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b Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway 
c NORCE, Norwegian Research Centre AS, Climate & Environment, Nygårdsporten 112, NO-5008 Bergen, Norway 
d Department of Chemistry, University of Bergen, NO-5020 Bergen, Norway 
e Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway 
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A B S T R A C T   

Microplastics (MP) are perceived as a threat to aquatic ecosystems but bear many similarities to suspended 
sediments which are often considered less harmful. It is, therefore pertinent to determine if and to what extent 
MP are different from other particles occurring in aquatic ecosystems in terms of their adverse effects. We applied 
meta-regressions to toxicity data extracted from the literature and harmonized the data to construct Species 
Sensitivity Distributions (SSDs) for both types of particles. The results were largely inconclusive due to high 
uncertainty but the central tendencies of our estimates still indicate that MP could be marginally more hazardous 
compared to suspended sediments. In part, the high uncertainty stems from the general lack of comparable 
experimental studies and dose-dependent point estimates. We therefore argue that until more comparable data is 
presented, risk assessors should act precautionary and treat MP in the 1–1000 µm size range as marginally more 
hazardous to aquatic organisms capable of ingesting such particles.   

1. Introduction 

Microplastic pollution has emerged as a potential threat to the 
environment. This has spurred the development of a rapidly expanding 
research field aiming to quantify the hazard and risk of these pollutants. 
Assessments of both hazards and risks are complicated by (1) the het-
erogeneous nature of microplastics (MP), (2) the lack of standardized 
test methods (Gerdes et al., 2019; Gouin et al., 2019; 
Redondo-Hasselerharm et al., 2018), (3) the general difficulty in iden-
tifying and quantifying MP in complex environmental samples (Cowger 
et al., 2020; Lusher et al., 2020), and (4) the lack of data comparability 
driven by inconsistent reporting of MP characteristics (Cowger et al., 
2020; Provencher et al., 2019). As a consequence, quantitative risk as-
sessments of MP (Adam et al., 2021, 2019; Besseling et al., 2019; Burns 
and Boxall, 2018; Everaert et al., 2020, 2018; Yang and Nowack, 2020) 
have been criticized for the lack of alignment between exposure and 

hazard data (Koelmans et al., 2020). More specifically, the problem 
stems from mismatches between the size, shape and density of particles 
used in ecotoxicological test assays and those actually quantified in the 
environment. 

Drawing inferences from such data is difficult, and Koelmans et al. 
(2020) proposed to overcome these issues by rescaling hazard and 
exposure data to a comparable distributions of particles. This method 
rests on the assumption that MP are inert particles and that the main 
mode of toxic action is food dilution, implying that the physicochemical 
properties of the particles are less important (Mehinto et al., 2022). 
Assuming that food dilution predominates as a major mechanism also 
implies that MP and any other non-food particles present in the envi-
ronment are analogous with regards to their effects. In fact, naturally 
occurring, non-palatable particles like suspended sediments (SS), chitin 
and cellulose are known to induce similar effects as MP in aquatic or-
ganisms (Gordon and Palmer, 2015; Newcombe and Macdonald, 1991; 
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Ogonowski et al., 2018). If MP have unique adverse effects and modes of 
toxic action, they would need to be studied, assessed, and managed as a 
specific group of contaminants otherwise, they should be considered as 
an integral component of suspended matter. The question whether MP 
are unique with regards to their adverse effects, or whether they are 
toxicologically identical to other non-food particles is hence an impor-
tant question for aquatic toxicology. 

A wide range of experimental conditions has been used for testing the 
adverse effects of anthropogenic particles to aquatic organisms. This has 
resulted in a high level of heterogeneity in exposure conditions and 
experimental designs that, on the one hand, provides insight into the 
likely effects of various exposure scenarios. On the other hand, it ham-
pers comparability across studies. The variability in test conditions 
means that any analysis of literature data aiming to assess the relative 
hazard between different particulate stressors needs to be able to ac-
count for several factors pertinent to (1) the test materials, (2) the 
sensitivity of the test species and specific endpoints, and (3) the exper-
imental conditions (e.g., exposure duration). 

The most straightforward approach to achieve comparable data is to 
subset data to one or several common denominators. However, this 
approach removes valuable information and is rarely feasible in practice 
due to the scarcity of studies with comparable experimental designs. 
One way to solve this misalignment is to statistically account for the 
variability and normalize the data to a common scale, which can be 
achieved using various multiple regression techniques (Sun et al., 2021; 
Thompson and Higgins, 2002). For example, if the goal is to compare the 
toxicities between different materials that also differ in particle size (a 
characteristic known to affect toxicity), we can statistically control for 
the difference in particle size. This approach will give a comparable test 
of the toxicity of the materials at a fixed size. 

Here, we address the question of whether MP are toxicologically 
different from naturally occurring particles by evaluating the relative 
hazard of plastic particles and suspended sediments in the size range 
1–1000 µm based on a comprehensive set of published ecotoxicological 
data. Using a series of probabilistic approaches coupled with data 
standardization, we account for the uncertainty in the data while 
keeping factors influential to the biological responses at fixed levels. 
This allows us to obtain more comparable measures of toxicity and, 
consequently, perform an improved hazard assessment. 

2. Materials and Methods 

2.1. Literature review and compilation of ecotoxicity data for 
microplastics and suspended sediments 

Toxicity data on MP were primarily collected by means of a sys-
tematic review, covering the period January 2016 - February 2019 
published by the Norwegian Scientific Committee for Food and Envi-
ronment (VKM, 2019). Details regarding the search criteria and the se-
lection process are provided in Appendix I of the VKM report, and the 
raw data is provided as Supporting Information data table 1. 

Data collection for toxicity studies with SS were mainly based on 
studies from previous data compilations and reviews (Gordon and 
Palmer, 2015; Ogonowski et al., 2018) but complemented with addi-
tional searches using Web of Science, Scopus and Google Scholar using 
the following search terms: “suspended solids”, “suspended matter”, 
“suspended material”, “sediment”, “mineral particles”, “effects”, 
“aquatic”, “filter feeder” alone or in combination. In contrast to the 
search for MP toxicity data, no restrictions on publication date were 
made. For some older studies listed by Gordon and Palmer (2015), the 
original manuscripts were unavailable. In those cases we used the 
toxicity data as reported in the paper by Gordon and Palmer (2015). 

To obtain more recent data on both SS and MP toxicity, we per-
formed an updated bibliographic search in May 2023. We targeted 
toxicity studies 2019–2023 where both particle types (MP and a non- 
plastic reference particle) were used in the same experiment. We used 

Google Scholar interfaced with Harzing’s publish or perish software 
v.8.6.4198.8332 (Tarma Software Research Ltd, UK) with the search 
terms “microplastics”, “microplastic effect”, “toxicity”, “hazard”, 
adverse effect”, “control particle”, reference particle”, “suspended 
sediment”, suspended solids”. The search generated 660 research pa-
pers. To find suitable studies matching our selection criteria (see Section 
2.2) we screened the titles and abstracts of all papers. In the end we 
extracted data from seven studies that had used relevant non-plastic 
controls in their experiments. 

Since manual data extraction for systematic reviews is prone to er-
rors (Mathes et al., 2017), we conducted an additional error screening 
after the dataset had been compiled. Twenty percent of the data entries 
(rows in the dataset, Supporting Information data table 1) were selected 
at random to be reassessed by three of the co-authors. We found minor 
errors relevant to the data analyses in 6 out of 40 endpoints. Out of these 
six errors, five occurred in one publication and were related to the 
assessment factor. In the other case, the LOEC-value was erroneously 
lower by one decimal point. As we account for publication ID in the 
analysis we conclude that the risk of systematic errors is small and un-
likely to affect our conclusions. 

The particle size, either reported as the mean/median size or by vi-
sual inspection of the actual size distribution in each study was assigned 
to sediment grain size classes according to the Wentworth scale 
(Wentworth, 1922). Size distributions that spanned several grain size 
classes were assigned to the most predominant class. The division into 
size classes was necessary as some studies, in particular the SS studies, 
lacked clearly defined size distributions. For reasons of consistency, we 
used a nominal particle density for the material used in the studies 
(Supporting information data table 1). The only exception to this rule 
was for polymers of undisclosed chemical structure or type. In those 
cases we used the actual, reported density. 

The primary aim of the literature search was to compile a dataset for 
hazard assessment. For this purpose, we extracted acute and chronic 
effect concentrations reported in each study in the form of the lowest 
observed effect concentrations (LOEC), effect concentrations derived 
from dose-response relationships (EC10, EC20, EC50, LD50), and no-effect 
concentrations defined as the highest observed-no-effect concentration 
(HONEC). The raw toxicity data in the form of varying dose descriptors 
other than the no-observed effect concentrations (NOECs) were con-
verted to estimated NOECs (eNOEC) using a conversion factor specific to 
each descriptor (Adam et al., 2019). 

2.2. Data subsetting to make datasets comparable for hazard assessment 

The compiled dataset was restricted to studies in which aquatic or-
ganisms were directly exposed to MP or SS added to the medium. Thus, 
studies in which the particles were incorporated into food or delivery via 
trophic transfer were excluded. Studies in which the test medium or 
particles were deliberately spiked with a toxic chemical were excluded 
since this would exacerbate toxicity and bias our comparison. Data on 
fibrous particles were omitted since this particle shape only occurred 
sporadically, particularly in the SS data. Studies employing particle sizes 
< 0.98 µm (clay-sized particles) were also removed since the mode of 
toxic action for nano-sized particles may be different due to their ca-
pacity to pass biological barriers and cell membranes (Matthews et al., 
2021). Since most empirical evidence points towards food dilution being 
an important mode of action for microparticles > 1 µm (de Ruijter et al., 
2020; Mehinto et al., 2022), we further restricted the data to only 
contain test organisms where the main route of exposure was through 
ingestion. This also excluded toxicity data involving primary producers, 
non-feeding larval stages, eggs, and embryos. We only considered higher 
levels of biological organization (Galloway et al., 2017), i.e. individual 
and population level endpoints limited to growth, mortality and repro-
duction since lower-level endpoints may represent transient responses. 
The subsetted data used for analysis consisted of 50 studies, seven of 
which used particle controls (MP = 35, SS = 22) and 299 biological 
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endpoints (MP = 193, SS = 106). 18 of the endpoints in the SS category 
consisted of exposures to natural sediment that contained organic car-
bon which potentially could be utilized as food. The remaining 88 
endpoints used pure minerals, mineral mixtures or some other sort of 
natural control particle like cellulose. The dataset used in the analyses is 
provided as supplemental material (Supporting information data table 
1). 

2.2.1. Conversion from numerical and mass-based concentrations to 
volumetric units 

The choice of dose metric, such as volume, mass, or number of 
particles depends on a toxicant’s main mode of action. The appropri-
ateness of a particular dose metric for solid substances is still under 
debate, particularly in the field of nanomaterial toxicology (Delmaar 
et al., 2015; Teunenbroek et al., 2017). Assuming that MP as well as SS 
mainly affect organisms by means of food dilution, the correct dose 
metric should be based on volume of particles per volume of medium. 

For studies where spherical particles were used and effect concen-
trations were reported as particle numbers per volume, we firstly con-
verted the numerical concentrations to a mass-based concentration 
according to the following equation: 

Cmass = Cnum(D(4/3)π )r/1000)3 (1) 

Secondly, the mass-based concentrations were converted to volu-
metric concentrations as 

Cvol = Cmass/D (2)  

Where Cmass = the mass-based concentration (mg L-1), Cnum = the nu-
merical concentration (number of particles L-1), D = polymer density (g 
cm-3), r = the particle radius in µm and Cvol = the volumetric concen-
tration (mm3 L-1). 

2.3. Probabilistic modeling of the relative toxicity of microplastics and 
suspended sediments 

We used two slightly different statistical models to compare the 
relative toxicity of MP and SS to assess the robustness of the predicted 
hazard. Both methods have a probabilistic foundation as to account for 
the uncertainties in the data but differ somewhat conceptually. Since MP 
are considered emerging pollutants, we wanted our results to be con-
servative in terms of not providing a false negative conclusion. We hence 
used an alpha level of 11% rather than the conventional 5% when 
comparing toxicities between MP and SS. Moreover, the slightly higher 
alpha level has been deemed more stable in Bayesian analyses 
(Kruschke, 2015). 

2.3.1. Model 1:The hierarchical standardized pSSD+ model 
To compare the toxicities across species, we followed the probabi-

listic SSD-approach first proposed by Gottschalk, Nowack (2013) and 
more recently adopted by Adam et al., (2021, 2019) for the risk 
assessment of MP. In brief, the pSSD+ model developed by Adam and 
colleagues does not assume the data to fit any specific theoretical dis-
tribution and avoids the loss of valuable data by incorporating all 
available toxicity data at the species level instead of using mean 
estimates. 

In the pSSD+ model, the uncertainties in the underlying data are 
accounted for using arbitrary uncertainty factors. Instead of using such 
an ad-hoc approach, the heterogeneity can instead be modeled from the 
data using well-established multiple regression techniques (Sun et al., 
2021; Thompson and Higgins, 2002). Such an approach also has the 
advantage of estimating the toxicity for specific particle sizes, shapes, 
exposure times and other parameters. Thus, we utilized a two-step hi-
erarchical approach to model the SSDs. In the first step, we used a 
Bayesian regression as implemented in the R-package brms (Bürkner, 
2017) to predict the toxicity of MP and SS for a fixed set of parameters 

based on the collated literature data. In other words, we estimated the 
toxicity for each particle type separately, while keeping particle size, 
shape and exposure duration constant, making data comparable. The 
probabilistic model also enabled the uncertainty in the estimated 
toxicity to propagate through all analytical steps. The precursory stan-
dardization model can be described as a basic linear regression model: 

Tox valuei =β0 + β1(Exposure duration)i

+ β2(Material type × Particle shape)i

+ β3(Species class)i + β4(Grain size class)i + εi

(3)  

where β are the regression coefficients, ε is the error term and i is a 
position indicator for the vectors. The toxicity data, translated into 
volumetric concentrations [mm3 L-1] (Koelmans et al., 2020) was stan-
dardized, by fixing the continuous predictors to specific values. The 
Exposure duration was set to 28 days, which was the upper threshold in 
our data for a chronic exposure (Table S2). Grain size class was set to “1” 
(corresponding to clay, 0.98–3.9 µm) which is the smallest and most 
common size class in our dataset. Particle shape was set to “irregular” 
since this is a shape that encompasses both MP and natural suspended 
solid particles. Material type and Particle shape were modeled as a com-
posite categorical factor (equivalent to a factorial interaction term) with 
four levels (SS-irregular, MP-irregular and MP-spherical and 
SS-spherical). In contrast to standard SSDs (Aldenberg and Slob, 1993; 
Kooijman, 1987), we grouped species-level data to taxonomic class level 
instead, in order to not overparameterize the model. This was motivated 
by the untested assumption that closely related species have similar 
feeding modes and sensitivities to particle exposures. Specification of 
the priors is provided in the Supporting information and Table S3. Model 
residuals for the precursory standardization model were evaluated 
visually (Fig. S1 A). In the second step, the predicted and standardized 
toxicity values were used as input to the pSSD+ model described by 
Adam et al., (2021, 2019) to produce two SSDs, one for MP and another 
for SS. To retain the uncertainty in the toxicity estimate throughout the 
analytical process, we used the full posterior distribution for each pre-
dicted toxicity value as input in the pSSD+ model. The relative hazard of 
MPs and suspended sediments was evaluated by comparison of the 5th 
percentile-hazardous concentration (HC5) from the two standardized 
pSSD+ models and by comparing the full posterior distributions of the 
HC5-values. Following the studies by Adam et al., (2021, 2019), HC5 was 
considered equal to the predicted no-effect concentration (PNEC). The 
pSSD+ model was generated using 10,000 random permutations. 

2.3.2. Model 2: Alternative approach to compare the hazard of microplastic 
and suspended sediments 

In order to validate our approach, we also analyzed our data in an 
alternative framework using a Bayesian mixed model. The model was 
used to predict a NOEC (pNOEC) for MP and SS while accounting for the 
variability in experimental conditions, particle characteristics, exposure 
duration and variation across taxonomic groups and studies. In contrast 
to the pSSD+ model, this model accounted for the fact that no-effect 
studies (HONEC) are right-censored and studies reporting LOECs are 
left-censored when the LOEC equals the lowest test concentration by 
explicitly incorporating this uncertainty into the model. Hence, the 
intention was twofold: (1) to compare chronic NOEC posterior distri-
butions (the relative toxicity) between MPs and suspended sediments 
while statistically controlling for other explanatory variables, and (2) to 
identify potential drivers of the toxicity. 

The criteria and statistical approaches for determining hazardous or 
safe concentrations differ among studies which makes toxicity data not 
directly comparable. To align toxicity data to the same scale, it is 
common to apply uncertainty factors (UF) to derive the chronic NOEC. 
Although there is no consensus on what these UFs should be, Wigger 
et al. (2020) suggested a range of conversion factors; one for the dose 
descriptor conversion (UFdose, Table S4) and another one to convert 
acute to chronic toxicity data (UFtime). Along these lines, we used the 
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estimated NOEC (eNOEC) as the response variable in the model calcu-
lated by dividing the reported dose descriptors by the appropriate un-
certainty factor (UFdose). Contrary to the common approach (Adam 
et al., 2021, 2019; Wigger et al., 2020), we did not multiply UFdose with 
UFtime to derive the chronic NOEC. Instead, we modeled the effect of 
exposure duration as a predictor in the model. By doing so, we estimated 
the effect directly from the data instead of using an arbitrary UF with an 
ad hoc associated uncertainty, thus avoiding the assumption of a posi-
tive relationship between exposure time and toxicity a priori. 

Toxicity values that equal the highest or the lowest employed test 
concentrations are so called “censored” data. This means that the true 
hazardous concentration exceeds the tested concentration range and is 
unknown. The censoring of HONEC and LOEC-values was accommo-
dated using the cens-function in the R-package brms. Apart from the focal 
variable Material type, the variables Feeding strategy, Particle exposure, 
Grain size class and Particle shape were included as co-variates in the 
model because they are intimately linked to exposure, food processing 
and the organism’s sensitivity to particles. Grain size class was modeled 
as a monotonic variable due to the ordered nature of the size classes 
(Bürkner and Charpentier, 2015). To account for the variability between 
studies, we considered Study as a random effect on the intercept. To 
account for variability across species we initially also included Species as 
a random intercept term together with the interaction between Species 
and Study, but this resulted in a too complex model and unsatisfactory 
low effective sample size for the interaction term. The final model thus 
omitted the Species term but retained the interaction term which rests on 
the assumption that the sensitivities of species within a particular study 
are more similar than across studies (Table S2). The error structure was 
modeled as a t-distribution to accommodate the presence of outlying 
data points further out in the tails of the distribution. For all models, we 
ran four chains with 5000 iterations each after a burn-in of 2500 iter-
ations was discarded. Thinning was set to one. Markov chain Monte 
Carlo (MCMC) convergence to the equilibrium distribution was moni-
tored visually using the bayesplot package (Gabry et al., 2019) and by 
evaluation of R̂ values and effective sample sizes. We found no sign of 
failed convergence and R̂-vales were equal to one, indicating that the 
MCMC chains had converged at similar values. Model residuals for the 
Bayesian mixed model were evaluated visually (Fig. S1 B). Specification 
of the priors is provided in the Supporting information and Table S5. 

To test whether our model parameters could be considered credibly 
distinct from zero we plotted the posterior distributions against the 
Region of Practical Significance (ROPE, Fig. S2). As a complement to the 
ROPE, we also conducted one-sided hypothesis tests using the hypothesis 
function in brms to derive evidence ratios and distinct probabilities for 
our hypotheses against their alternatives. 

3. Results and Discussion 

3.1. Microplastic toxicity compared to suspended sediments 

We used two different approaches to assess the relative hazard of MP 
compared to SS. The two models (Model 1 and 2) converged at similar 
patterns indicating that the average MP used in ecotoxicological tests 
could be 3–8 times more harmful than a natural SS particle depending 
on the statistical method used. The uncertainty of these estimates was 
however great and the results should be interpreted with caution. 

Based on the Bayesian mixed model (Model 2), the standardized 
mean NOEC for MP on the data scale (pNOEC) was approximately 8-fold 
lower compared to that of SS but the credible interval (Table S1) for the 
groups overlapped and the partial coefficient for the difference fell 
slightly within the ROPE (Fig. S2), indicating no significant difference 
between MP and SS. This aligned with a one-sided hypothesis test where 
the 89% probability distribution of the difference in posterior means 
contained zero, suggesting that MP could be as harmful as SS. However, 
the mode of the difference in posterior distributions was centered 

around one unit on the log10-scale, corresponding to approximately a 
ten-fold difference in toxicity (Fig. 1) and the one-sided probability of 
irregular MP being more hazardous than SS was 93%. This pattern was 
consistent with the standardized pSSD+ model (Model 1) where the 
PNEC-distributions for MP and SS overlapped (Fig. 2) and where the 
one-sided 89% probability distribution of the difference in PNEC pos-
teriors also overlapped zero (Fig. 3). The mean PNEC for MP was how-
ever 3.2 times lower than that of SS. This is also largely in line with a 
previous assessment based on a smaller dataset where the LOEC (at in-
dividual and population level) was significantly lower for MPs compared 
to suspended sediments (Ogonowski et al., 2018). Our results are also 
consistent with a more recent meta-analysis performed on studies where 
natural reference particles were used in the test controls (Doyle et al., 
2022). Here, the authors found a relatively small but significant increase 
in average toxicity for MP as compared to SS, although the difference 
was surrounded by a high degree of uncertainty and prediction intervals 
overlapped zero. It is, however, important to consider that the apparent 
differences in hazard can be attributed to other causes than actual dif-
ferences in toxicity, such as differences in experimental designs and 
exposure conditions that are difficult to account for statistically. 

3.2. The use of model particles in test assays yields unrealistic toxicity 
estimates 

Two aspects, we did not capture statistically, may result in a higher 
toxicity of MP compared to SS. Both relate to the use of pristine MP 
versus SS in toxicity studies. First, MP will leach plastic chemicals that 
can, at least in some cases, drive the overall MP toxicity (Beiras et al., 
2021; Heinrich et al., 2020; Martínez-Gómez et al., 2017; Zimmermann 
et al., 2020). In addition, commercially available MP can contain pre-
servatives (e.g., sodium azide) that exacerbate the particles’ toxicity 
(Yang and Nowack, 2020). Accordingly, the toxicity data we used here 
may include the toxicity of plastic chemicals and preservatives, which 
does not occur in studies with natural particles. Like MP, SS can also 
contain chemicals adsorbed from their environment, such as polycyclic 
aromatic hydrocarbons, polychlorinated biphenyls (PCBs) and other 
persistent pollutants (Rügner et al., 2019; Santiago et al., 1993) Thus, SS 
toxicity may also be caused by their physical and chemical composition 
(Lu et al., 2021; Rivetti et al., 2015). However, since many of our 
SS-studies used pristine, unconditioned mineral particles (78% of the SS 

Fig. 1. Marginal mean difference in posterior probabilities between suspended 
sediments (SS) and microplastic (MP) groups in the censored, Bayesian mixed 
model (model 2, Table S2). The shaded area shows the 89% probability (one 
sided test) for MP to have a lower pNOEC compared to SS. The data is presented 
on the log10-scale. 
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endpoints, SI data table 1) they likely underestimate the toxicity that 
would occur under natural conditions. Conversely, the presence of toxic 
preservatives and other plastic chemicals such as UV stabilizers, sur-
factants and monomer residues which are specific to some MP studies 
can leach from the MP during exposure and induce chemical toxicity. 
Indeed, Yang and Nowak, (2020) demonstrated for nanoplastics that 
removing toxicity-data for particles that contained sodium azide resul-
ted in higher PNECs (i.e., lower hazard). 

To compare MP and SS particles on equal terms, the potential effects 
of leachable chemicals should be accounted for either by removing data 
for particles containing chemicals (e.g., if they have not been washed) 
from the meta-analysis or by modeling it statistically (e.g., as covariates 
in the meta-regression). However, to do so completely and without bias 
would be practically impossible because the presence of reported toxic 
preservatives likely is non-random and skewed towards commercially 

available MP. In addition, the latter may also contain a multitude of 
other proprietary and undisclosed chemicals which cannot be easily 
accounted for (Heinrich et al., 2020). Hence, we chose to treat the 
chemical component as an integral part of the toxic response, not 
discriminating between specific physical and chemical toxicity. This 
results in a higher-than-expected average toxicity but also higher vari-
ability associated with that estimate. 

A second aspect regards the fact that MP which are aged under 
natural conditions, will be more comparable to SS and have a different 
toxicity than pristine MPs which dominate our dataset. This has been 
demonstrated experimentally with some studies reporting a lower 
toxicity of aged vs pristine MP (Schür et al., 2021; Zou et al., 2020) and 
other studies reporting an increase in toxicity after weathering (Zhang 
et al., 2022, 2021). Although the causes of the altered toxicity are not 
fully understood, they seem to be related to the disassociation of plastic 

Fig. 2. Probabilistic species sensitivity distribution based 
on volume-based toxicity data corrected for inter-study 
differences in particle characteristics and exposure condi-
tions; A) for suspended sediments and B) for microplastics. 
The dark shaded horizontal bars represent the 25–75th 
percentile ranges and lighter shaded area the 5–95th 
percentile range. PNEC = the Predicted No-Effect Concen-
tration which is equivalent to the hazardous concentration 
for 5% of the species (HC5). The inserted graphics show the 
posterior probability distributions for the PNEC.   

M. Ogonowski et al.                                                                                                                                                                                                                            



Ecotoxicology and Environmental Safety 264 (2023) 115406

6

chemicals, the formation of a protein corona and biofilms as well as the 
fragmentation into smaller nano-sized particles. The latter can increase 
toxicity of the overall particle mixture during ageing but may reduce the 
toxicity of the particles in the same size fraction as pristine MP (Zhang 
et al., 2022, 2021). 

The sorption of biomolecules on the particle surface (eco-corona) 
and ultimately biofilm formation (Galloway et al., 2017) may promote 
particle aggregation and larger average particle size (Michels et al., 

2018; Motiei et al., 2021; Porter et al., 2018). Although the same would 
be theoretically true for mineral particles there is evidence to suggest 
that these particles do not aggregate to the same extent as MP (Motiei 
et al., 2021). This shift in particle sizes may lead to the formation of MP 
aggregates that are too large to be consumed, which may decrease their 
bioavailability and hence their capacity to cause adverse effects. In 
addition, the eco-corona or biofilm on particles can provide extra 
nutrition and, thus, counteract food dilution effects for some types of 
aging (incubation in nutrient rich raw wastewater) but not for others (e. 
g., treated wastewater and river water which are lower in nutrients and 
microbial activity) (Amariei et al., 2022). Whether and to which extent 
such modulation also applies to SS is not clear from the literature. Given 
the lack of studies on the toxicity of aged MP, we could not account for 
this factor in our meta-analysis. Consequently, our MP and SS toxicity 
estimates are likely not directly translatable to natural systems since 
they reflect somewhat artificial conditions. 

3.3. Differences in test-concentration ranges affect the predicted hazard 

The pSSD+ model does not account for the fact that no-effect studies 
are right-censored (undefined upper effect concentration) or that LOEC 
values can be left-censored if they equal the lowest used test concen-
tration (undefined lower effect concentration). This may lead to an over- 
or underestimation in toxicity, respectively. In our data collection, the 
distribution of no-effect data was unequal across MP and SS studies with 
a higher frequency of such data points in the MP data compared to the SS 
data (73.1% vs. 40.6%). Also, neither of our models accounts for the fact 
that the experiments were conducted using different concentration 
ranges. Experiments involving natural suspended solids or minerals 
usually employ test concentrations in the order of grams L-1 (Cohen 
et al., 2014) to cover a natural range of concentrations. Most current MP 
studies on the other hand use orders of magnitude lower concentrations, 

Fig. 3. Posterior distribution of the difference in PNEC values (mm3 L-1) be-
tween suspended sediments (SS) and microplastic (MP) SSDs. The shaded area 
shows the 89% probability (one-sided test) for MP to have a lower PNEC 
compared to SS. 

Fig. 4. Conditional effects plot for the explanatory variables in the censored, Bayesian mixed model (model 2, Table S2). Points and lines represent mean values of 
the posterior distribution. Error bars and blue bands denote the 89% credible interval. The predicted NOEC is shown on the log10-scale. 
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due to the desire to test “environmentally relevant” concentrations. In 
fact, in our data, the average highest concentration for SS was two orders 
of magnitude higher compared to the MP studies (Table S6). Although 
many MP studies have been criticized for using unrealistically high test 
concentrations (Connors et al., 2017; Cunningham and Sigwart, 2019; 
Lenz et al., 2016), these concentrations are still much lower than 
naturally occurring levels of SS. The difference in concentration ranges 
poses a problem when the objective is to compare the hazard of different 
toxicants based on dose metrics like the LOEC or the NOEC – which are 
directly dependent on the range of test concentrations used (Fox and 
Landis, 2016; Laskowski, 1995; van Dam et al., 2012, see also tables S4 
and S6). The high proportion of no-effect studies (HONEC) in the MP 
data indicates that the hazardous concentrations likely are higher and 
closer to those of SS than our statistical models suggest. 

Even though an uncertainty factor was applied to adjust for the un-
known effect concentration it may not have been large enough. Such 
disparities in the experimental designs cannot be statistically accounted 
for unless dose dependent point estimates are used exclusively (Van Der 
Hoeven et al., 1997). This was, however, not possible due to the general 
lack of such data, in particular for MP. Excluding HONEC-data from the 
model was on the other hand not feasible either because the number of 
available data drastically decreased and it resulted in a too complex 
model for the data. Moreover, the removal of censored data (e.g., 
HONEC) usually results in biased estimates and variances (Bouaziz, n.d.; 
Turkson et al., 2021). 

The best approach to make data fully compatible would be to 
perform paired comparisons of different particle types within an 
experiment where the exposure conditions are the same. The use of 
natural reference particles in MP testing has recently been advocated 
(Arp et al., 2021; Connors et al., 2017; Gerdes et al., 2019; Gouin et al., 
2019; Ogonowski et al., 2018, 2016; Scherer et al., 2018) but it’s 
adoption has so far been comparatively scarce in the scientific literature. 
Although it may be impossible to find reference particles that perfectly 
match the MP-particles under study, they will to a high degree account 
for the main effects of food dilution which impact most relevant bio-
logical endpoints (Mehinto et al., 2022; Ogonowski et al., 2018, 2016). 
Hence, we argue that the use of reference particles such as natural 
minerals is a way to increase the ecological relevance of ecotoxicological 
studies since it provides a benchmark for particle toxicity (Doyle et al., 
2022; Scherer et al., 2020; Schür et al., 2020). Such setups will also help 
to identify the particle-specific mechanisms leading to adverse effects. 

3.4. Drivers of toxicity 

The Bayesian mixed model (Model 2) enabled the toxicity data to be 
standardized and comparable between MP and SS studies. The hetero-
geneity in the toxicity data was large and the proportion of variance 
explained by the model due to the variability across studies was on 
average 26% while variability across species nested within studies was 
slightly higher (33% variance explained). Although this level of varia-
tion is expected given the wide variety of test materials, species and 
experimental designs, this contributed to a high degree of uncertainty in 
the regression coefficients, with the credible intervals all overlapping 
zero or being close to overlapping zero, indicating a low degree of 
confidence (Table S1, Fig. S2). In this context, one advantage of 
Bayesian over frequentist models is their ability to make probabilistic 
statements regarding the parameter estimates, which allows for a more 
nuanced interpretation. A closer inspection of the central tendencies of 
the coefficient posteriors reveals that even though the overall uncer-
tainty was high, the highest probability densities were centered away 
from zero for several variables (Fig. S2, Fig. 4). Notably, the probability 
of Grain size class to have a positive slope (one-sided evidence ratio) was 
98% suggesting decreasing toxicity (higher pNOEC) with increasing 
particle size. This is in line with previous observations of MPs in the 
current size range (Ziajahromi et al., 2018). We can also see that, on 
average, 52% of the total change in pNOEC due to Grain size class 

happens between the first two predictor categories (i.e., clay and silt, 
Table S1) which indicates that the relationship is non-linear. Although 
the uncertainty around this estimate was high it did not overlap the 
ROPE (Fig. S2) suggesting toxicity decreases between the clay and silt 
size categories. It is probable that very fine particles have additional 
effect mechanisms apart from food dilution, such as an obstruction of 
gas exchange through the gills in fishes and invertebrates (Hess et al., 
2017, 2015; Lowe et al., 2015; Watts et al., 2016), clogged feeding ap-
pendages in filtrating invertebrates (Cole et al., 2013; Savinelli et al., 
2020) or tissue translocation with potential consecutive down-stream 
effects (Haave et al., 2021). 

As for the variable Grain size class, we saw the same general pattern 
for Exposure duration (Fig. 4). Although the parameter estimate fell 
slightly within the ROPE (1.6%. Fig. S2), the probability of a positive 
slope was 98%, suggesting there likely is a small but positive effect of 
exposure duration on the predicted NOEC. Although decreasing toxicity 
with increasing exposure time may seem counterintuitive at first, it is 
plausible in circumstances where sedimentation is allowed to occur 
without renewal of the test medium or an effect of increased food intake 
due to the secondary ingestion of nutritious biofilms associated with the 
particles (Amariei et al., 2022). Alternatively, it can be an artefact linked 
to the fact that experiments with longer exposures tend to employ lower 
test concentrations which is problematic when concentration dependent 
dose metrics, like LOECs and NOECs, are used (Supporting information 
Fig. S3-Fig. S6). The failure to control for such effects can bias toxicity 
assessments when particles of different density and sedimentation rates 
are compared, in particular for suspension feeding organisms (Connors 
et al., 2017; Gerdes et al., 2019; Gouin et al., 2019; Ogonowski et al., 
2018). Although such experimental designs have been rather common in 
the past, procedures to overcome these shortcomings have recently been 
proposed (Gerdes et al., 2019; Motiei et al., 2021). Albeit not fully 
conclusive, the overall pattern of decreasing toxicity with exposure time 
remains when the more robust dose-dependent point estimates (EC50) 
are considered (Fig. S7). 

Moreover, we expected the sensitivity of a species/life stage to be 
linked to its native environment, meaning that organisms during 
different stages of development should be well adapted to cope with 
local turbidity levels (McFarland and Peddicord, 1980). Hence, it can be 
expected that organisms inhabiting areas naturally low on non-food 
particles like tropical reefs should be more sensitive to MP and SS 
exposure compared to those adapted to high turbidity. Contrary to our 
expectation, we did not find any coherent evidence to support this hy-
pothesis which is partly related to the inherent uncertainties in our 
modeling results but also our ability to assign a particular species and 
life stage to a particular habitat type which can vary over seasons. Local 
adaptations likely also induce variance within species that are not 
generalizable. 

Out of the three selected endpoints (growth, reproduction and 
mortality), growth was the most sensitive and mortality the least, the 
latter not overlapping the ROPE (Fig. 4, Table S1, Table S2, Fig. S2). The 
higher sensitivity of the sublethal endpoints was expected and indicates 
that the model behaved as predicted. This also supports the hypothesis 
that food dilution and/or increased energy expenditure are important 
mechanisms when exposed to non-caloric particles because they 
compromise growth which in turn decreases reproductive capacity and 
ultimately leads to starvation (Foley et al., 2018; Madon et al., 1998; 
Ogonowski et al., 2016; Wright et al., 2013). It does however not 
exclude other possible modes of action for which Dynamic Energy 
Budget models or other individual-based modelling approaches would 
be needed. 

Using a meta-regression based approach (i.e. a regression were the 
input data are derived estimates collected in literature, (Takeshita et al., 
2022; Thompson and Higgins, 2002) combined with a novel standard-
ization step to harmonize toxicity data for SSD analysis, we have 
demonstrated that the evidence in favor of the generally assumed higher 
hazard of MP relative SS is only moderate. Although the central 
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tendencies in the data suggest a marginally higher hazard for MP, the 
uncertainties around these estimates are substantial and formally, not 
statistically significant. The apparent difference in hazard can partly be 
due to systematic differences in experimental designs that cannot be 
accounted for statistically. To accurately assess the effects of MPs in the 
field relative to those of SS we see an urgent need for well-designed 
comparative experiments with plastic and non-plastic particles (fibers 
included), preferably in mixtures (Gerdes et al., 2019; 
Redondo-Hasselerharm et al., 2018) where: (1) the potential effect of 
associated chemicals is accounted for, (2) constant exposure conditions 
are maintained and (3) dose-dependent point estimates are derived. In 
lack of better evidence, it is advisable to interpret the results with 
caution and not fully dismiss the possibility that MP are more hazardous 
than SS. Hence, irregularly shaped MP in the 1–1000 µm size range 
should, for the time being, be considered as marginally more hazardous 
to aquatic consumers capable of ingesting particles in this size range. 
Future studies will however be necessary to assess whether the patterns 
observed in this study also hold for aged, secondary MP that dominate in 
the environment (Bayo et al., 2022; ter Halle et al., 2017). 
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