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Abstract: Monitoring crop growth and estimating crop yield are essential for managing agricultural
production, ensuring food security, and maintaining sustainable agricultural development. Combin-
ing the mechanistic framework of a crop growth model with remote sensing observations can provide
a means of generating realistic and spatially detailed crop growth information that can facilitate
accurate crop yield estimates at different scales. The main objective of this study was to develop
a robust estimation methodology of within-field winter wheat yield at a high spatial resolution
(20 m × 20 m) by combining a light use efficiency-based model and Sentinel-2 data. For this purpose,
Sentinel-2 derived leaf area index (LAI) time series were assimilated into the Simple Algorithm for
Yield Estimation (SAFY) model using an ensemble Kalman filter (EnKF). The study was conducted
on rainfed winter wheat fields in southern Sweden. LAI was estimated using vegetation indices (VIs)
derived from Sentinel-2 data with semi-empirical models. The enhanced two-band vegetation index
(EVI2) was found to be a useful VI for LAI estimation, with a coefficient of determination (R2) and
a root mean square error (RMSE) of 0.80 and 0.65 m2/m2, respectively. Our findings demonstrate
that the assimilation of LAI derived from Sentinel-2 into the SAFY model using EnKF enhances the
estimation of within-field spatial variability of winter wheat yield by 70% compared to the baseline
simulation without the assimilation of remotely sensed data. Additionally, the assimilation of LAI
improves the accuracy of winter wheat yield estimation by decreasing the RMSE by 53%. This study
demonstrates an approach towards practical applications of freely accessible Sentinel-2 data and a
crop growth model through data assimilation for fine-scale mapping of crop yield. Such information
is critical for quantifying the yield gap at the field scale, and to aid the optimization of management
practices to increase crop production.

Keywords: crop yield estimation; winter wheat; Sentinel-2; data assimilation; crop modeling

1. Introduction

The expected increase in the frequency and intensity of extreme weather events
due to climate change will negatively impact global crop production, and create added
uncertainty for the farming economy [1–3]. In addition, a growing global population further
increases the need for higher food production. A reliable system for monitoring agricultural
production is therefore needed to ensure food security [4]. This includes accurate and
spatially detailed information on crop growth and yield, which helps stakeholders such
as farmers, agricultural agencies, and planners to improve management practices and
strategic decision making [5].

Crop growth models permit the simulation of crop growth dynamics and crop yield
at the field scale, but require detailed input data on weather, soil, crop varieties, and
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management practices [6]. Therefore, when using a crop growth model to estimate crop
growth and production at high spatial resolution, due to the spatial heterogeneity, the
accuracy of the model is often restricted by the quantity and the quality of the input data [7].
Furthermore, crop growth models require high spatial resolution of inputs to estimate
the spatial variability of within-field crop growth and yield. However, uncertainties
in the spatial variability of canopy state variables, soil properties, and meteorological
conditions make spatial crop yield estimation challenging [8]. These uncertainties may
have a significant impact on the simulation of crop growth, often leading to large errors in
crop yield estimation.

The paucity of spatial field observations within the field, or at a regional scale, can
be partly overcome by remotely sensed observations [9]. The accuracy of crop yield
estimation has improved thanks to the assimilation of remote sensing observation into
crop growth models at field [10,11] and regional scales [8,12–14]. Data assimilation exploits
the advantages of process-based crop growth models in physiological simulations of
crop growth and development in combination with remote sensing data that provide
near-continuous estimation of land surface variables during the entire growing season at
different spatial and temporal scales [13,15–17]. Several review papers have described three
main methods to integrate remotely sensed observations into crop growth models [16,18,19]:
(1) replacing the state variables in the crop growth model (e.g., LAI, biomass) using remotely
sensed observations [15]; (2) re-calibrating and adjusting the model parameters (e.g., canopy
and growth parameters) or initial inputs (e.g., sowing date and density) to obtain an optimal
agreement between the estimated state variables from the model and the remotely sensed
variables [15]; and (3) updating the crop growth model state variables when an observation
from a remote sensing instrument is available. The last method is called sequential data
assimilation [18]. In method 1, the model ignores its own information and adopts the
observed state variable when remote sensing observations are used to replace the simulated
state variable. This can potentially propagate errors from remotely sensed observations to
the model [15,18]. Re-calibration (method 2) can be applied if there is a sufficient number of
observations; however, the major drawback of this method is the large computational cost
because of the optimization procedure [8,15,18]. Compared with the calibration method,
the update method (method 3) significantly reduces the computational time and it assumes
that an improved estimation of the state variable on a particular date will also improve the
accuracy of the simulated state variable on succeeding days.

One widely used method to perform data assimilation to sequentially update a model’s
state variable when an observation is available is Monte Carlo-based Ensemble Kalman
Filtering (EnKF) [20]. Several studies have implemented EnKF for crop yield estima-
tion at different scales by assimilating remotely sensed observations into crop growth
models [8,12,13,17,21–24]. However, to the best of our knowledge, this approach has not
yet been evaluated for estimating within-field winter wheat yield at high resolution in
Northern Europe.

Leaf area index (LAI) is a key parameter for monitoring crop growth and assessing
the final crop yield. In addition, LAI is well simulated by most crop models, such as
WOFOST [25], EPIC [26], and SAFY [27]. Therefore, several studies have assimilated
LAI from remotely sensed data into crop models for crop yield estimation for different
crops such as winter wheat [12,14,17,22,28,29], maize [8,13,14,21,30], sugarcane [31], and
soybean [14,32–35]. The Copernicus Sentinel-2 missions provide freely available data that
can be used to estimate crop biophysical variables such as LAI at high spatial and temporal
resolution [36–38]. The 2-to-3-day revisit time of Sentinel-2 in northern Europe enhances
the possibility of obtaining cloud-free observations at key phenological growth stages
during the crop growing season, although several data sources (drones, radar satellites,
etc.) may provide input for LAI estimation beyond freely available data at suitable spatial
and temporal resolutions. The large range of spectral indices that can be formed from
Sentinel-2 data directly relates to the seasonal development of plant canopies through
photosynthesis. In addition, the global coverage of Sentinel-2 data enables use at local (field)
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scale as well as across larger regions [36–39]. LAI estimation methods based on optical
remote sensing include (i) empirical and semi-empirical models, (ii) biophysical models,
and (iii) hybrid inversion methods [40,41]. Empirical and semi-empirical approaches are
based on the development of statistical models based on vegetation indices (VIs) and LAI
ground measurements. Several VIs indices have been used for LAI estimation, such as the
normalized difference vegetation index (NDVI) [42], the optimized soil-adjusted vegetation
index (OSAVI) [43], and the two-band version of the enhanced vegetation index (EVI2) [44].
The second approach is based on the inversion of radiative transfer models (e.g., PROSAIL),
which simulates canopy reflectance. The third approach combines statistical and physical
models for LAI estimation. Compared to the first approach, the last two approaches
are considered to be more accurate in estimating LAI; however, they are considerably
more time- and data-consuming [41]. Hence, for practical reasons, the approach based on
empirical models between VIs and LAI is widely used for LAI estimation [36,41,45].

The main objective of this study is to develop a robust methodology for within-field
winter wheat yield estimation in South Sweden, which is an important region in Swedish
agricultural production. Winter wheat is an important crop globally, and the main crop
in Northern Europe [46]. In Sweden, winter wheat accounts for 48% of the total grain
production, and 19% of the total crop area (Swedish Board of Agriculture, 2019 [47]). More
than 90% of the cultivated land is rainfed, which makes cereal production vulnerable
to climatic conditions [48,49]. To accomplish the study objective, Sentinel-2 data were
assimilated into a crop growth model. To limit model complexity, we have chosen a
semi-empirical approach that can be applied at a larger regional scale and therefore has
the potential to provide a methodology applicable over agricultural lands across South
Sweden. Specifically, our study aims to answer the following questions: (a) Which is
the best vegetation index for estimating LAI from Sentinel-2 data over rainfed winter
wheat? (b) How much is the estimation of within-field crop yield variability improved by
assimilation of remote sensing-derived LAI into a simple crop growth model?

2. Materials and Methods
2.1. Study Area

The study was conducted at Alnarp egendom, near SITES Lönnstorp research station
(Swedish University of Agricultural Sciences) in South Sweden (Figure 1). Two rainfed
winter wheat fields were monitored during the 2021–2022 growing season: Field 1 with an
area of 27 ha, and Field 2 with an area of 19 ha. The sowing date was around the end of
September 2021, and the harvest took place on August 2022. Weather data were obtained
from a weather station located 2.5 km from the study area (Figure 2). During the winter
wheat growing season (September to August), the average cumulated rainfall in the study
area from 2007 to 2022 was approximately 650 mm, and the average daily temperatures
ranged from 1.5 ◦C (December) to 18.9 ◦C (July).

2.2. Ground Measurements and Data Collections

Ground data measurements included LAI (m2/m2), aboveground biomass, and grain
yield (t/ha). These data were collected every two weeks during the winter wheat growing
season. In each field, two 60 m× 60 m plots were marked with flags (4 plots for both fields).
Within each plot, 5 points were randomly selected each time to ensure that the average
was representative of the plot for LAI measurements using digital oblique photos [50]. A
tripod held vertically with a spirit level carried a platform tilted at a 57.5◦ zenith angle on
which the camera was mounted, looking down. The camera was set at approximately 1.8 m
above the ground. The images were processed using the CAN-EYE software to estimate
LAI (https://www6.paca.inra.fr/can-eye, accessed on 21 August 2023). The total biomass
(root, stem, leaves, and grain) of 30 winter wheat shoots was collected at each plot. In
addition, a 0.25 m2 quadrat was used to count the density of shoots per square meter at
each plot. After the field measurements, the winter wheat samples were processed in the
laboratory. They were first weighed to estimate fresh weight, then placed in paper bags

https://www6.paca.inra.fr/can-eye
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and oven-dried at 75 ◦C. Once the weight of the sample had become constant (around
48 h), they were weighed again to measure the dry mass. Biomass per unit area was then
estimated from the measured dry weight of the sample and shoot density. Grain yield was
harvested and measured two weeks before the harvest date. A 0.25 m2 quadrat was used
to sample wheat ears.
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2.3. Spatial Crop Yield Data

The spatial information on the observed winter wheat yield was mapped using a
yield monitoring system mounted on the harvesting machine (CLAAS telematics https:
//www.claas.co.uk/, accessed on 21 August 2023). The yield monitor collected information
from various systems, including RTK-GPS, yield, and moisture sensors, for mapping crop
yield by measuring the amount of grain, the distance traveled, and the specified working
width. The raw crop yield data were cleaned to remove erroneous measurements following
previous studies [51–53]. First, points with identical coordinates and points where the yield
monitor was turned off were removed, and a buffer of 30 m from the edge was ignored to
avoid edge effects. Next, threshold-based cleaning was applied to remove outliers based
on their frequency and the minimum and maximum biological crop yield limits. Finally,
the yield data points were interpolated using the kriging procedure, and the yield data
map obtained was averaged to 20 × 20 m. The crop yield estimated by the harvester was
compared with in situ crop yield measurements, and a high correlation was found (R2 0.82
and RMSE 0.35 t/ha).

2.4. Sentinel-2 Data

The Sentinel-2 Multispectral Instrument (MSI) comprises two satellites (2A and 2B)
that observe the earth at 10 m, 20 m, and 60 m spatial resolutions with 13 spectral bands
that cover a spectrum range from 442 nm to 2100 nm. In this study, we used the bottom-
of-atmosphere surface reflectance (Level-2A products), which has been atmospherically
calibrated with the Sen2Cor processor [54]. More details about this product can be found
in the Copernicus web site (https://sentinels.copernicus.eu/web/sentinel/user-guides/
sentinel-2-msi/product-types/level-2a, accessed on 21 August 2023). The images were
visually inspected online (https://www.sentinel-hub.com/, accessed on 21 August 2023),
and all available cloud-free images from the two Sentinel-2 satellites for the whole win-
ter wheat growing season were downloaded via the Google Earth Engine platform [55].
MATLAB 2022a software was used to process the Sentinel-2 data.

2.5. LAI Estimation

In this study, LAI was estimated from Sentinel-2 data by using six widely used
vegetation indices (Table 1). The relationship between these VIs and LAI can be expressed
as a semi-empirical model in the form of the modified Beer’s law as follows:

VI = VI∞ +
(
VI∞ −VIg

)
exp−KVI∗LAI (1)

where VI∞ represents the VI value for a very dense canopy, VIg represents bare soil and
KVI is equivalent to the extinction coefficient in Beer’s law. For each VI, these parameters
were fitted against measured LAI, based on Equation (1) [45,56].

Table 1. Vegetation indices used in this study.

Name Abbreviation Equation Reference

Simple ratio SR NIR
Red [57]

Difference vegetation index DVI NIR− Red [42]
Normalized difference vegetation index NDVI NIR−Red

NIR+Red [58]
Two-band version of the enhanced

vegetation index EVI2 2.5 NIR−Red
NIR+2.4Red+1 [44]

Modified simple ratio MSR NIR/Red−1√
NIR/Red+1

[59]

Optimized soil-adjusted vegetation index OSAVI NIR−RED
NIR+Red+0.16 [43]

2.6. SAFY Model Description and Calibration

The SAFY model [27] is a semi-empirical crop growth model developed originally for
winter wheat, and based on the light-use efficiency theory of Monteith (1977) [60]. The

https://www.claas.co.uk/
https://www.claas.co.uk/
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
https://www.sentinel-hub.com/
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model simulates the daily dynamic changes in LAI, dry aboveground biomass (DAM), and
crop yield. In the SAFY model, the DAM production is driven by the absorbed photosyn-
thetically active radiation (APAR) (Equation (2)), the effective light use efficiency (ELUE),
and constrained by an air temperature stress function FT(Ta) (Equation (3)). The final
grain yield (GY) (Equation (4)) is estimated by multiplying the maximum dry aboveground
biomass (DAMmax) with a harvest index (HI). Two phenological stages, vegetative and
productive, identified through the use of a degree–day approach based on the accumulated
summary temperature (SMT), control the partitioning of accumulated carbon to leaves
and grains. The dynamics of LAI are simulated by estimating the extent of leaf cover-
age during growth (Equation (5)) (∆LAI+) and the decrease in LAI during senescence
(Equation (6)) (∆LAI−).

APAR = (1− e−K∗LAI
)
∗ ε ∗ Rg (2)

DAM = ELUE ∗APAR ∗ FT(Ta) (3)

GY = DAMmax ∗HI (4)

∆LAI+ = ∆DAM ∗ Pl ∗ SLA (5)

∆LAI− = LAI ∗ (SMT− SST)/Rs (6)

where K is the light interception, ε is the climate efficiency factor, Rg is the daily radiation,
Pl is the proportion of biomass allocated to leaf, SLA is the specific leaf area, Rs is the
coefficient of leaf senescence, and SST is the senescence temperature threshold.

The SAFY model has a low level of complexity compared to other crop growth models,
with only 13 required parameters, in order to simplify the optimization of unknown
parameters using few observations [27]. Among those parameters, six are considered free.
Two of the six free parameters, the day of emergence (D0) and ELUE, depend on the agro-
environmental conditions. The other four free parameters describe the crop phenological
stages (PLa, PLb, SenA, and SenB) and are related to the genetic characteristics of a specific
crop type. These parameters play a crucial role in describing the growth and development of
the crop and can be adjusted to improve the accuracy of the SAFY model predictions. Based
on previous studies, other parameters are assumed to be constant [21,27,61–63]. To calibrate
the SAFY model parameters, ground-based observations were used instead of remotely
sensed observations. The parameters were optimized by minimizing the difference between
the simulated and observed LAI and DAM. This was achieved by defining an objective
function that ran the model 1000 times with a given set of parameters and then calculated
the Root Mean Square Error (RMSE) between the simulations and observations. The
combination of parameters that resulted in the lowest RMSE was then selected.

2.7. Data Assimilation with Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a common method for sequential data assimila-
tion [20]. The EnKF is based on the Monte Carlo approach, where an ensemble of the model
simulation is used to represent the probability distribution of the true state. This ensemble
(the ‘forecast’) is then updated using a Kalman filter, which incorporates observations to
produce an optimal estimate (the ‘analysis’) considering both observations and simulation
errors [64]. The basic principles of EnKF can be described as follows:

An observation xt is related to the state variable Yt at time t:

Yt = Hxt + εt (7)
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where εt is a Gaussian random white noise, with a mean of zero and observation error
covariance R; H is the measurement operator that maps the model variable space to the
observation space. At the current time t, an ensemble of N forecasts with mean xf

t and error
covariance Pf

t are generated by the model (Equation (8)):

xf
t =

(
xf

1.t, xf
2,t, . . . , xf

N,t

)
(8)

The forecasted state variable and error covariance are updated when new observations
are available as:

xf
t = F

(
xa

t−1
)

(9)

xa
t = xf

t + k(yt −Hxf
t) (10)

where F is the function that transfers the state variable from t − 1 to t (the SAFY model
in our case), and xa

t is the updated ensemble at time t. Kt is the Kalman gain, which
determines the weight given to the observed and the forecasted state estimate in the
updating, calculated as:

Kt = Pf
tH

T/
(

HTPf
tH

T + Rt

)
(11)

In our study, the LAI estimated from Sentinel-2 data was assimilated into the SAFY
model, and the observation operator H was an identity matrix. Equations (9) and (10) can
be then rewritten as:

LAIf
t = SAFY

(
LAIa

t−1
)

(12)

LAIa
t = LAIf

t +
Pf

t

Pf
t + Rt

(LAIobs
t − LAIf

t) (13)

To obtain an ensemble forecast, a number of SAFY parameters were selected to be
perturbed. These free parameters were selected based on previous studies. Fifty ensemble
forecasts of LAI (fLAI1, fLAI2, . . ., fLAI50) were generated by running the SAFY model
with varying combinations of the free parameters. If there was an LAI observation from
Sentinel-2 at time t, the observation ensemble OLAI (OLAI1, OLAI2, . . ., OLAI50) was
generated by adding a Gaussian perturbation ensemble. The forecasted and the observed
LAI ensembles were then assimilated using EnKF to obtain the optimal estimation of LAI,
which was incorporated into the SAFY model to obtain the forecast ensemble at time t + 1.
If no LAI observation existed for time t, the forecasted LAI ensemble was directly integrated
into the SAFY model.

2.8. Performance Assessment

To evaluate the performance of the proposed methodology, several statistical parame-
ters were used in this study: the mean absolute error (MAE), which indicates the average
absolute difference between the simulations and observations, the root mean square error
(RMSE), which measures the discrepancy of simulated values around observed ones, and
the normalized root mean square error (NRMSE). In addition, to evaluate the added value
of assimilating LAI into the SAFY model compared to the SAFY model only (open loop),
the assimilation efficiency index (AE) [35] was used, computed from Relative Mean Ab-
solute Error (RMAE) estimated for simulation with assimilation using EnKF (RMAEEnKF)
and without assimilation (RMAEi). The AE estimates the average reduction in yield
estimation errors. A positive AE value signifies that assimilation leads to better yield
estimates, and a negative value indicates that yield estimate errors are higher than those in
open-loop simulations.

MAE =
1
n∑n

i=1|Si −Oi| (14)
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RMSE =
1
n

√
∑n

i=1(Si −Oi)
2 (15)

NRMSE =
1
O

√
∑n

i=1(Si −Oi)
2

n
× 100 (16)

RMAE = ∑n
i=1

∣∣∣∣Si −Oi

Oi

∣∣∣∣ (17)

AE(i) =

(
1−

RMAEEnKF(i)

RMAEOL(i)

)
∗ 100 (18)

where Oi is the observations, Si is the model simulations, and O is the average of observations.

3. Results
3.1. LAI Estimation from Sentinel-2 Data

Vegetation indices from Sentinel-2, in situ measurements, and a semi-empirical model
were used to estimate LAI (Figure 3). The parameters of the semi-empirical models esti-
mated by fitting Equation (4) with LAI measurements and VIs from Sentinel-2 for each
vegetation index and their performances are presented in Table 2. The results show that the
EVI2-based model had the best performance in LAI estimation and was able to explain 80%
of winter wheat LAI variability during the growing season, with an RMSE of approximately
0.65 m2/m2. The MSR-based model, with R2 and RMSE of 0.70 and 0.95 m2/m2, respec-
tively, was the weakest model for LAI estimation. All vegetation indices show saturation in
LAI estimation. However, NDVI and MSR showed decreased sensitivity to LAI due to an
early saturation for LAI values higher than 2.5. All other vegetation indices showed high
accuracy in crop LAI estimation, but the model based on EVI2 had the best performance
(explaining 80% of LAI variability during the growing season). The EVI2-based model was
then used to generate LAI maps from Sentinel-2 data at 20 m × 20 m spatial resolution, the
same as for crop yield data, for cloud-free days during the wheat growing season.

Table 2. Performance of semi-empirical models and estimated parameters of each model by fitting
Equation (4) with LAI measurements and VIs from Sentinel-2.

VI∞ VIg k R2 RMSE

SR 22.850 0.033 2.463 0.70 0.88

DVI 0.404 0.099 1.995 0.78 0.71

NDVI 0.964 0.148 1.429 0.76 0.75

EVI2 0.755 0.154 2.303 0.80 0.65

MSR 14.55 0.588 3.090 0.70 0.95

OSAVI 0.847 0.122 2.403 0.77 0.81
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3.2. SAFY Model Calibration

The ground measurements of LAI and DAM were used to calibrate the SAFY model
in the study area. For the fixed parameters, a priori values were identified on the basis of
previous studies. In general, as reported in several studies, incoming photosynthetically
active radiation (PAR) accounts for approximately 50% of the overall incoming radiation
(Rg) [65,66]. Hence, the climatic efficiency (ε) was set to a value of 0.48 [22,27,29]. For
the light-interception coefficient (k), which affects the fractional photosynthetically active
radiation absorbed by the canopy (fAPAR), a value of 0.5 was chosen according to previous
studies [27,29,67]. Winter wheat has an optimal temperature range of 17–23 ◦C, with
minimum and maximum temperatures of 0 ◦C and 37 ◦C, beyond which growth will
stop [68]. Therefore, for this study, the minimum, optimum, and maximum temperatures
for winter wheat growth were set at 0, 17, and 30 ◦C, respectively. The specific leaf area
(SLA) was estimated from measurements of leaf biomass and leaf area during the growing
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season, with an average SLA of 0.024 g m−2, which is in line with other values found in
the literature [27,69]. The phenological parameters of the model (PLa, PLb, STT, and Rs)
are all mainly related to the genetic characteristics of the crop. The results of these four
parameters were calibrated for winter wheat. The calibrated ELUE varied between 1.6 and
2.5 g MJ−1, which is within the range found in the literature for winter wheat [27,70,71].

The calibration results of the SAFY model for winter wheat show that the model
was able to explain 91% of the seasonal LAI variability during the growing season, with
an RMSE of 0.50 m2/m2 (10% of the maximum observed LAI), and demonstrating that
the LAI observations are accurately captured by the SAFY model (Figure 4a). Similarly,
the correlation between the observed and simulated DAM reached 0.98 with an RMSE of
approximately 0.59 t/ha (Figure 4b).
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Figure 4. The observed (points) and the simulated (continuous green line) LAI (a); the observed
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around points denote standard deviations of 10 measurements.

3.3. Spatial Estimation of Crop Yield

Crop yield variation within a field reflects various environmental factors resulting from
combinations of weather conditions, soil, and management practices. Scatter plots of wheat
yield measured by the harvester, and wheat yield estimated at the pixel scale (20 m × 20 m)
using the SAFY model only and the SAFY model with assimilation of Sentinel-2 LAI time
series with EnKF are shown in Figure 5. The open-loop simulations (SAFY model only)
were unable to explain the within-field crop yield variability and showed considerable
error against the observed wheat yield, resulting in an RMSE of 1.09 t/ha for Field 1 and
1.14 t/ha for Field 2 (Figure 5). However, the assimilation of the satellite-derived LAI time
series into the SAFY model using EnKF significantly improved the accuracy of the spatial
wheat yield estimation for both fields. Furthermore, spatial modeling improved the model
accuracy and reduced fitting errors, e.g., reducing RMSE by 45% for Field 1 (from 1.09 to
0.60 t/ha) and 40% for Field 2 (from 1.14 to 0.68 t/ha). At the field scale, the observed crop
yield was about 8.25 and 8.10 t/ha for Fields 1 and 2, respectively (Figure 6). With the
open-loop simulation, the estimated crop yield was approximately 8.9 t/ha for both fields
with a bias of about 0.65 and 0.79 t/ha for Fields 1 and 2, respectively. Aggregated over
whole fields, assimilation with EnKF improved the crop yield estimate by reducing the bias
between observed and estimated crop yields. The simulated yields using the assimilation
model were about 8.20 and 8.11 t/ha, respectively, for Fields 1 and 2, with a bias of only
0.025 and 0.01 t/ha compared to the observed yield.
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The assimilation of LAI into the SAFY model was able to approximately preserve
the distributional properties of the observed wheat yield by the harvester for all fields
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(Figure 6). The probability density functions (PDF) of the estimated yield were similar to
the PDF of the observed yield, with the observed yield ranging between 5.5 and 10.5 t/ha
for Field 1 and between 6 and 10 t/ha for Field 2, and the estimated yield between 6.2
and 10 t/ha for both fields. The estimated wheat yield using assimilation with EnKF had
a lower standard deviation than the yield measured by the harvester for all fields. This
implies that the assimilation of the LAI time series into the SAFY model did not capture
the full variability of the observed yield. Figure 7 presents maps of the observed yield and
simulated yield with the assimilation of LAI for Fields 1 and 2. The assimilation efficiency
(AE) was calculated at the pixel level to evaluate the added value of the assimilation of
LAI compared to an open-loop simulation. For Fields 1 and 2, 68% and 70% pixels had
positive results, respectively. This demonstrates that incorporating LAI derived from
Sentinel-2 using an EVI2-based model into the SAFY model improves the estimation of the
spatial variability of winter wheat yield by around 70% compared to the estimation by the
model alone.
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Figure 7. Observed and simulated wheat yield obtained by assimilation of LAI with EnKF for two
fields, Field 1 (a) and Field 2 (b), at 20 m × 20 m spatial resolution.

4. Discussion

This study shows that the SAFY model was able to simulate winter wheat growth
and production with high accuracy at the field scale. Furthermore, LAI and accumulated
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biomass were accurately estimated by the model at the field scale, with high R2 values of
0.91 for LAI and 0.98 for dry aboveground biomass (Figure 4). In addition, the findings
demonstrate that the SAFY model correctly simulates winter wheat yield at the field
scale, as indicated by the close agreement between observed and estimated wheat yields,
i.e., an observed yield of 8.25 t/ha vs. an estimated yield of 8.80 t/ha for Field 1. The
model’s competence is important because yield estimation is an essential component of
crop management and can help farmers make informed decisions about crop production at
the field scale [72]. In line with our findings, several studies have shown good performance
of the SAFY model for estimating crop growth, LAI, DAM, and crop yield at the field scale
for different crops and climatic conditions around the globe [11,21,29,63,67,73].

Nevertheless, when using the SAFY model without assimilation of the satellite data,
the results show that the SAFY model alone was not able to explain the within-field spatial
variability of wheat yield (Figure 5), but still gives a good estimation of wheat yield at the
field scale. The assimilation of LAI time series derived from Sentinel-2 into the SAFY model
improves the estimate of within-field spatial variability of winter wheat yield by 73%. In
addition, the results show that LAI assimilation reduced the bias in the estimated yield at
the field scale compared with the open-loop (SAFY model only). This indicates possible
practical applications of the assimilation of Sentinel-2 data into a crop growth model for
crop yield estimation at the field scale and within the field.

Our results are consistent with those reported by Gaso et al. (2023) [10], who demon-
strated that assimilating LAI into a soybean growth model using EnKF improved within-
field soybean yield estimation by 42%. Also, Ziliani et al. (2022) [74] accurately estimated
maize yield with a spatial resolution of 3 m by incorporating CubeSat-derived LAI into
the APSIM model. Similarly to our study, Manivasagam et al. (2021) [11] found that
direct integration of LAI from Sentinel-2 and PlanetScope into the SAFY model allows for
estimation of spring wheat yield at high resolution, with RMSEs ranging between 0.68 and
0.88 t/ha. By the assimilation of LAI derived from UAV multispectral data into the SAFY
model, Peng et al. (2021) [21] estimated corn yield at high spatial resolution under different
water treatments with an RMSE of 0.69 t/ha.

Crop yield information with high spatial resolution is crucial for quantifying the yield
gap within a field and to improve crop management practices to reduce this gap [75].
The results of our study demonstrate that the assimilation of LAI derived from freely
accessible Sentinel-2 data into a simple semi-empirical crop growth model provides a
practical tool to generate high-resolution yield maps (Figure 7), and it can provide a means
to close spatially explicit yield gaps. Thus, it has the potential to help farmers improve crop
management practices, even in the absence of expensive machinery for within-field crop
yield estimation [76,77].

Despite the fact that the spatial variability of yield within the field was well captured,
the estimated yields did not accurately reproduce some extreme high and low values of
the measured yield (Figure 7). This may be due to the uncertainty of the LAI estimate
using EVI2 from Sentinel-2 data, especially at high LAI values caused by the saturation
of vegetation indices [74,75]. It should also be noted that there might be uncertainties
in the ground-based yield map generated by possible yield loss by the harvester, which
may explain some differences between the observed and estimated yield maps (Figure 7).
Furthermore, the fixed value of the harvest index for an entire field may have influenced
the final yield estimation, since the growth condition of the crop may have an impact on the
harvest index within the field [78]. In this study, the harvest index was calculated from the
average harvest index derived from 10 sampling points. Furthermore, other environmental
variables, such as soil moisture, have an influence on crop growth and affect the final
yield, and integrating this information into crop models may further improve crop yield
estimation within field and at field scale [8,13].

In this study, we found that the difference in LAI is the main source of spatial vari-
ability in winter wheat yield within the field. However, uncertainties related to LAI
estimation from Sentinel-2 data necessitate further examination, and could be improved
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using machine learning algorithms [79] or by combining Sentinel-1 and 2 data [80,81],
which could provide a continuous estimate of LAI during the growth cycle regardless of
weather conditions. In addition, in order to further improve crop yield estimation at high
spatial resolution, it might be useful to assimilate other environmental variables derived
from satellite observations; for example, soil moisture from Sentinel-1 data [82], and land
surface temperature [83], which may improve the quantification of water stress. Since this
study only encompasses field data collected during one growing season, the current model
parameterizations and validation do not represent the anticipated range of environmental
variability. It will be necessary to apply and validate the model across a larger range of
situations to estimate robustness and accuracy under operational conditions. Furthermore,
applying this approach at the regional scale and for other locations might require estimation
and calibration of additional parameters of the SAFY model; for example, emergence dates,
which are generally unknown at the regional scale. Wheat growth and yield are highly
sensitive to the sowing date [84,85]; therefore, it is essential to estimate the emergence dates
on a regional scale as a first step to ensure accurate crop yield estimation. In addition, the
SAFY model does not currently account for the effects of management practices such as
fertilization and water stress on the harvest index and final yield. To improve the accuracy
and robustness of the model under varying field conditions, further optimization of the
model parameters using ground measurements from a larger range of sites and years
is required.

5. Conclusions

Monitoring crop growth and estimating crop yield at high spatial resolution within
agricultural fields provides critical information that enables farmers to make decisions to
increase crop production by improving their agricultural practices. The main objective of
our study was to develop a robust approach to estimate winter wheat yield at high spatial
resolution (20 m × 20 m) through the assimilation of remotely sensed LAI derived from
freely accessible Sentinel-2 data into a simple growth model. LAI was estimated using a
semi-empirical model and vegetation indices (VIs). Among the VIs tested, EVI2 was found
to be the best VI for LAI estimation with an R2 of 0.80. The estimated LAI time series were
assimilated into the SAFY model using Ensemble Kalman Filtering (EnKF). The results
showed that the method improved the accuracy of winter wheat yield estimation both at
the field scale and within the fields, with an RMSE of about 0.60 t/ha with assimilation and
an RMSE of 1.09 with the model only. Furthermore, by employing the developed approach,
highly detailed crop yield maps with 20 m × 20 m spatial resolution were generated. These
maps provide valuable information that can be used as decision-support tools in improving
crop production and optimizing management practices.
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