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Erosion, soil loss and consequent nutrient fluxes impair water quality and can
degrade arable soils. Erosion rates in Sweden are generally low but episodic losses
of suspended solids (SS) can affect water quality. Identifying critical source areas
(CSAs) and “hot moments” is essential to reduce erosive losses from arable land.
Here we use a distributed, dynamic high-resolution erosion model that simulates
the sum of all transported material, i.e., erosion within the soil profile, on the soil
surface and transport through drainage systems. We simulate monthly SS
transport in six small agricultural catchments with varying soil texture over
8 years. Kling-Gupta Efficiency (KGE) was used as model performance statistics,
and calibration (KGE = 0.45–0.78) and validation (KGE = 0.64–0.83) showed
acceptable model performance for all catchments, with mean annual SS losses
between 2.1 and 31.5 t km-2yr-1. Equifinality could be minimised by using more
precise initial parameter values. We suggest that the model can be applied to
comparable unmonitored catchments to identify erosion-sensitive periods
and CSAs.
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1 Introduction

Soil loss from arable land is a major problem globally, resulting in reduced crop
production and impaired water quality associated with transport of nutrients and
pesticides from fields to receiving surface waters (Boardman and Poesen, 2006). In
Europe, water-induced erosion is the most important erosive process, whereas, e.g.,
wind-induced erosion is more important in other parts of the world (Panagos et al.,
2015). Landscape-scale hydrology and hydrological conductivity need to be considered
when describing the process of water-induced erosion. There are multiple pathways for water
to move through the landscape, e.g., streams, surface runoff, subsurface flow, macropore
(quick) flow and drainage systems. When implementing measures to control erosion, there is
also a need to identify where, when and under what circumstances it occurs. Mean soil
erosion losses in Europe are 10–880 t km−2 year−1 (Verheijen et al., 2012). Sweden is at the
lower end of this range, with mean losses of 1–175 t km-2 year−1 (Ulén et al., 2012), but inputs
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of suspended solids (SS) and associated solutes to receiving surface
waters can still cause problems.

Different soil types are more or less vulnerable to erosion, e.g.,
finer soil types are more vulnerable than coarser soils (Ulén and
Jakobsson, 2005; Villa Solís, 2014). Erosion can occur within the soil,
through permanent cracks and channelized pathways (Øygarden
et al., 1997), and on the soil surface. Eroded material can be
transported through, e.g., surface runoff, via surface inlet wells
and through drainage systems. The infiltration capacity of soils
in humid temperate areas, including Sweden, is generally high
relative to rainfall intensity and rarely leads to infiltration-excess
surface runoff (Grip and Rodhe, 2000). However, downslope flow of
water may locally exceed soil storage capacity and result in flow over
the surface (Beven and Kirkby, 1979). In such cases, topography
exerts first-order control on spatial variations in hydrological
conditions (Sörensen et al., 2006), which can be captured by
high-resolution digital elevation models (DEM). There are
different intensities of surface erosion, with sheet erosion being
the most common form in Sweden (Villa et al., 2014). Sheet erosion
is the uniform loss of a thin layer of topsoil, which mainly mobilises
and transports smaller particles with a large surface area. These
particles can carry nutrients, especially phosphorus (P). Other forms
of erosion are rill erosion, where small channels are formed by small,
intermittent water courses, and gully erosion, where small channels
develop into deeper channels. Gully erosion is not very common in
Sweden, but can occur during extreme rainfall events. Almost half
(47%) of Swedish agricultural fields are artificially drained (Statistics
Sweden, 2017), so particles can be transported through drainage
pipes and out to receiving waters. Inlets, drainage wells and even
macropores can intercept overland flow and act as entry points for
particles and associated nutrients to drainage systems (Djodjic,
2001; Djodjic and Markensten, 2019).

Impacts of SS input to surface waters include, e.g., reduced
penetration of light and changes in temperature (Bilotta and Brazier,
2008). Suspended solids can also carry other pollutants, e.g.,
pesticides, heavy metals (Kronvang et al., 2003) and nutrients,
mainly P (Haygarth et al., 2006; Sandström et al., 2020). Since
mitigation measures are costly, time-consuming and cannot be
applied everywhere, modelling can be used to identify target
areas particularly sensitive to soil erosion, referred to as critical
source areas (CSAs) (Pionke et al., 2000; Sharpley et al., 2015).
Identification of CSAs is crucial for catchment management, i.e., in
targeting areas where measures for controlling erosion and particle
losses will have the greatest effect. Numerous large-scale erosion
models have been developed, e.g., Panagos et al. (2015) modelled
European Union (EU)-scale soil erosion at 25 × 25 m2 grid scale
using a modified version of the Revised universal Soil Loss Equation
(RUSLE) and found that soil loss rates were highest for cropland.
Sediment transport have been modelled for small Danish
catchments using the Water and Tillage Erosion Model
(WaTEM), where they found that 6% of all farmland had a high
erosion risk (Onnen et al., 2019). Attempts have been made in
Sweden (Djodjic and Villa, 2015) and Ireland (Thomas et al., 2016)
to model soil losses using high-resolution data, and specifically to
identify CSAs. Djodjic and Markensten (2019) modelled CSAs for
the entire south of Sweden, covering more than 90% of arable land,
using a “worst case scenario” approach that gave good agreement
between measured and observed erosion-prone areas. They used the

modified Unit Stream Power Erosion Deposition (USPED) model
(Mitasova et al., 2001) incorporated within the PCRaster framework
to simulate SS transport, but also SS as a proxy for total P transport.
Thomas et al. (2016) identified CSAs using a hydrologically sensitive
area (HSA) index and mobile soil P concentrations (water-
extractable P, WEP) to predict the risk of dissolved P losses in
runoff from legacy soil P. They included landscape-scale hydrology,
taking into account hydrological connectivity between the modelled
CSAs. They found a strong relationship between total CSA index
value within the HSA and total reactive P load in runoff, allowing
them to identify areas within the studied catchments at high risk of P
losses that should be targeted by mitigation measures.

However, there is a lack of studies on CSAs and associated SS
transport over both space and time. An ability to identify
environmental conditions and periods of the year when CSAs are
most active would enable better targeting of mitigation measures.
Using the modified USPED model, it is possible to simulate SS
export at any location within a catchment. Modelling this transport
over time and identifying the types of catchments for which this
approach works would provide valuable information for farmers
and stakeholders. Assessment of model sensitivity through
calibration and identification of optimal, catchment-specific
parameter values for k (soil erodibility), p (soil permeability) and

FIGURE 1
Approximate location of the six selected catchments in southern
Sweden, with land use as a background map. The catchments are
located somewhere within the 50 × 50 km2 square, exact location
cannot be provided due to the conditions in the monitoring
programme.
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c (vegetation cover-land use) would further improve the model and
provide a deeper understanding of SS transport in the landscape. In
addition, the possibility to test model results against measured SS
values during calibration and validation would allow for evaluation
of model robustness.

The static version of the unit stream power erosion deposition
model was primarily developed for catchments dominated by clay
soils. The objectives in the present study were to develop a new
dynamic version of the model covering a broader range of soil texture;
to assess whether this dynamic model can be applied to catchments
with varying soil texture, climate conditions and land use distribution;
and to quantify variations in model parameters between catchments.
The possibility to use simulated SS transport as a proxy for particulate
P (PP) transport was also explored. Ultimately, a model calibrated on
a range of catchments could be used on other similar, but
unmonitored, catchments. The overall aim in this study was thus
to extend the revised USPED model to support quantitative,
distributed, dynamic high-resolution modelling of erosion and SS
transport. This was performed by calibration and validation of the
updated model for a range of small agricultural catchments in Sweden
(Figure 1), using long time series of high-quality monitoring data. The
hypothesis is that monthly erosion rates in small agricultural
catchments may be properly quantified using high-resolution
distributed models by accounting for catchments’ hydrology,
topography, and land use and soil distribution.

2 Material and methods

2.1 Catchment descriptions

All catchments used in this study are part of the Swedish
agricultural catchment monitoring programme, which focuses on
nutrient losses under various climate, geohydrological and
agricultural production conditions (Kyllmar et al., 2014) (Table 1).
Water discharge at the catchment stream outlet is measured
continuously and aggregated to daily values. Flow-proportional

water quality sampling is performed fortnightly and water
quality parameters are analysed at the certified laboratory at the
Department of Aquatic Sciences and Assessment, following
standard methods. In the present study, data on daily water
discharge (m3 s−1) calculated to monthly specific runoff (mm
month−1) and calculated monthly SS loads (kg km−2 month−1)
(Linefur et al., 2019) were used. In observation fields (21E and
2M) within two of the catchments (E21 and M42), water quality is
sampled directly from the drainage pipe outlet. Data from these
observation fields were also used in model evaluation, to test
performance at field scale. The catchments were chosen to
capture a range of soil textures and climate conditions, in order
to test the model over a range of conditions (Figure 2). Although all
catchments are dominated by agriculture, the proportion of arable
land ranges from 58% to 95% (Table 1).

2.2 Model description

A modified version of the USPED model was used in this
study. The original USPED model is a distributed model based on
the universal Soil Loss Equation (USLE) (Wischmeier and Smith,
1978) and RUSLE (Renard et al., 1991) models. The modified
USPED model predicts the spatial distribution of erosion and
deposition patterns based on change in overland flow depth and
local terrain geometry, with consideration given to the influence
on erosion/deposition patterns of flow convergence or divergence
(Mitasova et al., 1996; Rieke-Zapp and Nearing, 2005). We made
the model dynamic by applying a monthly time step of specific
runoff (mm month−1) to each cell and simulated either net
erosion or net deposition depending on cell properties (slope,
soil texture class, land cover, etc.). In the modified USPED model,
the slope length factor (LS) in the RUSLE equation is replaced
with upslope contributing area (Moore and Burch, 1986),
calculated as:

LS � A

22.13
( )1.6

sin b( )1+p (1)

TABLE 1 Catchment characteristics. Long-term yearly average values of runoff (2005/2006–2016/2017) and precipitation (1961–1990) from Linefur et al. (2019) for
catchments and Norberg et al. (2021) for observation fields. Average runoff for observation fields represents the period 2006/2007–2019/2020. Calibration
periods start by year of available data. Validation period for all catchments was 2013–2021.

Catchment Area for
erosion
calc. (km2)

Start
year

Long-term
average
runoff (mm)

Long-term average
precipitation (mm)

Arable
land (%)

Main soil texture
class
(USDA FAO)

Calibration
period

U8 5.9 2008 230 539 56 Clay 2008–2013

C6 34.7 2006 226 521 59 Clay loam 2006–2013

E23 7.6 2008 176 591 54 Clay 2008–2013

E21 15.5 2006 157 477 89 Sandy loam 2006–2013

M36 8.6 2006 272 627 86 Clay, sandy loam 2006–2013

M42 8.6 2006 270 662 93 Sandy loam, loam 2006–2013

21E (field) 0.040 2013 100 477 100 Sandy loam, sandy
clay loam

-

2M (field) 0.359 2013 224 662 100 Sandy clay loam,
Sandy loam

-
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where A is upslope contributing area (m2) and b is the slope angle in
degrees. Here the exponent value of 1.6 was used as inMitasova et al.
(2001), and 22.13 is a unit conversion factor. The LS value for the
catchments in this study ranged from 0 to 0.742. Parameter p
represents soil permeability and varies for different soil texture
classes (Supplementary Table S1).

To account for the effect of slope shape (concave or convex) on
erosion and deposition patterns, maps of slope profile (ProfCurv)
and tangential curvature (TanCurv) based on catchment DEMs were
created, using profcurv and plancurv (PCRaster, 2013) from the
PCRaster package in Python (Karssenberg et al., 2010). ProfCurv
describes the shape of the slope profile, where a positive value
indicates a concave shape and a negative value a convex shape. The
value of ProfCurv for the six selected catchments ranged
from −3.25 to 6.09. For TanCurv, describing the tangential
curvature, a positive value represents convex diversion of flow
and a negative value represents concave flow concentration. The
value of TanCurv ranged from −3.81 to 3.76. Erosion/deposition
(ED) patterns were then calculated as:

ED � R * LS * k * c * 1 − 1 * ProfCurv( ) * 1 − 1 * TanCurv( ) * 4
(2)

where R is monthly runoff (mm month-1) (range 0–104), k is soil
erodibility factor, c is a vegetation cover factor and 4 is a scaling
factor (determined by the map resolution, 2 × 2 m2). R varies with a
monthly time step, as does the c value for arable land (values
representative for autumn wheat were used here) (Supplementary

Table S2). Both k and p vary with soil texture classes (Supplementary
Table SA1). The model was calibrated against measured suspended
solids (SS) loads (kg km−2 month−1) at the outlet of each catchment,
which is a sum of all hydrological pathways in the catchment
(i.e., surface runoff, internal erosion, drainage wells and tile
drains). The values of k and p were assumed to include all these
pathways, without explicitly specifying them in the simplifiedmodel.
A concave slope (positive ProfCurv) will result in a negative value of
the term, indicating net deposition in that cell while a convex shape
(negative ProfCurv) will result in a positive value, indicating net
erosion in that cell. Likewise for the tangential curvature, diversion
of flow (positive TanCurv) will result in a negative value of the term,
meaning net deposition and concentration of flow (negative
ProfCurv) will result in a positive value, meaning net erosion.
Finally, each cell will have a net erosion or net deposition value.

High-resolution (2 × 2 m2) DEMs of each catchment were used
(Supplementary Figure S1) (Lantmäteriet, 2014). From the DEM,
maps of flow direction (local drainage direction), slope and slope
length were created using the tools ldd, slope and slopelength
(PCRaster, 2013). To account for land use in the catchments, the
Swedish land cover data map was used (Naturvårdsverket, 2019).
Soil texture maps of the catchments were based on the digital soil
map for arable land (Söderström and Piikki, 2016) and the Swedish
Geological Survey (SGU) map (SGU, 2016) for all non-arable land.
All maps were cut and re-sampled to the same cell size and extent as
in the DEM, using the ArcMap tools Clip and Resample. The model
itself was created and run in Python 3.6.6, using the PCRaster

FIGURE 2
Soil distribution in the six catchments, based on the digital soil map for all arable land in Sweden (FAO) (Söderström and Piikki, 2016) and amap from
the Swedish Geological Survey (SGU) showing all non-arable land (SGU, 2016). The x-axis indicates percentage of different soil textures, which are
indicated by different colours. Yellow, orange and grey scales represent arable land according to the FAO classes, while blue and black patterned scales
represent water and non-arable land, respectively.
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package. The outputs of modelling were a map of erosion/deposition
patterns (where particles are mobilised) and erosion accumulation
(where particles accumulate), and a time series of exported SS at the
catchment outlet. Accumulated erosion was calculated using the
accuflux tool (PCRaster, 2013).

2.3 Model calibration

The SPOTPY optimisation tool was used for model calibration
(Houska et al., 2015). The calibration algorithm chosen was Monte
Carlo (MC) (see Houska (2021) for algorithm description). The
objective function chosen was Kling-Gupta efficiency (KGE). In
recent years, KGE has been frequently used for model evaluation
within hydrological modelling, since it better describes the
variability in data than, e.g., Nash-Sutcliffe efficiency (NSE)
(Gupta et al., 2009). KGE combines the correlation between
simulated and observed data (r), the ratio of standard deviation
between simulated data and standard deviation of observed data (α)
and the ratio of the mean value of simulated data and mean value of
observed values (β) (Gupta et al., 2009):

KGE � 1 −
������������������������
r − 1( )2 + α − 1( )2 + β − 1( )2√

(3)

The value of KGE ranges between–Inf and 1, where 1 represents
perfect model fit.

The time series datasets available for each catchment were split
into two, with one-half used for model calibration and the other half
for model validation (Table 1). The validation period was chosen to
be the same length for all catchments (2013–2021) and 1 year was
defined as the agro-hydrological year (July-June). For calibration
and validation, monthly specific runoff (mm month-1) and monthly
SS transport (kg km−2 month−1) were used. The three calibration
parameters were p, k and c (Eqs 1, 2). As the values of k and p differ
for different soil types and the value of c differs for different land use
categories, a percentage change was imposed on the initial values of
k, p and c (k0, p0 and c0) during the calibration, as shown in Eq. 4,
shifting the baseline of the parameters using pseudo parameters
(kpar, ppar and cpar). See Supplementary Tables S1, S2 for initial
values for all parameters.

k � k0*kpar (4)

The same structure was used for p and c. For the two catchments
that contained observation fields, the calibration was performed
against the catchment outlet and the validation against both
catchment outlet and observation field outlet. Each catchment
was calibrated separately, using the following steps.

1 Initial calibration where all parameters allowing to vary with a
starting parameter range (Supplementary Tables S1, S2) with
100 repetitions to explore the parameter space.
2 One parameter at a time was locked, and the other two were
varied freely within the starting parameter range, with
100 repetitions for each combination, to assess how sensitive
the different parameters were and whether the pattern of
variation (in relation to KGE values) changed.
3 All variables were varied freely within the starting parameter
range, with 1000 repetitions.

4 An initial evaluation of the parameter values and their
corresponding KGE values was performed using dotty plots.
Based on this, parameter ranges for ppar and cpar were
expanded (Supplementary Tables S1, S2).
5 All parameters were varied freely within the new parameter
range, with 1000 repetitions.
6 The 50 best parameter combinations for each catchment were
chosen, and the model was run using these parameter
combinations on the validation period for all six catchments
and for the two observation fields. Since a degree of equifinality
(similar model performance for several parameter combinations)
was found, a range of parameter combinations was chosen for
evaluation. Since the range of good KGE values (>0.5) varied
between catchments, the top 10 best runs were plotted against
observed values, and KGE values for the validation period were
calculated.

The same parameter setup was used for validation of the results
for the two observation fields as the bigger catchments they were
located within. However, measured water discharge (specific runoff)
for the fields were used. After evaluation of the validation results, the
model was also run for another ‘test point’ located slightly upstream
in one of the observation fields (21E), which wasmore representative
for transport from the field in general. This was done to explore how
errors in the DEM can affect the results, especially when zooming in
on small areas.

Final values for parameters k and p were calculated based on the
best parameter combinations of kpar, ppar and cpar for each
catchment, and then multiplied by the initial parameter value for
each texture class, using Eq. 4.

To explore possible parameter set equifinality, average area-
weighted c, p and k values (caw, paw, kaw) were calculated for each
catchment. For k and p, the area-weighted average was calculated
as the sum of the initial k and p values for each soil type
multiplied by the proportion of area of that specific soil type.
These average area-weighted parameter values were multiplied
by the kpar and ppar values for the 10 runs with the highest KGE
values, to evaluate equifinality in the modelling results. For c, the
area-weighted average was calculated as the sum of the initial c
values for each land use category multiplied by the proportion of
area of that specific land use. As initial c values for arable land
vary on a monthly basis, the annual average c factor was used. As
for k and p factors, the average area-weighted value of parameter
c was multiplied by the cpar value of the 10 runs with the highest
KGE values.

2.4 Statistical analysis

To test whether the simulated SS values could be used as a proxy
for particulate P (PP), linear regressions were performed between
simulated SS (kg km−2 month−1) and measured and calculated
transport of particulate P (kg km-2) from the selected catchments.
This was also done for measured SS and measured PP. Factor of
variation (FV) value (highest value divided by lowest value) was
calculated for both observed and simulated loads of SS. All statistical
analyses were performed in R 4.0.3 using the lm function in the stats
package (R Core Team, 2020).
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3 Results

3.1 Measured annual SS transport and
simulated values

There was a wide range of measured annual SS transport (t
km−2 yr−1) for the different catchments, with C6 and U8 having the
highest mean annual SS transport in both the calibration and
validation periods (>30 t km−2 yr−1), and E21 the lowest (2.2 and
2.1 t km−2 yr−1, respectively) (Table 2). There was also high temporal
variation in both measured and simulated annual SS transport. The
years 2010–2011 and 2016–2017 had particularly low SS transport in
all catchments, while high SS transport was recorded in
2019–2020 in all catchments (Table 2).

There was good agreement (KGE>0.6) between simulated and
observed values for the validation period for all catchments
(Figure 3; Tables 2, 3). Some months were overestimated by the
model, but in general temporal erosion patterns were successfully
captured. The model was also capable of reasonably accurate
quantification of SS transport for the two catchments with
sandy loam soils (E21 and M42), which had quite low SS
export compared with the other catchments (Tables 2, 3;
Figure 3). There was a clear seasonal pattern in SS transport,

with higher losses during winter-spring and very low losses during
summer-autumn (Figure 3). In four of the six catchments (U8, C6,
E23, M36), the largest peak was observed in winter 2020, where the
model failed to capture peak magnitude (Figure 3). This was also
the year in which all catchments had the highest annual SS losses
(Table 2).

Total mean SS transport from all catchments during the
calibration period was simulated accurately, especially for
catchments U8, E23, E21, and M36 (Table 2). During the
validation period, the simulated mean values for C6, E23 and
M36 were very similar to observed values (Table 2). During the
calibration period, KGE values were generally high (>0.67)
except for M42 (0.45) (Table 3), but the FV value was higher
(7.8) for observed SS transport values than for the simulated
values (2.3) (Table 2). In the validation period, however, the
KGE value for M42 increased markedly compared with the
calibration period (Table 3). The low KGE value for that
catchment during the calibration period was probably due to
one large peak at the start of the period being completely missed
by the model (data not shown), also resulting in the high FV
value.

On zooming in on the two observation fields, the model fit was
worse than for the catchments. For field 2M, located within

TABLE 2 Measured annual suspended solids (SS) transport (t km-2 yr-1) in the calibration and validation periods. Factor of variation (FV) value, calculated as the
ratio betweenmaximum andminimum, is shown for all measured values. Total mean value for both periods is also shown, with corresponding simulated values in
brackets. For field 21E, simulated values for the ‘test point’ are shown. Fields 21E and 2M were calibrated against their catchment outlets (E21 and M42), so no
values for the calibration period are shown.

Period Annual SS transport (t km-2yr-1)

U8 C6 E23 E21 M36 M42 21E 2M

2006–2007 - 81 (62) - 2.1 (2.8) 40 (45) 19 (11) - -

2007–2008 - 37 (37) - 1.6 (1.7) 47 (28) 4.6 (6.8) - -

2008–2009 70 (56) 28 (46) 32 (19) 1.5 (2.2) 21 (27) 2.7 (5.0) - -

2009–2010 81 (67) 40 (44) 29 (27) 3.1 (3.3) 16 (20) 2.4 (5.1) - -

2010–2011 16 (53) 16 (34) 19 (30) 1.4 (2.1) 17 (29) 3.6 (10) - -

2011–2012 58 (41) 28 (41) 15 (17) 1.1 (1.1) 35 (33) 4.9 (6.7) - -

2012–2013 70 (52) 47 (47) 35 (36) 4.4 (2.4) 24 (31) 6.0 (6.0) - -

FV cal 5.1 (1.6) 5.0 (1.8) 2.3 (2.0) 4.0 (2.9) 2.9 (2.2) 7.8 (2.3) - -

Mean cal 56 (54) 40 (44) 26 (26) 2.2 (2.2) 29 (31) 6.2 (7.3) - -

2013–2014 38 (35) 51 (31) 32 (28) 1.8 (2) 20 (30) 2.6 (5.0) 0.55 (0.96) 13 (8.5)

2014–2015 14 (37) 15 (34) 25 (25) 3.8 (2.2) 25 (29) 6.3 (6.5) 0.28 (0.66) 6.1 (12)

2015–2016 23 (28) 44 (32) 9.5 (14) 1.8 (1.8) 23 (32) 6.2 (5.2) 0.37 (0.83) 5.6 (9.2)

2016–2017 7.7 (16) 3.3 (10) 5.5 (7.5) 0.37 (0.37) 9 (14) 3.8 (4.0) 0.08 (0.11) 10 (7.3)

2017–2018 50 (52) 38 (43) 29 (27) 3.7 (2.8) 42 (43) 8.7 (8.1) 0.24 (1.19) 16 (12)

2018–2019 9.2 (32) 10 (30) 5.1 (9.4) 0.45 (0.77) 20 (21) 2.7 (4.0) 0.21 (0.27) 1 (4.4)

2019–2020 67 (53) 53 (41) 22 (16) 2.4 (2.1) 55 (33) 5.6 (6.6) 1.11 (0.91) 9.1 (11)

2020–2021 34 (42) 40 (35) 19 (20) 2.1 (1.8) 19 (29) 2.3 (3.8) 0.56 (0.69) 0.69 (5.5)

FV val 8.8 (3.4) 15.9 (4.3) 6.3 (3.7) 9.6 (7.7) 6.2 (2.9) 3.9 (2.2) 13.88 (10.8) 22.6 (2.7)

Mean val 30.3 (36.9) 31.5 (32) 18.4 (18.3) 2.1 (1.7) 26.7 (28.9) 4.8 (5.4) 0.43 (0.70) 7.7 (8.7)
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catchment M42, the dynamics of SS transport were captured by the
model to some extent (Figure 4), although the model
underestimated some high peaks (winter 2014 and 2018) and
overestimated SS transport on other occasions (2019 and 2021).
However, the total sum of SS transport was in good agreement with
measured values (Table 2). At the modelled outlet of observation
field 21E, erosion transport was greatly overestimated by the model.
Model fit was better for the ‘test point’ in field 21E, but was still an
overestimate. For both observation fields, the observed values of SS
were low.

For the two common and contrasting soil texture classes
(silty clay (initial k value: 0.82) and sandy loam (initial k value:
0.15); Figure 2), the final k values, representing soil erodibility,
for the best model fit were similar in catchments U8, C6, E21,
and M36 (Table 3). For instance U8 (0.83) and C6 (0.81), where
silty clay dominates where close to the initial value, but also
E21 and M36 had similar values (0.81 and 0.72, respectively).
Catchments E23 and M42, with several soil textures
dominating (Figure 2), had a lower final k value for silty
clay (0.55 and 0.60, respectively) (Table 3). A similar pattern

FIGURE 3
Simulated monthly suspended solids (SS) transport from the six catchments in the validation period. Solid lines represent simulated values, orange
the best parameter combination and red the 10th best parameter combination. Dashed blue lines represent monthly observed values. Please note the
difference in scale of the y-axis.

TABLE 3 Kling-Gupta efficiency (KGE) value of the best parameter combination for each catchments in the calibration and validation periods and corresponding re-
calculated area-weighted parameter values. Final values for soil erodibility parameter k for silty clay and sandy loam soils, based on the best pseudo parameter
kpar from the calibration, are also shown.

Catchment KGE calibration KGE validation kaw paw caw Silty clay, final k-value Sandy loam, final k-value

U8 0.68 0.66 0.56 0.05 0.21 0.83 0.15

C6 0.75 0.74 0.55 0.06 0.32 0.81 0.15

E23 0.71 0.83 0.30 0.35 0.21 0.55 0.10

E21 0.78 0.64 0.20 0.18 0.17 0.84 0.15

M36 0.78 0.68 0.41 0.40 0.30 0.72 0.13

M42 0.45 0.77 0.15 0.14 0.41 0.60 0.11
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was found for the final k value for sandy loam, where
catchments E23 and M42 had a lower value than the other
catchments (Table 3).

The simulated SS values covered 62% of the variation in
measured PP transport overall (Supplementary Figure S4), while
measured SS values explained 88% of the variation in measured PP
transport during the validation period (see Supplementary Material
S1 for more details).

3.2 Parameter sensitivity and model
evaluation

After the first 1000 MC runs, the patterns of the parameter
combinations were evaluated (Figure 5). For ppar and cpar in two of
the catchments (E21, E23), there seemed to be a pattern of better
KGE values with expansion of the parameter range. To determine
whether better model performance could be achieved, the model
was run again using an expanded parameter range for all
catchments and re-evaluated (Supplementary Tables S1, S2;
Supplementary Figure S3). All dotty plots revealed clear
equifinality, with similar KGE values achieved for different

combinations of the three pseudo parameters (Figure 5;
Supplementary Figure S3). Hence, equifinality was further
explored and evaluated, as mentioned previously.

Examination of area-weighted average values for parameters
c, k and p (caw, kaw and paw) for the top 10 runs showed that the
range of variation depended on the soil texture distribution
within the catchments (Figure 2; Supplementary Figure S5).
For instance, in catchment M36, containing sandy soils (sandy
loam) and soils with higher clay content (silty clay and clay)
(Figure 2), the parameter range was wider than in more uniform
catchments dominated by either clay soils (C6, U8) or sandy soils
(E21, M42).

3.3 Changes in spatial erosion deposition
patterns

The CSAs identified in the different catchments were quite
consistent over time, but more or less prominent during certain
periods of the year, with some CSAs not active at all in certain
time steps (Figure 6). It was also evident that erosion
mobilization patterns were more active around steeper and

FIGURE 4
Simulated and observedmonthly suspended solids (SS) transport from the two observation fields. Solid red lines are simulated values and dotted blue
lines are observed values. The top panel displays the simulated and observed values over time for field 2M, while the bottom panels display simulated and
observed values for (left) the outlet of field 21E outlet and (right) a test point located upstream in field 21E that was more representative for the field in
general. Kling-Gupta efficiency (KGE) values for the simulations are shown within the diagrams.
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wetter areas in the catchments (Figure 6). Simulated accumulated
erosion lines followed existing ditches and the stream through the
catchments, with higher amounts of accumulated erosion closer

to the outlet. Based on the peak in E23 (Figure 6), it is clear that,
as expected, the stream transported the largest amount of SS
through the catchment.

FIGURE 5
Dotty plots for the first parameter range for the three pseudo parameters cpar, ppar and kpar (1000 Monte Carlo runs) in catchments E21 and E23.
Parameter value on the x-axis and corresponding Kling-Gupta efficiency (KGE) value on the y-axis.
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4 Discussion

4.1 Temporal and spatial erosion transport

Measured annual SS transport values showed a wide range in the
study catchments, from very low (E21) to considerably higher values
(C6, U8) (Table 2). However, in comparison with erosion losses in
other European countries, these values are still low. For example, in a
study simulating erosion losses using the RUSLE-2015 model on
European scale, the mean value for Swedish arable land was
112 t km−2 year−1, whereas arable land in other countries had
mean values of up to 1500 t km−2 year−1 (Malta), but more
commonly around 200–400 t km−2 year−1 (Panagos et al., 2015).
All these values are higher than in the six selected catchments in this
study. Actual erosion rates in Europe from sheet and rill erosion
average 10–880 t km−2 year−1 (Verheijen et al., 2012), and our study
catchments were at the lower end of that range. Among the Nordic
countries, erosion rates are higher in Norway than in Sweden and
Denmark (Bechmann et al., 2008), possibly due to differences in
topography. Risk erosion classes for standard autumn ploughing in
Norway range from low (<50 t km−2 year−1), to medium
(50–200 t km−2 year−1), high (200–800 t km−2 year−1) and very
high (>800 t km−2 year−1), with two sites in Norway and one in
Finland classed as high risk in one study and two selected Swedish

sites classed as medium and low risk, respectively (Ulén et al., 2012).
The catchments in this study were in the low or medium risk classes
(Table 2). However, even though erosion losses per se are not high in
comparison to other countries, critical events where a lot of soil
material is lost during short episodes can still have large impacts on
receiving waters. The connection between erosion of particles and
losses of P is well-known, and especially for these catchments where
a power-law relationship between PP and SS concentrations in the
streams has been previously established (Sandström et al., 2020).
These large amounts of SS losses also lead to high P losses, which in
turn impact the water quality. Simulated SS losses were in general a
good proxy for PP losses (Supplementary Figure S4) and the slope is
similar to previous findings (Sandström et al., 2020).

Identified CSAs in the catchments seem to be stable over time,
but more or less prominent and active during certain time periods
with higher losses (Figure 6). In comparison to previous studies
where worst case scenarios were modelled (Djodjic and Villa, 2015;
Djodjic and Markensten, 2019), the shape of the CSAs follows the
topography lines more distinctly than previously, where soil texture
is more prominent. Since actual measured monthly runoff values are
used here, and not the sum of three high flow months representing
“worst case scenario,” the SS exported was lower, resulting in lower
amounts exported in each time step and hence less clear CSAs. For
identification of CSAs in the catchments, the steady state model
might be more suitable. However, use of a dynamic model made it
possible to test model robustness by calibration against measured SS
data, which was not possible previously. In addition, by using the
results for parameter values in the steady state model, more robust
results can be achieved.

4.2 Model fit and calibration strategy

For all catchments, good model fit (KGE values > 0.5) was
obtained for both the calibration and validation periods (Figure 3;
Table 3). In all catchments, the KGE values remained at
approximately the same level during the calibration and
validation periods, indicating stable model results. For two
catchments (U8, E23), the calibration period was shorter than for
the others due to later start of flow-proportional sampling (1 year
later), but this did not seem to affect the results. We opted to have
the same length of validation period for all catchments, in order to
test all catchments on an equal basis. During calibration, the choice
was made to run the simulations for each catchment for 1000 MC
repetitions, as a compromise between a fair amount of parameter
combinations and reasonable computing time (the model processes
several high-resolution maps in each time-step, so each calibration
run may take up to several minutes, or even several days for larger
catchments). It is important to consider the time aspect when
calibrating these types of models. By using our results, better
initial values and reasonable ranges for the different parameters
can be determined, hopefully leading to better model fits with fewer
runs. The MC approach was used to decrease uncertainties
connected to modelling results. First, 1000 MC simulations were
run for each catchment and the results were evaluated in the form of
dotty plots (Figure 5). After this initial evaluation, the parameter
range was extended and ran and evaluated another 1000 MC
simulations (Supplementary Figure S3). These multiple MC

FIGURE 6
Examples of simulated erosion mobilization/deposition patterns
(kg) and accumulated erosion (kg) by the outlet of catchment E23. The
solid black lines represent the catchment outline, green to dark red
lines represent accumulated erosion and light blue lines
represent areas where particles are mobilised (especially visible in the
bottom map, next to the red line representing accumulated erosion).
The maps are separated by a solid purple line. Time steps are (upper
panel) December 2014 and (lower panel) February 2015. Note that the
underlying satellite layer is from the same time point in both diagrams
and that mobilised erosion <0.25 kg is not visible in the maps.
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simulations decreased the number of parameter combinations
giving equally good model fit and thus decreased the
uncertainties. The equifinality issue is discussed further in
Section 4.3.

The dynamic model simulates the sum of all transported
particles and pathways through the catchment, rather than
distinguishing between different pathways and processes, and is
calibrated against measured data at the catchment outlet. The main
purpose is to describe where mobilization occurs in the catchment,
where sediment is transported and how much material is
transported. Simulated accumulation lines therefore do not
necessarily represent exclusively surface runoff, but rather
lumped water and solute transport (i.e., including subsurface flow
and flow through drainage systems) at a given point.

Since the data on SS transport showed high variability, KGE was
chosen for model evaluation. Based on the results, KGE values
described model fit fairly well. The model generally captured both
the level of erosion in the catchments (Table 2) and temporal
patterns (Figure 3), which was the objective of the study. Based
on the KGE values, the model seemed to perform equally well for
catchments with different soil textures (clay-dominated and sand-
dominated). However, catchments dominated by sandy loam
(E21 and M42) generally showed lower levels of erosion than
clay-dominated catchments, which may introduce more
uncertainties in the simulations. In addition, coarser-texture soils
are less erosive than finer-textured soils and may have different
pathways dominating P transport. It might be more important to
consider other pathways, processes and factors for P losses, such as
leaching through the soil profile, nutrient content in the soil and
fertilisation regime, in these cases (Djodjic et al., 2018).

The agro-hydrological year 2019–2020 had the greatest observed
SS transport for all catchments (Table 2), with one or 2 months
(November 2019-February 2020) making a large contribution to
total annual transport. The model failed to capture the magnitude of
these winter peaks for four of the six catchments (U8, C6, E23, M36)
in which these events represented the highest observed transport of
SS during the validation period. In particular, the model was not able
to adequately simulate this high SS transport for catchment M36,
which had no observed peaks of the same magnitude previously.
These observed peaks were the result of unusually high winter
temperatures and above-normal precipitation (SMHI, 2020),
possibly leading to higher runoff and precipitation on semi-
frozen or thawing soil and resulting in high transport of SS.
Frozen soil may be almost impermeable to water (Zuzel and
Pikul, 1987) resulting in surface runoff and intensified erosion
(Øygarden, 2003). At the same time, freeze-thaw cycles can
increase soil erodibility, by reducing shear strength (Formanek
et al., 1984). To capture more extreme events, the model would
need temporally varying k and p values, coupled to air and/or soil
temperature. With climate change leading to higher temperatures,
milder winters and more extreme weather events (Madsen et al.,
2014), a calibration period containing more extreme events could be
tested to see whether the model can simulate these types more
accurately. In addition, during years of low precipitation and runoff,
sediment will accumulate in the streambed, to be flushed out later
during these extreme events, resulting in high SS transport. The
possibility to simulate SS transport over time provided by the
dynamic model also opens the way for future projections and

simulations under different climate change scenarios. For
instance, Grusson et al. (2021) concluded that the predicted
increase in heavy precipitation events in Sweden will produce
more runoff than soil infiltration. Ongoing climate change is
predicted to result in milder winters with higher-intensity rains
and less snow accumulation in Sweden (Xu, 2000), which will have
an effect on SS transport and ultimately also on P transport. A close
connection between SS and P transport has been shown in previous
studies modelling possible effects on P transport under different
climate change scenarios. For example, a modelling study on three
headwater catchments in Great Britain testing two types of models
where an increase in winter precipitation led to increased P load
found that the majority of the annual P load occurred during winter
(under current and future climate conditions) and during the
highest discharge events (Ockenden et al., 2017).

When evaluating the large model overestimation for the outlet of
field 21E, we noted that a ditch running along the southern edge of
the field was included in simulated SS transport at the outlet, due to
inaccuracy in the DEM. This inaccuracy resulted in major
overestimation of SS by the model, since in reality any SS
transport in this ditch does not pass through the outlet.
Therefore, the model was run for an upstream ‘test point’ where
export from the ditch was not included in the output and achieved
much better simulation of observed SS transport, although the
model fit was weaker than for the catchment (Figure 4). These
results demonstrate how small errors can have a large impact on the
results, especially when zooming in to field level (21E has an area of
4 ha). Both observation fields studied are artificially drained and SS
transport is measured directly from the drainage pipes, where the
water consists of a mixture of surface runoff intercepted by inlet
wells and/or macropores and water percolating through the soil
profile. The simplified model does not take drainage into account
explicitly, but previous studies have shown that modelled erosion
accumulation lines generally run above the main subsurface drains
and, where present, surface water inlets in the drainage system
(Djodjic and Villa, 2015). The results indicate that the model
simulated these losses fairly well. However, for applications at
individual field level, these processes would need to be
accounted for.

In previous studies, simulated values were compared with observed
spatial patterns of surface runoff and erosion (Djodjic and Villa, 2015;
Djodjic et al., 2018; Djodjic andMarkensten, 2019) or a snapshot worst-
case scenario illustrated by the 90th percentile of measured monthly
loads of SS (Djodjic and Markensten, 2019). Despite the above-
mentioned uncertainties and discrepancies, the dynamic modelling
results presented here, with comparison to measured monthly SS loads
over long periods, are a great step forward in terms of improved
quantification of SS losses in small (<50 km2) catchments in Sweden. It
is worth mentioning that the model input variables used in our study
are derived from freely available national data sets, so similar modelling
could be scaled up to any Swedish catchment.

4.3 Equifinality

In spite of using only three parameters for calibration, some
equifinality issues arose, with equally good model performance
achieved with different combinations of the three pseudo
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parameters (cpar, kpar, ppar). There was a consistent pattern for all
catchments where the same parameter settings resulted in the
highest KGE values in both the calibration and validation period
(e.g., Supplementary Figure S2). However, some of the area-
weighted parameters varied over quite a wide range for some
catchments (Supplementary Figure S5). There are several
possible explanations for this. First, there are possibly
correlations between the three parameters themselves. In fact,
on plotting parameters for the 10 runs with the highest KGE
values for each catchment, we found strongly significant
correlations in some cases (Supplementary Table SA3). For
instance, in catchments E21 and M36 there was a strong
correlation between p (soil permeability) and c (land use
cover), which means that these two parameters can
compensate for each other, resulting in a wider range of
values of both parameters but similar KGE values. The same
was true for some other catchments (Supplementary Table SA3).
Second, there was a tendency for wider parameter ranges in
catchments with a more diverse soil texture distribution.

The values of kaw and paw varied within a narrower range in clay-
dominated catchments (C6, U8) or predominantly sandy
catchments (E21), whereas in the catchments with both sandy
and clay soils (E23 and M36) the parameter values tended to
vary over a broader range (Figure 2, Supplementary Figure S5). It
should be noted that the initial soil-specific values for k and p were
used to centre the range of variation explored for these parameter
values in the calibration (Eq. 3). This means that in catchments with
contrasting soil texture, special attention should be paid to the initial
parameter values, since overestimation of those for sandy soils and
underestimation of corresponding values for clay soils, or vice versa,
may result in high equifinality. Securing more representative initial
parameter values by modelling more homogenous sandy/clay
catchments to establish appropriate initial values might be a way
forward to decrease equifinality in contrasting catchments. Finally,
paw had the highest total FV values of the three parameters tested,
while slope length factor LS, calculated based on p and slope
conditions (eq. 1), was the least sensitive factor during sensitivity
analysis of the steady state model (Djodjic and Markensten, 2019).
Therefore, if constant slope values arise during model calibration, it
is reasonable to assume that the least sensitive factor will need the
largest range to achieve a certain change in calculated erosion.

4.4 Model limitations and future
developments

There are some limitations to the model presented here. For
example, further testing of the land cover parameter c is necessary
to determine how it varies on arable land. In this study, a value for
autumn wheat was used on all catchments, with no consideration given
to crop rotation or other crops actually grown within each catchment,
which is a simplification of reality. Since c can have a large impact on
modelled runoff, this could improve the model results and provide a
better representation of actual SS transport, particularly when zooming
in on field level. Further development of remote sensing or agricultural
databases, such as Agriculture Land Parcel Identification System (LPIS)
(European Court of Auditors, 2016), could help in spatial identification
and precise location of different crops.

The soil texture classes used as input maps to describe parameters k
and p (soil erodibility and permeability) are categorical variables. In
reality, each texture class represents a range of clay, silt and sand content
values, with some internal heterogeneity. Specifically, two catchments
with the same percentage of silty clay soil could still have different
amounts of clay/silt/sand within that texture class. This could be one
explanation for the lower final k value for catchment E23 (Table 3) for
both silty clay and sandy loam in comparison to the other catchments.
Comparing soil texture samples from E23 and C6, the E23 samples
represented a smaller range and lower percentage of silt than the
C6 samples and had a higher organic matter content (data not
shown). These differences can explain the lower final k value for
silty clay in E23 (0.55) than in C6 (0.81), as a lower percentage of
silt and higher percentage of organic matter would lead to lower
erodibility (Römkens et al., 1997). Except for catchment E23 and
partly M42, the final k-values are very similar between catchments
for both silty clay and sandy loam, indicating a robustness of the model
for applications in different parts of Sweden. Replacement of soil texture
classes as descriptors of k and p with, e.g., percentage clay or silt soil in
the catchment could be tested to see if this discrepancy could be
avoided.

The time step is another aspect of the model that could be
refined. In this study a monthly time step was used, mainly because
measurements and corresponding load calculations used to
calibrate the model were available in monthly time steps. It
would be possible to decrease this to, e.g., a daily time step, but
the question is whether the model would benefit from having this
finer temporal resolution considering the extra computational time
required. It is known that SS and P dynamics are episodic and
variable, so a single storm event could result in high SS and P losses
that are missed by the model with a monthly time step. If the
intention is for the model to capture these peaks, it could be
beneficial to decrease the time step and try to calibrate against
high-frequency measurements. If the intention is to simulate erosion
patterns and amount of SS transported from the catchment over a
certain period, the monthly time step is sufficient.

In this study, small catchments with agriculture as the dominant
land use and with no large surface water body (lake or pond) that could
retain particles and affect SS load at the outlet were modelled. Although
surface erosion and associated SS and P losses are mainly an issue for
arable land in Sweden, before applying the model to larger catchments it
is important to determine how to handle lakes and also, e.g., urban areas.
Urban areas could probably be handled by adjusting the parameter
values, especially land cover (c) and p to account for impermeable areas.
The model would need to be tested on catchments containing lakes and
larger urban areas to determine the impact on the results. At present, we
recommend restricting use of the model to headwater catchments
smaller than 50 km2 and without large ponds/lakes.

The uncertainty in modelling results can also be expected to
increase when applying the model outside the range of calibration
conditions. Even within the calibration range, there are uncertainties
associated with the model results, such as the equifinality issues
discussed in Section 4.3 and lack of explicit description of subsurface
transport of SS through macropores or drainage wells. As mentioned,
infiltration-exceeding overland flow occurs seldom in Sweden and is
usually a consequence of soil compaction (Djodjic and Villa, 2015).
Satisfactory model fit was achieved under prevailing saturation-excess
overland flow, but further applications and studies are needed to test
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model performance in conditions where infiltration-exceeding overland
flow is the main cause of erosion and SS transport.

A further improvement of the model would be to model P losses
directly. Earlier studies have used the USPED model (static version)
to model P losses indirectly, using SS as a proxy (Djodjic and
Markensten, 2019), as done here. However, previously identified
relationships between SS and PP (Sandström et al., 2020) could be
used directly in future model versions to enable both calibration
against measured p values and simulation of P losses.

4.5 Importance for stakeholders and
management

In this study, wemade a dynamic version of an existing staticmodel
in order to model losses of SS over time and obtained good agreement
with measured values on a small catchment scale. Our dynamic
approach can be used to model similar unmonitored catchments.
Authorities, advisors and farmers can then use modelling results to
identify CSAs and periods of the year when the highest losses occur and
target mitigation measures for nutrient and SS losses accordingly.
Optimal placement of such mitigation measures is needed to ensure
that they are cost-effective (Sidemo-Holm et al., 2018; Djodjic et al.,
2022). The high-resolution maps generated during modelling can be
used to support decision making on efficient placement of catchment
mitigation measures, considering weather, land use and soil conditions
where SS losses occur. Such information can also be helpful for planning
farm operations, e.g., tillage, fertilisation and crop rotations. Knowledge
of flow and erosion accumulation pathways can also help to evaluate
hydrological connectivity (Thomas et al., 2016) and the need to improve
the function of open ditches. This is especially relevant whenwater from
upstream forest areas flows over downstream arable fields, causing
mobilization of soil particles, erosion and particle-bound nutrient
(mostly P) losses.

5 Conclusion

Using a dynamic USPEDmodel within the PCRaster framework in
Python, we successfully simulated SS transport at monthly time steps in
six small agricultural catchments and two arable fields. Model
calibration resulted in acceptable fit for all catchments, across soil
texture classes. The dynamic modelling approach also made it possible
to test and confirm model robustness by calibration against long-term
measured SS data, thereby increasing the reliability of the model for
possible future applications, as the wide range of input variables and
parameter settings were tested against measured data. Some equifinality
issues arose during calibration of the model, but these could be
minimised by using more precise initial parameter values for the
different soil texture classes and land use categories. Based on our
results, the model can be applied to identify times of the year and
locations sensitive to SS losses from similar unmonitored catchments.
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