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Larger but younger fish when growth 
outpaces mortality in heated ecosystem
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Abstract Ectotherms are predicted to ‘shrink’ with global warming, in line with general growth 
models and the temperature- size rule (TSR), both predicting smaller adult sizes with warming. 
However, they also predict faster juvenile growth rates and thus larger size- at- age of young organ-
isms. Hence, the result of warming on the size- structure of a population depends on the interplay 
between how mortality rate, juvenile- and adult growth rates are affected by warming. Here, we use 
two- decade long time series of biological samples from a unique enclosed bay heated by cooling 
water from a nearby nuclear power plant to become 5–10 °C warmer than its reference area. We 
used growth- increment biochronologies (12,658 reconstructed length- at- age estimates from 2426 
individuals) to quantify how >20 years of warming has affected body growth, size- at- age, and catch 
to quantify mortality rates and population size- and age structure of Eurasian perch (Perca fluviatilis). 
In the heated area, growth rates were faster for all sizes, and hence size- at- age was larger for all 
ages, compared to the reference area. While mortality rates were also higher (lowering mean age 
by 0.4 years), the faster growth rates lead to a 2 cm larger mean size in the heated area. Differences 
in the size- spectrum exponent (describing how the abundance declines with size) were less clear 
statistically. Our analyses reveal that mortality, in addition to plastic growth and size- responses, is 
a key factor determining the size structure of populations exposed to warming. Understanding the 
mechanisms by which warming affects the size- and the age structure of populations is critical for 
predicting the impacts of climate change on ecological functions, interactions, and dynamics.

Editor's evaluation
This work provides convincing evidence to refute a general tenet in biology, that warming induces 
smaller maximum body sizes in adult ectoterm individuals. Using a semi- natural experiment in an 
exceptional man- made ecosystem, the authors demostrate that fish in waters warmed by a nearby 
nuclear plant grew faster but died younger, causing little effect on the size distribution of fish in the 
area. This work will be of interest to ecologists and physiologists interested in the impacts of global 
warming on natural communities.

Introduction
Ectotherm species, constituting 99% of species globally (Atkinson and Sibly, 1997; Wilson, 1992), 
are commonly predicted to shrink in a warming world (Gardner et al., 2011; Sheridan and Bickford, 
2011). However, as the size distribution of many species spans several orders of magnitude, and 
temperature effects on size may depend on size or age, it is important to be specific about which 
sizes- or life stages are predicted to shrink (usually mean or adult is meant). For instance, warming 
can shift size distributions without altering mean size if increases in juvenile size- at- age outweigh the 
decline in size- at- age in adults, which is consistent with the temperature size rule, TSR (Atkinson, 

RESEARCH ARTICLE

*For correspondence: 
max.lindmark@slu.se

Present address: †Max Lindmark, 
Swedish University of Agricultural 
Sciences, Department of Aquatic 
Resources, Institute of Marine 
Research, Lysekil, Sweden

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 13

Preprinted: 14 April 2022
Received: 25 August 2022
Accepted: 10 April 2023
Published: 09 May 2023

Reviewing Editor: David A 
Donoso, Escuela Politécnica 
Nacional, Ecuador

   Copyright Lindmark et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.82996
mailto:max.lindmark@slu.se
https://doi.org/10.1101/2022.04.13.488128
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article      Ecology

Lindmark et al. eLife 2023;12:e82996. DOI: https://doi.org/10.7554/eLife.82996  2 of 17

1994). Resolving how warming induces changes in population’s size distribution may thus be more 
instructive (Fritschie and Olden, 2016), especially for inferring warming effects on species’ ecological 
role, biomass production, or energy fluxes (Gårdmark and Huss, 2020; Yvon- durocher et al., 2011). 
This is because key processes such as metabolism, feeding, growth, and mortality scale with body size 
(Andersen and Link, 2020; Blanchard et al., 2017; Brown et al., 2004; Pauly, 1980; Thorson et al., 
2017; Ursin, 1967). Hence, as the value of these traits at mean body size is not the same as the mean 
population trait value (Bernhardt et al., 2018), the size distribution within a population matters for its 
dynamics and for how it changes under warming.

The population size distribution can be represented as a size- spectrum, which generally is the 
frequency distribution of individual body sizes (Edwards et al., 2017). It is often described in terms 
of the size- spectrum slope (slope of individuals or biomass of a size class over the mean size of that 
class on a log- log scale [Edwards et al., 2017; Sheldon et al., 1973; White et al., 2007]) or simply 
the exponent of the power law individual size distribution (Edwards et al., 2017). The size- spectrum 
thus results from temperature- dependent ecological processes such as body growth, mortality, and 
recruitment (Blanchard et al., 2017; Heneghan et al., 2019). Despite its rich theoretical foundation 
(Andersen, 2019) and usefulness as an ecological indicator (Blanchard et al., 2005), few studies 
have evaluated warming effects on the species size- spectrum in larger- bodied species (but see 
Blanchard et al., 2005), and none in large scale experimental set- ups. There are numerous paths by 
which a species’ size- spectrum could change with warming (Heneghan et al., 2019). For instance, 
in line with TSR predictions, warming may lead to a smaller size- spectrum exponents (steeper slope) 
if the maximum size declines. However, changes in size- at- age and the relative abundances of juve-
niles and adults may alter this decline in the size- spectrum slope. Warming can also lead to elevated 
mortality (Barnett et al., 2020; Berggren et al., 2022; Biro et al., 2007; Pauly, 1980), partly because 
a faster pace of life with higher metabolic rates is associated with a shorter lifespan (Brown et al., 
2004; Munch and Salinas, 2009) or due to direct lethal effects of extreme temperature events. 
This truncates the age distribution towards younger individuals (Barnett et al., 2017), which may 
reduce density dependence and potentially increase growth rates, thus countering the effects of 
mortality on the size- spectrum exponent. However, not all sizes may benefit from warming, as e.g. 
the optimum temperature for growth declines with size (Lindmark et al., 2022). Hence, the effect of 
warming on the size- spectrum depends on several interlinked processes affecting abundance- at- size 
and size- at- age.

Size- at- age is generally predicted to increase with warming for small individuals, but decrease 
for large individuals according to the mentioned TSR (Atkinson, 1994; Ohlberger, 2013). Several 
factors likely contribute to this pattern, such as increased allocation to reproduction (Wootton et al., 
2022) and larger individuals in fish populations having optimum growth rates at lower temperatures 
(Lindmark et al., 2022). Empirical support in fishes for this pattern seems to be more consistent for 
increases in size- at- age of juveniles (Huss et al., 2019; Rindorf et al., 2008; Thresher et al., 2007) 
than declines in adult size- at- age (but see Baudron et al., 2014; Oke et al., 2022; Smoliński et al., 
2020), for which a larger diversity in responses is observed among species (Barneche et al., 2019; 
e.g., Huss et al., 2019). However, most studies have been done on commercially exploited species, 
since long- time series are more common in such species. This may confound or interact with the 
effects of temperature because fishing mortality can affect density- dependent growth (van Gemert 
et al., 2018), but also select for slow- growing individuals and changes in maturation processes, which 
also influences growth trajectories (Audzijonyte et al., 2016).

The effect of temperature on mortality rates of wild populations is often studied using among- 
species analyses (Pauly, 1980; Thorson et al., 2017). These relationships based on thermal gradients 
in space may not necessarily be the same as the effects of warming on mortality in single populations. 
Hence, the effects of warming on growth and size- at- age, and mortality within natural populations 
constitute a key knowledge gap for predicting the consequences of climate change on population 
size spectra.

Here, we used data from a unique, large- scale 23- year- long heating experiment of a coastal 
ecosystem to quantify how warming changed fish body growth, mortality, and the size structure in 
an unexploited population of Eurasian perch (Perca fluviatilis, ‘perch’). We compare fish from this 
enclosed bay exposed to temperatures approximately 5–10 °C above normal (‘heated area’) with fish 
from a reference area in the adjacent archipelago (Figure 1). Using hierarchical Bayesian models, we 
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quantify differences in key individual- and population- level parameters, such as body growth, asymp-
totic size, mortality rates, and size spectra, between the heated and reference coastal areas.

Results
Analysis of perch size- at- age using the von Bertalanffy growth equation (VBGE) revealed that fish 
cohorts (year classes) in the heated area both grew faster initially (larger size- at- age) and reached 
larger predicted asymptotic sizes than those in the unheated reference area (Figure 2). The model 
with area- specific VBGE parameters ( L∞  ,  K  , and  t0 ) had the best out- of- sample predictive accuracy 
(the largest expected log pointwise predictive density for a new observation; Supplementary file 
1a). Models where both  L∞  and  K   were shared did not converge (Supplementary file 1a). Both the 
estimated values for fish asymptotic length ( L∞ ) and growth coefficient ( K  ) were larger in the heated 
compared to the reference area (Figure 2—figure supplement 8). We estimated that the asymptotic 
length of fish in the heated area was 16% larger than in the reference area (calculated as  

L∞heat−L∞ref
L∞ref  ) 

( L∞heat = 45.7
[
36.8, 56.3

]
 ,  L∞ref = 39.4

[
35.4, 43.9

]
  , where the point estimate is the posterior median 

and values in brackets correspond to the 95% credible interval). The growth coefficient was 27% 
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Figure 1. Map of the area with the unique whole- ecosystem warming experiment from which perch in this study 
was sampled. Inset shows the 1 km2 enclosed coastal bay that has been artificially heated for 23 years, the adjacent 
reference area with natural temperatures, and locations of the cooling water intake, and where the heated water 
outlet from nuclear power plants enters the heated coastal basin. The arrows indicate the direction of water flow.
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Figure 2. Fish grow faster and reach larger sizes in the heated enclosed bay (red) compared to the reference area (blue). Points depict individual- 
level length- at- age and lines show the median of the posterior draws of the global posterior predictive distribution (without group- level effects), both 
exponentiated, from the von Bertalanffy growth model with area- specific coefficients. The shaded areas correspond to 50% and 90% credible intervals.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Prior predictive distribution for the von Bertalanffy growth equation (posterior draws from the prior only, ignoring the likelihood).

Figure supplement 2. The best model of the von Bertalanffy growth equation: (A) trace plot to illustrate chain convergence for key (population- level) 
parameters, (B) residuals, (C) QQ- plot, and (D) posterior predictive check.

Figure supplement 3. Cohort- specific predictions from the best von Bertalanffy model (i.e. with cohort- specific  L∞  and  K  ).

Figure 2 continued on next page
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larger in the heated area ( Kheat = 0.19[0.15, 0.23] ,  Kref = 0.15[0.12, 0.17] ). These differences in growth 
parameters lead to fish being approximately 7%–11% larger in the heated area at any age relative 
to the reference area (Figure 2—figure supplement 4). Due to the last three cohorts (1995–1997) 
having large estimates of  L∞heat  and low  K   (potentially due to their negative correlation and because 
of the young age with data far from the asymptote, Figure 2—figure supplements 3 and 5–6), we 
fit the same model with these cohorts omitted to evaluate the importance of those for the predicted 
difference between the areas. Without these, the predicted difference in size- at- age was still clear, but 
smaller (between 4%–7%, Figure 2—figure supplements 9–10).

In addition, we found that growth rates in the reference area were both slower and declined 
faster with size compared to the heated area (Figure 3). The best model for growth ( G = αLθ ) had 
area- specific  α  and  θ  parameters (Supplementary file 1b). Initial growth ( α ) was estimated to be 
18% faster in the heated than in the reference area ( αheat = 512

[
462, 565

]
 ,  αref = 433

[
413, 454

]
 ), and 

the growth of fish in the heated area declines more slowly with length than in the reference area 
( θheat = −1.13

[
−1.16,−1.11

]
 ,  θref = −1.18

[
−1.19,−1.16

]
 ). The distribution of differences of the poste-

rior samples for α and only had 0.3% and 0.2% of the density below 0, respectively (Figure 3C and E), 
indicating a high probability that length- based growth rates are faster in the heated area.

By analyzing the decline in catch- per- unit- effort over age, we found that the instantaneous mortality 
rate  Z   (the rate at which log abundance declines with age) is higher in the heated area (Figure 4). 
 Z   was estimated as a fixed effect, as the model where only intercepts varied among years had the 
best out- of- sample predictive ability. The overlap with zero is 0.07% for the distribution of differences 
between posterior samples of  Zheat  and  Zref   (Figure 4C). We estimated  Zheat  to be 0.73 [0.66,0.79] and 

 Zref   to be 0.62 [0.58,0.67], which corresponds to annual mortality rates (calculated as  1 − e−Z  ) of 52% 
in the heated area and 46% in the reference area.

Lastly, analysis of the size- and age- structure in the two areas revealed that, despite the faster 
growth rates, higher mortality, and larger maximum sizes in the heated area Figure 5A, the size- 
spectrum exponents were largely similar Figure 5B, C. In fact, the size- spectrum exponent was only 
slightly larger in the heated area (Figure  5B), and their 95% confidence intervals largely overlap. 
However, results from the lognormal model fitted to the size- and age- distributions revealed that 
the average size was two centimeters longer and the average age 0.4 years younger in the heated 
compared to the reference area (Figure 6).

Discussion
Our study provides strong evidence for warming- induced differentiation in growth and mortality in a 
natural population of an unexploited, temperate fish species exposed to an ecosystem- scale experi-
ment with 5–10°C above normal temperatures for more than two decades. Interestingly, these effects 
largely, but not completely, counteract each other when it comes to population size- structure—while 
the fish are younger, they are also larger on average. However, differences in the rate of decline in 
abundance with size are less pronounced between the areas. It is difficult to generalize these findings 
since it is a study of only a single species. It is, however, a unique climate change experiment, as 
experimental studies on fish to date are much shorter and often on scales much smaller than whole 
ecosystems, and long- time series of biological samples exist mainly for commercially exploited fish 
species (Baudron et  al., 2014; Smoliński et  al., 2020; Thresher et  al., 2007) (in which fisheries 

Figure supplement 4. The average length- at- age is larger for fish of all ages in the heated enclosed bay compared to the reference area, and the 
relative difference declines very slightly with age.

Figure supplement 5. Posterior distributions of the cohort- varying  L∞  parameter in the best von Bertalanffy growth model.

Figure supplement 6. Posterior distributions of the cohort- varying  K   parameter in the von Bertalanffy model.

Figure supplement 7. Prior vs posterior distributions for parameters  L∞  (A),  K   (B) and  t0  (C) in the best model of the von Bertalanffy growth equation.

Figure supplement 8. Posterior distributions of  K   (A) and  L∞  (B) for both areas and the distribution of their difference (C, D).

Figure supplement 9. Analysis of sensitivity of including the most recent cohorts, with a smaller age range and, therefore, less certain estimates of  L∞ .

Figure supplement 10. Analysis of sensitivity of including the most recent cohorts, with a smaller age range and, therefore, less certain estimates of 

 L∞ .

Figure 2 continued
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exploitation affects size- structure both directly and indirectly by selecting for fast- growing individ-
uals). While factors other than temperature could have contributed to the observed elevated growth 
and mortality, the temperature contrast is unusually large for natural systems (i.e. 5–10°C, which can 
be compared to the 1.35°C change in the Baltic Sea between 1982 and 2006 [Belkin, 2009]). More-
over, heating occurred at the scale of a whole ecosystem, which makes the findings highly relevant in 
the context of global warming.
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Figure 3. The faster growth rates in the heated area (red) compared to the reference (blue) are maintained as fish grow in size. The points illustrate 
specific growth rate estimated from back- calculated length- at- age (within individuals) as a function of length, expressed as the geometric mean of the 
length at the start and end of the time interval. Lines show the median of the posterior draws of the global posterior predictive distribution (without 
group- level effects) from the allometric growth model with area- specific coefficients. The shaded areas correspond to the 90% credible interval. 
The equation uses mean parameter estimates. Panel (B) shows the posterior distributions for initial growth ( αheat  (red) and  αref   (blue)), and (C) the 
distribution of their difference. Panel (D) shows the posterior distributions for the allometric exponent ( θheat  and  θref  ), and (E) the distribution of their 
difference. The fill color depicts the area below 0 (0.3% and 0.2% for  α  and  θ , respectively).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Prior predictive distribution for the allometric growth model (posterior draws from the prior only, ignoring the likelihood).

Figure supplement 2. The best allometric growth model: (A) trace plot to illustrate chain convergence for key (population- level) parameters, 
(B) residuals, (C) QQ- plot, and (D) posterior predictive check.

Figure supplement 3. Prior vs posterior distributions for parameters  α  (A) and  θ  (B) in the best allometric growth model (inset in panel (B) is a zoomed- 
in version to better visualize the priors in the range of the posteriors).

https://doi.org/10.7554/eLife.82996
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Interestingly, our findings contrast with both broader predictions about declining mean or adult 
body sizes based on the GOLT hypothesis (Cheung et al., 2013; Pauly, 2021), and with intraspe-
cific patterns such as the TSR (temperature- size rule, Atkinson, 1994). The contrasts lie in that both 
asymptotic size and size- at- age of mature individuals, as well as the proportion of larger individuals, 
were slightly larger and higher in the heated area—despite the elevated mortality rates. This result 
was unexpected for two reasons: optimum growth temperatures generally decline with body size 
within species under food satiation in experimental studies (Lindmark et al., 2022), and fish tend to 
mature at smaller body sizes and allocate more energy into reproduction as it gets warmer (Niu et al., 

Figure 4. The instantaneous mortality rate ( Z  ) is higher in the heated area (red) than in the reference (blue). Panel (A) shows   log
(
CPUE

)
  as a function 

of  age , where the slope corresponds to  −Z  . Lines show the median of the posterior draws of the global posterior predictive distribution (without group- 
level effects) and the shaded areas correspond to the 50% and 90% credible intervals. The equation shows mean parameter estimates. Panel (B) shows 
the posterior distributions for mortality rate ( Zheat  and  Zref  ), and (C) the distribution of their difference, where the fill color depicts the area below 0 
(0.07%).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Catch per unit effort (CPUE) as a function of age, by area and year, for determining which ages are representatively caught by the 
fishing gear.

Figure supplement 2. The best catch curve model: (A) trace plot to illustrate chain convergence for key (population- level) parameters, (B) residuals, 
(C) QQ- plot, and (D) posterior predictive check.

https://doi.org/10.7554/eLife.82996
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2023; Wootton et al., 2022). Both patterns have been used to explain how growth can increase for 
small and young fish, while large and old fish typically do not benefit from warming. Our study species 
is no exception to these rules (Huss et al., 2019; Karås and Thoresson, 1992; Niu et al., 2023; 
Sandstrom et al., 1995). This suggests that growth dynamics under food satiation may not be directly 
proportional to those under natural feeding conditions (Railsback, 2022). It could also mean that 
while temperatures is near optimum for growth in the warmest months of the year for a 15 cm indi-
vidual (and above optimum for larger fish as the optimum declines with size) (Huss et al., 2019; Lind-
mark et al., 2022), the exposure to such high temperatures is not enough to cause strong reductions 
in growth and eventually size- at- age. Our results highlight that we need to focus on understanding to 
what extent the commonly observed increase in size- at- age for juveniles in warm environments can be 
maintained as they grow older.

Our finding that mortality rates were higher in the heated area was expected—warming leads 
to faster metabolic rates (faster ‘pace of life’), which in turn is associated with a shorter life span 
(Brown et al., 2004; McCoy and Gillooly, 2008; Munch and Salinas, 2009). Extreme temperatures, 
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Figure 5. The heated area (red) has a larger proportion of large fish than the reference area (blue), illustrated both in terms of histograms of proportions 
at size (A) and the biomass size- spectrum (B, C), but the difference in the slope of the size spectra between the areas is not statistically clear (C). Panel 
(A) illustrates histograms of length groups in the heated and reference area as proportions (for all years pooled). Panel (B) shows the estimate of the 
size- spectrum exponent,  γ  , where vertical lines depict the 95% confidence interval. Panel (C) shows the size distribution and MLEbins fit (red and blue 
solid curves for the heated and reference area, respectively) with 95% confidence intervals indicated by dotted lines. The vertical span of rectangles 
illustrates the possible range of the number of individuals with body mass ≥ the body mass of individuals in that bin.
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which may be more common in warmed systems under natural variability, can also be lethal if e.g., 
acute oxygen demands cannot be met (Sandblom et al., 2016). Warming may further increase preda-
tion mortality, as predators’ feeding rates increase in order to meet the higher demand for food 
(Biro et al., 2007; Pauly, 1980; Ursin, 1967). However, most evidence to date of the temperature 
dependence of mortality rates in natural populations stems from across- species studies (Gislason 
et al., 2010; Pauly, 1980; Thorson et al., 2017, but see Berggren et al., 2022; Biro et al., 2007). 
Across- species relationships are not necessarily determined by the same processes as within- species 
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Figure 6. The average size is larger (A, B), but the average age (C, D) is younger in the heated area compared to the reference area. The violin plots (A, 
C) are based on draws from the global posterior predictive distribution (without group- level effects) for mean size and age from the lognormal model, 
respectively, with the random year effect omitted, while the density plots (B, D) depict the difference between areas based on draws from the expected 
value of the posterior predictive distribution. Hence, the latter has a smaller variation and the difference in means is more pronounced. The average size 
is 2 cm larger in the heated area, and the average age is 0.4 years younger (B, D).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Size (top) and age (bottom) distribution of catches, all years pooled, as used in the lognormal model estimate the mean size and 
catch.

Figure supplement 2. Lognormal length and age models model diagnostics and fit.

https://doi.org/10.7554/eLife.82996
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relationships; thus, our finding of warming- induced mortality in a heated vs control environment in 
two nearby con- specific populations is important.

Since a key question for understanding the implications of warming on ectotherm populations is if 
larger individuals in a population become rarer or smaller (Ohlberger, 2013; Ohlberger et al., 2018), 
within- species mortality and growth responses to warming need to be further studied. Importantly, 
this requires accounting also for the effects of warming on growth, and how responses in growth and 
mortality depend on each other. For instance, higher mortality (predation or natural, physiological 
mortality) can release intra- specific competition and thus increase growth. While e.g., benthic inver-
tebrate density was not affected by the initial warming of the heated area (Sandstrom et al., 1995), 
warming- induced mortality may have led to higher benthic prey availability per capita for the studied 
perch. Conversely, altered growth and body sizes can lead to changes in size- specific mortality, such 
as predation or starvation, both of which are expected to change with warming (Thunell, 2023). 
In conclusion, individual- level patterns such as the TSR can only be used to predict changes in the 
population- level size structure in limited cases, as it does not concern changes in abundance- at- size 
via mortality. Mortality may, however, be an important driver of the observed shrinking of ectotherms 
(Peralta- Maraver and Rezende, 2021). Understanding the mechanisms by which the size- and age- 
distribution change with warming is critical for predicting how warming changes species functions and 
ecological roles (Audzijonyte et al., 2020; Fritschie and Olden, 2016; Gårdmark and Huss, 2020). 
Our findings demonstrate that a key to do this is to acknowledge temperature effects on both growth 
and mortality and how they interact.

Materials and methods
Data
We use size- at- age data from perch sampled annually from an artificially heated enclosed bay (‘the 
Biotest basin’) and its reference area, both in the western Baltic Sea (Figure 1). Heating started in 
1980, the first analyzed cohort is 1981, and the first and last catch year is 1987 and 2003, respectively, 
to omit transient dynamics and acute responses, and to ensure we use cohorts that only experienced 
one of the thermal environments during its life. A grid at the outlet of the heated area (Figure 1) 
prevented fish larger than 10 cm from migrating between the areas (Adill et al., 2013; Huss et al., 
2019), and genetic studies confirm the reproductive isolation between the two populations during 
this time period (Björklund et al., 2015). However, the grid was removed in 2004. Since then, fish 
growing up in the heated Biotest basin can easily swim out and fish caught in the reference area can 
no longer be assumed to be born there. Hence, we use data only up until 2003. This resulted in 12,658 
length- at- age measurements from 2,426 individuals (i.e. multiple measurements per individual) from 
256 net deployments.

We use data from fishing events using survey- gillnets that took place in October in the heated 
Biotest basin and in August in the reference area when temperatures are most comparable between 
the two areas (Huss et al., 2019), because temperature affects catchability in static gears. The catch 
was recorded by 2.5  cm length classes during 1987–2000, and into 1  cm length groups in years 
2001–2003. To express lengths in a common length standard, 1  cm intervals were converted into 
2.5 cm intervals. The unit of catch data is hence the number of fish caught by 2.5 cm size class per net 
per night (i.e. a catch- per- unit- effort (CPUE) variable). All data from fishing events with disturbance 
affecting the catch (e.g. seal damage, strong algal growth on the gears, clogging by drifting algae) 
were removed (years 1996 and 1999 from the heated area in the catch data).

Length- at- age throughout an individuals' life was reconstructed for a random or length- stratified 
subset of caught individuals each year (depending on which year, and in some cases, the number of 
fish caught). This was done using growth- increment biochronologies derived from annuli rings on the 
operculum bones, with control counts done on otoliths. Such analyses have become increasingly used 
to analyze changes in the growth and size- at- age of fishes (Essington et al., 2022; Morrongiello and 
Thresher, 2015). Specifically, an established power- law relationship between the distance of annual 
rings and fish length was used:  L = κRs , where  L  is the length of the fish,  R  the operculum radius,  κ  the 
intercept, and  s  the slope of the line for the regression of log- fish length on log- operculum radius from 
a large reference data set for perch (Thoresson, 1996). Back- calculated length- at- age was obtained 
from the relationship  La = Ls

( ra
R
)s

 , where  La  is the back- calculated body length at age  a ,  Ls  is the final 
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body length (body length at catch),  ra  is the distance from the center to the annual ring corresponding 
to age  a  and  s = 0.861  for perch (Thoresson, 1996). Since perch exhibits sexual size- dimorphism, and 
age determination together with back- calculation of growth was not done for males in all years, we 
only used females for our analyses.

Statistical analysis
The differences in size- at- age, growth, mortality, and size structure between perch in the heated and 
the reference area were quantified using hierarchical linear and non- linear models fitted in a Bayesian 
framework. First, we describe each statistical model and then provide details of model fitting, model 
diagnostics, and comparison.

To describe individual growth throughout life, we fit the von Bertalanffy growth equation (VBGE) 
(Beverton and Holt, 1957; von Bertalanffy, 1938) on a  log  scale, describing length as a function of 

age to evaluate differences in size- at- age and asymptotic size: 
 
log

(
Lt
)

= log
(

L∞
(

1 − e
(
−K

(
t−t0

))))
 
, 

where  Lt  is the length- at- age  t  (years),  L∞  is the asymptotic size,  K   is the Brody growth coefficient 
( yr−1

 ) and  t0  is the age when the average length was zero. Here and henceforth, log refers to natural 
logarithms. We used only age and size at catch, i.e. not back- calculated length- at- age. This was to 
have a simpler model and not have to account for parameters varying within individuals as well as 
cohorts, as mean sample size per individual was only ~5. We let parameters vary among cohorts rather 
than year of catch, because individuals within cohorts share similar environmental conditions and 
density dependence (Morrongiello and Thresher, 2015). Eight models in total were fitted with area 
dummy- coded, with different combinations of shared and area- specific parameters. We evaluated if 
models with area- specific parameters led to better fit and quantified the differences in area- specific 
parameters (indexed by subscripts  heat  and  ref  ). The model with all area- specific parameters can be 
written as:

 Li ∼ Student -t
(
υ, µi,σ

)
  (1)

 

log
(
µi
)

= Aref log
[

L∞refj
[
i
]
(

1 − e
(
−Krefj

[
i
]
(

t−t0refj
[
i
]
)))]

+

Aheat log
[

L∞heatj
[
i
]
(

1 − e
(
−Kheatj

[
i
]
(

t−t0heatj
[
i
]
)))]

  

(2)

 




L∞refj

L∞heatj

Krefj

Kheatj



∼ MVNormal







µL∞refj

µL∞heatj

µKrefj

µKheatj




,




σL∞refj 0 0 0

0 σL∞heatj 0 0

0 0 σKrefj 0

0 0 0 σKheatj







  

(3)

where log lengths are  Student-t  distributed to account for extreme observations,  υ ,  µ , and  σ  repre-
sent the degrees of freedom, mean, and the scale parameter, respectively.  Aref   and  Aheat  are dummy 
variables such that  Aref = 1  and  Aheat = 0  if it is the reference area, and vice versa for the heated area. 
The multivariate normal distribution in Equation 3 is the prior for the cohort- varying parameters 

 L∞refj ,  L∞heatj ,  Krefj , and  Kheatj  (for cohorts  j = 1981, …,1997) (note that cohorts extend further back 
in time than the catch data), with hyper- parameters  µL∞ref ,  µL∞heat ,  µKref ,  µKheat  describing the popu-
lation means and a covariance matrix with the between- cohort variation along the diagonal. We did 
not model a correlation between the parameters, hence off- diagonals are 0. The other seven models 
include some or all parameters as parameters common for the two areas, e.g., substituting  L∞refj  and 

 L∞heatj  with  L∞j . To aid the convergence of this non- linear model, we used informative priors chosen 
after visualizing draws from prior predictive distributions (Wesner and Pomeranz, 2021) using prob-
able parameter values (Figure 2—figure supplement 7; Figure 3—figure supplement 3). We used 
the same prior distribution for each parameter class for both areas to not introduce any other sources 
of differences in parameter estimates between areas. We used the following priors for the VBGE 
model:  µL∞ref,heat ∼ N

(
45, 20

)
  ,  µKref,heat ∼ N

(
0.2, 0.1

)
  ,  t0ref,heat ∼ N

(
−0.5, 1

)
 , and  υ ∼ gamma

(
2, 0.1

)
 .  σ  

parameters,  σL∞ref ,  σL∞heat ,  σKref ,  σKheat  were given a  Student-t
(
3, 0, 2.5

)
  prior.

We also compared how body growth scales with body size (in contrast to length vs age). This 
is because size- at- age reflects lifetime growth history rather than current growth and may thus be 
large because growth was fast early in life, not because current growth rates are fast (Lorenzen, 
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2016). We therefore fit allometric growth models describing how specific growth rate scales with 
length:  G = αLθ  , where  G , the annual specific growth between year  t  and  t + 1 , is defined as: 

 G = 100 ×
(
log

(
Lt+1

)
− log

(
Lt
))

  and  L  is the geometric mean length:  L =
(
Lt+1 × Lt

)0.5
 . Here we use 

back- calculated length- at- age, resulting in multiple observations per individual. As with the VBGE 
model, we dummy- coded area to compare models with different combinations of common and shared 
parameters. We assumed growth rates were  Student-t  distributed, and the full model can be written as:

 Gi ∼ Student -t
(
υ, µi,σ

)
  (4)

 
µi = Aref

(
αrefj

[
i
]
,k
[
i
]Lθref

)
+ Aheat

(
αheatj

[
i
]
,k
[
i
]Lθheat

)
  (5)

 αref,heatj ∼ N
(
µαref,heatj , σαref,heatj

)
  (6)

 αref,heatk ∼ N
(
µαref,heatk , σαref,heatk

)
  (7)

We assumed only  α  varied across individuals  j  within cohorts  k  and compared two models: one with 
 θ  common for the heated and reference area, and one with an area- specific  θ . We used the following 
priors:  µαref,heat ∼ N

(
500, 100

)
 ,  θref,heat ∼ N

(
−1.2, 0.3

)
  and  υ ∼ gamma

(
2, 0.1

)
 .  σ ,  σid : cohort  and  σcohort  

were all given a  Student-t
(
3, 0, 13.3

)
  prior.

We estimated total mortality by fitting linear models to the natural log of catch (CPUE) as a function 
of age (catch curve regression), under the assumption that in a closed population, the exponential 
decline can be described as  Nt = N0e−Zt

  , where  Nt  is the population at time  t ,  N0  is the initial popula-
tion size and  Z   is the instantaneous mortality rate. This equation can be rewritten as a linear equation: 

 log
(
Ct
)

= log
(
vN0

)
− Zt , where  Ct  is a catch at age  t , if a catch is assumed proportional to the number 

of fish (i.e.  Ct = vNt ). Hence, the negative of the age slope is the mortality rate,  Z  . To get catch- at- age 
data, we constructed area- specific age- length keys using the sub- sample of the total (female) catch 
that was age- determined. Age length keys describe the age proportions of each length category (i.e. 
a matrix with length category as rows, and ages as columns). The age composition is then estimated 
for the total catch based on the ‘probability’ of fish in each length category being a certain age. 
Due to the smallest and youngest fish not being representatively caught with the gillnet, the catch 
is dome- shaped over size and age. We therefore followed the practice of selecting only ages on the 
descending right limb (Dunn et al., 2002; Figure 4—figure supplement 1). We fit this model with and 
without an  age × area - interaction, and the former can be written as:

 log
(
CPUEi

)
∼ Student -t

(
υ, µi,σ

)
  (8)

 µi = β0j
[
i
] areaheat + β1j

[
i
] arearef + β2j

[
i
] age + β3j

[
i
] age × areaheat  (9)

 




β0j

β1j

β2j

β3j



∼ MVNormal







µβ0j

µβ1j

µβ2j

µβ3j




,




σβ0j ρβ0jβ1j ρβ0jβ2j ρβ0jβ3j

ρβ1jβ0j σβ1j ρβ1jβ2j ρβ1jβ3j

ρβ2jβ0j ρβ2jβ1j σβ2j ρβ2jβ3j

ρβ3jβ0j ρβ3jβ1j ρβ3jβ1j σβ3j







  

(10)

where  β0j  and  β1j  are the intercepts for the reference and heated areas, respectively,  β2j  is the age 
slope for the reference area and  β3j  is the difference between the age slope in the reference area 
and in the heated area. All parameters vary by cohort (for cohort  j = 1981, . . . , 2000 ). We use the 
default brms priors for these models, i.e., flat priors for the regression coefficients (Bürkner, 2017) 
and  υ ∼ gamma

(
2, 0.1

)
 .  σ  and  σβ0j,...,3j  were given a  Student-t

(
3, 0, 2.5

)
  prior.

Lastly, we quantified differences in the average age and size distributions between the areas. We 
estimate the biomass size- spectrum exponent  γ   directly, using the likelihood approach for binned 
data, i.e., the MLEbin method in the R package sizeSpectra (Edwards, 2020; Edwards et al., 2020; 
Edwards et al., 2017). This method explicitly accounts for uncertainty in body masses within size 
classes (bins) in the data and has been shown to be less biased than regression- based methods 
or the likelihood method based on bin midpoints (Edwards et al., 2020; Edwards et al., 2017). 
We pooled all years to ensure negative relationships between biomass and size in the size classes 
(as the sign of the relationship varied between years). We also fitted lognormal models as data 
are positive and tailed to length- and age- resolved catch data. Here, we assume that the catch-
ability with respect to size does not differ between the areas, and, therefore, use the entire catch 
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(Figure 6—figure supplement 1). In contrast to the catch curve regression, we do not need to filter 
representatively caught size or age classes. The lognormal models fitted to age or size (denoted 

 yage, length,i ) model can be written as:

 yage, length,i ∼ LogNormal
(
µi,σ

)
  (11)

 µi = β0j
[
i
] (areaheat

)
+ β1j

[
i
] (arearef

)
  (12)

 


 β0j

β1j


 ∼ MVNormal




 µβ0j

µβ1j


 ,


 σβ0j ρβ0jβ1j

ρβ2jβ0j σβ1j






  
(13)

where  β0j  is the intercept for the reference area and  β1j  is the intercept for the heated area. These 
intercepts vary by year (for years  j = 1987, . . . , 2003 ). We use flat priors for the regression coefficients, 
and  σ  was given a  Student-t

(
3, 0, 2.5

)
  prior, and compared models with and without random slopes.

All analyses were done using R (R Development Core Team, 2020) version 4.0.2 with R Studio 
(2021.09.1). The packages within the tidyverse (Wickham et  al., 2019) collection was used to 
process and visualize data. Models were fit using the R package brms (Bürkner, 2018). For the non- 
linear von Bertalanffy growth equation and the allometric growth model, we used informative priors 
to facilitate convergence. These were chosen by defining vague priors, and then progressively 
tightening these until convergence was achieved (Bürkner, 2017; Gesmann and Morris, 2020). 
We used prior predictive checks to ensure the priors were suitable (vague enough to include also 
unlikely predictions, but informative enough to ensure convergence), and the final prior predictive 
checks are shown in Figure 2—figure supplement 1 and Figure 3—figure supplement 1. We also 
explored priors vs posteriors to evaluate the influence of our informative priors visually (Figure 2—
figure supplement 7; Figure 3—figure supplement 3). For the linear models (catch curve and 
mean size), which do not require the same procedure to achieve convergence typically, we used 
the default priors from brms as written above. We used three chains and 4000 iterations in total 
per chain. Models were compared by evaluating their expected predictive accuracy (expected log 
pointwise predictive density) using leave- one- out cross- validation (LOO- CV) (Vehtari et al., 2017) 
while ensuring Pareto  k  values <0.7, in the R package loo (Vehtari et al., 2020). Results of the 
model comparison can be found in the Supplementary file 1. We used bayesplot (Gabry et al., 
2019) and tidybayes (Kay, 2019) to process and visualize model diagnostics and posteriors. Model 
convergence and the fit were assessed by ensuring potential scale reduction factors ( ̂R ) were less 
than 1.1, suggesting all three chains converged to a common distribution (Gelman et al., 2003), 
and by visually inspecting trace plots, residuals QQ- plots, and with posterior predictive checks 
(Figures 2–4, Figure 6—figure supplement 2).
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