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Simple Summary: Sea lice are a relevant ectoparasite that affect the salmon industry. Not all fish
respond in the same way to this parasite—some fish are resistant and have a low sea lice load, and
others are susceptible and have a high parasite load. In this work, we studied the heritability of three
key proteins associated with the innate immunity and resistance of Atlantic salmon against sea lice.
Nkef, Tnfα, and Il-8 were quantified by indirect ELISA in order to determine their heritability in
different families of Atlantic salmon. Our results show that the expression of Nkef and Tnfα proteins
are highly heritable and are related to resistance to sea lice in Atlantic salmon.

Abstract: The immune response of Atlantic salmon to sea lice has been extensively studied, but we
still do not know the mechanisms by which some fish become resistant and others do not. In this
study, we estimated the heritabilities of three key proteins associated with the innate immunity and
resistance of Salmo salar against the sea louse Caligus rogercresseyi. In particular, we quantified the
abundance of 2 pro-inflammatory cytokines, Tnfα and Il-8, and an antioxidant enzyme, Nkef, in
Atlantic salmon skin and gill tissue from 21 families and 268 individuals by indirect ELISA. This
covers a wide parasite load range from low or resistant (mean sea lice ± SE = 8.7 ± 0.9) to high or
susceptible (mean sea lice ± SE = 43.3 ± 2.0). Our results showed that susceptible fish had higher
levels of Nkef and Tnfα than resistant fish in their gills and skin, although gill Il-8 was higher in
resistant fish, while no significant differences were found in the skin. Furthermore, moderate to very
high heritable genetic variation was estimated for Nkef (h2 skin: 0.96 ± 0.14 and gills: 0.97 ± 0.11)
and Tnfα (h2 skin: 0.53 ± 0.17 and gills: 0.32 ± 0.14), but not for Il-8 (h2 skin: 0.22 ± 0.12 ns and
gills: 0.09 ± 0.08 ns). This work provides evidence that Nkef and Tnfα protein expressions are highly
heritable and related to resistance against sea lice in Atlantic salmon.

Keywords: Nkef; Tnfα; Il-8; cytokines; sea lice; Atlantic salmon; heritability; innate immunity

1. Introduction

Sea lice are considered one of the most serious problems in aquaculture produc-
tion [1,2]. These parasites are parasitic copepods of the family Caligidae and mainly
represented by two genera, Caligus and Lepeophtheirus. Two of the principal ectoparasite
of these genera affecting salmon farming are Caligus rogercresseyi in the southern hemi-
sphere and Lepeophtheirus salmonids in the northern hemisphere [3,4]. The harmful effect
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of these parasites is widely known; they can seriously damage the skin, increase stress,
reduce growth, and cause high mortality [5–7]. As a consequence of severe mechanical
damage, Caligidae parasites evoke a strong innate immune response in the host and also
perturb the mucosal microbiome of fish [8,9]. Even though several methods exist (e.g., feed
supplements, bath treatments, temperature shock, flushing the surface of the fish with
pressurized water, tailored cage design, or “lice-zapping” lasers) [10–13] to avoid or control
this parasite, the results have been restricted. In Chile, Caligus rogercresseyi is one of the most
relevant sanitary issues in aquaculture with a high prevalence in salmon farms increasing
the production cost by 1.4 USD per kilogram of produced salmon [14,15]. Other detrimental
effects of C. rogercresseyi are that it: (1) reduces the resistance of Atlantic salmon (Salmo
salar) to other pathogens [16,17], (2) overrides the protective effects of vaccination against
Piscirickettsia salmonis in Atlantic salmon [17], and (3) potentially acts as a reservoir for fish
pathogens, such as Vibrio, Tenacibaculum, and Aeromonas, present in their microbiota [18]. C.
rogercresseyi has eight developmental stages which include two free-swimming nauplius, a
copepodid stage that infests and attaches to the host, four attached chalimus, and finally, a
mobile adult stage [19]. Usually, newly attached copepotid stages and chalimus stages are
known as sessile parasites in contrast to the adult that is capable of moving on the host.

Sea lice infestation in Atlantic salmon elicits an early upregulation of several immune
response components, such as inflammatory response, cytokine production, Tnf and NF-
kappa B signaling, protease secretion, and complement activation [20–22]. Particularly,
resistance to Caligus has been potentially associated with an upregulation of immune
receptors (TLR and C-X-C chemokine receptor for Il-8), an upregulation of genes related
to the TH2 pathway, and the depletion of cellular iron availability [20,21]. Furthermore,
Atlantic salmon could modulate sea lice transcriptome at early infestation stages as a
defence mechanism. For example, reactive oxygen species (ROS) emitted by infected fish
could modulate the sea lice antioxidant system [23].

Fish skin is the first barrier to the exterior environment and plays an essential role in
protection against pathogens [24]. In healthy fish, skin immune-related molecules can be
found as lectins, cytokines, lysozyme, and complement proteins [24,25]. During a sea lice
infestation, copepods attach to the skin or fins and feed on the skin, mucus, and blood,
leading to open wounds [20] and producing a modulation of the expression of immune
response-related genes, such as cytokines and receptors [9,20,21,26]. This modulation is
observed even in the undamaged skin of infested fish [27]. Similar to skin, gills are an
external barrier to pathogens that are responsible for gas exchange, osmoregulation, and
ion exchange. However, the detection of sea lice in gills is not typical, although the immune
response has been detected in this tissue during C. rogrecresseyi infestation [27,28]. Sea lice
can produce an anti-inflammatory response, hyperplasia, thickening, and complete or par-
tial lamellar fusion in fish gills even when they are not attached on it [29]. Simultaneously,
the gills of infected fish show increased melanomacrophages centers/eosinophilic granule
cells, monocytes/macrophages, and lymphocytes, with an increase in mucus production
and globet cells [29]. Hence, gills are highly sensitive to Caligus infestation, being a good
candidate for evaluating immune parameters.

In this study, we evaluated three immune-defence related proteins, specifically, nat-
ural killer enhancing factor (Nkef), tumor necrosis factor-alpha (Tnfα), and interleukin 8
(Il-8). Nkef, is a member of peroxiredoxin (Prx) family, is an effector molecule that plays
a supportive role in cell signaling and immunomodulation in mammals, playing a pro-
tective antioxidant activity role, catalyzing the reduction of peroxides avoiding cellular
damage [30,31]. In teleost, Nkef is up-regulated in gills and skin and other tissues after
a parasitic, bacteria, and viral infection [27,32–35]. Recombinant Nkef protein has been
shown to enhance the cytotoxic capacity of non-specific cytotoxic cells from kidney in Nile
tilapia (Oreochromis niloticus) [34]. Cell-types producing Nkef are resembling T-cells and
macrophages in rainbow trout (Oncorhynchus mykiss), red blood, and epithelial cells in
common carp (Cyprinus carpio) [27,35]. Furthermore, we have previously demonstrated at
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the protein level that Nkef abundance increases in Atlantic salmon gills and skin challenged
with C. rogercresseyi [27].

Cytokines are regulators of the homeostasis of host defences, determining the type
of response generated and the effector mechanisms generated to mediate resistance. We
focused our work in two cytokines Tnfα and Il-8, related to Th1 response. Tumour necrosis
factor alpha is a cytokine mainly secreted by activated monocytes and macrophages [36,37].
Tnfα has a dual role, first as pro-inflammatory mediator when it is secreted by classically
activated macrophages [36–40], and second as an initiator of tissue repair and antioxi-
dant defence when produced by alternatively activated macrophages [41]. Additionally,
fish Tnfα is suggested to be involved in regulating leukocyte homing, proliferation, and
migration [42]. As the third host immune response molecule, we quantified the protein
abundance of Il-8, a potent cytokine mediator; its primary role is to recruit and activate
neutrophils and induce the migration of monocytes, lymphocytes, and other granulocytes
subsets to the infection site [43,44]. In pink salmon, Oncorhynchus gorbuscha, an early and
high gene expression of Il-8 in fin has been suggested as a molecular mechanism behind
rapid sea lice rejection [45].

In this work, we evaluated the familiar variability and heritability of Nkef, Tnfα, and
Il-8 in skin and gills as possible molecular traits associated with resistance against sea lice
C. rogercresseyi in Atlantic salmon.

2. Materials and Methods
2.1. Ethics Statement

This work was carried out under the Canadian Council on Animal Care guidance for
the care and use of experimental animals. The protocol was approved by the Bioethics
Committee of the Pontificia Universidad Católica de Valparaíso and the Comisión Nacional
de Investigación Científica y Tecnológica de Chile (FONDECYT No. 1140772). Animals
were fed daily ad libitum with a commercial diet. To reduce stress during handling,
vaccination was performed on fish sedated with AQUI-S (50% Isoeugenol, 17 mL/100 L
water). Fish were euthanized by an overdose of anesthesia (AQUI-S, 50 mL/100 L).

2.2. Fish Population and Sea Lice Challenge

The animals used in this study came from an experimental challenge where 75 full-sib
families of Salmo salar were infested with C. rogercresseyi as described below. Fish originated
from a breeding program of Aquainnovo, Chile. Experimental families originated from
75 females who, under a nested mating scheme, mated with 40 males. Fish were pit tagged
as smolts with an average body weight of 31.0 ± 8.0 g and subsequently acclimated for
3 weeks under seawater conditions (salinity of 33% and a temperature of 12 ± 1 ◦C). Prior
to the transfer of the fish to the experimental center and as required by the authority, a
group of 10 fish was analyzed to verify that they are free of pathogens in a SERNAPESCA
certified laboratory. Fish health was verified by qRT-PCR against two viral and five
bacterial diseases (ISAV, IPNV, Vibrio ordalii, Flavobacterium psychrophilum, P. salmonis, and
Renibacterium salmoninarum).

In total, 1511 fish with an average body weight of 130 g were distributed in equal
numbers per family in three tanks of 6 m3 each and infested with C. rogercresseyi larvae at
the infective stage (copepodids). Copepods were obtained from ovigerous females that
infected adult Atlantic salmon fish at Fundación Chile’s Aquadvise Experimental Center
(Quillaipe, X region, Chile). Fundación Chile verified in a pool of larvae that they were free
of pathogens by using a PCR test on ISAV and P. salmonis. The ovigerous females were
incubated in several 2 L glass flasks with sea water at 32 ppm (filtered at 88 µm and UV
disinfected). The water temperature was maintained between 13 and 14 ◦C in darkness and
constant aeration. The infection with parasites (copepods) was carried out by concentrating
the copepods in 40 L flasks and then adding them to the culture ponds. To facilitate
the infestation process, the ponds were kept in the dark, with stopped flow and oxygen
supplementation for ten hours, after which time the water flow was re-established [46].
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Fifty thousand copepodids were used per tank, with approximately 100 parasites per fish.
The temperature and oxygen saturation were controlled during this time. Approximately
five days after infestation, the fish were sacrificed by an overdose of anesthesia. Small
sections of gills (6 mm2 from lamella of the first arc) and skin (6 mm2 above the lateral
line) without visible damage and sea lice attachment were stored in 80% ethanol. Pectoral,
ventral, anal, caudal, and dorsal fins were removed and stored in 80% ethanol for estimating
the sessile lice number (SL, chalimus stages) as a measure of resistance against sea lice,
which represents 95% of the total number of parasites on fish [46]. Parasite counting was
performed using a Nikon SMZ 800 (Nikon Inc., Melville, NY, USA) magnifying glass with
a camera.

2.3. Family Selection and Immunological Phenotype

After the sea lice challenge, 21 families and 268 individuals covering a wide parasite
load range from a low number of sessile lice (resistant fish) to a high number of sessile
lice (susceptible fish) were selected to perform the immune and genetic analysis. In total,
7 families with the lowest and highest number of parasites were classified as susceptible
and resistant, respectively, and 7 families with intermediate values of parasites were also
included to represent a group with intermediate resistance/susceptibility. In addition, the
body weight (BW) of each fish was registered. We measured abundances from undamaged
skin and gills for three immune-related proteins: Nkef, Tnfα, and Il-8, according to Morales-
Lange et al. [47]. Briefly, skin from the dorsolateral area without mucus (removed with a
cell scraper to avoid contamination with blood and scales, according to Narváez et al. [48]),
muscle tissue (removed with a scalpel), and gill samples were mechanically homogenized
in lysis buffer on ice (ratio 1: 4, Tris 20 mM, NaCl 100 mM, 0.05% Triton X-100, 5 mM PMSF,
5 mM EDTA, and 0.2% protease inhibitor cocktail; Sigma-Aldrich, San Luis, MO, USA).
Each homogenate was centrifuged at 14,000× g for 25 min at 4 ◦C, and the supernatant was
stored at −80 ◦C until use. Total proteins were quantified by a Pierce BCA protein assay
kit (Thermo Fisher Scientific, Waltham, MA, USA) following manufacturer’s instructions.
Then, each sample was diluted in carbonate buffer (60 mM NaHCO3, pH 9.6), seeded (in
duplicates) at 35 ng/µL (100 µL) in a Maxisorp plate (Nunc, Thermo Fisher Scientific), and
incubated overnight at 4 ◦C. Thereafter, each well was blocked with 1% Bovine Serum
Albumin (BSA) for 2 h at 37 ◦C. Plates were incubated for 90 min at 37 ◦C with the
primary antibody anti-synthetic epitope diluted in BSA (Table S1) and later with the
second antibody HRP (Thermo Fisher Scientific) for 60 min at 37 ◦C in 1:7000 dilution.
Finally, 100 µL per well of chromagen substrate 3,3′,5,5′-tetrame thylbenzidine (TMB)
single solution (Invitrogen, Waltham, MA, USA) was added and incubated for 30 min at
room temperature. The reaction was stopped with 50 µL of 1 N sulfuric acid and read at
450 nm on a VERSAmax microplate reader (Molecular Device, San José, CA, USA). Primary
antibodies against Nkef, Tnfα, and Il-8 were produced according to Bethke et al., Rojas et al.,
and Santana et al., respectively [27,28,49] (Table S1 and Figure S1) following parameters
of antigenicity (Predicting Antigenic Peptides, Universidad Complutense de Madrid),
hydrophobicity (ProtScale, Hopp and Woods, ExPASy), flexibility (ProtScale, average
flexibility index, ExPASy), accessibility (ProtScale,% accessible residues, ExPASy), and
location in the proposed three-dimensional structure by Phyre2 (Figure S1). For validation,
antibody efficiency was calculated based on the calibration curve of the antibody against
the synthetic peptide used for the immunization through indirect ELISA [50], and antibody
specificity was confirmed by Western blot as described before [51].

2.4. Genetic Variation

The heritable variation of all traits was estimated on data from 21 families by fitting
the following univariate linear mixed model using ASReml 4.1 [52]:

y = Xβ + Zu + e,
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where y is the data recorded for the studied traits, β is the fixed effect, u is the random
animal genetic effect, and e is the residual error. Each trait included the following fixed
effects or covariables: (a) the tank was included as a significant fixed effect on SL, Il-8 gills,
Nkef gills, Tnfα skin, and Il-8 skin; (b) body weight was included as a significant covariable
on SL; (c) sessile lice was included as a significant covariable effect on Il-8 gills, Tnfα gills,
and Nkef skin. The magnitude of estimated heritability was determined following the
classification of Cardellino and Rovira [53], corresponding to low (0.05–0.15), moderate
(0.20–0.40), high (0.45–0.60), and very high (>0.65) heritability.

2.5. Statistical Analysis

The association of each immunity trait with resistance traits was tested using a non-
parametric Mann–Whitney test and Pearson’s correlation. Further, familiar phenotypic
correlation coefficients were estimated between the six immunity traits and the number
of sessile lice. Statistical analysis was performed using GraphPad Prism 8.0 software
(Dotmatics, San Diego, CA, USA) and R (R Core Team, 2022).

3. Results
3.1. Sea Lice Resistance and Immunity Traits

A large variation of sea lice resistance and immunity traits were found between full
sibling families, indicating considerable genetic variation, as shown in Figures 1–3 and S2. The
seven most resistant full sib families had an average of 8.7 ± 0.9 sessile lice, while the seven
most susceptible had 43.3 ± 2.0 sessile lice. Therefore, the most susceptible families had
four times more sea lice than the resistant ones (Figure 1). In relation to the immunity traits,
the highest coefficient of variation was found on the gills in Tnfα (50.7%), and the lowest
coefficient of variation was found on the gills in Il-8 (22.6%) (Table 1). On a family level, a
high and significant phenotypic correlation (r > 0.67) was found between the number of
sea lice and all immunity traits, except for Il-8 on skin (Figure S3).
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Figure 1. (A) Histogram of the total number of sessile lice (SL), and (B) the ranking of variation by
full sibling families of Atlantic salmon from highly resistant (a low number of sea lice) to highly
susceptible (a high number of sea lice). Black dots represent outliers within families.
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Table 1. Descriptive statistics and heritability estimates of immunity and parasite load traits. Im-
munity traits measured by indirect ELISA (ng µL−1) and sea lice load (SL) in Atlantic salmon were
evaluated on undamaged skin and gills. Bold indicates significantly non-zero heritability. Abbrevia-
tions: SL, the number of sessile lice; na, not applicable; and ns, non-significant.

Trait Tissue N Mean SD CV h2 (SE) h2 Levels

Nkef Skin 229 6.2 2.7 43.7 0.96 ± 0.14 Very high
Tnfα Skin 227 221.6 91.0 41.0 0.53 ± 0.17 High
Il-8 Skin 214 384.6 120.1 31.2 0.22 ± 0.12 ns Moderate

Nkef Gills 231 2.9 1.1 37.3 0.97 ± 0.11 Very high
Tnfα Gills 229 174.3 88.4 50.7 0.32 ± 0.14 Moderate
Il-8 Gills 238 332.3 75.1 22.6 0.09 ± 0.08 ns Low
SL Skin 267 29.1 16.4 56.5 0.58 ± 0.17 High
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Figure 2. Boxplot showing full sibling family variation in immunity traits measured as protein
expression (ng µL−1) on the gill, by indirect ELISA, in salmon infected by sea lice (chalimus sessile
lice): (A) Il-8, (B) Tnfα, and (C) Nkef. Black dots represent outliers within families.
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Regarding protein measurements, our results showed that Nkef presented a protein
production dependent on the parasite load in both undamaged skin and gills tissues; thus,
susceptible fish had more Nkef than resistant fish (Figure 4A,B). Additionally, higher levels
of Nkef were found in the undamaged skin than in the gills of resistant and susceptible
fish (p < 0.0001). Tnfα presented higher levels in susceptible fish than resistant fish for
both undamaged skin and gills tissues. Higher levels of Tnfα were found in the skin than
in the gills for resistant fish (p < 0.0001), although this difference was not observed in
susceptible fish (Figure 4A,B). Il-8 showed a similar protein production pattern to Nkef and
Tnfα. Resistant and susceptible fish did not show a significant difference in skin for Il-8
(Figure 4A). While in gills, resistant fish secreted the highest amount of Il-8 and showed
significant differences (p < 0.0001; Figure 3B), in contrast to that observed in Nkef and Tnfα.
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Figure 4. Atlantic salmon undamaged skin and gills secretion of immunity traits measured by indirect
ELISA. Nkef, Tnfα, and Il-8 in undamaged skin (A) and gills (B) from seven families classified as
resistant and susceptible to sea lice. Immune traits between groups were compared using a non-
parametric Mann–Whitney test.

3.2. Heritability of Immunity Traits

Nkef showed the highest heritability level in skin and gills tissues (h2: 0.96 ± 0.14
and 0.97 ± 0.11, respectively). Tnfα showed moderate to high heritability in skin and gills
(h2: 0.53 ± 0.17 and 0.32 ± 0.14, respectively). In contrast, the heritability estimations for
Il-8 were moderate to low but not significantly different from zero in both tissues (h2 skin:
0.22 ± 0.12 and h2 gills: 0.09 ± 0.08, respectively; Table 1).

4. Discussion

In this study, we measured immunity traits as resistance indicators of Atlantic salmon
against C. rogercresseyi. Specifically, we evaluated if Nkef, Tnfα, and Il-8 production levels
in undamaged skin and gills could be associated with resistance against sea lice. Immunity
traits showed moderate to very high heritability for Nkef and Tnfα, providing evidence
that both could be included as selection criteria for resistance against sea lice in Atlantic
salmon. Genetic variation in similar immunological traits in other fish showed low to
high heritability, ranging from 0.1 to 0.58 [54–57], comparing with the results presented
in this work. Thus, our results highlighted the potential of immunity traits, particularly
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Nkef in skin and gills and Tnfα in skin, as resistance indicators of Atlantic salmon against
C. rogercresseyi. However, despite its higher heritability, it is more expensive to measure
on a large scale when compared to the number of parasites per fish phenotype. The
polygenic nature of resistance to C. rogercresseyi measured as the number of parasites
has been previously described, with a low to moderate magnitude ranging from 0.10 to
0.32 [10,20,58,59], and genomic selection using SNP arrays has also been proposed. QTL
studies and transcriptional analyses suggest several pathways by which Atlantic salmon
can express resistance against C. rogercresseyi, including immune response, T cell regulation
genes, and nutritional immunity traits [60].

Regarding protein measurements, our results showed that Nkef presented a protein
production that was dependent on the parasite load in both the undamaged skin and gills
tissues; thus, susceptible fish had more Nkef than resistant fish. Additionally, higher levels
of Nkef were found in undamaged skin than in gills for resistant and susceptible fish,
respectively. In a previous study, our group detected a significant increase in Nkef protein
in the gills and skin of Atlantic salmon infected with Caligus compared to non-infested
tissue [27]. Interestingly, in the same study, we detected Nkef in the head kidney and
the spleen of infected rainbow trout, suggesting a systemic response against sea lice [27].
These results indicate that Atlantic salmon increase the production of Nkef as a response
to parasite-induced oxidative stress, which has been previously described. For instance,
during L. salmonis infection, fish induce ROS production, as evidenced by increases in the
antioxidant thioredoxin [61] and the upregulation of cytokines that are responsible for
stimulating ROS production [9,61–63]. Sea lice respond to this ROS increase by raising their
own scavenge molecules such as Nkef [23]. Further, Nkef has been suggested to have a
possible host resistance role during IHNV infection in Atlantic salmon [32], showing the
relevance of Nkef as a resistance indicator in salmonids.

Tnfα presented higher levels in susceptible fish than resistant fish for both undamaged
skin and gills tissues. Higher levels of Tnfα were found in the skin than in the gills for
resistant fish, although this difference was not observed in susceptible fish. Sea lice infection
is known to raise the gene expression and secretion of Tnfα in gills and skin [26,28,63]. This
increase is higher in attachment skin (skin where lice attach to the host) than in undamaged
skin [63]. Furthermore, classically activated macrophages are dominant in Atlantic salmon
during a sea lice infection, exacerbating inflammation [63]. This oversecretion of Tnfα could
contribute to the overall susceptibility of Atlantic salmon. Salmonids that are susceptible to
infection respond more abruptly and in a more exacerbated manner which may increase
the probability of death of the host during the fight against a pathogen, while resistant fish
develop a slower and more sustained response over time maintaining the homeostasis [64].

Il-8 showed a similar protein production pattern to Nkef and Tnfα. Resistant and
susceptible fish did not show a significant difference in skin Il-8. Il-8 is a chemokine
that induces the migration of leukocytes to the infection site in fish [43,44], particularly
neutrophils [65]. Neutrophil migration has been associated with a central role in the
triggering of inflammatory processes and in the resolution of inflammation in the infection
site [66]. Thus, different studies have shown that the expression of Il-8 is relatively stable
in the skin where sea lice are not attached [63,67,68]. While in gills, resistant fish secreted
the highest amount of Il-8 and showed significant differences compared to susceptible
fish, unlike what was observed in Nkef and Tnfα. We observed a difference in the levels
of IL-8 between resistant and susceptible fish families that can indicate a protective role
of IL-8 in the gill. This result is the first description of Il-8 production levels in Atlantic
salmon during a challenge with sea lice. A similar immune response has been observed in
Latris lineata in a challenge with the ectoparasite Chondracanthus goldsmidi [69]. Infestation
produces a significant increase in il-8 gene expression in gills [69]. However, in contrast to
sea lice, this ectoparasite is commonly found in gills.

Other immune parameters have been studied as traits reflecting disease resistance in
fish, such as cytokine transcription, lysozyme activity, bactericidal activity, and complement
activity [55–57,70]. From genome-wide association studies, some genes with functions
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in the immunologic response have been identified as resistance candidates for sea lice
infestation in Atlantic salmon [71]; therefore, it would be interesting to study these genes at
the protein level. For example, Correa and collaborators found a significant SNP in chromo-
some 21, which codes collagen alpha-1 as an initiator of inflammatory cytokine signaling [71].
Additionally, Robledo and collaborators found two candidate genes in chromosomes 3
and 21, tobi and stk17b [10]. These genes are associated with cell proliferation and T cell
function.

5. Conclusions

In summary, significant familiar variation for resistance to C. rogercresseyi was found
in this study, with moderate to very high heritability for Nkef in the skin and gills and
Tnfα in the skin. Nkef and Tnfα protein expressions were related to resistance against
sea lice in Atlantic salmon. Thus, resistant fish were able to elicit a moderate immune
response, producing a cytokine and an effector molecule, i.e., Tnfα, Il-8, and Nkef, whereas
susceptible fish showed the same response but in a higher magnitude against sea lice.
Resistance against sea lice in Atlantic salmon may be associated with the ability to maintain
a moderate immune response. This result is concordant with recent findings regarding
Atlantic salmon infected with C. rogercresseyi, where susceptible fish had higher expression
levels of immune molecules than resistant fish in undamaged skin [20]. Further studies are
needed to investigate how this selection strategy could reduce the intensity and frequency
of sea lice infections in salmon farming systems.
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