
whereas others have broad applicability across the tree of life,
making them ideal for standardization efforts.

To date, genetic methods have been the most frequently
employed tools to detect cryptic species, most likely as a con-
sequence of the exponentially decreasing costs of DNA se-
quencing and advances in polymerase chain reaction techniques
(Bickford et al., 2007). The formal introduction of DNA bar-
coding two decades ago has greatly facilitated species

identification and cryptic species discovery (Hebert et al., 2003).
The method is based on sequencing of a short DNA fragment of
a specific gene (i.e., barcode) to identify specimens by com-
parison with a reference database. Therefore, the barcode
needs to be species specific, with the interspecific divergence
exceeding the intraspecific one. The emergence of universal
primers that can amplify the same barcode region across phy-
logenetically distant groups (see Folmer et al., 1994), and the
rise of Next Generation Sequencing (Shokralla et al., 2014) has
further increased the feasibility and popularity of the method,
leading to an exponential increase in the number of DNA
barcodes. To date, there are more than 11 million barcodes for
almost 340 000 species in online databases, such as the Barcode
of Life Data System (BOLD; BOLD Systems, 2019) and GenBank
(National Library of Medicine, 2013), which serve as important
reference libraries.

Due to the morphological bias in taxonomy, most cryptic
species are not formally described, and are thus not legally
recognized, further hampering standardization efforts in eco-
toxicology. Here, DNA barcoding again proves useful because
individuals belonging to undescribed or morphologically cryptic
lineages can automatically be assigned to provisional species
called MOTUs. One prominent example is the Barcode Index
Number (BIN) system (implemented in BOLD) whereby each BIN
(i.e., MOTU equivalent) has a unique identifier. Each BIN can be
further validated and annotated with additional data and also
provided with a digital object identifier (DOI), allowing one to
treat it analogically to published species names (Ratnasingham &
Hebert, 2013). Being associated with unique DOIs, BINs are
traceable with the addition of new data, even if they are merged
or further split. Furthermore, the BIN MOTUs match true species
in almost 90% of cases (particularly in insects and vertebrates)
and have an overall higher accuracy than other MOTU‐delimiting
approaches (Ratnasingham & Hebert, 2013). Nevertheless, it
must be stressed that species‐level identifications via BOLD are
as reliable as the data already present in the database and used
as a reference library. Thus the uploaded barcode sequences
should be supplemented with all possible metadata, including
the collection locality, date, photo, and name of the person who
identified the specimen. Only a strategy such as this will allow
proper taxonomic curation of the reference library, including
flagging and eliminating misidentified entries or detecting
possible hybridization/introgression events that blur the taxo-
nomic assignments.

In sum, molecular species delimitation is still in process, with
technical achievements providing new opportunities (Fontaneto
et al., 2015). Single‐locus Sanger sequencing has already
been largely replaced by second‐ and third‐generation high‐
throughput sequencing (HTS), which makes it possible to se-
quence multiple DNA molecules in parallel with long reads and
high accuracy. For example, the PacBio Sequel HTS can be used
for DNA barcode‐based taxonomic identification of hundreds
or, given the capacity of a single SMRT Cell, even thousands
of individuals at once with a higher success rate than Sanger
sequencing but with a comparable cost (Runnel et al., 2022).
Alternatively, the new types of MinION flow cells with high‐
accuracy base‐calling, developed most recently by Oxford
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Nanopore Technologies, offer handy and cost‐effective sol-
utions for both small‐ and large‐scale DNA barcoding projects
(Srivathsan et al., 2021). Oxford Nanopore Technologies'
MinION barcoding seems a particularly promising tool for eco-
toxicology practice because it requires minimal laboratory
equipment and the procedure can be learned within a few days,
reducing the barcode sequencing cost to <10 cents. In addition,
the MinION sequencer is portable, and it can be operated (and
the sequence data analyzed) with a standard laptop containing
the most popular operating systems. As a result, the turnaround
from specimen to sequence is fast. Last but not least, the whole
procedure can be done away from a molecular laboratory, even
during the fieldwork and by nonprofessionals (Maestri
et al., 2019; Schilthuizen et al., 2022).

Other HTS‐based techniques, such as Restriction site‐
Associated DNA sequencing (RAD‐seq), genome skimming, or
even whole‐genome sequencing, are currently being developed
and used for detecting cryptic diversity in various taxa. Never-
theless, as a handy, easy to establish, and widespread identi-
fication tool, and due to the presence of huge reference library,
DNA barcoding of metazoans will continue to develop in the
future, most likely in the direction of multimarker DNA bar-
coding, as it is currently practiced in fungi and plants (Coissac
et al., 2016; DeSalle & Goldstein, 2019; Grant et al., 2021). We
therefore highly recommend characterization of test animals via
DNA barcoding. Depending on the test organism involved, this
can be done before or after the experimental procedures. Ide-
ally, the barcodes obtained (along with all metadata and photos
of barcoded individuals) should be submitted to BOLD, which
offers both taxonomic identification and sequence analytical
tools; the specimen vouchers and corresponding DNA isolates
should be kept for further reference (BOLD Systems, 2019).

Although DNA barcoding has become the most reliable
method for cryptic species identification, certain emerging
methods are potentially even more cost effective. One of the
most promising examples is matrix‐assisted laser desorption
ionization–time of flight mass spectrometry, which characterizes
species or strains based on their unique proteomic fingerprint
(Singhal et al., 2015). The method is significantly faster and
cheaper than DNA barcoding, does not require trained labo-
ratory personnel, and at the same time offers a similar accuracy
as DNA barcoding in characterizing cryptic species (Rossel
et al., 2019). Procedural standardization has allowed the constant
accumulation of species‐specific protein mass spectra in refer-
ence libraries, thereby facilitating organism identification (Singhal
et al., 2015). However, the lack of a universal automatic MOTU
assignment algorithm (similar to the one in BOLD) limits its use as
a standardized tool for cryptic species identification for now.

OUTLOOK ON PERSPECTIVES AND
SUGGESTIONS FOR IMPLEMENTATION
Perspective for implementation of the
knowledge into regulatory ecotoxicology

In light of the regular appearance of cryptic species com-
plexes among the most frequently tested morphospecies in

ecotoxicology (Tables 1–4), addressing the challenge of con-
sidering cryptic diversity in ecotoxicology seems overdue. This
is actually an ongoing discussion, for example, at ISO, both for
the identification of individual (test) species (ISO, 2019b) and
for the characterization of species communities in higher tier
(semifield or field) investigations. This holds true in particular
for microbes (ISO, 2016a), but similar documents will be pre-
pared by the OECD as well. Confirmation, potentially at regular
time intervals, of the existence of one cryptic lineage within the
laboratory culture is certainly helpful to clarify the status of the
test population. The recommendation is even more important
for wild‐caught test organisms: confirming that the sample
population is not harboring several cryptic species will prob-
ably have positive implications for the reliability of the data set
generated. If several cryptic species co‐occur, the species
identity (e.g., the BIN) of each replicate should be assessed and
considered in the statistical evaluation as a covariate. Recently,
ISO decided to set up a new Technical Committee for stand-
ardization in the field of biodiversity, to develop requirements,
principles, frameworks, guidance, and supporting tools in a
holistic and global approach for all relevant organizations, to
enhance their contribution to sustainable development. In
parallel, the OECD is preparing a guidance document for an
improved field study design (mainly for earthworms), which will
also be helpful to assess the status of the respective com-
munities (Römbke et al., 2020).

Being transparent about the cryptic status of the test pop-
ulation will not only support the interpretation of sensitivity
differences within a morphospecies but enlighten the scientific
and regulatory communities about systematic differences in
sensitivity among cryptic lineages and strengthen the reliability
of conclusions that can be drawn from the very few published
case studies (Feckler et al., 2012, 2014; Weston et al., 2013).
Ideally, the data generated in the course of ecotoxicological
study are supplemented by data from studies targeting the
traits of cryptic species, including toxicokinetic as well as
physiological, behavioral, and ecological parameters. This
strategy will ultimately contribute to better reproducibility of
already published results and consequently, the transfer of
scientific insights to regulatory practice, a strategic goal of the
Society of Environmental Toxicology and Chemistry.

Furthermore, identifying cryptic species and knowing their
sensitivity to chemicals is very important in species sensitivity
distribution (SSD) and adverse outcome pathway (AOP)
studies, which are widely used in regulatory risk assessment
schemes (Posthuma et al., 2019). Species sensitivity dis-
tribution is a statistical approach that is used to estimate ei-
ther the concentration of a chemical that is hazardous to a
fraction of all species (the hazardous concentration, usually
5%) or the proportion of species potentially affected by a
given concentration of a chemical (Fox et al., 2021). The AOP
is a conceptual framework that links direct molecular initiating
events (e.g., a molecular interaction between a xenobiotic and
a specific biomolecule) and an adverse outcome at a higher
biological level of organization relevant to risk assessment
(Ankley et al., 2010). Designing relevant SSD plots and AOP
frameworks relies on the inclusion of exact data on species
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© 2023 The Authors wileyonlinelibrary.com/ETC

 15528618, 2023, 9, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/etc.5696 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [30/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



sensitivity, which depends on the exact identity of the species
under study. Both SSD and AOP are relevant tools for pro-
spective chemical risk assessments to extrapolate data from
the small number of ecotoxicological test species that we
currently use to the variety of species present in the eco-
system as well as to predict effects for the vast majority of
emerging chemicals, which in reality we will never be able
to test.

Implications for species conservation
It is crucial for future management strategies to recognize the

existence of cryptic species that are vulnerable to different
threats and require different protection measures. Small‐range
species may be much more vulnerable to external disturbances
than widespread morphospecies (i.e., a complex of undescribed
cryptic species; Yan et al., 2022). In such a case, even small‐scale
disturbances can lead to the complete loss of a species (Delić
et al., 2017; Niemiller et al., 2013). Our examples show that
some cryptic species may have evolved unique adaptations that
make them more resilient to pollutants, despite their phyloge-
netic relationships with more vulnerable species of the cryptic
species complex (see Monteiro et al., 2018; Rocha‐Olivares
et al., 2004; Weston et al., 2013). Therefore, although phylo-
genetic similarity may provide some clues about vulnerability to
pollutants, it is not always a reliable predictor and must be
considered in the light of individual evolutionary history and
possible points of contact with stressors (Best & Stacho-
wicz, 2013; Grethlein et al., 2022). Therefore conservationists
and policymakers should consider this complexity when making
informed decisions on species diversity and distribution. That
means we need to change our thinking away from protecting
morphospecies to the protection of significant evolutionary units
(Coates et al., 2018; Hoban et al., 2023; Moritz, 1994). One way
forward could be the path proposed by Fišer et al. (2018): to
develop continental maps of species richness and geographic
distribution size using different methods of species delineation
and highlighting regions of incongruence that reveal geographic
variation in the speciation process.

Suggestions for addressing cryptic species in the
future

In the present review, we were able to show the limitations of
current standardization approaches, which can be attributed to
an incomplete taxonomy. We have the following suggestions to
reduce misleading data in the future: (1) All widely used test
species should be checked for their potential cryptic species
status. Furthermore, international standard test guidelines
should be amended to account for cryptic species: The MOTUs
or BINs used in the tests should be reported together with the
test results. To test for cryptic diversity, wild‐caught animals
should be barcoded. Barcode information should be included in
the raw data file and the documentation of the test results. This
approach warrants revision of taxon status when the study is
complete. (2) A system of MOTUs should be adopted in parallel,

to secure implementation of cryptic species. We recommend
using the BOLD platform because it automatically assigns the
submitted sequences to new or existing MOTUs (i.e., BINs) that
have traceable unique identifiers, thus helping with stand-
ardization efforts. Voucher specimens along with DNA extracts
should be BioBanked, allowing for corrections of taxonomic
status, if necessary, in the future. (3) An evo–ecotox database
should be established, or existing databases should be supple-
mented with an evolutionary aspect of the test organism. The
database could then link information on cryptic species to the
outcome of ecotoxicological studies, keeping an overview of
how many cryptic species/test system exist and which tests were
performed on which MOTU. Such a database would allow cross‐
validation of past research and the possibility of running post‐
hoc species delimitation of one's own and past species identi-
fication data. Thus, it can be considered retrospectively whether
one was dealing with the same taxonomic unit, which would also
address challenges at the subspecies level.
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