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Abstract
The paper explores a testing problem which involves four hypotheses, that is, based 
on observations of two random variables X and Y, we wish to discriminate between 
four possibilities: identical survival functions, stochastic dominance of X over Y, sto-
chastic dominance of Y over X, or crossing survival functions. Four-decision testing 
procedures for repeated measurements data are proposed. The tests are based on a 
permutation approach and do not rely on distributional assumptions. One-sided ver-
sions of the Cramér–von Mises, Anderson–Darling, and Kolmogorov–Smirnov sta-
tistics are utilized. The consistency of the tests is proven. A simulation study shows 
good power properties and control of false-detection errors. The suggested tests are 
applied to data from a psychophysical experiment.

Keywords Stochastic dominance · Repeated measurement · Four-hypothesis test · 
Permutation test · Nonparametric approach

1 Introduction

Many research questions give rise to a two-sample problem of comparing distribu-
tions (or survival functions). Often researchers are interested in one-sided alternative 
hypotheses and the notion of stochastic dominance (stochastic ordering) is needed 
in order to formulate rigorously such hypotheses. Let X and Y be random variables 
with survival functions SX(t) = ℙ (X > t) and SY (t) = ℙ (Y > t) . We say that X sto-
chastically dominates Y if
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We will sometimes skip the word stochastically and we will just say that X domi-
nates Y. If X dominates Y, we write X ≻ Y  , or equivalently, Y ≺ X . If there exist val-
ues c1 and c2 such that SX(c1) > SY (c1) and SX(c2) < SY (c2) , we say that the survival 
functions of X and Y cross one another. Stochastic dominance induces four possible 
hypotheses: (i) X and Y have identical survival functions, (ii) X dominates Y, (iii) Y 
dominates X, and (iv) the survival functions of X and Y cross one another. The con-
cept of stochastic dominance has been employed in many areas such as economics, 
psychology, and medicine (see, e.g., Davidson and Duclos 2000; Donald and Hsu 
2016; Levy 2016; Ashby et al. 1993; Heck and Erdfelder 2016; Petroni and Wolfe 
1994; Ledwina and Wyłupek 2012). As noted by Townsend (1990), stochastic domi-
nance implies but is not implied by the same ordering of the means (if the means 
exist).

If we are interested in classifying the stochastic dominance relation (into the four 
cases specified above) based on observations of two random variables, a common 
procedure is the following (Whang 2019). First, perform two separate tests

Then, 

 (a)  if neither H01 nor H02 are rejected, decide that X and Y have identical survival 
functions;

 (b)  if H01 is rejected and H02 is not rejected, decide that X dominates Y;
 (c)  if H01 is not rejected and H02 is rejected, decide that Y dominates X;
 (d)  if both H01 are H02 are rejected, decide that the survival functions of X and Y 

cross.

However, with this procedure it is difficult to control the possible classification 
errors, e.g., inferring dominance when in fact the survival functions cross (see, e.g., 
Whang 2019, p. 106). Bennett (2013) proposed a four-hypothesis testing procedure 
which allows maintaining (asymptotic) control over the various error probabilities.

Most of the existing tests of stochastic dominance assume independent observa-
tions (see, e.g., the recent monograph of Whang 2019 and the references therein). 
However, many experiments involve repeated measurements from each subject and 
such observations are not independent. For these designs, appropriate statistical 
methods that account for the dependence structure of the data are needed. Reducing 
the repeated measurements to single observations by taking their means or medians 
is not advisable because the available data are not efficiently used (see, e.g., Roy 
et al. 2019). Such transformations of the observed data will result in different esti-
mates of the survival functions; in particular, the estimated survival function will 
have fewer jumps and some information will be lost.

We are not aware of a dominance test with four hypotheses which is suitable for data 
with repeated measurements. Building upon the ideas of Bennett (2013) and Angelov 

SX(t) ≥ SY (t) for all t with strict inequality for some t.

H01 ∶ SX(t) ≥ SY (t) for all t, against its negation and

H02 ∶ SY (t) ≥ SX(t) for all t, against its negation.
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et al. (2019b), we suggest four-decision testing procedures for repeated measurements 
data. In Sect.  2, we introduce the testing procedures. Section 3 reports a simulation 
study. In Sect. 4, the suggested procedures are applied to data from an experiment con-
cerning the willingness to pay for a certain environmental improvement. Proofs and 
auxiliary results are given in the Appendix.

2  Testing procedures

Let us consider the following mutually exclusive hypotheses about the random vari-
ables X and Y:

We explore a four-hypothesis testing problem with null hypothesis H0 and three 
alternative hypotheses: H≻ , H≺ , and Hcr.

The survival and distribution functions of X and Y are denoted

Throughout the paper it is assumed that we have observations

where xij is the observed value of X for individual/subject i at occasion j and yij is 
the observed value of Y for individual/subject i at occasion j, i.e., {xij} are obser-
vations from SX and {yij} are observations from SY . We will also use the notation 
�1,… , �n , where �i = (xi1,… , xik, yi1,… , yik) , i.e., �i is the vector of observations 
for individual/subject  i. For simplicity, the observations {xij, yij} denote random 
variables or values of random variables, depending on the context. Note that the 
vectors �1,… , �n are independent (and identically distributed) but the observations 
(xi1,… , xik, yi1,… , yik) within each subject i can be correlated.

The empirical distribution function based on the observations {xij} is

and the empirical survival function is ŜX(t) = 1 − F̂X(t) . The functions F̂Y (t) 
and ŜY (t) based on {yij} are defined analogously. Let us denote m = 2kn , 
{t1,… , tm} = {xij, yij} , t1 ≤ t2 ≤ … ≤ tm , and z(+) = max{z, 0} for any real number z. 
Let Ĝ(t) = (1∕m)

∑
l 1{tl ≤ t},

H0 ∶ X and Y have identical survival functions,

H≻ ∶ X dominates Y ,

H≺ ∶ Y dominates X,

Hcr ∶ the survival functions of X and Y cross one another.

SX(t) = ℙ (X > t), FX(t) = 1 − SX(t),

SY (t) = ℙ (Y > t), FY (t) = 1 − SY (t).

{xij, yij}, i = 1,… , n, j = 1,… , k,

F̂X(t) = (1∕kn)
∑
i,j

1{xij ≤ t}
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where 𝛾 > 1 is some real number.
We utilize the following test statistics:

• Modified one-sided Cramér–von Mises statistics 

• Modified one-sided Anderson–Darling statistics 

• Modified one-sided Kolmogorov–Smirnov statistics 

Unlike the classical Cramér–von Mises statistic (see Anderson 1962), we use 
modified versions which do not take the squares of the differences. Our sta-
tistics are in fact one-sided versions of the statistic considered by Schmid and 
Trede (1995), which has shown quite similar performance as the classical Cra-
mér–von Mises statistic for two-sample tests against general alternatives (see 
also Schmid and Trede 1996). The classical Anderson–Darling statistic (see Pet-
titt 1976) is a weighted version of the Cramér–von Mises statistic with weight 
(Ĝ(tl)[1 − Ĝ(tl)])

−1 . We consider some modifications in the weight �� (tl) of the 
Anderson–Darling statistics (in Sect. 3, we investigate the properties of the corre-
sponding tests for � = 2 and � = 3 ). We define the statistics without any normal-
izing factor because such factor is not needed for applying our tests.

We will describe in detail the testing procedure with the statistics 
(WX≻Y ,WX≺Y ) ; the procedures with the other test statistics are analogous. A four-
hypothesis testing problem implies four decision regions defined by four critical 
values (see Bennett 2013; Heathcote et al. 2010). Let w1,� and w2,� be defined so 

� ∙
�
(t
l
) =

�
(Ĝ(t

l
)[1 − Ĝ(t

l
)])−1∕� if Ĝ(t

l
) ∈ (0, 1)

0 otherwise

�� (tl) =
� ∙
�
(t
l
)

∑
l
� ∙
�
(t
l
)
,

WX≻Y =
1

m

m∑
l=1

(
�SX(tl) − �SY (tl)

)(+)

,

WX≺Y =
1

m

m∑
l=1

(
�SY (tl) − �SX(tl)

)(+)

;

A
𝛾

X≻Y
=

m∑
l=1

𝜓𝛾 (tl)
(
�SX(tl) − �SY (tl)

)(+)

,

A
𝛾

X≺Y
=

m∑
l=1

𝜓𝛾 (tl)
(
�SY (tl) − �SX(tl)

)(+)

;

DX≻Y = sup
t

(
�SX(t) − �SY (t)

)
,

DX≺Y = sup
t

(
�SY (t) − �SX(t)

)
.
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that ℙ (WX≻Y ≥ w1,𝛼 |H0) = 𝛼 and ℙ (WX≺Y ≥ w2,𝛼 |H0) = 𝛼 . Similarly, w1,𝛼⋆ and 
w2,𝛼⋆ are such that ℙ (WX≻Y ≥ w1,𝛼⋆ |H0) = 𝛼⋆ and ℙ (WX≺Y ≥ w2,𝛼⋆ |H0) = 𝛼⋆ , 
where 𝛼⋆ > 𝛼 . We adopt the following decision rule (cf. Bennett 2013; Angelov 
et al. 2019b).

Decision rule 1

 (a)  If WX≻Y < w1,𝛼 and WX≺Y < w2,𝛼 , then retain H0.
 (b)  If WX≻Y ≥ w1,𝛼 or WX≺Y ≥ w2,𝛼 , then 

 (i)  if WX≻Y ≥ w1,𝛼 and WX≺Y < w2,𝛼⋆ , then accept H≻;
 (ii)  if WX≻Y < w1,𝛼⋆ and WX≺Y ≥ w2,𝛼 , then accept H≺;
 (iii)  if WX≻Y ≥ w1,𝛼⋆ and WX≺Y ≥ w2,𝛼⋆ , then accept Hcr.

The decision rule is illustrated in Fig. 1. Essentially, H≻ is accepted if WX≻Y is large 
enough and WX≺Y is small enough; similarly, H≺ is accepted if WX≺Y is large enough 
and WX≻Y is small enough. The value of 𝛼⋆ controls the discrimination between H≻ , 
H≺ , and Hcr . Increasing the value of 𝛼⋆ results in larger acceptance region for Hcr 
and smaller acceptance regions for H≻ and H≺.

To obtain the critical values or the corresponding p-values, we employ a per-
mutation-based approach (sometimes called randomization test approach, see 
Hemerik and Goeman 2021). That is, we generate random permutations of the data 
�1,… , �n , calculate the value of the test statistic for each generated permutation, 
and then use the resulting empirical distribution of the test statistic as an approxi-
mation of the null distribution (see Hemerik and Goeman 2018; Lehmann and 
Romano 2005, Ch. 15; Romano 1989). A random permutation of the data is gener-
ated by randomly choosing (with probability 1/2) between (xi1,… , xik, yi1,… , yik) 
and (yi1,… , yik, xi1,… , xik) for each i. The algorithm is given below. Let 
(w1,w2) = �� (�1,… , �n) denote the value of (WX≻Y ,WX≺Y ) for the observed data 
�1,… , �n . Similarly, (w[r]

1
,w

[r]

2
) = �� (�

[r]

1
,… , �[r]

n
) is the value of (WX≻Y ,WX≺Y ) for 

the dataset �[r]
1
,… , �[r]

n
.

Fig. 1  Decision rule
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Algorithm 1

Input: z1, . . . , zn.

for r = 1, . . . , R

for i = 1, . . . , n

Generate bi from Bernoulli(1/2);

if bi = 1 then set z[r]i = (xi1, . . . , xik, yi1, . . . , yik);

else set z[r]i = (yi1, . . . , yik, xi1, . . . , xik);

end for

Compute (w[r]
1 , w

[r]
2 ) = TS (z[r]1 , . . . , z[r]n );

end for

Output: w[1]
1 , . . . , w

[R]
1 , w

[1]
2 , . . . , w

[R]
2 .

Let us define

which we call marginal p-values. They can be estimated as follows:

Then, Decision rule 1 can be expressed in terms of p̃1 and p̃2:
Decision rule 1’

 (a)  If �p1 > 𝛼 and �p2 > 𝛼 , then retain H0.
 (b)  If p̃1 ≤ � or p̃2 ≤ � , then 

 (i)  if p̃1 ≤ � and �p2 > 𝛼⋆ , then accept H≻;
 (ii)  if �p1 > 𝛼⋆ and p̃2 ≤ � , then accept H≺;
 (iii)  if �p1 ≤ 𝛼⋆ and �p2 ≤ 𝛼⋆ , then accept Hcr.

It should be noted that borderline cases may occur when the test statistic is close to 
the border of the decision region (respectively, a marginal p-value is close to one of 
the thresholds � and 𝛼⋆ ). Therefore, it is advisable to report the conclusion of the 
test together with the marginal p-values p̃1 , p̃2 and the thresholds � , 𝛼⋆ (see Angelov 
et al. 2019b).

In a testing problem involving just a null hypothesis (the hypothesis of no differ-
ence) and an alternative hypothesis (the hypothesis of interest), the event of wrongly 
accepting the alternative hypothesis is called Type I error, while the event of not 
accepting the alternative when it is true is called Type II error. In our setting, if H≻ 
is the hypothesis of interest, false detection of H≻ (wrongly accepting H≻ ) and non-
detection of H≻ (not accepting the true H≻ ) can be viewed as analogues of Type I 
error and Type II error, respectively.

p1 = ℙ (WX≻Y ≥ w1 |H0), p2 = ℙ (WX≺Y ≥ w2 |H0),

p̃1 =
1 +

∑R

r=1
1{w

[r]

1
≥ w1}

R + 1
, p̃2 =

1 +
∑R

r=1
1{w

[r]

2
≥ w2}

R + 1
.
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Let FDP be the probability of a false detection of dominance ( H≻ ) and let NDP 
be the probability of a non-detection of dominance ( H≻ ). These probabilities can be 
expressed as follows:

The power to detect dominance ( H≻ ) is defined as ℙ ( accept H≻ |H≻) = 1 − NDP.
Let Un be a generic notation for the test statistics defined above.

Assumption 1 There exist a nonrandom sequence �n and a nondegenerate random 
variable U such that �n ⟶ ∞ and under the null hypothesis �nUn converges in dis-
tribution to U as n ⟶ ∞.

Assumption 2 The distribution function of U is continuous and strictly increasing at 
u� , where ℙ (U ≥ u� |H0) = �.

Assumption 3 The distribution functions FX and FY are continuous.

Assumptions similar to Assumption 1 are common in the literature on subsam-
pling (see, e.g., Politis et  al. 1999). Assumption  3 is needed only for the Ander-
son–Darling test, where it is used for showing that m𝜓𝛾 (tl), l < m , is asymptotically 
bounded away from zero (almost surely).

Some results concerning the error probabilities FDP and NDP are established in 
the following theorems.

Theorem 1 Suppose that Assumptions 1 and 2 are satisfied. Then the following are 
true for the proposed Cramér–von Mises test. 

 (a)  FDP1 ≤ �.
 (b)  FDP2 + FDP3 ⟶ 0 as n ⟶ ∞.
 (c)  NDP1 + NDP2 + NDP3 ⟶ 0 as n ⟶ ∞.

Theorem 2 Suppose that Assumptions 1, 2, and 3 are satisfied. Then the following 
are true for the proposed Anderson–Darling test. 

 (a)  FDP1 ≤ �.
 (b)  FDP2 + FDP3 ⟶ 0 as n ⟶ ∞.
 (c)  NDP1 + NDP2 + NDP3 ⟶ 0 as n ⟶ ∞.

FDP = ℙ ( accept H≻ |H0) + ℙ ( accept H≻ |Hcr ) + ℙ ( accept H≻ |H≺)

= FDP1 + FDP2 + FDP3,

NDP = ℙ ( retain H0 |H≻) + ℙ ( accept Hcr |H≻) + ℙ ( accept H≺ |H≻)

= NDP1 + NDP2 + NDP3.
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Theorem 3 Suppose that Assumptions 1 and 2 are satisfied. Then the following are 
true for the proposed Kolmogorov–Smirnov test. 

 (a)  FDP1 ≤ �.
 (b)  FDP2 + FDP3 ⟶ 0 as n ⟶ ∞.
 (c)  NDP1 + NDP2 + NDP3 ⟶ 0 as n ⟶ ∞.

3  Simulation study

3.1  Setup

We conducted simulations to examine the behavior of the suggested tests in terms of 
false detection of dominance and power to detect dominance.

Let � = (X1,… ,Xk, Y1,… , Yk) , where each Xj, j = 1,… , k, is distributed like X 
and each Yj, j = 1,… , k, is distributed like Y. Let � = (�X ,… ,�X ,�Y ,… ,�Y ) , �XY 
be a k × k matrix with entries �XY �X�Y,

Let N (�, �) and La (�, �) denote, respectively, normal distribution and Laplace dis-
tribution with mean � and standard deviation � , while LN (�, �) denotes lognormal 
distribution with parameters � and � such that X ∼ LN (�, �) ⟺ log(X) ∼ N (�, �).

We generated data from the following distributions: 

 (a)  Multivariate normal distribution with mean vector � and covariance matrix � , 
� ∼ MVN (�,�).

 (b)  Mu l t i va r i a t e  l ognor ma l  d i s t r i bu t ion ,  � ∼ MVLN (�,�) ⟺ 
log(�) ∼ MVN (�,�).

 (c)  Multivariate Laplace distribution with mean vector � and covariance matrix � , 
� ∼ MVLa (�,�) , see, e.g., Kotz et al. (2001).

Figure 2 depicts survival functions corresponding to some of the scenarios in the 
simulations. For generating random numbers from the multivariate normal and 
the multivariate lognormal, the R package MASS was used (see Venables and Rip-
ley 2002), while for the multivariate Laplace distribution, we used the R package 
LaplacesDemon (see Statisticat 2018).

All computations were performed with (see R Core Team 2019). The R code 
can be obtained from the corresponding author upon request. The results are based 
on 3000 simulated datasets under each setting; the number of generated random 

�
X
=

⎛
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permutations for each dataset is R = 4000 , � = 0.05 , and 𝛼⋆ = 0.96 (cf. Angelov 
et al. 2019b).

3.2  Results

Let CvM, AD2, AD3, and KS denote, respectively, the Cramér–von Mises test, the 
Anderson–Darling test with � = 2 , the Anderson–Darling test with � = 3 , and the 
Kolmogorov–Smirnov test.

Simulation results concerning false detection of dominance when the truth is H0 
are presented in Fig. 3. For all tests and all sample sizes, the probability of a false 
detection ( FDP1 ) is less than � = 0.05 (in most cases, it is even not greater than 
�∕2 = 0.025 ). One should not forget that under H0 three types of erroneous deci-
sions may occur: accepting H≻ , accepting H≺ , and accepting Hcr . The corresponding 
error probabilities add up to ℙ ( reject H0 |H0) , which is not greater than 2�.

Figure 4 depicts the probability of a false detection of dominance when the truth 
is Hcr . The probability of a false detection ( FDP2 ) tends to zero as the sample size 
increases. For smaller sample sizes, FDP2 is smallest for the Anderson–Darling test 
with � = 2 , followed by the Anderson–Darling test with � = 3 , the Cramér–von 
Mises test, and the Kolmogorov–Smirnov test.

Power curves for n = 70 are shown in Fig. 5, where the power to detect domi-
nance is plotted against � = �Y − �X . We see that the power gets closer to one as � 
increases. Overall, the Cramér–von Mises test is the most powerful. For �XY = 0.8 , 

(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 2  Survival functions
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the Kolmogorov–Smirnov test has the lowest power and Anderson–Darling tests 
have quite similar performance as the Cramér–von Mises test. For �XY = 0.2 , the 
four tests do not differ that much in terms of power.

Let us consider the following scenarios for the correlation structure: 

Scenario (3e)  k = 3 ,   �12 = �23 = 0.5 ,     �13 = 0.5 ,    �XY = 0.5;
Scenario (3ar)  k = 3 ,   �12 = �23 = 0.62 ,   �13 = 0.38 ,  �XY = 0.5;
Scenario (2e)  k = 2 ,   �12 = 0.5 ,    �XY = 0.5;
Scenario (2ar)  k = 2 ,   �12 = 0.62 ,   �XY = 0.5.

 In Scenario (3e), all correlations are equal to 0.5, while in Scenario (3ar), �12 , 
�23 , and �13 are in accordance with an autoregressive process of order one. Sce-
narios (2e) and (2ar) are defined in analogy to (3e) and (3ar) but with k = 2 . We 
performed simulations to investigate the power to accept a fixed hypothesis of 
dominance for different sample sizes, under the scenarios specified above. The 
results are illustrated in Fig.  6. The power approaches one as the sample size 
increases. The Cramér–von Mises test has the highest power. The Anderson–Dar-
ling test with � = 3 is slightly less powerful. For the normal and the lognormal 

Fig. 3  Probability of a false detection of dominance when the truth is H0 . Results for different sample 
sizes with k = 3 , �

XY
= �12 = �13 = �23 = 0.8

Fig. 4  Probability of a false detection of dominance when the truth is H
cr

 . Results for different sample 
sizes with k = 3 , �

XY
= �12 = �13 = �23 = 0.8 , under the settings depicted in Fig. 2 (first row)
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distributions, the Kolmogorov–Smirnov test has the lowest power. For the 
Laplace distribution, the Anderson–Darling test with � = 2 is the least powerful.

The results for the Cramér–von Mises test under the four scenarios are pre-
sented in Fig. 7. We see that the power is higher for k = 3 than for k = 2 . Also, 
for each k, the scenario where all correlations are equal to 0.5 leads to higher 
power than the other scenario. In order to further investigate how the correlations 
between X1,… ,Xk (respectively, Y1,… , Yk ) affect power, we considered the fol-
lowing scenarios: 

Scenario (3w)    k = 3 ,   �12 = �23 = 0.38 ,   �13 = 0.38 ,   �XY = 0.5;
Scenario (3s)    k = 3 ,   �12 = �23 = 0.62 ,   �13 = 0.62 ,   �XY = 0.5.

 The correlations �12 , �23 , and �13 are ’weak’ in Scenario (3w) and ’strong’ in 
Scenario (3s). The results show that the power is higher when the correlations 
between X1,… ,Xk (respectively, Y1,… , Yk ) are weaker (see Figs. 8 and 9).

In summary, the Cramér–von Mises test is the most powerful. The Ander-
son–Darling test with � = 3 is slightly less powerful but has lower probability 
of a false detection of dominance for small sample sizes compared with the Cra-
mér–von Mises test.

Fig. 5  Power to detect dominance. Results for different values of � with n = 70 , k = 3 ; for all distribu-
tions �

X
= 0 , for the normal and the Laplace �

X
= �

Y
= 1 , for the lognormal �

X
= �

Y
= 0.6 . In the first 

row, �
XY

= �12 = �13 = �23 = 0.8 , while in the second row, �
XY

= �12 = �13 = �23 = 0.2
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Fig. 6  Power to detect dominance. Results for different sample sizes under Scenarios  (3e), (3ar), (2e), 
(2ar). The underlying survival functions are shown in Figure 2 (second row)
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4  Real data example

We apply the proposed tests to data from an experiment where participants were 
asked about their willingness to pay for an improved outdoor sound environment. 
The dataset is available at Mendeley Data (Angelov et  al. 2019a). In a sound 
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(2e), (2ar)
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laboratory, the participants listened to recordings of outdoor sound environments 
and had to imagine that each recording was the noise they hear while sitting on 
their balcony. They were asked how much they would be willing to pay for a noise 
reduction that would change a given sound environment with road-traffic noise to an 
environment without the road traffic noise. Each participant was requested to answer 
by means of: (i) a self-selected point (SSP), i.e., the amount in Swedish kronor he/
she would be willing to pay per month for the improvement, and (ii) a self-selected 
interval (SSI), i.e., the lowest and highest amounts he/she would be willing to pay. 
The experiment included five main scenarios (referred to as Scenario 1, 2, 3, 4, and 
5) with systematically increasing noise levels: Scenario 1 corresponds to the small-
est noise reduction, while Scenario  5 corresponds to the largest. Each participant 
gave answers for each scenario four times: at two SSP sessions and two SSI sessions.

The following variables are of main interest:

• �� is the point answer at the first or the second SSP session.
• ��� and ��� are, respectively, the lower bound and the upper bound of the inter-

val answered at the first or the second SSI session.
• ��� is the midpoint of the interval answered at the first or the second SSI ses-

sion.

Each variable was observed under the five scenarios and these are denoted, e.g., 
��[�],… , ��[�].

Our analysis is based on n = 59 participants (just as in Angelov et  al. 2019b), 
� = 0.05 , 𝛼⋆ = 0.96 , and R = 20000.

We are interested in whether the survival function of SSP lies between the sur-
vival functions of the lower and the upper bounds of SSI. The conducted dominance 
tests confirm this in most cases (see Table 1).

We also want to find out whether the respondents are willing to pay more for higher 
levels of noise reduction. This implies that the willingness to pay under Scenario 2 
stochastically dominates the willingness to pay under Scenario 1; similarly, the will-
ingness to pay under Scenario 3 stochastically dominates the willingness to pay under 
Scenario 2, and so on. The empirical survival functions for each consecutive pair of 
scenarios are displayed in Fig. 10. We conducted dominance tests (see Table 2) and in 
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Table 1  Comparison of self-selected points and self-selected intervals. Conclusion of the test together 
with the marginal p-values p̃1 and p̃2
X Y CvM AD2 AD3 KS

low[1] pt[1] Retain H0 Accept H≺ Retain H0 Retain H0

1.0000   0.0665 1.0000   0.0427 1.0000   0.0515 1.0000   0.1210
pt[1] upp[1] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0000 1.0000   0.0000 1.0000   0.0000 1.0000   0.0006
low[2] pt[2] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0213 1.0000   0.0112 1.0000   0.0140 1.0000   0.0220
pt[2] upp[2] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0002 1.0000   0.0002 1.0000   0.0002 1.0000   0.0000
low[3] pt[3] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0004 1.0000   0.0001 1.0000   0.0002 1.0000   0.0019
pt[3] upp[3] Accept H

cr
Accept H

cr
Accept H

cr
Accept H

cr

0.9288   0.0005 0.8938   0.0006 0.9116   0.0006 0.9311   0.0002
low[4] pt[4] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0003 1.0000   0.0001 1.0000   0.0001 1.0000   0.0001
pt[4] upp[4] Accept H≺ Accept H≺ Accept H≺ Accept H≺

0.9855   0.0000 0.9808   0.0000 0.9827   0.0000 0.9932   0.0001
low[5] pt[5] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0001 1.0000   0.0000 1.0000   0.0000 1.0000   0.0157
pt[5] upp[5] Accept H≺ Accept H≺ Accept H≺ Accept H≺

0.9805   0.0000 0.9707   0.0000 0.9757   0.0000 0.9921   0.0015

Table 2  Comparison of willingness to pay for different levels of noise reduction. Conclusion of the test 
together with the marginal p-values p̃1 and p̃2
X Y CvM AD2 AD3 KS

mid[1] mid[2] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0000 1.0000   0.0000 1.0000   0.0000 1.0000   0.0030
mid[2] mid[3] Accept H

cr
Accept H

cr
Accept H

cr
Accept H≺

0.9480   0.0000 0.9225   0.0000 0.9360   0.0000 0.9876   0.0000
mid[3] mid[4] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0000 1.0000   0.0000 1.0000   0.0000 1.0000   0.0000
mid[4] mid[5] Accept H≺ Accept H≺ Accept H≺ Accept H≺

0.9923   0.0002 0.9915   0.0001 0.9917   0.0001 1.0000   0.0131
pt[1] pt[2] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0000 1.0000   0.0000 1.0000   0.0000 1.0000   0.0003
pt[2] pt[3] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0000 1.0000   0.0000 1.0000   0.0000 1.0000   0.0000
pt[3] pt[4] Accept H≺ Accept H≺ Accept H≺ Accept H≺

1.0000   0.0002 1.0000   0.0002 1.0000   0.0002 1.0000   0.0007
pt[4] pt[5] Accept H≺ Accept H≺ Accept H≺ Accept H≺

0.9844   0.0000 0.9859   0.0000 0.9852   0.0000 0.9953   0.0001
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most cases the tests conclude that the willingness to pay for the higher level of noise 
reduction dominates the willingness to pay for the lower level.

The four tests in most cases led to the same conclusion. In Angelov et al. (2019b), 
analogous tests were performed but separately for the first and the second session, 
while here we apply the new tests for repeated measurements. If we compare the 
results, we see that the hypothesis of dominance is accepted slightly more often with 
the new testing procedures, but overall the conclusions are to a great extent similar.

5  Concluding remarks

We proposed permutation-based four-decision tests of stochastic dominance for 
repeated measurements data. We proved under certain regularity conditions that as 
the sample size increases, the probability to detect dominance tends to one and the 
probability of a false detection of dominance does not exceed a pre-specified level. 
Our simulations indicated good performance of the testing procedures for a range of 
sample sizes.

Appendix

Lemma 1 supt |F̂X(t) − FX(t)|
a.s.
⟶ 0 as n ⟶ ∞.

Proof Follows directly from the result of Tucker (1959).   ◻

Lemma 2 supt(ŜX(t) − ŜY (t))
a.s.
⟶ supt

(
SX(t) − SY (t)

)
 as n ⟶ ∞.
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Fig. 10  Empirical survival functions
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Proof The claim is equivalent to supt(F̂Y (t) − F̂X(t))
a.s.
⟶ supt(FY (t) − FX(t))

 . Using 
some trivial inequalities and Lemma 1, we obtain

  ◻

Lemma 3 The following hold true. 

 (a)  If H≻ is true, then, with probability one, 

         

 (b)  If Hcr is true, then, with probability one, 

 and 

Proof Part (a). Let 𝜀 > 0 and A𝜀 = {t ∶ SX(t) − SY (t) > 𝜀} . If H≻ is true, A� is non-
empty for small enough � and ℙ (yi1 ∈ A𝜀) > 0 . We have

By Lemma  1, supt |(ŜX(t) − SX(t)) − (ŜY (t) − SY (t))| ⟶ 0 as n ⟶ ∞ . Thus, for 
every 𝜀 > 0 , there exists a sufficiently large (random) N such that with probability one,

That is, for small enough � , for all n > N , and for each tl ∈ A� we have, with prob-
ability one,

Recall that m = 2kn . Then, by the strong law of large numbers, with probability one,

||||supt (F̂Y (t) − F̂X(t)) − sup
t

(FY (t) − FX(t))
||||

≤ sup
t

|||F̂Y (t) − F̂X(t) − FY (t) + FX(t)
|||

≤ sup
t

|||F̂X(t) − FX(t)
||| + sup

t

|||F̂Y (t) − FY (t)
|||

a.s.
⟶ 0 as n ⟶ ∞.

lim inf
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1
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](+)
.
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for all n > N.
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]
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𝜀

2
.
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which was to be shown.
Part (b). Let 𝜀 > 0 , A𝜀 = {t ∶ SX(t) − SY (t) > 𝜀} and B𝜀 = {t ∶ SY (t) − SX(t) > 𝜀} . 

If Hcr is true, A� and B� are nonempty for small enough � and ℙ (yi1 ∈ A𝜀) > 0 ,    
ℙ (xi1 ∈ B𝜀) > 0 . Using similar arguments as in Part  (a), we get that for small 
enough � , there exists a sufficiently large (random) N1 such that for all n > N1 and for 
each tl ∈ A� we have, with probability one,

Similarly, for small enough � , there exists a sufficiently large (random) N2 such that 
for all n > N2 and for each tl ∈ B� we have, with probability one,

Then, by the strong law of large numbers, with probability one,

and

which completes the proof.   ◻

Lemma 4 Suppose that Assumption 3 is satisfied. Then the following hold true. 
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 (a)  If H≻ is true, then, with probability one, 

         

 (b)  If Hcr is true, then, with probability one,
       

 and

Proof Part (a). Using similar arguments as in the proof of Lemma 3, we get that for 
small enough � , for all n > N , and for each tl ∈ A� we have, with probability one,

For 𝛾 > 1 , we have, almost surely,

where Γ(⋅) is the gamma function. Then, by the strong law of large numbers, with 
probability one,

which was to be shown.
Part (b). Using similar arguments as above, we get that for small enough � , there 

exists a sufficiently large (random) N1 such that for all n > N1 and for each tl ∈ A� 
we have, with probability one,

Also, for small enough � , there exists a sufficiently large (random) N2 such that for 
all n > N2 and for each tl ∈ B� we have, with probability one,
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Then, by the strong law of large numbers, with probability one,

and

which completes the proof.   ◻

Lemma 5 If H≻ is true, then 

 (a)  WX≺Y

a.s.
⟶ 0 as n ⟶ ∞;

 (b)  A𝛾

X≺Y

a.s.
⟶ 0 as n ⟶ ∞;

 (c)  DX≺Y

a.s.
⟶ 0 as n ⟶ ∞.

Proof Part  (a) and Part  (b) follow using similar reasoning as in the proofs of 
Lemma 3 and Lemma 4. Part (c) follows directly from Lemma 2.   ◻

Let a1,� , a2,� , a1,𝛼⋆ , and a2,𝛼⋆ be defined so that

Let d1,� , d2,� , d1,𝛼⋆ , and d2,𝛼⋆ be defined so that
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4k
ℙ (xi1 ∈ B𝜀) > 0,

ℙ (AX≻Y ≥ a1,𝛼 |H0) = 𝛼, ℙ (AX≺Y ≥ a2,𝛼 |H0) = 𝛼,

ℙ (AX≻Y ≥ a1,𝛼⋆ |H0) = 𝛼⋆, ℙ (AX≺Y ≥ a2,𝛼⋆ |H0) = 𝛼⋆.

ℙ (DX≻Y ≥ d1,𝛼 |H0) = 𝛼, ℙ (DX≺Y ≥ d2,𝛼 |H0) = 𝛼,

ℙ (DX≻Y ≥ d1,𝛼⋆ |H0) = 𝛼⋆, ℙ (DX≺Y ≥ d2,𝛼⋆ |H0) = 𝛼⋆.
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Let w̃1,� , w̃2,� , �w1,𝛼⋆ , and �w2,𝛼⋆ denote the estimated quantiles based on the values 
w
[1]

1
,… ,w

[R]

1
 , w[1]

2
,… ,w

[R]

2
 generated by Algorithm 1. The estimated quantiles ã1,� , 

ã2,� ,… , d̃1,� , d̃2,� ,… are defined similarly.
Let q̃� be a generic notation for the estimated quantile of Un (under the null 

hypothesis) based on the permutation procedure. Recall that u� is the quantile of U.
The following result will be of use.

Lemma 6 Suppose that Assumptions  1 and 2 are satisfied. Then under the null 
hypothesis �nq̃�

ℙ

⟶ u� as n ⟶ ∞.

Proof Follows from Theorem 15.2.3 in Lehmann and Romano (2005).   ◻

Lemma 7 Let Wn and w̃n be nonnegative random variables such that Wn

a.s.
⟶ ∞ and 

w̃n is bounded in probability as n ⟶ ∞ . Then ℙ (Wn < �wn) ⟶ 0.

Proof Boundedness in probability implies that for every 𝜀 > 0 , there exists a posi-
tive constant B and an integer N such that ℙ (w̃n ≤ B) ≥ 1 − � for all n > N . We have

where ℙ (Wn < �wn | �wn ≤ B) ⟶ 0 and ℙ (�wn > B) ≤ 𝜀 . Because � is arbitrary, the 
claim follows.   ◻

Proposition 1 Suppose that Assumptions 1 and 2 are satisfied. Then the following 
hold true. 

 (a)  If H≻ is true, then limn→∞ ℙ (WX≻Y < �w1,𝛼⋆ , WX≺Y ≥ �w2,𝛼) = 0.
 (b)  If H≻ is true, then limn→∞ ℙ (WX≻Y < �w1,𝛼 , WX≺Y < �w2,𝛼) = 0.
 (c)  If H≻ is true, then limn→∞ ℙ (WX≻Y ≥ �w1,𝛼⋆ , WX≺Y ≥ �w2,𝛼⋆) = 0.
 (d)  If Hcr is true, then limn→∞ ℙ (WX≻Y ≥ �w1,𝛼⋆ , WX≺Y ≥ �w2,𝛼⋆) = 1.

Proof 

(a)    Using Lemma  3, we get that if H≻ is true, then 𝜏nWX≻Y

a.s.
⟶ ∞ as 

n ⟶ ∞ . From Lemma  6, 𝜏n�w1,𝛼⋆ is bounded in probability. Then, 
using Lemma  7,  ℙ (WX≻Y < �w1,𝛼⋆) = ℙ (𝜏nWX≻Y < 𝜏n�w1,𝛼⋆) ⟶ 0  and 
ℙ (WX≻Y < �w1,𝛼⋆ , WX≺Y ≥ �w2,𝛼) ⟶ 0.

(b)   Follows using similar arguments as in (a).
(c)   From Lemma 5, if H≻ is true, then WX≺Y

a.s.
⟶ 0 as n ⟶ ∞ . Taking into account 

that �w2,𝛼⋆ > 0 for large n, we get ℙ (WX≻Y ≥ �w1,𝛼⋆ , WX≺Y ≥ �w2,𝛼⋆) ⟶ 0.

ℙ (Wn < �wn) = ℙ (Wn < �wn | �wn ≤ B)ℙ (�wn ≤ B) + ℙ (Wn < �wn | �wn > B)ℙ (�wn > B),
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(d)    Using Lemma  3, we get that if Hcr is true, then 𝜏nWX≻Y

a.s.
⟶ ∞ and 

𝜏nWX≺Y

a.s.
⟶ ∞ as n ⟶ ∞ . From Lemma 6, 𝜏n�w1,𝛼⋆ and 𝜏n�w2,𝛼⋆ are bounded 

in probability. Then, using Lemma  7, ℙ (W
X≻Y < �w1,𝛼⋆ ∪W

X≺Y < �w2,𝛼⋆)

≤ ℙ (𝜏
n
W

X≻Y < 𝜏
n
�w1,𝛼⋆ ) + ℙ (𝜏

n
W

X≺Y < 𝜏
n
�w2,𝛼⋆) ⟶ 0 .   ◻

Proposition 2 Suppose that Assumptions 1, 2, and 3 are satisfied. Then the following 
hold true. 

 (a)  If H≻ is true, then limn→∞ ℙ (AX≻Y < �a1,𝛼⋆ , AX≺Y ≥ �a2,𝛼) = 0.
 (b)  If H≻ is true, then limn→∞ ℙ (AX≻Y < �a1,𝛼 , AX≺Y < �a2,𝛼) = 0.
 (c)  If H≻ is true, then limn→∞ ℙ (AX≻Y ≥ �a1,𝛼⋆ , AX≺Y ≥ �a2,𝛼⋆) = 0.
 (d)  If Hcr is true, then limn→∞ ℙ (AX≻Y ≥ �a1,𝛼⋆ , AX≺Y ≥ �a2,𝛼⋆) = 1.

Proof 

(a)    Using Lemma  4, we get that if H≻ is true, then 𝜏nAX≻Y

a.s.
⟶ ∞ as 

n ⟶ ∞ . From Lemma  6, 𝜏n�a1,𝛼⋆ is bounded in probability. Then, 
u s ing  Lemma  7 ,  ℙ (AX≻Y < �a1,𝛼⋆) = ℙ (𝜏nAX≻Y < 𝜏n�a1,𝛼⋆) ⟶ 0  and 
ℙ (AX≻Y < �a1,𝛼⋆ , AX≺Y ≥ �a2,𝛼) ⟶ 0.

(b)   Follows using similar arguments as in (a).
(c)   From Lemma 5, if H≻ is true, then AX≺Y

a.s.
⟶ 0 as n ⟶ ∞ . Taking into account 

that �a2,𝛼⋆ > 0 for large n, we get ℙ (AX≻Y ≥ �a1,𝛼⋆ , AX≺Y ≥ �a2,𝛼⋆) ⟶ 0.
(d)    Using Lemma  4, we get that if Hcr is true, then 𝜏nAX≻Y

a.s.
⟶ ∞ and 

𝜏nAX≺Y

a.s.
⟶ ∞ as n ⟶ ∞ . From Lemma 6, 𝜏n�a1,𝛼⋆ and 𝜏n�a2,𝛼⋆ are bounded 

in probability. Then, using Lemma  7, ℙ (A
X≻Y < �a1,𝛼⋆ ∪ A

X≺Y < �a2,𝛼⋆)

≤ ℙ (𝜏
n
A
X≻Y < 𝜏

n
�a1,𝛼⋆) + ℙ (𝜏

n
A
X≺Y < 𝜏

n
�a2,𝛼⋆) ⟶ 0 .   ◻

Proposition 3 Suppose that Assumptions 1 and 2 are satisfied. Then the following 
hold true. 

 (a)  If H≻ is true, then limn→∞ ℙ (DX≻Y < �d1,𝛼⋆ , DX≺Y ≥ �d2,𝛼) = 0.
 (b)  If H≻ is true, then limn→∞ ℙ (DX≻Y < �d1,𝛼 , DX≺Y < �d2,𝛼) = 0.
 (c)  If H≻ is true, then limn→∞ ℙ (DX≻Y ≥ �d1,𝛼⋆ , DX≺Y ≥ �d2,𝛼⋆) = 0.
 (d)  If Hcr is true, then limn→∞ ℙ (DX≻Y ≥ �d1,𝛼⋆ , DX≺Y ≥ �d2,𝛼⋆) = 1.

Proof 

(a)    Using Lemma  2, we get that if H≻ is true, then 𝜏nDX≻Y

a.s.
⟶ ∞ as 

n ⟶ ∞ . From Lemma  6, 𝜏n�d1,𝛼⋆ is bounded in probability. Then, 
us ing  Lemma  7 ,  ℙ (DX≻Y < �d1,𝛼⋆) = ℙ (𝜏nDX≻Y < 𝜏n�d1,𝛼⋆) ⟶ 0  and 
ℙ (DX≻Y < �d1,𝛼⋆ , DX≺Y ≥ �d2,𝛼) ⟶ 0.

(b)   Follows using similar arguments as in (a).
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(c)   From Lemma 5, if H≻ is true, then DX≺Y

a.s.
⟶ 0 as n ⟶ ∞ . Taking into account 

that �d2,𝛼⋆ > 0 for large n, we get ℙ (DX≻Y ≥ �d1,𝛼⋆ , DX≺Y ≥ �d2,𝛼⋆) ⟶ 0.

(d)    Using Lemma  2, we get that if Hcr is true, then 𝜏nDX≻Y

a.s.
⟶ ∞ and 

𝜏nDX≺Y

a.s.
⟶ ∞ as n ⟶ ∞ . From Lemma 6, 𝜏n�d1,𝛼⋆ and 𝜏n�d2,𝛼⋆ are bounded 

in probability. Then, using Lemma  7, ℙ (D
X≻Y < �d1,𝛼⋆ ∪ D

X≺Y < �d2,𝛼⋆)

≤ ℙ (𝜏
n
D

X≻Y < 𝜏
n
�d1,𝛼⋆) + ℙ (𝜏

n
D

X≺Y < 𝜏
n
�d2,𝛼⋆) ⟶ 0 .   ◻

Proof of Theorem 1 

(a)   We have ℙ (WX≻Y ≥ �w1,𝛼 ,WX≺Y < �w2,𝛼⋆) ≤ ℙ (WX≻Y ≥ �w1,𝛼) ≤ 𝛼 , where the last 
inequality follows from Theorem 2 in Hemerik and Goeman (2018).

(b)   From Proposition 1 (d), (a), it follows that FDP2 ⟶ 0 and FDP3 ⟶ 0 as 
n ⟶ ∞.

(c)   Proposition 1 (b), (c), (a) imply that NDP1 , NDP2 , and NDP3 tend to zero as 
n ⟶ ∞.

  ◻

Proof of Theorem 2 

(a)   We have ℙ (AX≻Y ≥ �a1,𝛼 ,AX≺Y < �a2,𝛼⋆) ≤ ℙ (AX≻Y ≥ �a1,𝛼) ≤ 𝛼 , where the last 
inequality follows from Theorem 2 in Hemerik and Goeman (2018).

(b)   From Proposition 2 (d), (a), it follows that FDP2 ⟶ 0 and FDP3 ⟶ 0 as 
n ⟶ ∞.

(c)   Proposition 2 (b), (c), (a) imply that NDP1 , NDP2 , and NDP3 tend to zero as 
n ⟶ ∞.

  ◻

Proof of Theorem 3 

(a)   We have ℙ (DX≻Y ≥ �d1,𝛼 ,DX≺Y < �d2,𝛼⋆) ≤ ℙ (DX≻Y ≥ �d1,𝛼) ≤ 𝛼 , where the last 
inequality follows from Theorem 2 in Hemerik and Goeman (2018).

(b)   From Proposition 3 (d), (a), it follows that FDP2 ⟶ 0 and FDP3 ⟶ 0 as 
n ⟶ ∞.

(c)   Proposition 3 (b), (c), (a) imply that NDP1 , NDP2 , and NDP3 tend to zero as 
n ⟶ ∞.

  ◻
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