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A number of initiatives invite members of the public to perform online classification tasks such as identifying
objects in images. These tasks are crucial to numerous large-scale Citizen Science projects in different
disciplines, with volunteers using their knowledge and online support tools to, for example, identify species of
wildlife or classify galaxies by their shapes. However, for complex classification tasks, such as this case study
on identifying species of bumblebee, reaching an agreement between volunteers - or even between experts -
may require consensus-building processes. Collaboration and teamwork approaches to problem solving and
decision-making have been widely documented to improve both task performance and user learning in
the real world. Most of these processes and projects are mediated online through feedback delivered in an
asynchronous manner, and this article thus addresses a central research question: How do participants involved
in species identification tasks respond to different forms of feedback provided in online collaboration, designed
to support peer-learning and improve task performance? We tested four different approaches to feedback
within a collaboration task, where participants reviewed their previously annotated data based on information
curated from their peers on a long running online citizen science initiative. The selected interfaces have a
strong foundation in social science and psychology literature and can be applied to citizen science practices as
well as other online communities. Results showed that while all four approaches increased accuracy, there
were differences based on the types of consensus that existed before collaboration. Such differences highlight
the usefulness of different forms of feedback during collaboration for increasing data accuracy of identification
and furthering users’ expertise on identification tasks. We found that anonymised and goal-directed free text
comments posted on social learning interfaces were most effective in improving data accuracy as well as
creating opportunities for peer-learning, particularly where the species identification task was more difficult.
This study has significant implications for extending the practice of citizen science across formal and informal
learning environments and reaching out to a variety of users.
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1 INTRODUCTION
Citizen science and crowdsourcing projects focus on using the capabilities of paid or unpaid
volunteers for data collection and annotation [3, 79, 94]. The internet provides the opportunity to
collect or annotate data on a large scale by soliciting volunteers online. However, this raises concerns
regarding data quality [44, 47, 54]. To provide safeguards on data annotations sourced online,
typically multiple annotations are requested, and a minimum level of consensus is expected for an
annotation to be accepted; i.e. data is validated by other volunteers [79]. A common crowdsourcing
task is the classification of data captured through images [39] using project resources such as
identification guides and keys [77, 83]. Annotations are either accepted independently where
users submit their classifications without any collaboration or through a collaborative interface.
Furthermore, most of these platforms provide their users a means to share their knowledge and
expertise, either openly on the classification task (for collaborative interfaces) or through open
discussion forums (for independent classification projects) to support community building and peer
learning [43]. However, there is a lack of understanding on how collaborative design techniques
affect users’ online behaviour and whether these techniques can be effectively utilised to improve
data quality as well as engagement and learning around the task. This study explores the design of
interfaces that allow volunteers to collaborate on classification tasks with their peers. Specifically,
we consider differences in the types of feedback and learning processes generated, and how these
can impact on the formation of more stable citizen science communities. We focus on asynchronous
collaboration, where there is no expectation that online volunteers will all be available at the same
time.

1.1 Background
The usefulness of citizen science for research has been widely highlighted [19, 48, 71] and citizen
science practice has benefitted from advances in digital technologies, such as internet and mobile
communication [4, 5, 44]. Its growing contribution to research is visible in diverse ways, from
monitoring the environment and biodiversity, to promoting question-driven research and statistical
innovations in the handling of variable data sets [11, 25, 38, 42]. Web based citizen science projects
have successfully employed volunteer capabilities to accomplish a wide variety of tasks such
as digitising biological records [28], predicting protein structures [23], and classifying shapes
of galaxies [8]. The success of these and numerous other crowdsourcing projects highlights the
important roles that volunteers can play in scientific research aswell as for the common good [48, 84].
Data quality is a common concern for these projects and most include safeguarding mechanisms for
data validation [44], for example, comprehensive training of volunteers; providing guides, protocols
and tools to support data collection; validating collected data samples by experts and building
statistical consensus models for classification or object identification tasks [8, 14, 15, 77, 82, 87].
Human collaboration has been a topic of interest across many disciplines such as psychology,

social sciences, organisational behaviour, education and more recently human-computer interac-
tion [3, 9, 35, 55, 58, 63, 66, 81, 97]. With the growth of the internet and subsequent rise of online
communities such as Wikis, social media websites, citizen science and crowdsourcing platforms,
online collaboration is utilised for a variety of purposes such as problem solving, user learning
and engagement, consensus building, and decision-making. Performance of a group is, in general,
qualitatively and quantitatively superior to the average individual [35, 55], but typically lower than
the best member [45]. Identifying the best member or utilising the capabilities of high performing
individuals can help increase the group performance as they can guide a group of inexperienced
members towards better decision-making [26]. It has also been reported that groups can achieve
better performance than even the best individuals for several problem-solving tasks [51].
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Research has also highlighted benefits of collaboration in terms of learning, motivation and
engagement which, in turn, can lead to sustained focus and deeper learning [9, 58]. Collaboration
and teamwork have been a regular practice in the scientific domain, and scientific discoveries have
often been made through collaboration [65]. In this article, we focus on collaboration amongst
non-expert users for consensus building on a classification task and how digital interfaces can
be designed to support this. A variety of feedback techniques have been explored for online
collaboration to support problem solving, decision making and learning. In this article, we study
some of the main techniques and affordances derived from the literature and from citizen science
practice, with a particular focus on improving learning and data quality.

1.2 Feedback processes at the core of collaborative learning
Dialogism, a framework for research into computer-supported collaboration [86], provides an
effective method for studying interaction and communication between participants mediated
by computers, especially for tasks which require debate, negotiation and coordination among a
group [6, 86]. Supporting collaboration for citizen science activities that require learning new skills
and knowledge creation can also be examined using the dialogical framework, to understand in the
first instance how digital platforms can mediate learning through providing feedback for helping
to construct meaning or make sense of a new concept [81]. More widely, its use can make visible
how feedback supporting collaboration in citizen science activities fosters social learning and civic
participation, enabling a wider range of contexts and experiences to contribute to shaping research
agendas [10, 31, 67]. We utilise the concept of feedback [87] in the context of a consensus building
task, which may progress through divergence and convergence of multiple viewpoints or ‘voices’
through debate between the participants for problem solving and reaching consensus. For successful
dialogue to happen it is important to design a dialogic (interactional) space for presenting multiple
viewpoints in the contexts of the collaboration. To design and understand such an interactional
space we utilise multiple design strategies by drawing on literature on collaboration and feedback
in social sciences and education and their applications across citizen science practice.

1.2.1 Social persuasion. Within an interactive space, goal setting has been shown to be a particu-
larly effective strategy for increasing contributions and motivation [9]. Setting individual and group
goals can have a positive effect on group performance by motivating volunteers in accomplishing
tasks important to the success of the group [9, 40, 99]. However, monitoring own and peer activities
via feedback is core to supporting collaborative learning environments. For example, prompts and
visualisations are often used in online communities for problem-solving, learning and collective
decision-making for monitoring progress and activities [40]. To build consensus in a group, high-
lighting the level of agreement within the members of the group may act as a persuasive method
towards taking a particular course of action, as individuals use that information to narrow down on
a set of options. This feedback is used with success in the commercial sector to influence consumer
choices, and literature suggests that revealing majority ‘votes’ [63] and levels of consensus [60]
can influence other group members in problem-solving contexts. For instance, Project Discovery,
utilizes this method, providing community consensus as a feedback for classification tasks without
an expert annotation [53]. However, it may be limiting to equate consensus simply with agreement,
uniformity or homogeneity [74]. Consensus-building that relies heavily on individuals’ dispositions
and drivers towards social conformity reinforces habits and behaviours whereby the learning goal
is determined a priori; it limits the function of collaboration to the transmission and confirmation
of existing ideas while discounting evidence that may not fit with the expectations of the individual
or the group [98].
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1.2.2 Expertise-driven consensus. Expertise plays an important role for collaboration as members of
the group may possess different skills, have variable levels of knowledge and experience, and show
different interests. Highlighting individual uniqueness and difference can increase contributions
from people collaborating online, while identifying the expertise of the individuals in the group
can be an effective strategy to persuade other members in decision-making tasks [9, 46, 88]. User
expertise ratings, a common method for highlighting individual expertise, are ubiquitous in online
communities, whether it is for ecommerce, tourism, expert reviews, social media or even citizen
science [49]. More specifically, citizen science projects such as iSpot [2] and iNaturalist [1] make
use of user expertise through the use of reputation scores (in iSpot) and leaderboards (in iNaturalist)
to highlight ‘best performing’ members of the community. Both social persuasion (see 1.2.1) and
expertise-led consensus are widely utilized in online communities for building consensus; however,
both these methods may generate a conformity effect whereby members of the group may agree
with a majority position that may sometimes be incorrect [61, 93] due to the power of influence
exerted by the group or by one of its members [61].
Online communities also have means to enable anonymous collaboration, and this technique

is commonly utilised by many users, for example, in social networking websites to maintain
privacy when collaborating on sensitive issues. Anonymity has shown to be effective for increasing
contributions, but may also have negative effects such as sharing incorrect information, uncivil
behaviour or loss of reputation for contributing users [17, 30, 75].

1.2.3 Social learning. In problem-solving contexts such as citizen science and scientific research, it
is not only the performance on a problem-solving task that may be affected by the level of expertise
of an individual [50] but also how problems may be approached [18, 76]. In such contexts, a first
level of social learning may occur through modelling, followed by reproduction and apprenticeship
of a particular way to frame a problem or execute a task. For example, as novices gain expertise
over time or through training they tend to approach the problem more like experts [20, 76]. But a
second level of social learning may also entail increased levels of self-regulation and self-efficacy in
learners [100]. For example, any form of collaboration which enables communication and sharing
of resources (cognitive or technological) among members of a group (even through chat boxes) can
positively affect attention and engagement. Expanding the number of possible feedbacks on a task
increases the possibility for individuals to observe the effects on a product or a course of action, thus
improving the quality of the work [40, 96]. For instance, a form of sequential task editing which
enables dialogic interaction, where subsequent users edit the input of previous users, has been
shown to be effective over creative tasks [3, 97]). Due to the nature of online communication, which
is largely asynchronous and sequential, this technique can be effective for supporting collaboration,
as each member of a group can utilise the shared inputs of the previous users while providing their
contributions.

Following Rose et al. [1995] we can distinguish between (1) the level of generalised consensus in
a scientific community, which makes understanding possible, and (2) the level of immediate social
interaction, which draws upon difference of opinions and relies on evidence and argumentation.
While it is accepted that these two levels are integral to one another both in social and in scientific
practice, this distinction between levels is particularly useful to citizen science practices, as it points
to the possibility to overcome the idea of scientific information as a series of mental representations
that can be processed and replicated in the heads of individuals. Such an approach would – in
fact- limit the scope of the citizen science inquiry to well-known species. Instead, the ability to
identify unknown or difficult species may be a quality and feature of a diverse community, which
incorporates local peoples’ experiences and could include machines as part of a third level of
social learning processes, such as those occurring in extended communities of socio-material
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practice [41, 73]. This understanding of social learning is most closely related to the ideas of
situated learning [52, 91], distributed cognition [69, 70], and activity theory [29]. Lave and Wenger
specifically called out the problematic assumption that treats technology as a given instead of
focusing on its interrelations with other aspects of a community of practice [52].

1.2.4 Citizen science practice. Citizen science projects such as iNaturalist [64] and iSpot [80] rely
on creating communities of nature enthusiasts uploading photographs of plant and animal species
as well as identifying specimens on photos shared by other members of the community. More
specifically, they i) require multiple annotations for producing reliable data, ii) highlight expertise of
the members using user ratings (a method to highlight individual uniqueness) and iii) use free text
commenting to capture opinions as well as scientific information. Annotations are usually provided
by members of the community using their expertise while additional members can agree or even
improve the existing level of annotations [80]. However, the feedback effect of these techniques
(individually or in combination) on data quality, engagement and citizen science learning is largely
unknown.
Other citizen science platforms such as Zooniverse, Eyewire, Project Discovery and BeeWatch

recruit volunteers for online tasks that primarily concern processing of data [53, 59, 85, 87], with
“independent classifications” being solicited. They utilise the principles of goal setting, provid-
ing shared learning resources such as tools and visualisations and level of agreement to enable
collaboration among community members for consensus building. Zooniverse and Eyewire also
provide forums for discussion and dialogue, which in case of Eyewire is in real-time, for community
building and peer learning [59]. Zooniverse users utilize a social interface, where members of the
community can discuss classifications tasks enabling them to learn to identify through ‘practice
proxy’, a peripheral participation strategy that provides feedback to newcomers within a community
of practice [52, 62]. However, these forums are not directly linked to the classification task and thus
might limit opportunities for social agency [41] through collaboration and peer-learning, the latter
being documented as an important dimension for tasks such as learning to identify species as part
of a community of practice [27]. Additionally, opportunities for collaboration among members may
also help improve scientific data quality, user-learning and engagement – dimensions, important
for Citizen Science practice [13, 37, 92]. Hence, the objective here is to look more closely at how
identification tasks derive their meaning as ‘social practices’ for the people involved, by taking into
account their dependence on the affordances and design of the interfaces for their meaning-making.

1.3 Contributions
The overall research aim of this article is to understand the role of feedback strategies for collabo-
ration to support user learning and performance on an on-line (asynchronous) consensus building
task. We developed online collaboration interfaces operationalising four feedback techniques which
were then used by the participants to perform species identification tasks in a citizen science
context. Three of these techniques, i.e. highlighting level of agreement, displaying user expertise
and providing means of communication through text such as chat boxes or commenting, are ubiq-
uitous with respect to the gathering of user data and in supporting online communities dealing
with user-generated content (e.g. ratings and feedback for ecommerce; open source programming
communities; social media websites and wikis; public forums and question-answer websites). The
fourth, a Natural Language Generation (NLG) system, is novel and deploys an AI to mediate the
task. In addition to the feedback techniques, we also identified three different situations where
there was a lack of consensus on the task, thus necessitating intervention through the collaboration
interface.
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The citizen science and crowdsourcing literatures have not previously explored the effects of
feedback techniques on data quality and citizen science learning in collaborative settings. We are
also unaware of any studies that have investigated the different types of disagreements identified
and studied in this article, which are a significant dimension when seeking to widen the reach and
potential of citizen science to involve citizens in important issues related to science and society [31].
This article adds to the literature by addressing these significant gaps.

2 MATERIALS AND METHODS
We investigated the role of different asynchronous online collaboration techniques in impacting
performance, learning and engagement within online citizen science communities.

2.1 Dataset
We used data from the citizen science platform BeeWatch (recently relaunched as https://www.
plantingforpollinators.org), which provided participants with the option to submit images of
bumblebees online as well as to independently identify images submitted by fellow BeeWatch
participants through crowdsourcing [87].
The UK-based platform is designed to help users identify photographed specimens to species

level, as one of 22 possible bumblebee species. In general, the species can be differentiated on
the basis of colour pattern and morphological features (e.g. colour band pattern on their bodies,
presence/absence of pollen baskets on their hind legs, size of the face). There are considerable
differences in identification difficulty between species [79], with some being readily identified even
by novices, and others requiring considerable expertise. Additionally, features may not be visible
or harder to detect in photographs, adding to the difficulty of accurate species identification.
Specifically, we used photos submitted to BeeWatch for which multiple independent species

identifications have previously been obtained from participants, but without those leading to
agreement. The crowdsourcing component of BeeWatch has received more than 25,000 individual
identifications for 6,500 images submitted. The independent species identifications submitted by
BeeWatch participants were used to calculate the level of consensus for each image; and when a
consensus threshold was reached [79], the species identification was accepted, and the original
submitter was sent feedback on the species identification. Each image could accept a maximum
of 10 independent identifications from the crowd. If there was still a lack of consensus, the image
needed to be sent to a bumblebee expert for identification, a time and effort intensive step that
would be useful to minimise. Such images, for which there was lack of consensus within the crowd,
provided us with a dataset for studying the effects of collaboration for consensus building.

2.2 Types of Consensus Encountered
From this dataset, three different situations were identified where crowdsourcing did not provide
an identification that met the consensus threshold for acceptance. All of these situations led to
an expert identifier being solicited for authoritative identification of the species. We label these
situations as three different consensus types:

• Consensus Correct (CC): If there is an existing majority tending towards the correct identifi-
cation (i.e. if at least 5 out of the maximum 10 identifiers have identified the image as a single
species and that species is the correct answer), but not reaching the required threshold for
acceptance (determined by a Bayesian consensus model). We label these images as Consensus
Correct (CC) images.

• Consensus Not Correct (CNC): If there is an existing majority tending towards an incorrect
identification (i.e. if at least 5 out of 10 identifiers have identified the image as a single
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species and that species is not the correct answer), but not reaching the required threshold
for acceptance. We label these images as Consensus Not Correct (CNC) images.

• No Consensus (NC): If there does not exist a majority of at least 5 out of 10 for any single
species, we label these images as No Consensus (NC) images.

We introduced a collaboration step in such situations, whereby the participants could review their
identifications in the light of new information generated from independent peer annotations. We
focused on four different types of on-line collaboration interfaces described below, drawn from
both literature and practice, as summarised in Section 1.2.

2.3 Collaboration Interfaces
We designed four different collaboration interfaces to investigate their effects on consensus building
(Fig. 1 to Fig. 4). The interfaces were co-designed with regular inputs from two bumblebee experts
who tested them iteratively to improve the design and workflow of the interfaces to be used in our
experiment. Each interface implements one of four types of feedback, which impacts the process of
collaboration.

2.3.1 Distribution Interface. To determine whether information on the existing consensus distri-
bution would influence participants into reviewing their identifications - possibly towards the
majority opinion - ‘Distribution’ was used as one of the techniques for persuasion [53, 60, 63]. The
first design intervention uses pie chart visualisations of the “Distribution” over species identifi-
cations to understand its effect during a consensus building task (Fig. 1). In computer-mediated
task-based scenarios, due to the nature of communication (asynchronous and anonymous), the
social pressures which are reported in face-to-face communication may be less influential [95].
Yet, the level of agreement on a task is often utilised in online communities for problem solving
and decision-making. We are interested in whether online participants are persuaded to modify
or change their opinion solely based on what other anonymous participants say. In this instance,
feedback will not include the possibility to incorporate specific guidance from others to reduce
the number of options and increase self-efficacy as per the second level of social learning that we
identified in the literature, but will be largely reinforcing existing knowledge and beliefs [98].

Fig. 1. The Distribution Interface. This interface shows the existing consensus information using a pie chart.

2.3.2 User ratings Interface. The second interface was developed to assess the effect of expertise of
other participants. All 10 species identifications were shown as a list with ratings for the participants
that provided them. Participants’ own ratings were not displayed in order to prevent comparison
of their own expertise with others. The identities of participants were anonymized and two user
ratings were shown as icons (Fig. 2): one to represent experience (blue bars), specifically the number
of previous identifications by that participant on BeeWatch; and another (golden stars) to represent
skill level, constructed on the basis of a user’s historical identification accuracy (where one star
represents <35% accuracy, two stars indicate accuracy between 35-55% and three stars indicate
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Fig. 2. User Ratings interface showing the existing species identifications together with the user rating of
each user. The column headings represent users (User), their identification (Identification), total number
of previous BeeWatch identifications (Submission) and accuracy on the previous identifications (Accuracy).
Each row represents a single user with their existing identification, number of previous identifications that
the user submitted (blue bars) and the existing accuracy of the user on previous identifications (golden stars).

accuracy>55%). The list was ordered in decreasing order of experience. Icons rather than real
numbers of submissions or percentage accuracy were used to enhance communication values,
using icons commonly used on digital interfaces representing information (i.e. golden stars for
ratings, indicator levels for e.g. sound/mobile signal).

Ratings of user expertise are widely utilised in both online and citizen science communities, and
the literature has suggested they are effective for engagement and for improving the performance
of a group [9, 46, 49, 80, 88]. We use “User ratings” as the second design intervention, whereby we
highlight the expertise and experience of individual members of the group and study its effect for
building consensus in a group. For this interface, participants’ own self-reflection is supported by
feedback pointing to specific areas of expertise which would to some extent support apprenticeship
as per the first level of social learning [20, 76].

2.3.3 Social Interface. Sharing of resources and knowledge through communication is important
for building communities of practice; providing a forum for members of a group to communicate
may thus influence task accuracy and consensus [3, 40, 96, 97]. Additionally, a knowledge sharing
forum may support peer learning, an important outcome of citizen science. Social communities-
based projects use this method to capture expertise and to provide opportunities for high expertise
individuals to guide others [64, 80]. We designed a third “Social” interface whereby members of
the group could effectively communicate their knowledge and expertise using anonymous goal-
directed comments. In the third interface (Fig. 3) the user was provided with the option to share
views, motivations underpinning an identification and further relevant experience or contextual
information related to an image (such as image quality or angle of the specimen) with others through
free text comments. In this interface, the user was first given textual information, highlighting
their identification and the alternative identifications provided by their peers. The user was then
encouraged to leave comments, specifically focusing on the features that may help their peers with
the identification. It was also mentioned that they could read comments left by their peers to see if
they might have identified the species incorrectly. All comments from users were anonymised for
the platform to enable greater scope for dialogic feedback, by incorporating the detail of the specific
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Fig. 3. Social interface with chat boxes. This interface firstly highlights the user’s own submission (blue font)
and provides the alternate submissions by the other users. Then the interface encourages the user to leave
comments that may help other users. The interface also encourages the user to read any existing comments,
which might help in building consensus.

features that participants considered significant for identification as well as their justifications for
the identification made, in line with second and third level of social learning [31, 41, 100].

2.3.4 Natural Language Generation (NLG) Interface. Artificial Intelligence and machine learn-
ing algorithms are increasingly being researched and utilised in ecological and citizen science
projects [56, 57, 87, 90]. As more and more projects utilise these technologies, human-AI interaction
in citizen science becomes an important domain of research and practice [16]. To add to this
relatively new area of research we utilise a Natural Language Generation system to study the
role of AI for supporting online collaboration. More specifically, we use a system which provides
machine generated texts highlighting any differences in visual features between the different
species independently identified by participants. This machine-generated text concerning com-
parison was adapted from an existing implementation used to provide feedback to citizens on
their submissions on the BeeWatch platform by explaining what features to focus on [12, 87]. In
short, when a participant’s identification is found to be incorrect by an expert, the NLG system
uses the identification key to identify the visual features that differ between the species selected
by the participant and expert, and organises these differences into a formative feedback message
that explains why the identification is incorrect and what features to focus on to make the correct
identification. In this work, we automatically generated NLG text comparing the participant’s
identification to the existing consensus identification as feedback for re-appraising their original
identification. This enables participants to consider alternatives and support consensus-building.
The use of machine-generated texts for consensus building may be a suitable method for creating
sustainable online citizen science communities where expert knowledge can be presented in a
user-friendly manner to promote collaborative learning between community members.

This interface was designed to determine whether the formulated differences in visual features
between bumblebee species, which are machine-generated and presented in the form of natural
language texts, would be useful to build consensus. This interface (Fig. 4) used automatically gener-
ated texts to identify the features that distinguish the user’s identification from those of other users.
We first automatically generated text that highlighted the features of a user’s existing identification,
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Fig. 4. Natural Language Generation interface showing machine generated texts. This interface firstly
highlights the user’s own identification (in this case Buff-tailed bumblebee) together with NLG text which
highlights specific features of that species. Then the interface displays comparison NLG texts for all other
species submitted by other users.

so that these could be compared against the submitted image(s). Next, we automatically generated
text that reported the differences between the users’ identification and each of the conflicting
identifications. Notably, with reference to our theoretical framework focused on feedback in social
learning, this fourth interface focused more on the affordances of the machine rather than the
strength of the social environment that was generated, thus further decoupling the social from
the material in the identification task. As we will discuss in the data analysis that follows, this
aspect was important in order to probe our understanding of the effect of feedback on learning in
socio-material interactions [41].

2.4 Procedure
Based on previous experience with employing BeeWatch data for user performance studies, we
sought at least 50 participants for the study and 15 images for each of the four interfaces. We
eventually decided upon working with 72 photographs from BeeWatch, which were randomly
selected from a total of 497 images that had not reached the required threshold for acceptance
(see Siddharthan et al 2016 for more detail). Of the 72 images, 36 had consensus of at least 5/10
identifications for the correct species (CC condition), 16 had consensus of at least 5/10 identifications,
but for a species that was not correct (CNC) and 20 had no consensus of at least 5/10 identifications
for any species (NC). All 72 images had an expert identification, which was used for evaluating
accuracy of participants’ identifications before and after the collaboration step. Participants who
had provided an identification for any of the selected photographs were contacted via email (114 in
total) and invited to participate in a study to review their previously submitted identifications. Each
participant viewed different numbers as well as types of interfaces depending upon the number of
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images in this study’s sample which they had previously identified. Hence, some of the participants
saw all interfaces while others saw only one, two or three.
The email contained the information about the study as well as the link to a webpage (see

Appendix A.1). After clicking on the link provided, participants were shown the consent form
for participation and – upon agreeing to participate – they were shown a list of images allocated
to them for review (see Appendix A.2)). When selecting an image, the user was directed to the
collaboration interface associated with that image, together with “Review” and “Do Not Review”
buttons at the bottom of the page (see Appendix A.2 for an example workflow).
In addition to comparing accuracy before and after collaboration, information regarding the

reasons why the participants clicked on “Review” or “Do Not Review” during the process was
also collected (see Fig. 5). Participants were not obliged to respond. In the ‘not reviewing’ popup
window, a radio button was provided saying “My existing identification is correct”, as well as a
free text option. When clicking on “Review”, users were directed to a page where they were shown
the image and collaboration interface together with the guide used previously to derive at the
identification (Appendix A.2). On this page, they could submit their new identification, which could
be the same as the original one or a different identification. After submitting the new identification,
participants could also provide their reasoning for reviewing their identification (Fig. 5).

Fig. 5. Popups for collecting reasoning information when a user clicked “Review” (top) or “Do Not Review”
(bottom). The top popup box provides a text box for the user to provide specific information on why they
reviewed their existing identification. If the user selected the same species after reviewing the popup displayed
a note to the user as shown in the figure. The bottom popup was shown if the user did not review their
identification after seeing one of the collaboration interface. This popup provides two options: one where the
user can indicate that their existing identification was correct and another to make clear any other reason
(through free text) why they did not review their identification.

Through the above processes of reviewing and reasoning, participants were engaged in dialogic
interactions (visual and text-based) with information provided from other participants, interaction
with the interfaces and process of reviewing. These interactions may have supported divergence
and convergence of participants opinions, and the reasoning information (of either their previous
or new annotations) from these interactions were hence utilised to assess how participants may
have engaged with the collaborative interfaces for consensus building. The qualitative results thus
(see 3.3) provide a summary of engagement across each interface assessed from the reasoning
provided by the participants.

2.4.1 Participants and responses. A total of 61 out of 114 invited BeeWatch users (53.5% response
rate) participated in the study and completed a total of 373 out of 720 (51.8%) possible identifications.
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Of the total of 72 images the mean number of responses for each image was 5.8 with a minimum of 2
and a maximum of 9 responses per image. The interfaces received a similar number of responses (94,
96, 91 and 92 responses for the Distribution, User Ratings, Social and NLG interfaces respectively).
Response distribution was also rather even across interfaces with respect to consensus type, with
Consensus Correct images having 50, 49, 50 and 49 responses; Consensus Not Correct images
having 18, 21, 17 and 19 responses and No Consensus images with 26, 26, 24 and 24 responses for
Distribution, User Ratings, Social and NLG interfaces respectively.

2.4.2 Statistical procedure. All statistics was performed using R version 4.1.0 [72]. New accuracy
was fitted using R’s base glm function with old accuracy, interface type, consensus type, number of
interfaces used (by the participant during the experiment) and the interaction of interface type
and consensus type; and the ANOVA function from the car package was then used to test for
significance. To test interface effect by consensus type (CC, CNC and NC), hypothesis testing of
count data (change in accuracy by interface) was done using the Fischer test due to the presence of
cells with low counts.

3 RESULTS
We focused on how participants responded to different forms of online collaboration techniques,
which were designed to support peer-learning and improve user performance during species
identification tasks. We compared the four different collaboration interfaces, in terms of their
effectiveness for consensus building on the task of species identification and their potential to
introduce or reinforce bias. For the latter, we considered whether there was already a level of
consensus (5/10 identifications) for any species and if so whether it was already for the correct
species. Our expectations were that: (a) user accuracy would improve through reviewing their
classification with any interface; (b) where there was an existing consensus, the Distribution and
User Rating interfaces would persuade participants to revise their identification to that consensus,
whether or not it was correct; (c) the Social and NLG interfaces, by focusing on the identification
skills rather than the peer responses, would outperform the two majoritarian interfaces for images
where there was no existing consensus, and also where the existing consensus was for an incorrect
identification.

3.1 Change in consensus
The majority of images, 96 out of 117 reviewed (82%), for which participants clicked “Review” were
initially incorrectly identified by that participant (expert identification different from participant
identification); and the majority of images, 151 out of 256 not reviewed (59%), for which participants
clicked “Not Review” were initially correctly identified by the participant (expert identification
same as participant’s). This indicated that incorrect identifications were more likely to be reviewed
during collaboration. However, for the incorrect images which were not reviewed (105 out of 256),
participants mostly selected ‘My identification is correct’ as the reasoning. This suggested that the
information provided through the interfaces may have been either lacking or not persuasive enough
to review the original identifications. Figure 6 shows the percentage of identifications changed
and reviewed across interfaces, highlighting that User Ratings interface (35.4% reviewed, 32.3%
changed) may have been the most persuasive, followed by Social (32.9% reviewed, 28.6% changed)
and NLG (29.3% reviewed, 26.1% changed). Using the Distribution interface (27.6% reviewed, 24.4%
changed) resulted into lowest percentage of identifications reviewed and changed.

The results in Fig. 7 show that the level of consensus changed from before to after collaboration
for many of the 72 images worked with. Consensus was defined as proportion of the group
(between 0 and 1) that selected the most-selected species, and was different from accuracy, where
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Fig. 6. Figure showing the percentage of identifica-
tions that were reviewed and then eventually changed
by the volunteers across each Interface type.

Fig. 7. Figure showing the percentage agreement for
all 72 images before (blue) and after (pink) collabora-
tion, ranked on the basis of ‘original (i.e. old) consen-
sus values’

each individual identification was evaluated as correct or wrong by comparing to a gold standard
expert identification (0 or 1) and then averaged. The results illustrate that there was an increase in
consensus after reviewing as the average consensus increased from 58.2% to 67.6% overall. According
to consensus type when the original consensus was correct the increase was from 63.4% to 75.9%,
for incorrect consensus images it increased from 62.9% to 63.9% and for no consensus images from
45.1% to 55.6%. Moreover, the greatest gains were when consensus was initially relatively low, and
where consensus was already high, reviewing frequently reduced the level of consensus.

3.2 Effect of interface and consensus type
Significant variation in new accuracy was explained by the effects of old accuracy (𝜒2= 158.4, df =
1, p < 0.001), Interface type (𝜒2= 7.67, df = 3, p = 0.053) and Consensus type (𝜒2= 27.26, df = 2, p <
0.001), while the number of interfaces used by each participant and the interaction of Interface type
and Consensus type did not significantly affect new accuracy. Average increase in accuracy after
reviewing was 4.2% for the Distribution interface, 12.5% for the User Ratings interface, 18.6% for
the Social interface and 11.9% for the NLG interface (Fig. 8D), indicating that the Social interface
design led to the largest average increase in accuracy.

When taking Consensus type into consideration, we found that when the initial consensus was
towards the correct species (Fig. 8A), the increase in accuracy differed significantly by interface (p
< 0.05), suggesting the usefulness of the User Ratings interface for this category of images to enable
participants to review their identifications. Where consensus was towards the incorrect species
however, no significant difference of interface type was found (Fig. 8B). Finally, for images where
there was no consensus towards a particular species (Fig. 8C), differences across interface type
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Fig. 8. Bar Plots showing mean percent changes in accuracy across Interface type and Consensus type in the
first three columns and overall mean change in accuracy in the last column (Error bars represent standard
error of the mean). The missing bars for User Ratings in (B) and (C) highlight no overall change in accuracy
for these cases as the mean increase in accuracy was equal to the mean decrease in accuracy for these cases.

were again significant (p < 0.01). Of all interfaces, User ratings were most sensitive to Consensus
type, improving accuracy markedly (more than any other feedback interface) for the Consensus
correct images but leading to no improvements in accuracy for other image types, highlighting
the potential negative effect it may have in such cases. Across all consensus types, the Social type
achieved greatest accuracy, followed by the NLG interface, both contrasting sharply with the low
level effect of the Distribution interface.

3.3 Qualitative results on engagement
3.3.1 Distribution. For the Distribution interface, participants who did not review their identifica-
tions mostly selected the “My identification is correct” option as previously highlighted, although
they might have been unsure if indeed their identification was correct due to the limited informa-
tion provided by the interface. Comments showing the reasoning from some of the participants
highlighted that the distribution information may have been insufficient for them to either change
their existing identification, for example because they were not given any new information about
how to identify tricky photographs (“Not an adequate image to identify with sufficient confidence
{4900}”; “Unable to identify from this picture {1400}”). This was evident also for consensus not
correct and no consensus images (“I can’t be sure so not going to change my view {6301}” ; “I
think it may well be a buff tailed, but I am not able to see the tail colour, so I cannot be sure, so I
think it is better to say not sure. {3091}”). Participants who did review their identifications did not
mention influence of the interface information explicitly and confidence in their new identifications
appeared often rather limited (“I’m not sure about the wings, they may be smokey and I don’t
think there’s a pollen basket {4438}”; “Looking again, I think that this is .. have pollen baskets . . .
round face with a yellow ’moustache’ . . . yellow bands . . . the second look has helped me come to a
decision. Though I am still not very confident of this id. {3091}”).
The Distribution interface was least effective in making participants review their incorrect

identifications across all consensus types (cf. Fig. 8). While this interface gives information about
the existing disagreement within a group, it offers limited opportunities to engage in a dialogic
interaction with the group/interface [6, 86]. In line with the theorisation of feedback via persua-
sion [61, 93], the interface relies on the participant’s self-motivation and own prior knowledge
to carefully review their existing identification. Though some of the participants were motivated
to review, this was a small number compared to other interfaces, in line with it offering limited
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impetus to participants to review their identification. For those who did modify their identification,
their comments highlighted the limited use of the interface in helping them revisit their species
identification, thus preventing self-regulation and self-efficacy.

3.3.2 User Ratings. For the User Ratings interface, some of the participants who reviewed their
identifications explicitly mentioned that they were persuaded by other users (“I think the others
are correct, I must have clicked the wrong button {6269}”). Analysing the reviewed identifications,
we found that more experienced users were indeed usually correct. More importantly, the reasons
for reviewing indicated that some participants were not just mimicking or agreeing with the top
user but also validated the features, which they might have missed previously (“Buff margins to
white tail. Not observed in previous viewing {6691}”; “margin between the white tail and black has
a hint of colour {1670}”; “What I think is a long tongue was missed by me originally . . . the yellow
banding at back of thorax and front of abdomen is not quite correct .. {2939}”).

These observations highlight that firstly the user ratings were persuasive for participants, which
led them to review their identifications using the identification tool. As the participants were not
aware of their own ratings the interface emphasises how the perception of expertise can be used
to improve engagement. Although feature-based information was not provided on this interface,
participants tried to pay attention to features different from those considered for their original
identification. However, this may be argued to be only true if the existing consensus was correct as
the interface may lead to negative performance when the consensus is incorrect or in the cases
where there is no consensus (cf. Fig. 8).

3.3.3 Social. The Social interface led to a consistent increase in accuracy across each consensus
type and overall outperformed the others (cf. Fig. 8D). In this interface, the types of comments left
mainly concerned reasons behind participants changing their identification. In total, there were 28
comments left for the 18 Social images and only 2 out of them did not have any comment. However,
the new information was only available after someone had commented on this interface. The types
of comments centered around two themes.
a). Key features. This theme included comments mainly highlighting features that could help

other participants with identifying the specimen (e.g. “Dark wings indicate cuckoo; single dark
yellow band on abdomen just above tail suggests female Southern cuckoo {6369}”; “Clearly a cuckoo
bumblebee due to absence of pollen baskets. Bombus vestalis due to yellow patch above white on
abdomen {6880}.”). Some participants also commented on the reasons why their identification may
be correct compared to other options (“Two dark yellow bands and a dirty white tail means this
is B. terrestris. If it were B. pratorum the tail would be much more orange/red. {6272} “; “. . .The
three yellow bands seem too thick to be other than those of Garden or Ruderal bumblebee. It’s
not a Field Cuckoo - they don’t have this pattern of three yellow bands and a white tail. I don’t
think it’s a Barbut’s as the bands are too thick. I went for Garden as Ruderal are rather rarer. I
think the legs might be showing a pollen basket but can’t really see. {532}”). The highlighting of
features as well as comparison with other species was persuasive for other users for reviewing the
identifications as was evident from the reasoning provided after using the Social interface through
reasoning pop-ups (Fig. 5) (“Based on other’s views - seems likely {1414}”; “Changed mind - agree
with comment added by other user {6353}”).

b). Contextual information. This theme included comments related to the contextual information
which might affect the identification, such as image quality (“I thought the photo was poorly
illuminated but could just see a band on the thorax and abdomen and orangey tail. {5347}”), visibility
of features (“To identify this, I’d need to get a better view of the abdomen and the bottom of the
thorax.” {532}) and angle (“The face does look quite long at this angle, so I did wonder about it
being a Garden bumblebee. However, at this angle, it is tricky to be sure if the face is long, and also
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where the second yellow band is. Without a side or top view I am not sure of the id, so I am going
with Not identifiable. {3091}”).

In some cases, others seem to agree with the reasoning information that was present in the
Social interface (“Dark head and thorax, slim build, reddish abdomen - this is a Red Mason bee, not
a bumblebee {6369}”); “this is not a bumblebee, a discoloured (bleeched by the sun) red mason bee
is correct.” {6269}), while in other cases participants did not agree with the reasoning information
(“To identify this, I’d need to get a better view.” {532}; “The photo does not show it so Just looked at
the main features available on the photo/photos I.e strips, colour and antenae - then look at the
standard pictures given - and just see what fits best” {4082}).

Hence, using the Social interface, participants could provide reasoning behind their identifications
as well as learn from others, including if they had overlooked certain features that might have
led to different identifications. The comments left also suggested higher engagement with the
overall process of identification. Using this interface, participants were willing to comment on
the contextual information, such as image quality or angle of the bumblebee, that would be
difficult to capture using other interfaces and may be relevant for identification. The interface
promotes dialogic interactions between the participants by adding information and/or possibilities
to view the same object from different angles; the information provided during these interactions
enabled convergence of thinking, thus leading to improvements in accuracy and consensus building.
However, lack of comments for some images as well information only available after someone left
a comment may have limited the collaboration and interactions between participants. Nevertheless,
the interface consistently enhanced engagement on the task as compared to other interfaces, with
participants willing to revisit their existing identifications and utilising the new information to
improve accuracy.

3.3.4 Natural Language Generation (NLG). The NLG interface improved consensus across all image
types. The comments from participants also indicated how they may have used the information
provided by the interface. The comments often focused on the features that were clearly visible in
the image andmay have directed attention of other participants towards those features, contributing
to increase in accuracy. For example, Participant 5347, while identifying a Consensus Correct image
commented: “Hairy ab. and that probably is pollen baskets and not just long hairs. Cannot tell if
wings are clear or dark ”; which highlights information from the NLG texts to focus on the relevant
feature (pollen baskets) to change the identification. Similarly, for Consensus Not Correct image,
Participant 6269 commented “Either garden or heath, but in one picture it looks like the face is
not that long, so heath ”; again describing the feature information that was used to change the
identification.

The NLG texts were designed to provide a comparison of identification features of species, and
the texts may arguably simulate a dialogic interaction that assisted participants to derive at better
species identifications.

4 DISCUSSION
We investigated how participants involved in a citizen science project concerning on-line species
identification responded to different forms of feedback, in order to better understand online collab-
oration and inform the design of toots that support peer-learning and improve task performance.
To address this, we designed four collaboration interfaces implementing different feedback mecha-
nisms within asynchronous, collaborative online interactions to support consensus-building. The
interfaces, underpinned by collaboration literature and citizen science practice, allowed for studying
the role of majority vote, user expertise, communication and sharing of resources through social
interactions, and automatically generated texts representing expert knowledge.
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Highlighting “level of agreement” in the form of visualisations is a widely utilised technique
in online communities and is suggested as a persuasive method in literature [60] for supporting
collaboration; however, we found it to have little effect on user accuracy and engagement in our
study. Although the visualisation to communicate “level of agreement” may have helped users in
monitoring and progressing on the identification task [40], it generally lacked persuasiveness due
to the absence of any species identification knowledge or connection therewith (i.e. authority),
thus preventing to reconsider the initial species identification made.
Validating prior literature [9, 46, 49, 88], user expertise influenced participants to carefully

reconsider their choices, making it a persuasive method to support collaboration, even though this
interface also lacked communication of species identification knowledge. The conformity effect [93]
discussed in Section 1.2 may have been elicited by this interface, leading to increased accuracy when
the consensus was correct but no enhanced accuracy (unlike for the three other interfaces) due to
participants being driven towards the incorrect answer [61]. The fact that there was no decrease in
accuracy when the majority vote was incorrect or when there was no consensus indicates that the
conformity effect of the interface was not fully blinding: participants were more likely to conform
with outcomes that seemed right than with those that seemed wrong or ambiguous. Thus, as
participants utilised the identification key while reviewing their identifications, they also looked at
reasoning behind reviewing their identifications, which limited social conforming effects and bias.
This may not be the case in online communities where such keys or learning resources are not
provided or readily accessible. Hence, usage of expert ratings to support collaboration should be
approached with caution.

The Social interface, which promotes knowledge sharing and communication between members
of the group, was most effective in improving user performance. The results provided evidence
of participants being persuaded to review their observations in light of the comments posted by
others, facilitating peer-learning [24]. Comments posted were anonymised to prevent any effects
associated with the user’s personal profile [17]. The interface with the goal setting “instructions”
may have acted as a ‘rules for interaction’ for the group members [40, 99], leading to comments
with detailed reasoning and preventing “general commenting” behaviour as is the case with many
online communities. As this method of online collaboration is widely used in citizen science, be it
in various ways, the results of this study may further inform the design of social collaboration for
citizen science [59, 80, 85]. Results from the analysis of the Social interface also indicated that this
kind of task-focused annotation appeared the most effective in motivating participants to review
their initial submissions, deliberately compare features across species and types of images and
thus simulate the experiential feed-back loops underpinning learning in the field and as part of a
community of practice [27, 53].

The effect of AI in mediating the collaboration task using the NLG interface revealed that it was on
average as effective as the user ratings interface in improving user performance. More importantly,
however, the effect was consistent across all consensus types, showing that this technology can be
a useful intervention for supporting social collaboration in citizen science. This is an important
finding as this technology provides the same amount of information for every image and is not
dependent on the participating user. The Social and NLG interfaces were found to also help with
creating consensus in situations where there is no consensus, which make them suitable methods
for building consensus in web-based citizen science. The distinct capabilities of the interfaces also
highlight their potential for use in combination with supporting online collaboration. Some of these
are already utilised across online communities such as Reddit and Stack overflow, where some of
the comments and posts are uploaded by members of the community [24]. Additionally, citizen
science platforms such as iSpot show the level of agreement on a species, the user ratings (called
‘reputation’ on iSpot), and allow for comments around the identifications, thus using a combination
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of social, user ratings and distribution interfaces [80]. We haven’t explored these dimensions within
our study, but our results highlight the potential for utilizing machine-generated content to support
and promote contributions from community members, for example, the NLG texts can be used to
support and strengthen discussions initiated by citizens on a social platform.
All four feedback techniques provided insights into how collaboration can assist consensus

building online while supporting peer-learning for citizen science, strengthening some of the
findings from the collaboration literature [9, 26, 40, 51, 55]. The study also provides some novel
insights, such as the limited effects of the Distribution interface, context specific effect of the User
Ratings interface, and value of machine-generated texts for consensus building. Projects on citizen
science platforms rely on independent validation of datasets from multiple users, which is an
important criterion for scientific analysis and removing biases. An arguably yet more important
finding, given how central data quality, learning and engagement are to online citizen science [43,
44, 47, 54], is what online collaboration can bring more generally. Strong and persistent concerns
about data quality have driven many citizen science projects to seek independent validation
routes [53, 59, 83, 87]. Whilst sensible, and required for scientific data analysis, this may lead to
missed opportunities for collaboration and peer-learning. The results from our study show that
careful collaboration design, such as the Social interface which provides a platform for knowledge
sharing and communication, may help to improve scientific data quality as well as foster user-
learning and engagement [59]. This is an important finding that (1) can support greater integration
of citizen science in formal and informal science education contexts; and (2) can enable members of
the public not only to contribute but also to potentially influence scientific research agendas with
novel targets and questions that will emerge from shared experiences in their local contexts. This
is a notable contribution, particularly for citizen science and policy-making practice in contexts
which demand greater sensitivity to historical, linguistic and contextual dimensions of specific
environmental or developmental problems [34].
Machine learning and AI algorithms are being explored increasingly for automated species

identification, and for some species groups the algorithms are very efficient [22, 57]. Nevertheless,
for noisy data and difficult species such as bumblebees AI performance is still inadequate, therefore
requiring human expertise for data validation and emphasizing the need for training of volunteers
through learning resources, such as the collaborative technologies explored in our study [33, 36].
More importantly, developing identification technologies may help in engaging the wider public
around environmental issues, such as climate change and biodiversity loss, through positive citizen
action [78]. Finally, our research has wider implications in multiple disciplines, including taxonomic
research into developing novel species identification technologies vital for ecological and conser-
vation activities [89] and the domains of HCI and Human-AI interaction for the development of
AI-mediated collaborative learning environments. Future research can investigate how annotations
from automated image identification can be incorporated into such online environments to support
collaborative learning.
This study shows that collaborative interfaces can be used to help novices perform complex

species identification tasks. Therefore, citizen science projects that provide such interfaces can
facilitate novices in contributing valuable scientific information as well as acquiring scientific
skills [77]. Importantly, our study corroborates the value of the socio-material frame to make sense
of ‘learning through feedback’ [7, 68], within a system or assemblage which may include humans
and non-human expertise. This is an important finding which suggests that the value of digital
interfaces lies beyond their use as a novelty or repository of factual information, indeed by shifting
emphasis from the passive acquisition of ‘expert knowledge’ to generating interest and motivation
amongst participants. Significantly, a kind of ‘hot function’ that is related to social-affective en-
gagement appears to be present due to the newly established social interactions and collaboration
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(such as by commenting, supporting peers) on a cognitively demanding task (reviewing, utilising
new information) which the participants (as citizen scientists) were intrinsically motivated to
perform, leading to a common goal (building consensus) [32]. This emotional, social and cognitive
engagement emerges as intrinsic to the process of learning, enabling participants to achieve the
more immediate and practical goal of reaching the ‘correct’ identification. In addition, our findings
also showed that for successful outcomes, computational devices supported together two aspects
of the identification process: representational practices and relational practices. Representational
practices included writing verbal descriptions, including contextual information and estimating
shapes and sizes, converting one form of information (e.g. observation) into another (comparison
with another known species), which were made available to other users as textual ‘sketches’. Rela-
tional practices were visible as interactional exchanges mediated by simple language: the way in
which team members communicated with one another, often re-elaborating complex information
into accessible descriptions, influenced the level of engagement and collaboration.

This finding opens up exciting new avenues in citizen science research, looking at the integration
of technology in the development of hybrid communities of practice, which can help bring together
the ‘visual precision’ of the expert with more varied forms of encounter with nature [27], including
contextual, aesthetic, affective and embodied features underpinning environmental conscious-
ness [21]. Further research could focus on the design of social learning interfaces, supporting
more extended field-based investigations, with the potential to widen participation and inclusion
in citizen science initiatives in different cultural and geographical contexts, and by a variety of
different groups.

5 CONCLUSIONS
The primary aim of the study reported in this article was to explore the use of different types of
feedback within collaborative interfaces for building consensus on species identification tasks.
Collaborative interfaces such as the ones studied here are ubiquitous in online communities. We
report that interfaces which support logical reasoning for problem solving, such as the developed
Social and NLG interfaces, are more effective than the ones which only display consensus and
user expertise, and that the latter is context specific. We found the Social interface to be most
effective, however, the user-comments may need to be goal-directed to foster meaningful outcomes.
Additionally, we also found machine-mediated consensus building using NLG to bring value across
different consensus types, highlighting the potential of this technology for consensus building.
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A APPENDICES
A.1 Email text for participation
Dear BeeWatch user,

We would like to invite you to participate in an online study on the BeeWatch website, which is
part of ongoing research which focuses on collaboratively building consensus of species identifi-
cations. Participation to this study is voluntary and you can withdraw any time. All the data you
provide will be anonymised and your identities won’t be disclosed to anyone outside the research
team.

We have selected a few images for which there is lack of agreement among BeeWatch users, and
our records indicate that one or more of these images were identified by you.
We are investigating ways to improve consensus among users in order to get a reliable iden-

tification for the difficult photos. When you click on the link below you will be redirected to an
experiment webpage, which shows a list of the image(s) that you had already identified and where
a consensus has not been reached.
When you click on the individual images on the experiment webpage, you will be presented

with a different interface, which provides information about how other BeeWatch users identified
the image as well as options to review your identification.

If you want to change your identification based on the new information, you can click Review and
you will be redirected to the identification tool (that you have already used) where you can change
your identification. If you want to keep your existing identification, please click Don’t Review. If you
have any further questions related to this experiment, you can contact us by replying to this email.
Experiment Link http://homepages.abdn.ac.uk/wpn003/beewatch/index.php?r=image/identifiedCs

Best wishes
The BeeWatch team
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A.2 User workflow for the Review process

Fig. 9. This image shows an example workflow of the user for the review process using one of the interfaces.
a) User is shown the images allocated for them to review, b) When the user clicks an image its associated
collaboration interface is shown and c) When the user clicks ‘Review’ the species identification tools is shown
together with the collaboration information.
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