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1 | INTRODUCTION

Eurasian perch Perca fluviatilis (also known as European perch;
henceforth: perch) has an exceptionally wide distribution range
spanning the Arctic, boreal and temperate zone of Eurasia ranging
from the British Isles to eastern Siberia, and from the Arctic Ocean
to the Mediterranean, Black Sea and Caspian Sea basin (Collette &
Banarescu, 1977; Thorpe, 1977). Perch inhabits a broad range of
habitats including freshwater lakes, ponds, rivers, streams, reser-
voirs and brackish water estuaries and archipelagos, and maintains
a keystone predator role in many aquatic food webs (Diehl, 1992).
Perch remains a popular species to study for freshwater food webs
(e.g., Bronmark, 1994; Diehl, 1992), trophic interactions (e.g., Devlin
et al., 2015; Persson & De Roos, 2012), ontogenetic shifts in diet
(e.g., Bystrom et al., 2012; Jacobson et al., 2019), life-history trade-
offs (e.g., Heibo et al., 2005; Heibo & Vallestad, 2006), sexual dimor-
phism (e.g., Estlander et al., 2017; Mandiki et al., 2004), behaviour
(e.g., Sajdlova et al., 2018; Semeniuk et al., 2015), population dynam-
ics (e.g., Rask et al., 2014; Svanbick & Persson, 2009), intraspecific
divergence along the littoral-pelagic environmental axis (e.g., Faulks
etal., 2015; Svanbick & Ekldv, 2002), spawning site fidelity (e.g., Hall
et al., 2022; Nesbg et al., 1998; Tibblin et al., 2012), physiological
adaptations (e.g., Ekstrém et al., 2021; Sandblom et al., 2016), as well
as individual and population level responses to climate change (e.g.,
Huss et al., 2019; van Dorst et al., 2019). The aforementioned stud-
ies employed a wide variety of approaches including field surveys,
controlled aquarium, mesocosm and even whole-lake experiments.
Furthermore, the ecology of perch has fuelled modelling work re-
vealing key mechanisms driving population dynamics, for example,
cannibalism (Claessen et al., 2000), ontogenetic bottlenecks (De
Roos & Persson, 2013) and warming driving changes in population
cycles (Ohlberger et al., 2011).

Perch is also an important target for fisheries and recreational
fishing (Watson, 2008), a regional indicator species in the EU Marine
Strategy Framework Directive and regional seas commissions
(HELCOM, 2018a), a promising new aquaculture species (Policar
et al., 2015), a model in ecotoxicology (Reid et al., 2016) and inva-
sive outside its natural distribution range (Froese & Pauly, 2019).
As a result, we have through the study of perch as a model system
gained fundamental knowledge of important ecological processes.
These include the importance of ontogeny and intraspecific vari-
ation for population dynamics and food-web structure (De Roos
& Persson, 2013), how feedback between food web structure
and individual performance via population size structures deter-
mine community responses to harvesting or warming (Gardmark
& Huss, 2020; Ohlberger et al., 2011), identified mechanisms un-
derlying alternative stable community states including those ham-
pering recovery of predatory fish (Claessen et al., 2000) and how
species interactions shape the phenotypic and behavioural varia-
tion (Svanbick et al., 2017). However, we argue that the progress
of integrating ecological and genomic perspectives to address many
questions in perch biology has been relatively modest, in contrast to
other popular model species amongst bony fishes (Teleostei), such as

salmonids (Houston & Macqueen, 2019) and sticklebacks (Reid, Bell
et al., 2021). For example, many questions remain, to a large extent,
unexplored in perch. For example, how ecological processes shape
the genome, how genetic polymorphisms translate into phenotypic,
performance and fitness variation depending on the environment
and how genetic changes feedback to the ecological processes. Yet
we expect to see increased integration of genomic tools into ecolog-
ical research in perch in the coming years, resulting in novel insights
into processes linking adaptation and plasticity to ecosystem func-
tioning and environmental change.

The emergence of high-throughput sequencing technologies
(also known as NGS, Next-Generation Sequencing; see Box 1) ap-
proximately 20years ago offers fast and cost-effective sequencing
of millions of short DNA reads (Reuter et al., 2015). During the last
decade, NGS has completely changed the way genetic variation is as-
sessed and how biomedicine, biodiversity and evolutionary research
is conducted (Beigh, 2016; Frese et al., 2013; Hunter et al., 2018;
Segelbacher et al., 2022; Tan et al., 2019). Arguably, the most im-
portant consequence of the genomic revolution is the feasibility to
determine the whole-genome sequences of the species, known as
reference genomes. Typical animal cells contain both mitochondrial
and nuclear genomes, which greatly differ in size and mode of in-
heritance. Mitochondrial genomes are circular, commonly ca. 16,000
base pairs long, haploid and maternally inherited. Barring a few
exceptions, all animal mtDNA genomes contain 37 genes: 13 pro-
teins, 2 ribosomal RNAs and 22 transfer RNAs (Figure 1a). Nuclear
genomes, however, are much larger (up to billions of base pairs, or
gigabases; 1 Gb = 1,000,000,000bp), diploid and are inherited from
both parents, and typically contain tens of thousands of genes.

Areference genome is the representation of the structure and or-
ganisation of the genome (nuclear and/or mitochondrial) of a species
and can be considered a blueprint of a species. Similarly, to type spec-
imens in taxonomic research, reference genomes serve as the basis
and fundamental starting point for a wide range of all subsequent
genomic analyses (Worley et al., 2017). The first reference genome
of teleost species was published in 2007 for pufferfish (Tetraodon
nigroviridis; Jaillon et al., 2004), followed by three-spined stickleback
(Gasterosteus aculeatus; Jones et al., 2012), zebrafish (Danio rerio;
Howe et al., 2013) and Atlantic salmon (Salmo salar; Lien et al., 2016).
The availability of whole-genome information has considerably in-
creased our understanding of vertebrate genome evolution, redip-
loidisation and function (Parey et al., 2020; Volff, 2005). Genomic
analysis has also revealed that all extant teleost fish species have ex-
perienced whole-genome duplication events, dated at approximately
320 Mya (Jaillon et al., 2004). The advent of large international ge-
nome initiatives and declining sequencing prices are opening possi-
bilities to acquire chromosome-scale reference genomes for many
organisms across the tree of life (https://www.ncbi.nlm.nih.gov/
datasets/). As aresult, the number of bony fishes' genome assemblies
tripled within the last 3years (Figure 2a). Simultaneously, the quality
of the assemblies has greatly improved due to the wide application
of long-read sequencing approach, which enables the generation
of high-quality chromosome-scale assemblies. The rapid increase
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BOX 1 Glossary of genomic and genetic terms.

10X linked-read technology: a library preparation technology developed by 10X Genomics, which links unique molecular bar-
codes to individual high molecular weight DNA molecules for the following reconstruction of highly continuous scaffolds from short-
reads using the barcode information to recognise reads from the same long DNA fragment (linked-reads).

BUSCO quality assessment: is a commonly applied approach to assess genome assembly and annotation completeness using sets
of known genes, that is, Benchmarking Universal Single-Copy Orthologs, named BUSCO.

Contig: is a linear stretch of overlapping DNA segments that together represent a consensus region of DNA, which is built from a
number of shorter, partially overlapped sequences (reads).

DNA microarray: also known as DNA chip, is a collection of microscopic spots of known DNA sequences on a solid surface, which
is used, for example, to genotype multiple genomic regions or score expression levels of a large number of genes.

EST: Expressed Sequence Tags are short (usually <1000 bp) fragments of complementary DNA (cDNA) sequences prepared from
messenger RNA (mMRNA), that have been used to identify expressed genes in a given tissue.

GC content: is the proportion of nitrogenous bases, guanine and cytosine, in a DNA/RNA sequence.

Gene ontology (GO): is the classification applied to unify the representation of gene and gene product functions across all species.

Genetic architecture: the number of genetic variants that influence a phenotype, the size of their effects on the phenotype, the
frequency of those variants, their interactions with each other and the environment.

Genome annotation: is a complex procedure of connecting biologically relevant information to genome sequence data, including
prediction of protein-coding genes, repetitive elements and other functional genome components like structural, transfer and small
RNAs; control regions; pseudogenes; transposons and other mobile elements.

Genome sequence assembly: is a process of computational reconstruction of longer original DNA sequences from a large number
of shorter sequences aiming to generate representative sequences of the original chromosomes.

Metabarcoding: an approach allowing the identification of multiple species from a mixed sample (e.g., DNA, RNA, eDNA and
eRNA) based on the amplification of certain DNA fragments followed by high throughput sequencing.

miRNA-seq: microRNA sequencing is a type of NGS RNA-seq allowing to characterise the quantity and expression of small non-
coding RNA molecules, known as microRNA.

N50: is the sequence length of the shortest contig (or scaffold) at 50% of the total assembly length; it characterises assembly
quality in terms of contiguity.

ncRNAseq: non-coding RNA sequencing is a type of RNA-seq allowing the detection and analysis of medium-sized non-coding
RNAs.

Omics: refers to a field of study that ends with -omics, such as genomics, transcriptomics, proteomics or metabolomics focusing
on the analysis of the genomes, proteomes, transcriptomes or metabolomes, respectively.

Read: is an inferred sequence of base pairs corresponding to a whole or a part of a single DNA/RNA fragment.

RNA-seq: an approach, which applies next-generation sequencing (NGS) to detect and analyse of mRNA in a biological sample.

Scaffold: two or more contigs joined together using read-pair information. Scaffolds are composed of contigs and gaps. Gaps
occur where reads from the two sequenced ends of at least one fragment overlap with other reads in two different contigs. Since the
lengths of the fragments are roughly known, the number of bases between contigs can be estimated.

scRNA-seq: single-cell RNA sequencing is a type of RNA-seq using an optimised NGS technology to examine RNA transcripts
within an individual cell.

Sequence alignment: is an arrangement of DNA, RNA or protein sequences to identify regions of similarity, which may reflect
structural, functional or evolutionary relationships amongst the sequences.

Temporal scRNA-seq/live-seq: temporal single-cell RNA-sequencing (also known as live sequencing) is a technology that keeps
the cell alive after transcriptome profiling using a cytoplasmic biopsy.

UTR: untranslated region is the non-coding section of messenger RNAs (nRNAs) located on each side of a coding sequence (5'UTR
and 3'UTR).

in quantity and quality of teleost reference genomes allows for the To explore this potential, we first describe the recent progress in
increased integration of genomic and ecological research, with the generating reference genome assemblies of P. fluviatilis and the sta-
potential to advance the understanding of feedback between eco- tus of other genomic resources in perch. Next, we demonstrate the
logical and evolutionary processes in the wild. power of genome-wide approaches by comparing the resolution of (i)

85Us017 SUOWWIOD AIEa1D 3|qeljdde ays Aq peusencb a1e 9ol VO ‘88N JO S9INI 10} A%Iq1T 8UIIUQ AB]IM UO (SUORIPUOD-PUR-SUB)ALID A3 1M ARIq 1 BU1|UO//ST1Y) SUOIIPUOD PUe SWLB | 811 88S *[£202/0T/TT] U ARiqiT8uljuo A[IM 'seousids eininonby JO AISIBAIUN USIPemS AQ €T/2T" HB/TTTT'0T/I0p/L00™ A8 imAeiqijeuljuo//sdiy wolj pepeojumod ‘v ‘€202 ‘€£90009T



VASEMAGI €T AL.

680 Ecology of
MAIBAG -rSHWATER FISH

« 16 152bP 365 by
.~
125 RNA D~logp,
& N T
" \\\ /////// /
/
J/ /\\ /% 0
s X 2
= S =
IS mtDNA annotation — Z
—— [ Protein coding — o
(] rRNA _—
= []tRNA =
‘Zg % [ Non-coding '

- \ %
S OB

9 O\/g
Coxell8 aree| ©

7
'&'“/
9 %M

Oy

(b) ()

10 samples

O Hungary 1 sample
(O France

@ Estonia

(O Finland

© Lithuania
@ Sweden
© Ukraine

© cChina

(O Denmark

75

FIGURE 1 Theincreased resolution of whole-mitochondrial genome analysis to visualise evolutionary relationships between haplotypes.
(a) Circular mtDNA molecule of perch encoding 13 proteins, 22 tRNAs and 2 rRNAs. Identified SNPs are shown as blue ticks, 365bp D-loop
and almost the whole mtDNA region (16,152 bp), which were used to generate haplotype network, are shown as black and grey lines around
the circle, respectively. Median-joining haplotype network showing the relationships amongst haplotypes of 60 Perca fluviatilis sequences
and datasets from GenBank based on (b) 365bp D-loop region as in Nesbg et al. (1999) and (c) nearly complete mtDNA genome (16,152 bp).
Haplotypes are represented by circles whose sizes are proportional to the number of individuals. Different colours represent the country

of origin. Missing haplotypes are indicated by small black circles. Mutations are indicated by hatch marks; larger mutational steps are also
provided as numbers in italics. Distinct haplotype clusters are indicated by ovals for a nearly complete mtDNA dataset, no distinct haplotype

groups can be distinguished using a 365 bp mtDNA fragment.

whole-mitochondrial analysis with shorter mtDNA fragment used in
earlier studies and (ii) 3722 nuclear single nucleotide polymorphisms
(SNPs) with a smaller subset of markers using a newly developed geno-
typing array. Subsequently, we outline recent cases where genomics
has already contributed to new ecological and evolutionary knowl-
edge through whole-genome resequencing (Ozerov et al., 2022), tran-
scriptome sequencing and metabarcoding approaches (Noreikiene
et al., 2020), to shed light on adaptation and co-evolutionary re-
sponses in perch. Next, we explore how the availability of a reference
genome enables the integration of analytical tools with ecological,
physiological, developmental and evolutionary perspectives and fi-
nally, describe how genomic approaches can create a novel under-

standing of three important aspects of perch biology.

2 | MATERIALS AND METHODS

Below we describe the methods used for the comparative analyses
of existing (mitochondrial DNA and whole-genome assemblies) and
novel (SNP genotyping array) datasets for perch. To generate the

mitochondrial haplotype network (Section 3.1), mitochondrial ge-
nome sequences were downloaded from GenBank (KM410088.1,
CMO020933.1, AP005995.1, MZ461595.1, AP018422.1 and
LC495488.1) or extracted from published short read datasets
(Table S1). The short reads were pre-processed by removing lllumina
adapters, low-quality (average quality score <25) and short (<60bp)
reads using trimmomatic ver. 0.36 (Bolger et al., 2014) for the 26
samples sequenced on HiSeq 2000, 2500 or 3000 instruments, or
fastp ver. 0.20 (Chen et al., 2018) for the 14 samples sequenced on
the NovaSeq 6000 instrument (see Table S1 for details). Filtered se-
quence reads of each sample were mapped to the Eurasian perch
mitochondrial reference genome (NCBI: KM410088.1) with bowtie2
ver. 2.3.5.1 (Langmead et al., 2009) using the default parameters ex-
cept for the modified score minimum threshold (-score-minL, -0.3,
-0.3) and maximum fragment length for valid paired-end alignments
(=X '700). Aligned consensus mtDNA sequences were extracted using
bcftools ver. 1.8 (Li, 2011) whilst applying a minimum mapping qual-
ity of 20 (-q 20) and converted to fasta format using seqtk ver. 1.3
(Li, 2013). Some of the mtDNA sequences generated from RNA pools
contained one or two ambiguous nucleotides. These were converted
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FIGURE 2 The progress, size and completeness of teleost genome assemblies. (a) The increase of teleost genome assemblies uploaded to
the National Center for Biotechnology Information (NCBI) over time. The insert violin plot illustrates the size distribution of 166 assembled
genomes. (b) Cumulative length of the three Perca fluviatilis genome assemblies available in NCBI GenBank. Perch genome assembly using
Illumina short reads (GCA_900302645.1; Malmstrgm et al., 2017; solid light purple line), the assembly obtained using 10x linked-reads
(GCA_003412525.1; Ozerov et al., 2018; solid light blue line) and the chromosome-level assembly using lllumina short and Oxford Nanopore
long reads (GCA_010015445.1; Roques et al., 2020; solid light green line).

into two or four sequences, respectively, to represent all possible
variants of an ambiguous nucleotide. The sequences were aligned
using MUSCLE ver. 5.1 (Edgar, 2004). Due to the different lengths
of the aligned sequences in the D-loop region, they were trimmed
to a size of 16,152 bp using BioEdit ver. 7.2.5 (Hall, 1998). The same
software was applied to extract a 365 bp long D-loop region used for
phylogenetic analyses of perch earlier (Nesbg et al., 1999). Median-
joining haplotype networks (Bandelt et al., 1999) for an almost com-
plete mtDNA genome (16,152bp) and for a 365bp mtDNA D-loop
region were generated in POpART ver. 1.7 (Leigh & Bryant, 2015).

Basic statistics for P. fluviatilis genome assemblies available in
NCBI GenBank (Section 3.2) were generated using QUAST ver. 5.2.0
(Gurevich et al., 2013) with the default parameters. All genome as-
semblies' statistics were based on a scaffold of size 2500bp. The
completeness of the genome assemblies was estimated with BUSCO
ver. 5.1.2 (Manni et al., 2021; Simao et al., 2015) using a ray-finned
fishes (Actinopterygii obd10) database consisting of 3640 ortho-
logues from 26 fish species.

The newly developed DNA TRACEBACK® Fisheries SNP geno-
typing array FSHSTK1D (ldentiGEN Limited, Dublin, Ireland) was
designed to perform genotyping in seven fish species (henceforth,
MultiFishSNPChip_1.0; L. Andersson, unpublished). The perfor-
mance of MultiFishSNPChip_1.0 in perch was evaluated by the ge-
notyping of 4000 SNPs for a set of 42 individuals from 21 lakes (two
individuals per lake) located in northern Europe and western Siberia
(Table S2, Appendix S1). The SNP genotyping, allele calling, and qual-
ity control were performed at IdentiGEN Limited (Dublin, Ireland)
genotyping facility. The average SNP call rate was >99.5% and 3722
highly polymorphic SNPs were retained for further analyses. The dis-
tribution of SNPs along the perch chromosomes was plotted using
the R-package chromoMap 4.1.1 (Anand & Rodriguez Lopez, 2022)
in R ver. 4.1.3 (R Core Team, 2022). The R package adegenet ver.

2.1.8 (Jombart, 2008; Jombart & Ahmed, 2011) was used to convert
SNP data into a genind object. The relationships among individu-
als were illustrated using principal component analysis (PCA) with
the dudi.pca function of the ade4 ver. 1.7-19 R-package (Dray &
Dufour, 2007) on two sets of SNP loci: (i) all 3722 SNPs and (ii) ran-
domly chosen 96 SNPs. Finally, the PCA plots were generated using
factorextra ver. 1.0.7 R-package (Kassambara & Mundt, 2020).

3 | AVAILABLE GENOMIC RESOURCES

3.1 | Whole-mitochondrial genomes

The first available whole-mitochondrial genome assembly of perch
was deposited to the NCBI GenBank in 2015 by Yang et al. (2016). At
the time of writing this review, there were six whole-mitochondrial
genome assemblies available at the NCBI GenBank. However, as
described in Section 2 (Materials and Methods), we built consen-
sus sequences for 54 nearly complete mitochondrial genomes from
publicly available short-read datasets. To illustrate the increased
resolution of whole-mitochondrial genome (Figure 1) analysis, we
used median-joining haplotype networks to show the relationships
based on nearly complete mtDNA genomes (16,152 bp; Figure 1c)
and 365bp long D-loop region (Figure 1b), as previously used in
Nesbg et al. (1999) and Toomey et al. (2020). Four distinct haplo-
type clusters reflecting deep evolutionary split were distinguished
for the nearly complete mtDNA dataset, whilst no obvious clustering
was evident based on a short mtDNA fragment. In the latter case,
365bp long haplotypes showed no obvious clustering and were
separated from each other by only a few mutations, which may lead
to incorrect inferences about the evolutionary history and colonisa-
tion routes. For example, a very distinct haplotype was observed for
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the Hungarian sample from Lake Balaton showing deep divergence
(>90 mutations) compared to all other nearly complete mtDNA
haplotypes (Figure 1c). However, this deep evolutionary lineage
was not apparent for the same samples when only 365bp D-loop
region was analysed (Figure 1b). Thus, any future studies aiming to
resolve phylogenetic relationships and colonisation history in perch
should focus on an analysis of much longer mitochondrial fragments
to accurately infer the evolutionary relationships between haplo-
types and populations. Furthermore, considering the functional im-
portance of mitochondrial genes, there is an increasing interest in
understanding both the neutral and selective processes that shape
mtDNA variation (Consuegra et al., 2015; Vasemagi et al., 2017) and
its link to adaptation to warmer environments (Pichaud et al., 2020)
as well as potential coadaptation of mitochondrial and nuclear genes
(Hill, 2019).

3.2 | Nuclear genome assemblies

The first nuclear whole-genome assembly of perch based on short-
read sequences was deposited to NCBI in 2016 by Malmstrgm
et al. (2017). This draft assembly, however, was very fragmented and
incomplete (scaffold N50 = 5.9 Kb, BUSCO completeness of 44.3%;
Table 1, Figure 2b) and severely limited its usefulness for genomic
studies. The development of 10X Genomics linked-read sequencing
allowed the generation of a ca. 1060 times more continuous, 4.5
times less fragmented and nearly two times more complete perch
genome assembly (Ozerov et al., 2018; scaffold N50 = 6.3 Mb,
BUSCO completeness of 87.6%). This has served as a backbone
in several studies on perch adaptation and transcriptome activity
(e.g., Jiang et al., 2022; Noreikiene et al., 2020; Ozerov et al., 2022).
Finally, in 2020 a very high-quality chromosome-level assembly of
perch (scaffold N50 = 39.6 Mb, BUSCO completeness of 97.6%),
generated using long-reads technology (Roques et al., 2020), be-
came publicly available. The recent genome assembly outperformed
10X linked-read version by ca. 6 times in continuity, by 100 times in
fragmentation, yet only by 10% in completeness (Table 1; Figure 2b).
Despite the lack of annotations in the first draft perch genome as-
sembly due to a high level of fragmentation (Malmstrgm et al. (2017),
the locations of genomic features were determined for more con-
tinuous assemblies by Ozerov et al. (2018) and Roques et al. (2020).
Thus, the number of protein-coding genes found was 23,397 in
the 10X linked-read assembly (Ozerov et al., 2018) and 24,326 in
the chromosome-level assembly (Roques et al., 2020; Table 1).
However, the number of functionally annotated proteins, mean
protein lengths, and average numbers of and lengths of exons and
introns were similar for both of the latest genome assemblies, with
slightly higher numbers in the chromosome-level assembly (Table 1).
Furthermore, the estimated proportion of repetitive DNA was simi-
lar between the two genome assemblies and comprised nearly 1/3
of the whole-perch genome (Table 1). This corroborates with obser-
vations in another freshwater Perciformes (Yuan et al., 2018). The
number of protein-coding genes discovered in the Eurasian perch

genome was close to those observed in yellow perch (Perca flave-
scens; 23,749; Feron et al., 2020) and pikeperch (Sander lucioperca;
24,727; Nguinkal et al., 2019), but higher than in more divergent
species such as Arkansas darter (Etheostoma cragini; 21,827; Reid,
Moran, et al., 2021) and orange throat darter (Etheostoma spectabile;
22,341; Moran et al., 2020).

3.3 | Transcriptomic resources

In addition to the progress in whole-genome assemblies, advances
in high throughput sequencing also shed light on the intricate gene
expression patterns, which can be considered as an intermediate
molecular phenotype between DNA and organism-level phenotype.
The early work aiming to uncover gene expression differences within
and between individuals used expressed sequence tags (ESTs). ESTs
could recover hundreds of expressed genes, but had several restric-
tions that limited sensitivity and were very labour-intensive requiring,
amongst others, a cloning step (Adams et al., 1991). ESTs were also
developed for perch by Rossi et al. (2007) to describe the most abun-
dantly expressed genes in brain (n = 46) and liver (n = 104) tissues.
Before long, high throughput sequencing of whole transcriptomes
by employing the RNA-seq approach (Nagalakshmi et al., 2008) had
become the preferred strategy for biomedical and ecological re-
search (Alvarez et al., 2015; Byron et al., 2016; Todd et al., 2016). The
power of RNA-seq for ecological systems is derived from the ability
to obtain both qualitative and quantitative information simultane-
ously for tens of thousands of genes. This helps to establish potential
links among gene expression variation, biological pathways and phe-
notypes, or even identify transcriptomic targets shaped by contem-
porary natural selection (Ahmad et al., 2021; Alvarez et al., 2015;
Haas et al., 2013; Todd et al., 2016; Wang et al., 2009; Wolf, 2013).

Currently, most transcriptomic resources available for perch
are generated using RNA-seq (Table 2). In consideration of other
teleosts, perch transcriptomic information is comparatively limited
and only a fraction of the information available for more intensively
studied species, such as three-spined stickleback (Reid, Bell, &
Veeramah, 2021) and Atlantic salmon (Houston & Macqueen, 2019).
Furthermore, transcriptomic resources in perch to date are largely
restricted to the use of female, pooled-sex and pooled-tissue or a
limited number of tissues (Table 2). With the increase of RNA-seq
accessibility and affordability, future studies will likely explore
intraspecific variation in gene expression in greater detail, in-
cluding characterisation of sex-specific, ontogenetic, seasonal or
various experimental and in situ environmental factors (Oomen &
Hutchings, 2017).

Additional benefits from using RNA-seq to explore gene regu-
lation can be obtained by analysing the sequence reads that do not
match the genome of the target species. Such unmapped reads usu-
ally correspond to <10% of all the total sequences and can belong to
organisms other than the target species. This part of RNA-seq data
can reveal important novel insights about symbionts, pathogens and
parasites (Gouin et al., 2015; Gurgul et al., 2022; Laine et al., 2019;
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TABLE 1 Eurasian perch (Perca fluviatilis) ggnome assembly and annotation statistics.

GCA_900302645.1
Malmstrgm et al. (2017)

Scaffold statistics

Number of scaffolds 140,281
Total scaffold size (bp) 630,662,671
Scaffold Ny, size (bp) 5973
Largest scaffold (bp) 73,288
GC/N (%) 40.6/0.20
Repetitive DNA (%) N/A
BUSCO genome completeness
Complete 1614 (44.3%)
Complete and single copy 1598 (43.9%)
Complete and duplicated 16 (0.4%)
Fragmented 570 (15.7%)
Missing 1456 (40.0%)
Annotation statistics
Number of protein-coding genes N/A
Number of functionally annotated proteins N/A
Mean protein length (interquartile range, aa) N/A
Longest protein (aa) N/A
Average number (length, interquartile range of N/A
length) of exon per gene
Average number (length; interquartile range of N/A

length) of intron per gene

Minimum scaffold length is 1kb.

Larsen et al., 2016; Noreikiene et al., 2020; Usman et al., 2017). For
instance, a recent study in perch focused exclusively on unmapped
reads and used a visceral organ and brain pool of perch for RNA-seq
analysis (Hierweger et al., 2021). The authors identified novel filovi-
rus, hantavirus and rhabdoviruses, which may contribute to pathol-
ogies in wild and aquaculture perch (Hierweger et al., 2021). With
the ongoing accumulation of RNA-seq data, it is likely that future
data-mining attempts that consider perch as a holobiont will reveal
novel inter- and intraspecific variation (Borner & Burmester, 2017,
Thind et al., 2021).

In parallel with technological advances, the repertoire of RNA-
seq methodologies is constantly expanding. For example, single-
cell RNA-seq that enables gene transcription analysis at single-cell
resolution (scRNA-seq; Tang et al., 2009) has already been used to
characterise the immune response at unprecedented resolution in
several fish species (Athanasiadis et al., 2017; Attaya et al., 2022;
Fuess & Bolnick, 2021; Wang et al., 2021). Most recently, scRNA-seq
was further developed to “live-seq” to enable the temporal scanning
of expression changes within the same cell (Chen, Guillaume-Gentil,
et al., 2022). MicroRNA-seq (miRNA-seq) and non-coding RNA-seq
(ncRNA-seq) are also fast-developing methodologies that focus on
the diversity and function of different classes of RNA molecules that
are important in gene regulation and other cellular functions. These
approaches are already utilised for several fish models (Herkenhoff

GCA_003412525.1 Ozerov
etal. (2018)*

GCA_010015445.1
Roques et al. (2020)

31,105 304
958,225,764 951,362,726
6,260,519 39,550,354
29,260,448 48,724,115
40.9/11.12 40.9/0.03
32.72 36.11

3189 (87.6%) 3550 (97.6%)
3163 (86.9%) 3522 (96.8%)
26 (0.7%) 28 (0.8%)
289 (4.5%) 30 (0.8%)
228 (7.9%) 60 (1.6%)
23,397 24,326
23,171 23,551

506 (224-614)
8907 (nesprin-1)
9 (228, 89-189 bp)

554 (237-678)
18,291 (titin-like)
9 (298, 90-198bp)

8(1224; 150-1340bp) 8(1753;

162-1483bp)

et al., 2018). The above-mentioned methods mostly rely on short-
read sequencing (50-300bp), which hinders the accurate detection
of splicing-associated gene isoforms. This issue can be addressed
with long-read RNA-seq (Wang et al., 2016) as done for three-spined
sticklebacks (Naftaly et al., 2021). Therefore, despite technical biases
and challenges with the RNA-seq approaches (Todd et al., 2016), we
expect that transcriptome analyses will be increasingly incorporated
into ecological and evolutionary research, addressing questions re-
lated to how fish respond to various environmental cues and adapt

to present and future challenges.

3.4 | Types of genetic variation

Genetic variation can be defined as hereditary differences in the
DNA sequence of individual genomes within or between popula-
tions and species. Genetic variation manifests in different forms,
including changes at a single base pair (SNPs), in the variation of tan-
dem repeat sizes (short tandem repeats - STRs or microsatellites
and a variable number of tandem repeats - VNTRs or minisatellites),
in short insertions and deletions (indels; <50bp) and with structural
variations (SVs) involving larger segments of DNA sequence. The lat-
ter includes inversions, duplications, translocations, insertions, dele-

tions and copy number variations (Auton et al., 2015; Ho et al., 2020;
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Ku et al., 2010). Despite large structural variations representing an
important component of genetic and phenotypic variation, they re-
main poorly characterised in most teleosts (Bertolotti et al., 2020;
Liu et al., 2021).

Until recent years, the genetic divergence and diversity in perch
have been mainly studied by the analysis of STR (or microsatellites),
whilst a few studies in the 1990s employed allozymes (Heldstab
& Katoh, 1995), short mitochondrial DNA fragments (Nesbg
etal., 1998) and random amplified polymorphic DNA markers (RAPD;
Nesbg et al., 1999). Based on microsatellite analysis, the evidence of
significant population genetic structuring in perch was observed at
both small geographical scales within lakes (Bergek & Olsson, 2009;
Gerlach et al., 2001, but see also Kalous et al., 2017 on lack of ge-
netic differentiation) and at small spatial scales in the Baltic Sea
(Bergek et al., 2010; Bergek & Bjérklund, 2009; Olsson et al., 2011).
Other studies have documented the genetic divergence patterns at
a broader geographical scale between waterbodies (Kanainé Sipos
et al.,, 2021; Xu et al., 2022). In addition, microsatellites have been
used to identify the genetic origin of perch for fish traceability (Pukk
et al., 2016; Rolli et al., 2014) and to study the temporal changes
and evolutionary consequences of overfishing (Pukk et al., 2013).
However, whilst the analysis of a few tens of microsatellite loci may
be sufficient for basic population genetic inferences, it cannot pro-
vide a genome-wide perspective of the genetic variability and di-
vergence. One of the first attempts to generate genome-wide SNP
data was performed by Pukk et al. (2015), who described genome
complexity reduction methods using restriction enzymes and an
lon Torrent PGM sequencing platform. The authors discovered over
1200 SNPs, of which ca 5% were located in coding regions. Several
highly divergent SNPs between commercially important freshwater
and brackish water perch populations were also identified (Pukk
et al., 2015). The same approach was also applied to discover new
microsatellite loci in perch (Pukk et al., 2014). However, the recent
breakthrough in high throughput sequencing technologies along
with the decrease in sequencing costs has considerably increased
the number of mitochondrial (Yang et al., 2016), nuclear (Table 1)
and transcriptome data sets of perch (Table 2). In turn, access to
the reference genome assembly has helped to discover hundreds of
thousands of SNPs in perch (Ozerov et al., 2022) and fuelled the de-
velopment of the Axiom SNP array platform (MultiFishSNPChip_1.0)
which consists of nearly 4000 SNPs (Figure 3). The SNPs included in
this array are distributed along 24 chromosomes (Figure 3a) and con-
sist of both neutral, as well as putatively selected variants identified
earlier (Ozerov et al., 2022; Figure 3b). To illustrate the power of the
SNPs to resolve genetic relationships among populations, we geno-
typed 42 individual perch collected from 21 lakes in five countries
(Figure 3d,e). We selected two individuals from each lake to evaluate
how the number of SNPs influences the separation of within- and
between population variation. Principal component analysis based
on 3722 SNPs revealed that the samples were clustered accord-
ing to geographical origin and individuals sampled from the same
lakes showed high similarity with each other (Figure 3d). However,
when only a small number of SNPs (n = 96) was used (Figure 3e), the
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genetic differences between individuals from the same lake were in-
flated and the overall differences between regions were resolved in
considerably less detail. Thus, these findings illustrate the power of
genome-wide approaches to accurately reflect within- and between
population differences and similarities. We expect that this powerful
and cost-efficient low-density genotyping tool will be widely used to

address a range of evolutionary and ecological questions in perch.

4 | RECENT EXAMPLES OF HOW
GENOMICS HAVE SHED LIGHT ON PERCH
EVOLUTION AND ECOLOGY

4.1 | Case study 1: How adaptation to dark and
acid environments shaped the genome of perch

Eurasian perch and its sister species yellow perch in North America
are amongst the few fish species of northern latitudes that can live
in very acidic humic lakes (e.g., Bertolo & Magnan, 2007; Hesthagen
et al., 1992; Rask et al., 2014). Such dark-water lakes present almost
“nocturnal” environments; they contain high levels of dissolved or-
ganic matter, which in addition to creating a challenging visual en-
vironment also affects a large number of other habitat parameters
and biotic interactions (Marques et al., 2017; Noreikiene et al., 2020;
Rask, 1984; Tranvik et al., 2018; Weyhenmeyer et al., 2019; Wood
et al., 2011). However, the genetic targets of selection, and the evo-
lutionary mechanisms and molecular processes that allow perch to
thrive in these harsh conditions remain uncharacterized thus far. A
recent study by Ozerov et al. (2022) represents the first attempt to
employ whole-genome resequencing to fill this gap (Figure 4).
Based on the analysis of 32 whole nuclear genomes and more
than 800,000 SNPs, Ozerov et al. (2022) found that the footprints
of selection associated with humic environments comprise hundreds
of regions scattered across the genome of perch (Figure 4a). In total,
over 3000 genes with diverse functions were shown to be poten-
tially influenced by humic selection. Most frequently, the identified
candidate genes were involved in the processes of regulating organ-
ism development, nervous system development and calcium/potas-
sium/sodium exchange. This suggests a possible role during early
development and in the maintenance of ion balance (Figure 4d).
As an example, a strong signal of divergent selection involving >30
SNPs was observed around the MYLIP (Myosin Regulatory Light
Chain Interacting Protein) gene on chromosome 13 (Figure 4b).
MYLIP plays an important role in embryonic development, which
also involves calcium-dependent mechanisms during gastrulation in
zebrafish (Knowlton et al., 2003). This suggests that the observed
signal of adaptive variation around the MYLIP gene in perch may be
linked to Ca®* deficiency compensation during embryonic devel-
opment in humic lakes. Alternatively, MYLIP has an important role
in lipid metabolism and low-density-lipoprotein cholesterol regula-
tion (Hong et al., 2010; Lindholm et al., 2009; van Loon et al., 2019;
Zelcer et al., 2009) and therefore, the identified footprint of selec-
tion may instead be associated with alterations in lipid metabolism
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FIGURE 3 Development and application of Axiom SNP genotyping array (MultiFishSNPChip_1.0) in perch (Perca fluviatilis). (a)
Distribution of 4000 SNPs along 24 chromosomes. (b) Functional classification of SNPs included in the array. (c) Different functional parts
of the gene; principal component analysis (PCA) of 42 individual perch from 21 lakes based on (d) 3722 SNPs and (e) 96 random SNPs.

Individuals originating from the same lake are linked with lines.

and availability of nutrients in humic lakes. Interestingly, Ozerov
et al. (2022) also identified two non-synonymous SNPs in MYLIP
showing large allele frequency differences between humic and clear-
water lakes. Such differences can potentially serve as the targets of
selection, but additional protein modelling and functional analysis
are needed to further characterise the effects of amino acid vari-
ation of MYLIP on the individual performance and fitness of perch.
As expected, the majority of candidate SNPs were detected
in intergenic and intronic regions (Figure 4c), which represent the
largest part of the perch genome (Ozerov et al., 2018). However,
Ozerov et al. (2022) also found a significant excess of candidate
SNPs in regulatory regions (5'UTR, 3'UTR and 5K downstream

gene regions). This indicates that the modification of gene ex-
pression levels likely plays an important role in humic adaptation.
This finding corroborates with an increasing number of studies
implying that natural selection is predominantly acting in regu-
latory regions (e.g., Fagny & Austerlitz, 2021; Glaser-Schmitt &
Parsch, 2018; Verta & Jones, 2019). For example, Fraser (2013)
showed that local adaptation in humans involved transcript abun-
dance variation more than ten times more frequently than changes
in the amino acid composition of protein sequences. The overrep-
resentation of candidate SNPs in 5’ and 3'UTRs observed in perch
concurred as UTRs play an essential role in post-transcriptional
regulation of gene expression (Barrett et al., 2012). 5'UTRs, found
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(111, purple), genetic divergence (IV) and differences of genetic diversity between clear-water and humic perch (V) along chromosome 13.
Candidate and neutral SNPs on IV are shown as red and grey dots, respectively. (b) Example of a candidate region in chromosome 13
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upstream of the protein-coding sequence, are important for con-
trolling translation initiation, and diversity in 5'UTRs enables
variation in expression from a single gene and tissue-specific ex-
pression patterns (Barrett et al., 2012). Whereas 3'UTR regions
are downstream of the protein-coding region and typically affect
post-transcriptional and translational processes. 3'UTR regions
also influence the fate of mMRNAs including mRNA localization
(Andreassi & Riccio, 2009) and both the stability (Goldstrohm &
Wickens, 2008) and levels of expression (Matoulkova et al., 2012).
In general, polymorphism and length variability are greater in
3'UTRs compared to those in 5'UTRs, thus corresponding to a
greater evolutionary potential of the former (Barrett et al., 2012;
Steri et al., 2018). Such potential is illustrated by the number of
SNPs found in 3'UTR regions of the perch genome which ex-
ceeded those in 5'UTRs by nearly four times (Figure 4c). The
important role of 3'UTRs in teleost evolution has been recently
highlighted in cichlids, indicating that these regions may function

as key regulators of post-transcriptional processes during rapid ad-
aptation and speciation (Xiong et al., 2018). Therefore, the whole-
genome analysis suggests that the changes in regulatory regions,
rather than mutations in protein sequences, likely play a major
role in the humic adaptation of perch. However, despite recent
progress in prokaryotes (van Hijum Sacha et al., 2009), functional
characterisation of regulatory variation for non-model organisms
is far from trivial (Clark et al., 2020).

For further consideration, the study of Ozerov et al. (2022)
demonstrates the multifaceted nature of humic-driven selection and
the power of whole-genome analysis to pinpoint genomic regions and
the specific genes involved in adaptation to specific environments.
However, it also serves as a good reminder that it is not trivial to iden-
tify the causative polymorphisms under selection or to predict the
targets of selection based on available ecological and environmental
knowledge. Therefore, to understand the functional role of genetic
variation, considering its physiological, phenotypic and ecological
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effects, we ultimately need to bridge the gaps between cell, tissue,

whole animal, population and community level knowledge.

4.2 | Case study 2: How RNA-seq revealed novel
host-parasite-environment interactions in perch

Combining the use of mapped and unmapped RNA-seq reads can
serve as a rich ground for formulating new hypotheses about ecol-
ogy and the interactions between species. For example, Noreikiene
et al. (2020) aimed to identify the differentially expressed genes as-
sociated with clear-water and humic lakes using RNA-seq on whole-
eye transcriptomes in perch (Figure 5). These could serve as candidate
genes for adaptation to a dark-water visual environment character-
ised by a red-shifted light spectrum (Huovinen et al., 2003; Noreikiene
et al., 2020). However, rather unexpectedly, the top gene ontology
(GO) process terms among 69 enriched terms were related to the
immune system. Differentially expressed genes primarily included
interferon-induced proteins, interleukins, immunoglobulins, MHCII
beta subunit and T-cell receptors. These were mostly upregulated in
perch sampled from clear-water lakes. To obtain greater insight, the
authors explored the remaining 6% of reads that failed to map to
the perch genome. Thereby, they identified the presence of parasitic
flatworms' sequences from the Diplostomoidea superfamily in most
of the clear-water samples. Simultaneously, parasitic flatworm se-
guences were absent in the studied transcriptomes of perch from the
humic lakes. Further effort was made to characterise infection pat-
terns and inter- and intraspecific diversity of eye flukes using targeted
diplostomid-specific metabarcoding based on an extended number of
samples (Figure 5c,d). This analysis confirmed the absence of eye par-
asites in the perch living in humic lakes and a high prevalence of eye
fluke Tylodephys clavata (Trematoda, Diplostomidae) in clear-water
perch. Furthermore, Noreikiene et al. (2020) proposed a possible eco-
logical mechanism behind the observed parasite prevalence patterns
suggesting that perch in humic lakes are able to escape from vision-
debilitating eye fluke infection (Vivas Mufioz et al., 2017, 2019, 2021)
because the humic environment negatively affects the abundance of
gastropods which serve as the intermediate hosts for fish eye flukes.
Thus, analysis of transcriptome responses in perch eyes enabled the
discovery of a novel host-parasite-environment interaction. More
generally, this study demonstrates how next-generation sequencing
facilitates the characterisation of new parasitic, mutual or symbiotic

relationships between species (McKenna et al., 2021).

5 | METHODOLOGICAL APPROACHES
THAT UTILISE THE AVAILABLE REFERENCE
GENOME OF PERCH

51 | Genotype-phenotype links
Perch possesses a high phenotypic variability in a number of morpho-

logical, behavioural, physiological and life-history characteristics,
both within and among populations (Thorpe, 1977). For example,

the vertical stripe pattern of perch shows variation in the number
of stripes, stripe width, stripe distance, the presence or absence of
y-shaped stripes and intensity of pigmentation in dorsal vs. ventral
parts (Pimakhin, 2012). Perch living in transparent environments
also exhibit sexual dichromatism, with males having a more colour-
ful belly than females, in contrast to the lack of differences in col-
oration between sexes in dark-water lakes (Kekaliinen et al., 2010).
Furthermore, coloration has been also shown to correlate with other
traits, such as susceptibility to macroparasites (Roch et al., 2015).

Earlier studies have also demonstrated that perch have large mor-
phological differences between different lakes and habitats (Hjelm
et al., 2000, 2001; Magnhagen & Heibo, 2004; Olsson et al., 2007;
Svanbick & Eklév, 2002, 2003). For example, the number of gill rak-
ers in perch has been shown to negatively correlate with the biomass
of planktivorous fish, indicating the occurrence of character dis-
placement as a consequence of competition in the zooplanktivorous
niche (Hjelm et al., 2000). Additionally, in lakes where the availabil-
ity of benthic resources is low, perch have higher body height and
larger mouth that is a suggested consequence of natural selection
for increased efficiency in the benthic niche (Hjelm et al., 2000). In
addition to intraspecific competition, predation has also shown to
shape phenotypic variation in perch, selecting for smaller eye size in
a non-vegetated habitat (Svanback & Johansson, 2019).

In addition to morphology, earlier studies have also found con-
siderable inter-individual variation among perch in their physio-
logical tolerance to temperature, salinity and dissolved oxygen
concentration (Thorpe, 1977). For example, it was found that perch
originating from different habitats show different levels of tolerance
to maximum salinity (Christensen et al., 2019) and to low pH (Rask
& Virtanen, 1986), which, conceivably, reflects local adaptation.
Further studies in perch have shown variability as well as plasticity
related to homing, selection of habitat, movements, social interac-
tion, competition within and among cohorts and between species,
behaviour as a prey or as a predator or as a cannibal (reviewed in
Semeniuk et al., 2015).

Once potentially adaptive phenotypic variation has been de-
tected, it becomes important to understand the relative importance
of genetic variation and phenotypic plasticity in observed intra-
and inter-population differences. Common garden experiments in
perch have revealed that phenotypic plasticity plays a major role in
some traits (e.g., Hall et al., 2021; Hellstrom & Magnhagen, 2011,
QOlsson et al., 2007; Svanbick & Eklov, 2006), yet small proportion
of variation can be explained by the genetic component (Svanbick
& Eklov, 2006). Despite a large number of studies on a diverse set of
phenotypic characters in perch, the underlying genetic basis of traits
(i.e., genetic architecture) remains mostly unresolved. However,
given the advances in high-throughput sequencing and genotyping,
we expect to witness an increasing number of genomic studies aim-
ing to link phenotypic traits to specific genes and genetic variants
in perch.

Several strategies can be used to link phenotypic (trait mea-
surements) and genotypic information. Quantitative trait locus
(QTL) analysis aims to detect the regions of the genome that cor-
relate with the variation of a particular phenotypic trait (Falconer &
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FIGURE 5 Effects of environment and parasite infection on Perca fluviatilis gene expression variation, and molecular characterisation

of eye flukes. Photographs illustrate key environmental differences between (a) clear water and (b) humic lake habitat. (c) Heatmap

showing differentially expressed genes (n = 265, P < .05) between humic and clear-water habitat. Upregulated and downregulated
transcript abundances in perch from the clear-water lakes are shown as blue and red colour, respectively. Dissolved organic carbon (DOC)
concentration (mg/L) in each studied lake is shown in the bar-plot figure above. The table indicates the number of reads that were assigned
to the order Strigeidida and the superfamily Diplostomoidea; the results of PCR amplification of diplostomid-specific cox1 gene in humic
and clear-water lakes; and the proportion of diplostomid-specific cox1 reads assigned to the genus Diplostomum and Tylodelphys and to the
species Tylodelphys clavata in four clear-water lakes. (d) Haplotype network of cox1 sequences in T. clavata. The frequency of each haplotype

is depicted by circle size. Perch populations from different lakes are represented by different colours; n
- refers to the number of sequences from the NCBI database.
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Mackay, 1996; Kearsey, 1998; Lynch & Walsh, 1998). For QTL map-
ping, individuals are typically crossed to generate a progeny (map-
ping population) with known relatedness. QTL mapping requires
two or more populations exhibiting genetic differences at the trait
of interest and genetic markers, which can discriminate parental
lines. After the crosses of parental lines are produced (F1), they are
subsequently crossed again using a different design (Darvasi, 1998)
and the genotypes and phenotypes of the next cohort (F2) are eval-
uated (Miles & Wayne, 2008). Alternatively, QTL mapping can be
performed using within-population crosses in F1 generation to iden-
tify segregating loci that affect phenotypic variation (e.g., Vasemagi

eyes ™ refers to the number of

et al.,, 2016). QTL mapping has been successfully used to identify
a myriad of QTLs in teleost fish (reviewed in Ashton et al., 2017).
Such QTL provides evolutionary insights on the level of parallelism
for body shape variation in lake whitefish (Coregonus clupeaformis)
species pairs (Laporte et al., 2015), pigmentation variation in cichlid
fish (Metriaclima zebra; O'Quin et al., 2013), and salinity tolerance in
salmonids (Norman et al., 2012). Although QTL analysis is a powerful
method to identify regions of the genome that co-segregate with
a given trait, it has several limitations. For example, QTL mapping
can only detect the differences existing between parental popula-
tions/individuals, whilst QTL regions are typically wide, extending
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over hundreds or even thousands of genes. Moreover, QTL exper-
iments in organisms with long generation times are inevitably time
consuming.

An alternative strategy to link phenotypic variation with genome-
wide genetic variants is Genome-Wide Association Study (GWAS;
Tam et al., 2019, Uffelmann et al., 2021, Visscher et al., 2017). GWAS
does not rely on experimental crosses and takes advantage of link-
age disequilibrium (LD) between genetic variants and causative loci
affecting the phenotype. GWAS requires high-density genotype
data, usually consisting of tens to hundreds of thousands of SNPs,
allowing for more accurate localization of QTL (Mackay et al., 2009;
Schaid et al., 2018). Limitations of GWAS include the potential con-
founding effect of population structure and the detection of false-
positive associations (Korte & Farlow, 2013; Platt et al., 2010). Given
the complementary nature of QTL mapping and GWAS, both meth-
ods can augment each other since QTL mapping can efficiently link
larger genomic regions in controlled crosses, whilst GWAS can pro-
vide population-level information on the genetic architecture of the
trait (Khan et al., 2021; Korte & Farlow, 2013; Sallam et al., 2022).
Progression in the development of relatively inexpensive SNP ar-
rays eases GWAS in teleost fish. For example, GWAS was applied
to study the pigmentation variation in brown trout (Salmo trutta;
Valette et al., 2022) and the sexual maturity in Atlantic salmon
(Sinclair-Waters et al., 2022). However, to date, there are no pub-
lished GWAS on perch. Recent whole-genome resequencing in
perch that revealed nearly a million SNPs (Ozerov et al., 2022) and
the availability of high-throughput SNP genotyping technologies
will certainly facilitate characterisation of genotype-phenotype
links in the future. We, therefore, expect an increasing integration
of ecological and evolutionary genomics perspectives in the coming
years, enabling effectively linking perch genes and phenotypes with

whole-organism performance and ecological processes.

5.2 | Detection of selective sweeps

As most species occupy heterogeneous environments throughout
their geographical distribution, divergent selection can cause local
populations to evolve traits that provide an advantage under their
local environmental conditions. For successful adaption, the popula-
tions should not be constrained by a lack of genetic variation or hin-
dered by gene flow and genetic drift (Blanquart et al., 2013; Kawecki
& Ebert, 2004; Savolainen et al., 2013). Thus, the local adaptation
process can be seen as a balance between locus-specific (e.g., selec-
tion) and genome-wide (e.g., gene flow and genetic drift) population
genetic processes (Lim et al., 2021; Lindholm et al., 2009). This bal-
ance determines the extent of local adaptation evolution (Blanquart
et al., 2013). If there is sufficient standing genetic variation for se-
lection to work on, and gene flow is reduced, specialised genotypes
can be maintained in an isolated population thus reinforcing local
adaptation. However, when gene flow overrides the effect of se-
lection, the genotype that on average is the best, increases in fre-
quency within the population and leads to a loss of local adaptation

(Lenormand, 2002). Yet, gene flow between populations also has the
potential to mitigate maladaptation due to climate change (Aitken
& Whitlock, 2013). Furthermore, genetic drift can reduce the likeli-
hood of local adaptation by decreasing genetic variance, reducing
the efficacy of selection and potentially causing the random fixation
of alleles (Blanquart et al., 2012; Yeaman & Otto, 2011). Since natu-
ral selection acts on a phenotypic trait, changes in allele frequen-
cies in loci influencing this trait towards a new optimum trait will
lead to adaptive divergence of trait and allele frequencies (Hoban
etal., 2016).

During the last decade, population genomics has been increas-
ingly used for identifying loci under disruptive selection in diverging
populations or in recently derived species by screening variable sites
(usually SNPs) across the genome for the signatures of natural selec-
tion (e.g., Fumagalli et al., 2015). This approach, also known as the
outlier test, selective sweep mapping or genome scan, makes no as-
sumption about the trait. It can, therefore, be implemented without
prior knowledge of the nature of adaptive traits (Luikart et al., 2003;
Stinchcombe & Hoekstra, 2008) and without the need to define can-
didate genes (Ross-Ibarra et al., 2007). The identification of genomic
regions shaped by selection and having putative fitness effect is
relevant not only because it sheds light on adaptive evolution, but
also because such loci represent biologically meaningful variation
and functional importance (Nielsen et al., 2005; Vitti et al., 2013).
Through this approach, the genetic makeup of many adaptive traits
has been elucidated, such as lactase persistence in humans (Tishkoff
et al., 2007), or armoured plates in sticklebacks (Jones et al., 2012).
Yet, most traits are complex in nature and influenced by the environ-
ment and a large number of genes, each with a small effect (Boyle
et al.,, 2017). In perch, the genome-wide quests for selective sweeps
are just beginning to emerge, assisted by the availability of anno-
tated whole-genome assembly (Ozerov et al., 2022, Case study 1).

There are several complementary approaches available to iden-
tify regions of the genome that are potentially shaped by natural se-
lection (Ellegren & Sheldon, 2008). Such methods typically aim to
detect unusual patterns along the chromosomes, including elevated
genetic divergence between populations or species (often measured
as F¢7) or reduced genetic variation (Luikart et al., 2003) that can-
not be explained by sampling variation and genome-wide effects
of genetic drift and gene flow. Likewise, natural selection favouring
certain alleles or haplotypes can cause increased linkage disequilib-
rium (LD) along the chromosome and can be used to identify puta-
tive footprints of selection (Schlotterer, 2003). Another increasingly
popular analytical method for understanding how organisms adapt
to their environment is gene-environmental association (GEA) anal-
ysis (Luo et al., 2021), which examines the extent to which spatial
environmental variation coincides with genotypic variants (Frichot
et al.,, 2013; Rellstab et al., 2015). By discerning loci that are cor-
related with the environmental factors, GEA may identify genomic
regions or genes driving local adaptation (Joost et al.,, 2007; Lv
et al., 2014) or even predict which populations are at the highest
risk of extinction if the environmental conditions change in the fu-
ture (Lotterhos & Whitlock, 2015). A common strategy to address
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outlier method weaknesses is to prioritise loci that are outliers iden-
tified by multiple methods (Lotterhos & Whitlock, 2015; Vasemagi
& Primmer, 2005). Irrespective of the outlier approach, all of them
benefit tremendously from the availability of a high-quality refer-
ence genome. We expect that the availability of reference genomes
will drive the next wave of selective sweep mapping and GEA ef-
forts revealing new insights into the interplay between environment,

genes and adaptive processes, and their role in perch ecology.

6 | AREAS WHERE OMICS ARE EXPECTED
TO IMPROVE UNDERSTANDING OF PERCH
ECOLOGY

6.1 | Resource polymorphism

Perch displays a large degree of individual variation in morphologi-
cal characters and diet, as individuals living in littoral habitats have
a deep/robust body whereas pelagic fish are more streamlined
(Svanbick & Eklov, 2002, 2003). Littoral perch feed predominantly
on benthic macroinvertebrates whilst pelagic fish reside in open
water and feed mainly on zooplankton (Svanbiack & Eklév, 2002).
Thus, there is a coupling between the morphological characteristics
and feeding efficiency in littoral/pelagic habitats, a phenomenon
known as resource polymorphism (Robinson & Wilson, 1994; Smith
& Skulason, 1996). The process of phenotypic and genetic diversifi-
cation that occurs in response to variation in available resources is
described for several fish species in postglacial lakes (e.g., Skulason
& Smith, 1995). It is suggested that resource polymorphism can play
an important role in population divergence and some circumstances
in speciation (Robinson, 2000; Skulason et al., 2019).

The ecological aspects of the littoral-pelagic habitat use and
morphological divergence in perch have been characterised in de-
tail (e.g., Svanbéck et al., 2008; Svanback & Ekldv, 2002; Svanback
& EklI6v, 2003; Svanback & Persson, 2009). The habitat-associated
morphologies in perch have been shown largely to be driven by plas-
tic responses (Hjelm et al., 2001; Olsson & Eklov, 2005), but also
by a small genetic component (Svanbick & Eklov, 2006). However,
very little is known about the relationships between phenotypic
and genetic divergence, and the roles of natural selection and phe-
notypic plasticity in perch resource polymorphism (Svanbick &
Persson, 2009). Based on an analysis of 96 amplified fragment length
polymorphisms of littoral and pelagic perch, Faulks et al. (2015) found
evidence for the assortative mating within and genetic divergence
between the littoral and pelagic perch. This indicates that females
are more likely to mate with a genetically similar male, which can
lead to genome-wide divergence between the littoral and pelagic
perch. Furthermore, the extent of both genetic and morphological
divergence between the littoral and pelagic perch differed between
lakes and reflects the varying levels of separation along the littoral-
pelagic axis. However, the authors found no significant coupling be-
tween genetic and morphological divergence. These results suggest
that both phenotypic plasticity and genetic divergence mechanisms
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may act simultaneously in the littoral and pelagic perch. Therefore,
the incorporation of genomic perspective is not only necessary to
accurately quantify the divergence across the genome, but also im-
portant for potentially pinpointing specific genes and genetic vari-
ants involved in littoral and pelagic divergence, and to understand
fine-scale spatial population structuring in perch. More generally, by
combining a genome-wide perspective with quantitative analysis of
morphological and environmental variation, we are likely to learn a
great deal about how multiple evolutionary processes interact simul-

taneously to shape population divergence (Bolnick et al., 2018).

6.2 | Host-parasite interactions

As a consequence of their wide geographical distribution, high
tolerance to diverse habitats and generalist feeding, perch are
exposed to a range of parasites and pathogens. It is estimated
that perch can be infected by close to 150 parasites belonging to
myxozoan, protozoan and metazoan groups (Craig, 2000; Craig
et al., 2015). However, the actual number of pathogens in perch
is most likely greater due to the widespread underreporting of vi-
ruses, bacteria and fungi (Becker et al., 2016; Caruso et al., 2019;
Garver et al., 2018; Hierweger et al., 2021; Kashinskaya et al., 2020;
Langdon et al., 1986; Marsh et al., 2002; Pallandre et al., 2022; Ruane
et al., 2014; Wahli et al., 2015). As perch is regularly a target species
in biomonitoring projects (e.g., HELCOM, 2018b) and an abundant
fish throughout most of its range, cross-sectional parasitological
studies have a long history and data are available for many habi-
tats and geographical localities (Andersen, 1978; Andrews, 1979;
Balling & Pfeiffer, 1997; Juhasova et al., 2019; Morley et al., 2008;
Morozinska-Gogol, 2013; Nikolic & Simonovic, 1996; Rolbiecki
et al., 2002; Shukerova et al., 2010; Sobecka & Stominska, 2007;
Tuuha et al., 1992; Wierzbicka et al., 2005; Wierzbicki, 1970). This
has revealed location-specific and seasonally fluctuating parasite as-
semblages (Andersen, 1978; Karvonen et al., 2005; Skorping, 1981;
Valtonen et al., 1993), a tendency for higher diversity and abun-
dance with increasing age and ontogenetic shift from pelagic to lit-
toral zones (Behrmann-Godel, 2013; Kuchta et al., 2009; Lee, 1981).
Most of the parasitological studies conducted so far relied on clas-
sical techniques which are (i) laborious, (ii) not suitable for cryptic
or uncultivable species detection and (iii) require a high degree of
expertise for the specific parasite group. With the use of modern
genomic tools such as metabarcoding, whole-genome sequencing
or RNA-seq (see Box 1), it is possible to overcome some of these
restrictions and provide qualitatively new information on parasite
communities, their relative abundance and intraspecific genetic vari-
ation (e.g., Noreikiene et al., 2020).

More widespread use of genomics in perch parasitological stud-
ies would undoubtedly increase the number of known pathogens
that are using perch as a host (Hierweger et al., 2021). Genomic
methods can also illuminate parasite intraspecific diversity (see also
Case study 2), population structuring, infection or introduction path-
ways. Perch is a potential vector species for some fish pathogens

85Us017 SUOWWIOD AIEa1D 3|qeljdde ays Aq peusencb a1e 9ol VO ‘88N JO S9INI 10} A%Iq1T 8UIIUQ AB]IM UO (SUORIPUOD-PUR-SUB)ALID A3 1M ARIq 1 BU1|UO//ST1Y) SUOIIPUOD PUe SWLB | 811 88S *[£202/0T/TT] U ARiqiT8uljuo A[IM 'seousids eininonby JO AISIBAIUN USIPemS AQ €T/2T" HB/TTTT'0T/I0p/L00™ A8 imAeiqijeuljuo//sdiy wolj pepeojumod ‘v ‘€202 ‘€£90009T



VASEMAGI €T AL.

692 Ecology of
MAIBAG -rSHWATER FISH

(Matras et al., 2019) and zoonotic infections (e.g., Clinostonum com-
planatum; Menconi et al., 2020, or Eustrongylides spp.; Branciari
et al., 2016, Dezfuli et al., 2015, Franceschini et al., 2022, Rusconi
et al., 2022). Yet, currently, it is unclear if certain perch populations
are more susceptible to specific viral strains or other pathogens
(Pascoli et al., 2015) hence precluding accurate forecasting of the
epidemiological outcome. Combining host and parasite genomic
data will be useful for biosafety aspects to better understand and
predict disease outbreaks in areas inhabited by perch within its na-
tive and invasive ranges and also in aquaculture settings (Behrmann-
Godel et al., 2014; Branciari et al., 2016; Juhdsova et al., 2019;
Langdon, 1989; Matras et al., 2019; Menconi et al., 2020; Morley
et al., 2008; Rupp et al., 2019; Schwabl et al., 2017). Moreover, the
use of high-throughput sequencing would expand the spatial and
temporal range of host-parasite investigations enabling to better
predict parasite spread as well as host vulnerability under future cli-
matic conditions (Bjorklund et al., 2015; Lohmus & Bjorklund, 2015;
Schwabl et al., 2017).

Modern genomic tools can provide unprecedented levels of mo-
lecular information about perch as a host and its interaction with
parasite communities or specific parasite species. One of the fas-
cinating examples of perch-parasite interactions involves diplosto-
mids (Diplostomidae, Trematoda). This fluke family is a widespread
and species-rich trematode group infecting aquatic gastropods and
fishes before reaching birds or fish-eating mammals as definitive
hosts (Chappell, 1995; Faltynkova et al., 2007). Ocular infection gen-
erally causes visual disturbances or even blindness in affected fish,
reducing its ability to forage and avoid predation, which benefits par-
asite transmission (Faltynkova et al., 2007; Gopko et al., 2017; Vivas
Mufioz et al., 2019). Perch is infected by several diplostomid species
and often has high infection prevalence as well as parasite load mak-
ing it a popular subject for host-parasite investigations (Hoglund &
Thulin, 1990; Karvonen et al., 2009; Rellstab et al., 2011; Sobecka
& Stominska, 2007). Tylodephys clavata (von Nordmann) is one of
the most common fluke species in perch eyes. Depending on hab-
itat and population, close to 100% of mature perch carry T. clavata
in the vitreous humour of the eye (Kozicka & Niewiadomska, 1960;
Noreikiene et al., 2020; Shukerova et al., 2010; Slivko et al., 2021).
Infection from this parasite reduces an individual's ability to detect
prey, compete with lesser infected perch and changes its dietary
preferences (Vivas Mufoz et al., 2017, 2019, 2021). Infection with
T. clavata triggers animmune response linked gene expression change
in perch eyes (Noreikiene et al., 2020; see Case study 2). However,
for this and other parasites, we are yet to fully understand if there
is a differential response at a molecular level in reaction to parasite
species or community, haplotype composition, site of entry and site
of infections. Host-parasite-microbiome interaction and probiotic
search are other areas, which highly benefit from advancements in
genomic technologies, and will likely be more frequently addressed
in the near future (Minich et al., 2022). Perch skin and gut micro-
biome shows high inter-individual variability and sex-dependent
patterns and is influenced by intrinsic and extrinsic environmental
factors (Berggren et al., 2022; Chen, Hou, et al., 2022; Kashinskaya

et al., 2020; Zha et al., 2018). Thus, dissection of the intricate mo-
lecular details of how the relationships between host-parasite and
host-commensal may change under near-future environmental con-
ditions becomes achievable by the use of high-throughput sequenc-
ing technologies.

6.3 | Linking genetic and phenotypic changes
associated with global warming and fisheries
exploitation

Recent advances in genetic methods can support a new under-
standing of how anthropogenic environmental change affects the
adaptability, diversity and functioning of fish and aquatic food
webs. Global warming of aquatic environments (IPCC, 2019) can
strongly affect fish phenotypes (Sheridan & Bickford, 2011). A
whole-ecosystem heating experiment over four decades showed
that the body growth of small perch increased with warming (Huss
et al., 2019), but whether warming also leads to adaptive evolution-
ary changes in fish traits is still unknown (Merild & Hendry, 2014).
Several traits impacted by warming, however, have a high heritability
in fish (Carlson & Seamons, 2008), and could therefore potentially
evolve in response to increasing temperatures. Fish also show strong
plastic changes in gene regulation when acclimated to different tem-
peratures, in parallel to their altered performance (e.g., weight loss;
Windisch et al., 2014). For example, perch in the heating experiment
have higher mitochondrial respiration and higher expression of the
nd4 mitochondrial gene than perch in natural temperatures (Pichaud
et al., 2020). However, sequencing of mtDNA showed no divergence
between the two perch populations (although the analysis covered
only partial sequences of three mitochondrial genes from very few
individuals; Pichaud et al., 2020). Thus, whether such warming-
induced changes in gene expressions also correspond to heritable
alterations in gene frequencies is an open question. To address this,
combining multi-generational warming experiments (e.g., Loisel
et al,, 2019) with nuclear and mitochondrial genome sequencing
and analyses of gene expression and epigenetic changes, in paral-
lel to measurements of fish traits and fish performance hold great
promise.

Combining selection experiments with whole-genome sequenc-
ing has revealed, for example, the importance of ecological con-
ditions for the genomic responses to fisheries-induced selection
(Crespel et al., 2021). Whereas the phenotype among zebrafish es-
capees from simulated trawl fishing differed consistently from that
of caught individuals, the genotypic variation depended on the pop-
ulation density they had been reared in. Analyses of SNPs mapped
to the whole-genome showed that the genes differing between es-
capees and caught fish were linked to neurological functions, but
the particular genes involved depended on population density. Thus,
combining selection experiments using multiple ecological factors
with whole-genome sequencing, SNP identification and GWAS re-
vealed differences in genotypic and phenotypic variation dependent
on ecological conditions. Selection experiments across multiple
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generations with such combined approaches could test for long-
term genetic changes and resulting impacts on phenotypes and fish
performance. This is particularly important in light of the concur-
rent changes in multiple variables in aquatic environments caused
by human activities.

The advances in high throughput sequencing, the discovery
of hundreds of thousands of SNPs and the generation of multiple
transcriptome profiles, further enable integrating genomic analy-
ses with quantification of phenotypic trait changes over long time
series to study adaption to environmental change in the wild. Until
recently, human-induced trait adaptation in wild fish has mostly
been addressed by analysing directional changes in reaction norms
over time (Hutchings, 2011) or quantification of selection differen-
tials and their effect on trait changes observed over long times se-
ries (Swain et al., 2007). Without genetic evidence, these methods
can potentially indicate but not demonstrate evolution. They were
originally used to study fisheries-induced evolution (Dieckmann
& Heino, 2007; Swain et al., 2007), but have recently been ap-
plied also to trait responses to warming (Crozier et al., 2011; Niu
et al., 2023). For example, perch in a multi-generational heating
experiment in the wild mature at a smaller size than perch in the
control site with natural temperatures (Niu et al., 2023). High-
throughput sequencing allows us to combine these findings on
trait changes with analyses of genetic variation among individu-
als from both the heated and the control population at multiple
time points throughout the 40-year heating experiment (Niu
et al., 2023). Thereby, we can study whether warming also leads
to heritable genetic differences and through GWAS any warming-
induced genetic changes in key fish traits. Similarly, genome-wide
information (obtained from WGS) on changes of allele frequencies
over time in spatially replicated populations across gradients of
environmental variation caused by humans can help understand
both the role of random genetic drift and selection and its effect

on phenotypic change in wild fish populations.

7 | CONCLUSIONS

Our review suggests that the recent advances in whole-genome
assembly and annotation can contribute to major progress in un-
derstanding the role of genes in ecology and the role of ecological
processes shaping phenotypic and genomic variation. However, it
is unlikely that a comprehensive understanding of the genetic basis
of complex ecologically relevant traits will be achieved very quickly.
Still, we argue that it will be particularly important - and now also
possible thanks to the reference perch genome - to combine me-
ticulous ecological experiments with omics technologies to shed
light on how genetic variants and plasticity translate to phenotypic
trait variation and how abiotic and biotic factors are sorting out the
biological diversity through selection. Thus, despite nearly 300years
have passed since the first scientific description of Eurasian perch

by a founder of modern ichthyology, Swedish naturalist Peter Artedi
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(Wheeler, 1985), we still are at the beginning of the journey, which
concerns acquiring the knowledge of how genetic variability be-
tween individuals leads to differences in an individual's phenotype,
trait and performance in perch. Equipped with a growing arsenal of
genomic tools, we should be quite ready for this new adventure.
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