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A B S T R A C T   

The advance of ecosystem-based fisheries management worldwide has made scientific advice on fisheries related 
questions more complex. However, despite the need to take interactions between fish stocks, and between stocks 
and their environment into account, multispecies and ecosystem models are still hardly used as a basis for fishery 
advice. Although reasons are numerous, the lack of high-level guidance for target-oriented skill assessments of 
such models contributes to the mistrust to use such models for advice. In this study, we propose a framework of 
guiding questions for a pragmatic and target-oriented skill assessment. The framework is relevant for all models 
irrespective of their complexity and approach. It starts with general questions on the advice purpose itself, the 
type of model(s) and data available for performance testing. After this, the credibility of the hindcasts are 
evaluated. A special emphasis is finally put on testing predictive skills. The skill assessment framework proposed 
provides a tool to evaluate a model’s suitability for the purpose of providing specific advice and aims to avoid the 
bad practice of incomplete skill assessments. In the case of multiple models available, it can facilitate the 
evaluation or choosing of the best model(s) for a given advice product and intends to ensure a level playing field 
between models of different complexities. The suite of questions proposed is an important step to improve the 
quality of advice products for a successful implementation of ecosystem-based fisheries management.   

1. Introduction 

The questions asked to scientific bodies working in the field of 
fisheries management have become broader and more complex with the 
wish to implement ecosystem approaches to fisheries management 
(EAFM) and ecosystem-based fisheries management (EBFM) worldwide 
(Garcia et al., 2003; Link, 2010a; Pikitch et al., 2004). In this study we 
use the expression EBFM throughout. However, according to Dolan et al. 
(2016) EAFM focusing more on advice for single populations, EBFM 
focusing more on advice for communities as well as Ecosystem Based 
Management (EBM) including also other sectors than fishing form a 
hierarchical continuum and concepts are overlapping and often used 
interchangeably. Regardless of exact definitions, pure single species 

approaches are no longer sufficient as interactions among species and 
with their environment have to be considered. 

As a result, the complexity of models needed to answer questions 
regarding the sustainable use of resources is increasing. Worldwide, a 
wide variety of such models, hereafter referred to as “ecosystem models” 
(EMs), exist (Plagányi, 2007) ranging from individual based models (e. 
g., Object-oriented Simulator of Marine ecOSystEms (OSMOSE; Shin and 
Cury, 2004)) over minimum realistic or intermediate complexity models 
(e.g., Stochastic Multi Species model (SMS; Lewy and Vinther, 2004), 
Globally applicable, Area Disaggregated, General Ecosystem Toolbox 
(Gadget; Begley, 2005; Plagányi et al., 2012; Collie et al., 2016; Trijoulet 
et al., 2020) and size spectrum models (e.g., Multi-species sIZE spectrum 
modelling in R (mizer; Blanchard et al., 2014), LEngth-based 
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Multispecies Analysis by Numerical Simulation (LeMANS; Hall et al., 
2006; Thorpe et al., 2015)) to end-to-end models (e.g., Ecopath with 
Ecosim (EwE; Christensen and Walters, 2004), Atlantis ecosystem model 
(Atlantis; Fulton et al., 2011)). These models serve different purposes. 
Models like EwE or Atlantis are mainly used to inform on strategic de-
cisions based on a better understanding of processes within the 
ecosystem or are used as operating models in management strategy 
evaluations (MSEs; FAO, 2008), while models like SMS and Gadget can 
also be used to estimate historical stock status and make tactical de-
cisions on e.g. next year’s fishing opportunities (Plagány et al., 2012). 
The number of case studies where these models have been applied by 
scientists and managers is increasing steadily. However, when looking at 
a worldwide scale, environmental processes are hardly included in 
tactical fisheries management (Skern-Mauritzen et al., 2016; Karp et al., 
2023) and single species approaches are in most cases still the preferred 
option for fish stock assessments but also e.g., as operating model in MSE 
simulations (e.g., ICES WKNSMSE, 2019; Thorpe and De Oliveira, 2019). 
Also, for more strategic decision support, the amount of examples where 
EMs have been implemented is still limited especially in Europe (Hyder 
et al., 2015; Lehuta et al., 2016). 

The reasons for preferring single species approaches are numerous 
and span from a political avoidance of multispecies approaches because 
of the inherent trade-offs for decision making (Kempf et al., 2016), up to 
a lack of justification for increased complexity and appropriate sup-
porting knowledge (Link et al., 2010b; Dickey-Collas et al., 2014) or 
inappropriate use (Rochet and Rice, 2009; Kraak et al., 2010; Planque, 
2015). While issues related to policy integration, institutional adapta-
tion and legitimacy of EBFM generally fall outside the areas of compe-
tence of natural science, we argue that a rigorous skill assessment and 
performance evaluation of models next to an efficient communication of 
uncertainties and results could represent important contributions to 
build trust among non-specialists (Pastoors et al., 2007; Lehuta et al., 
2016). 

A number of authors have already highlighted the importance of 
model skill assessments (MSA) and performance evaluation of models 
that could be used for advice on fisheries related questions (e.g., Link 
2010b; Lehuta et al., 2013; Kaplan and Marshall, 2016; Olsen et al., 
2016; Spence et al., 2021a). However, previous contributions often tend 
to focus on a specific model or certain aspects (e.g., sensitivity of pa-
rameters, hindcast or forecast, skill metrics or general model behavior). 
What is missing is a comprehensive framework (regardless of the 
complexity of the model) that would help model users and developers 
ask the right questions about the skill of their models(s) in a structured 
way. This may increase the trust in model-based studies for advice and 
may help to increase the uptake of results from more complex models 
(Karp et al., 2023). While a list of standard and generic diagnostics for 
single species assessments (e.g., residual patterns, retrospective pat-
terns; Carvalho et al., 2021) or guidelines for single species MSE simu-
lations (e.g., ICES WKGMSE, 2013; ICES WKGMSE2, 2019; ICES 
WKGMSE3, 2020) have emerged over time, the situation is much less 
simple for EMs. Indeed, their complexity and wide variety of approaches 
makes it difficult to automate tests and diagnostics. Objectives for EMs 
are also manifold with corresponding multiple outputs and scales diffi-
cult to be systematically scrutinized. A trade-off between rigor and 
flexibility is therefore needed. In addition, their currently still relatively 
limited impact on advice products creates no incentive for such labo-
rious developments. 

The International Council for the Exploration of the Sea (ICES) 
Working Group on Multispecies Assessment Methods (WGSAM) has 
developed the concept of so-called key-runs (e.g., ICES WGSAM, 2013; 
ICES WGSAM, 2015) for quality control of EMs and their parameteri-
zation. Output of key-runs contribute to specific aspects of the ICES 
advice. For example, key-runs with the multispecies model SMS are used 
to deliver natural mortality estimates for single species assessments of 
important North Sea and Baltic fish stocks (e.g., ICES HAWG, 2022; ICES 
WGBFAS, 2022; ICES WGNSSK, 2022). This is still one of the few 

examples worldwide where a multispecies model is used to contribute to 
tactical advice for fishing opportunities (Skern-Mauritzen et al., 2016). 
In recent years WGSAM developed a more structured way to reach 
conclusions on the suitability of a model to be used as key-run (ICES 
WGSAM, 2019). 

Based on the experience gained from the WGSAM key-run approach 
and based on literature, a framework with guiding questions for tar-
geted, pragmatic and flexible skill assessments has been developed to 
support a thorough review or benchmark before a model is used for 
advice. The aim was to develop a general framework applicable to 
models regardless of their complexity and approach as well as type of 
advice. The framework outlines the necessary steps to avoid the bad 
practice of incomplete skill assessments. For example, prediction skill is 
often hardly tested for EM’s while the proposed framework includes this 
as an important step. We provide worked examples, but we do not 
propose best practice guidelines under each of the guiding questions 
given the large variety of potential advice questions and modeling 
approaches. 

2. What is meant by the skill of a model? 

In general, the skill of a model can be expressed as its ability to 
describe the true system state (Stow et al., 2009). However, because 
often the truth cannot be measured, the question is how well does a 
model reproduce the imperfect observations (Jolliff et al., 2009; Skogen 
et al., 2021). While this is relatively straightforward for less complex 
single species models, more parameters and time series of various types 
of observations have to be considered when evaluating the output from 
EMs. 

We consider the true system state to be the modeled output plus a 
discrepancy (Kennedy and O’Hagan, 2001). A model is made up of 
“tuning parameters” and “input variables”. “Tuning parameters”, 
sometimes referred to as “free parameters” are adjusted to make the 
model look act like the real system, possibly fitting them to data, and 
“input variables” are variables that are taken as known inputs to the 
model (Brynjarsdóttir and O’Hagan, 2014; Spence et al., 2021b). 

Strictly speaking “tuning parameters” do not have an interpretation 
outside of the model (Rougier and Beven, 2013), whereas "input vari-
ables“ represent true variables outside of the model. What is a ”tuning 
parameter” and an “input variable” is specific to the model. For example, 
in size-based models such as mizer, the predator–prey mass ratio is an 
“input variable,” coming from other studies (e.g. Hatton et al., 2015), 
whereas in SMS it is treated as a “tuning parameter” and fitted to data (e. 
g. ICES WGSAM, 2021). 

For stochastic models, we consider the random elements to be 
“tuning parameters” as in Spence and Blackwell (2016). Uncertainty in 
the “tuning parameters” is known as parameter uncertainty (or sto-
chastic uncertainty for stochastic parameters). The discrepancy term 
corrects for errors in the model and uncertainty in this value is known as 
structural uncertainty. Therefore, the uncertainty of the prediction of 
the true system state depends on the uncertainties in both the parame-
ters and the discrepancy. To learn about “tuning parameters” and dis-
crepancies, one can use observations, however, it is often not possible to 
observe the exact value of interest, but a noisy, usually incomplete, 
version of it (e.g., Spence et al., 2018). This is known as observational 
uncertainty (Skogen et al., 2021). 

The skill of the model is the inverse of the uncertainty of its pre-
diction in Spence et al. (2021a). A model that has small uncertainty 
when predicting the true value of interest is more skilled than a model 
that has a higher uncertainty. 

3. Guiding questions for a target-oriented skill assessment 

3.1. General questions 

A first set of questions deals with the general setting of the model 
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environment and the advice questions asked to the model (Fig. 1). 
Indeed, EMs produce a large variety of outputs at multiple scales and it 
might not be necessary for the model to display a good fit in all those 
dimensions to be used operationally. According to Sterman (1984) and 
NRC (2007), the validity of a model is somehow subjective and should 
rather be seen as its adequacy for its purpose, which can be more 
objectively assessed. Similarly, in this study, we consider a model as 
valid if it fits its purpose. Model validation is seen as the process of 
determining the degree to which a model is an accurate representation 
of the real world from the perspective of the intended use of the model 
(AIAA, 1998). In a decision support context, we therefore advocate a 
target-oriented (i.e. focusing on the output of interest) skill assessment, 
which requires the following questions to be answered as a first step. 

3.1.1. What do we need? 
The first question to be answered is what is needed for a successful 

advice delivery. This question is specifically relevant for EMs and 
delayed the development of MSA compared to other fields. For instance, 
in oceanographic or atmospheric modeling where the products are 
gridded maps of ocean or air variables, inter-comparison exercises and 
forecast requirements have led to the development of common standards 
for model evaluations (Hernandez et al., 2009). However, their expec-
tations and outputs are often similar while the diversity of assumptions, 
structures, outputs and objectives in EMs makes standard protocols 
difficult to define. MSA for EMs includes justifying the need for more 
complex models than traditional single species models. To find the 
“sweet spot” between sufficient complexity (i.e. to avoid bias because 
important processes are not considered) and acceptable levels of model 
uncertainty is crucial (Collie et al., 2016). In this context often Models of 
Intermediate Complexity for Ecosystem assessments (MICE) are dis-
cussed as being preferable over more complex whole ecosystem models 
(Plagányi et al., 2012). However, the right level of complexity is also 
largely determined by the questions asked to the model and it has to be 
determined whether the model can produce the type of outputs and 
metrics needed to assess the objectives of the advice given the data at 
hand. One may need to give up complexity to robustness (i.e. stability in 
the outputs of interest) when providing advice. It is important to think 
about the relevant scales for each model output. It has to be clear early in 
the process whether the model can produce results at the right spatial (e. 
g., whole ecosystem, subareas, Marine Protected Areas) and temporal 
scale (e.g., inter-annual variability vs. long-term trends) including the 
question whether the focus is on past or current or future states. How-
ever, also other scales may be important. For example, there is a dif-
ference when advice is needed on a species or specific life stage level, for 
functional groups, trophic levels or biodiversity aspects in a whole 
ecosystem context. Depending on this, the MSA and the choice of the 
model need to be tailored towards the scales relevant for the advice. 

The type of advice needed also determines which output from the 
model is highly relevant and which output is not as important. This al-
lows focusing on specific outputs. For example, if the advice needed is on 
historical predation mortalities, a focus on diet related data and sub- 
models is important as well as the robustness of the predation mortal-
ity estimates. In contrast, forecast skills are not relevant in this case. Also 
processes leading e.g., to a scaling of the total consumption of predators 
and because of this to a similar scaling of the prey abundance estimates 
may also be of less importance as long as the predation mortality esti-
mate (influenced by predator consumption and prey abundance) is 
hardly impacted. The situation, however, is completely different if the 
same EMs are to be used to set total allowable catches (TACs) based on a 
target fishing mortality where the absolute level of abundance and 
catches are of greatest importance. Similarly, if the model is used as the 
operating model in an MSE, efforts should be put on assessing the re-
alism of objective-related outputs and to whether they can be used in 
absolute or relative terms. It is recognized that these questions, although 
crucial, could be answered differently by individuals and the availability 
of an expert group to objectively judge on these aspects may be needed. 

3.1.2. What type of model is available? 
Another question relates to the type of model itself, as the MSA 

process will fundamentally depend on this. Although the questions in 
this framework are universal, the type of analyses that can be carried out 
under each question depends on the type of model. For example, pure 
simulation models without an associated data fitting process do not 
work with “tuning parameters”. Only a comparison with external time 
series of e.g., catch, survey indices or assessments can allow the possi-
bility of testing whether the set of external input parameters results in a 
reasonable behavior of the model. As a complement, sensitivity tests can 
provide beneficial information on the impact of certain parameters on 
results and advice products (see below). 

3.1.3. Are there sufficient data available to test the model performance? 
Before conducting a skill assessment, appropriate data for compari-

sons with model outputs have to be selected, and their availability and 
quality need to be evaluated. The availability and scales (e.g., temporal, 
spatial, age/length structure or whole population) of the observational 
data will ultimately determine at which level of detail a skill assessment 
can be carried out and how quantitative it is going to be. 

Next to the availability, the uncertainty in the observations is also an 
important aspect to consider before any comparison is made. The more 
uncertain the observations, the more distance from modeling results 
may be allowed before a model is regarded as being unreliable. Obser-
vation quality and model expected accuracy constrain the type of 
methods to be used to assess model skill. For instance, a point to point 
evaluation might not be relevant to compare spatial model predictions 
to spatial observations if the localisation of observation is not precise or 
the model spatial resolution is too coarse. However, there could be sit-
uations where questions regarding the suitability of model outputs for 
advice products can no longer be answered in a quantitative way 
because of highly uncertain and/or misplaced observations. Ultimately, 
managers and other end-users of model advice should give their opinion 
on their comfort level with model performance in a data-poor situation 
by comparing with alternative methods for decision-making (e.g., can an 
uncertain model provide support for making decisions as opposed to 
deciding based on the poor data alone, or on no data or model at all?). 
Skill assessment provides measures to have these conversations in an 
informed and transparent manner, although in this study we focus on 
cases with sufficient data available (for examples see table S1) rather 
than data-poor situations. 

3.2. Skill assessment of hindcasts 

After successfully answering the general questions described above, 
the next step is to evaluate the calibration to historical data and 
dependent on the type of model its parameterisation with external in-
formation and/or internal parameter estimates (Fig. 1). 

3.2.1. What are the key parameters that influence model results most? 
After, or even before, a first parameterization with “input variables” 

and/or estimation of “tuning parameters” has been finalized, sensitivity 
tests need to be carried out to get insights on the general model behavior 
and model formulation (i.e. structural uncertainty, uncertainty in the 
model discrepancy) and to learn what parameters require specific 
attention or refined estimation. 

Although a local one-at-a-time (OAT) sensitivity analysis is a 
commonly used approach (Ferretti et al., 2016), it does not take into 
account interactions and associated non-linearities in the model 
response and correlations among the input parameters (Saltelli and 
Annoni, 2010). As an alternative, global sensitivity analysis (GSA) is 
increasingly used to develop and assess environmental models (Lehuta 
et al., 2010; Marzloff et al., 2013; Morris et al., 2014) and tool-boxes 
have been published (e.g., Pianosi et al., 2015). Although GSA comes 
at the cost of high computational time needed for complex models with 
many parameters, the access to high performance and parallel 
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General ques�ons 

What is needed for a successful delivery of the advice product?

What is the advice ques�on? 
Has the model the right complexity? 
Can the model deliver the output needed at the right spa�al and temporal scales? 
Which are the most important outputs and metrics for the advice? 

What type of model is available and which skill assessment methods are appropriate?

What real world observa�ons are available for skill assessments?

Are sufficient observa�ons for important outputs in rela�on to the advice ques�on(s) 
available? 
Are the observa�ons at the right spa�al and temporal scale in rela�on to the advice 
ques�on(s)? 
How certain and/or biased are the observa�ons?  

Hindcast 

Which are the most sensi�ve parameters and is there room for improvement? 

What is the performance of the (final) model hindcasts?

How good is the agreement between model output and real world observa�ons? 
How large are the es�mated parameter uncertain�es? 
Are there indica�ons for major structural uncertain�es (e.g, iden�fied by sensi�vity 
analyses)? 

Are the parameteriza�on and emerging proper�es from the (final) model sound according to 
scien�fic knowledge? 

Are there retrospec�ve pa�erns? 

Forecast 

What is the predic�ve skill of the (final) model?

Do predic�ons show expected model behavior? 
How does the model perform in cross valida�ons? 
How large are the es�mated uncertain�es? 
Are there indica�ons for major structural uncertain�es (e.g, iden�fied by sensi�vity 
analyses)? 
How is the performance of short-, medium- and long-term forecasts?

Fig. 1. Framework of questions proposed for a target-oriented skill assessment.  
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computing is opening the door for more GSA. In general, there is a need 
to decide on which approach is suitable on a case by case basis although 
one needs to be aware of correlations between parameters and a realistic 
uncertainty margin around parameters from outside the model in any 
case. An example, for an intermediate approach, Hansen et al. (2019) 
performed a sensitivity analysis on nine biomass dominating functional 
groups in an Atlantis ecosystem model for the Barents Sea to determine 
whether the species position in the food web influenced their sensitivity 
to certain parameter perturbations and whether responses (including 
non-additive responses) depend on the trophic level. Also, the so-called 
Morris method combines the idea of a global sensitivity analysis with a 
one step at a time approach in an efficient way and was successfully 
applied to an Atlantis model (Morris, 1991; Bracis et al., 2020). 

In the particular case of estimation models (calibrated/fitted models, 
including tuned parameters), GSA is recommended both prior and after 
the calibration phase. Prior to calibration or tuning of the model, 
sensitivity analysis is advised both as informative of model behavior and 
as a means to prioritize factors to further investigate or include in cali-
bration (Saltelli et al., 2006). In this latter case, the output of interest 
might directly be the objective function or likelihood measure of the 
estimation procedure and the SA will indicate which parameters are the 
most influential on its value. This might help restrict the estimation to 
the most influential parameters, which is particularly helpful when all 
the uncertain factors cannot be included in the estimation procedure, 
when over-parameterisation is suspected or alternative model structures 
or assumptions exist. SA can also point out the combinations that are 
mostly responsible for model realizations in the acceptable range and on 
the contrary identify the “worst” locations in the parameter space, 
therefore objectivising modelers choice. Depending on the method used, 
it may also unveil correlation structures among parameters, allowing it 
to be used in post-calibration SA or uncertainty analyses (see an example 
of a bayesian procedure in Da Veiga et al., 2021). After sensitivity an-
alyses have been carried out, e.g., Lehuta et al. (2013) propose a clas-
sification of parameters into a hierarchy according to their sensitivity 
and the nature of their uncertainty (Fig. 2). Based on this hierarchy, it 
can be decided how parameters may be treated for further improvement 
of model skills and uncertainty estimation. 

After the calibration or tuning phase, sensitivity analysis helps to 
assess the robustness (i.e. stability in the outputs of interest) of the 
parameterisation. A difficulty arises here, however, because of the cor-
relation structure introduced between parameters by the calibration 
phase. If it has been revealed by the previous SA or the calibration 
procedure itself, it can be propagated in the SA using appropriate 
methods (Da Veiga et al., 2021). Otherwise, best practices imply that the 
model be refitted for each new combination of parameters tested 
(Turányi, 1990; Saltelli and Annoni, 2010; Lehuta et al., 2013). 

Recognising the potentially high computational cost of such a proced-
ure, methods are emerging to assess the sensitivity of the internally 
estimated parameters to other parameters of the model (Jørgensen, 
2023). Nonetheless, we recognise that these are novel, sophisticated 
methods possibly appearing cumbersome or even inapplicable to inex-
perienced SA practitioners. We recommend that an uncertainty analysis 
is at least performed, yet acknowledging its limits, because even 
imperfect, it is a step towards improving model transparency. Performed 
around parameter’s estimates, uncertainty analysis will inform on the 
robustness of the model and the fit at least locally. 

3.2.2. How is the performance of hindcasts? 
Preferably, for all alternative parameter values and/or model for-

mulations tested in sensitivity analyses, model outputs have to be 
compared to observations. Thereby, the focus has to be on the outputs, 
scales and skills relevant for the advice question(s). In general, different 
metrics might disagree with each other (e.g., correlation indices and 
Average Absolute Error (AAE)) and therefore the selected metrics and 
indicators need to reflect the skills that are critical for the purpose of the 
modeling exercise (e.g. trends in climate change issues, but point by 
point accuracy in tactical models). It is important to assess on which 
important aspects (e.g., predation mortalities or biomass trends or 
biodiversity), resolution (e.g., species level or functional groups or 
whole ecosystem), spatial (e.g., whole model area or for a sub-part of the 
model area only (e.g., areas around wind farms)) and temporal scales (e. 
g. accurate on yearly catches, but bias on seasonal catches) the model is 
reliable and on which it is less certain. 

There is a large variety of methods available to compare model 
outputs/fits to historical data. These can be roughly divided into 
methods focusing on univariate statistics and methods focusing on a 
multivariate approach. A particular challenge is the skill assessment of 
spatially explicit models (see below under 3.2.2.3). Finally, for statistical 
models, testing the estimation skill of the model via simulation (data is 
simulated rather than observed) can be useful. These four aspects are 
further detailed below. 

3.2.2.1. Focus on univariate statistics. A wide variety of metrics (e.g., 
AAE, Root Mean Squared Error (RMSE) or residual analysis) exist that 
can provide objective insights into the match between model output and 
observations (Stow, 2009). As example, Olsen et al. (2016) used a set of 
such metrics (Fig. 3) that allow for the identification of different types of 
discrepancies between model output and observations. It is best to 
decide beforehand the thresholds for each metric to indicate and discern 
between good or bad model performance (e.g., Modeling Efficiency 
(MEF) > 0.3 or correlations > 0.6, with MEF evaluating whether the 
model is an improvement over the mean of the observations (Stow et al., 

Fig. 2. Hierarchy of parameter sensitivity and uncertainty as well as suggested action. 
Reprinted from Lehuta et al. (2013) with permission from Elsevier as copyright holder. 
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2009). MEF is as good as the mean if MEF= 0. The larger the MEF, the 
better is the model performance). While some metrics come with theo-
retical thresholds (Dabrowski et al., 2014), scientific advisory bodies 
like ICES often still need to come up with general guidelines on appro-
priate thresholds (e.g., Annex 3 in ICES Benchmark Guidelines, 2023 
provides thresholds for Mohn’s rho (Mohn, 1999) as measure for 
retrospective bias in assessments or guidelines for RMSE runs tests 
(Carvalho et al., 2021)) that are accepted by their scientific community. 
Another aspect not often tackled by current MSA metrics is the account 
of uncertainties around observations in the computation of skill metrics. 
Ignoring uncertainties around observations can lead to an underesti-
mation of model skill. Allen et al. (2010) enhance the halo of uncertainty 
surrounding both model and data. 

3.2.2.2. Focus on a multivariate approach (both variables and metrics). 
More generally, for models with multiple response variables, indepen-
dent, univariate comparisons of each response with its corresponding 
observations is informative, but it is also appropriate to compare re-
sponses and observations across all of the response variables simulta-
neously and check known relationships between variables to ensure 
structural realism (Friedrichs et al., 2006, 2007). A cost function or 
multivariate goodness of fit can be considered as single metrics of 
overall model performance (e.g., Kasibhatla et al., 2000; Stow et al., 
2009). 

Where real observations are scarce, not present, or too uncertain 
and/or misplaced in time and space, at least general patterns and overall 
model behavior can be tested based on consensus in the scientific 

community (e.g., Kaplan and Marshall, 2016). Perturbation analyses 
may also be used to check or compare model response with expected or 
observed past behavior (Maar et al., 2018). 

3.2.2.3. Spatially explicit models. A particular challenge is the skill 
assessment of spatially explicit models. Atmospheric and oceanic models 
are well advanced in the validation of spatial outputs. Several ap-
proaches are for instance proposed by the Global Ocean Data Assimi-
lation Experiment (GODAE; Hernandez et al., 2009; Ryan et al., 2015). 
They combine visual comparison of two- and three-dimensional fields 
(maps, possibly interpolated) of variables (e.g. mixed layer depth, 
temperature; class 1 metrics), confrontation of fine resolution model 
outputs with in-situ or remote-sensing observations over well observed 
sectors of interest (transects or moorings; class 2 metrics) and integrated 
quantities over or across special sections of model domain (e.g. heat 
transports; class3 metrics). Classical statistics of observation-model 
differences can be computed. Because visual comparison of maps is 
often subjective, area-integrated quantities may also be computed and 
compared (e.g., Schoener overlap index of similarity; Schoener, 1970) as 
for e.g., done by Püts et al. (2020) to judge on similarities between 
predicted and observed spatial distributions of various species. Also 
mapping of cell-by-cell misfits, Kappa tests (allowing or not for 
consideration of neighboring cells), or self-organizing maps (SOM) are 
further examples of methods to derive performance metrics (Allen et al., 
2007; Stow et al., 2009; Mitchell et al., 2021). What EMs are concerned, 
observations are rarely available at a fine resolution and are often 
scarcer and more unevenly distributed than oceanographic data. The 

Fig. 3. Conceptual Figure comparing the skill metrics (Root Mean Squared Error (RMSE), Average Absolute Error (AAE), Average Error (AE), Modeling Efficiency 
(MEF) and correlation) performance using simulated observed (open circles) and modeled data (lines). Reprinted from Olsen et al. (2016). 
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metrics used to assess the ability of the model to mimic spatial patterns 
need to be adapted in consequence (Sandvik et al., 2016). What needs to 
be finally answered is whether the spatial resolution possible for a skill 
assessment is sufficient for the advice question in place. In addition, for 
any model feature but maybe even more for spatial patterns, one must be 
aware that spatial distributions in EMs are seldom fully emerging from 
mechanistic processes (but see for instance the Apex Predators 
ECOSystem Model (APECOSM; Maury, 2010) or OSMOSE (Shin and 
Cury, 2004)). An in-depth understanding of the level to which spatial 
patterns are forced or constrained by data is required and must be 
transparently communicated before a spatial MSA is performed. Also, 
circularity (especially when data-poor) needs to be avoided as much as 
possible to make sure tuning and test sets are different. Last but not least, 
any spatial MSA has to be conducted in conjunction with MSAs for the 
temporal and spatio-temporal dimensions. The best spatial representa-
tion of observations may not lead to the overall best ecosystem model 
performance when considering all dimensions and outputs (Püts et al., 
2020). 

3.2.2.4. Bayesian model validation. Bayesian model validation (Gelman 
et al., 2013) is another method to validate the model. This method, 
similar to hypothesis testing, tests if the model is able to recreate a 
dataset. The model uncertainties are quantified after it has been fitted to 
data, and then many pseudo-datasets, the posterior predictive distribu-
tion of the data, are generated. From these pseudo-datasets, summary 
statistics of the data are generated (e.g. mean, auto-correlation) creating 
a distribution of the summary statistics. The summary statistics are not 
limited to those that are sufficient statistics of the likelihood, in fact it is 
encouraged that they are not (Gelman et al., 2013). The summary sta-
tistics of the observations are compared with the distribution of the 
summary statistics of the pseudo data. If the observed values are in the 
tails of the distribution then one can conclude that these summary sta-
tistics are inconsistent with the model (see Spence et al., 2021c for an 
example). Unlike classical hypothesis testing, where the aim is to show 
that a null model is not correct, Bayesian model validation aims to 
answer if the summaries of the data could have arisen by chance under 
the model assumptions. This has the advantage that a “good model” is 
not rejected due to a lack of data, but only if there is evidence that it is 
not a “good model”. 

3.2.2.5. Simulation testing for statistical models. The estimation skill of 
statistical models can be tested via simulations. In this case, a simulation 
model, often called operating model (OM), is used to simulate a set of 
observations (including observation errors and potentially process er-
rors) that the statistical estimation model (SEM) will fit to. Two cases 
can be differentiated: i) the SEM is the same as the OM; and ii) the SEM 
differs from the OM. In the first case, the simulations test the SEM 
consistency to estimate the truth when the model is correct (same 
structure and assumptions as the OM). This test is notably useful to 
understand the SEM behavior for different levels of errors around the 
observation and/or processes. In the second case, the SEM is not the full 
representation of the truth (OM), and often a simplification of it. The 
information provided by this test will depend on the difference between 
OM and SEM. This test is notably useful to understand, for instance, how 
the estimation skill of the SEM can be affected by different levels of data 
(Trijoulet et al., 2019), by alternative model structures or by different 
model complexity (e.g., trophic interactions and process errors in Tri-
joulet et al., 2020). When the OM is very complex (e.g., end-to-end 
models such as Atlantis), fitting a simpler SEM (e.g., single species or 
MICE models) could provide useful information on how the stock or 
fishery perceptions can be affected by model structure and assumptions 
and which model outputs are likely robust to structural uncertainty 
(ICES WGSAM, 2023). In the case where it is believed that the OM is a 
close representation of the real ecosystem, this simulation notably in-
forms on the possible limitations that exist with worldwide use of single 

species assessment models. 

3.2.3. Are the parameterization and emerging properties from the model 
sound according to scientific knowledge? 

Based on knowledge on e.g., life history traits and ecosystem func-
tioning, the “input variables”, derived “tuning parameters” and outputs 
have to be checked for plausibility and consistency next to the com-
parison to observations described above. Cury et al. (2008) stress that 
many models can reproduce a historical time series but it takes struc-
tural realism to fit simultaneously several data components and advo-
cates for “pattern-oriented modeling” (POM, Grimm et al., 2005). For 
example, prebalance (PREBAL) diagnostics (Link, 2010c) have been 
developed for ecological network models like Ecopath to increase the 
credibility of such models. Based on the PREBAL diagnostics, it can be 
evaluated whether the parameterization, estimates of parameters and 
emergent properties are in line with theoretical understanding of 
ecosystem structuring and functioning. While PREBAL has been devel-
oped for models like Ecopath, relevant similar diagnostics (e.g., pro-
duction and consumption rates, biomass ratios, slope of removals or 
biomass across taxa and trophic levels) may be also used for any other 
type of model to check the general plausibility of its parameterization 
and emergent properties. In addition, intermediate outputs and esti-
mated tuning parameters from the model that are not provided as 
standard outputs for decision making may be checked for realism (De 
Mora et al., 2016; Kaplan and Marshall, 2016). For example, it may be 
analyzed whether natural mortality rates decrease with age as expected 
or predicted age and length distributions are in line with observations. 

3.2.4. What is the influence of additional data points? 
Another important performance test that is common for e.g., single 

species assessment models is a retrospective analysis. It needs to be 
ensured that important model outputs do not change substantially just 
by adding or leaving one year of data out. So far this type of analysis is 
not always standard especially for more complex models, but it is an 
important addition to avoid especially retrospective bias (i.e. manage-
ment decisions change if additional data points were available). One 
example for carrying out such a retrospective analysis is from WGSAM 
when testing the performance of the 2017 and 2020 SMS key-runs in 
estimating natural mortalities (ICES WGSAM, 2017; ICES WGSAM, 
2021). 

3.3. Skill assessment of forecasts 

The predictive ability is often the most important model feature for e. 
g., advice on fisheries management strategies. Improvement of predic-
tive capacities is one of the main reasons for increasing model 
complexity and moving towards more process-oriented models (Spence 
et al., 2021b). While hindcast performance gives an overview on the 
success of calibrating or fitting the model to observations, it does not 
allow conclusions on the forecast performance of the model. For 
example, if the model fits the historical data used to calibrate or fit the 
model well, it can still show poor performance in forecasting if the 
model e.g., over-fits the observations or processes like recruitment to the 
fish stock become more important in forecasts than in hindcasts and are 
not well understood. Trijoulet et al. (2020) found that single species 
models can fit observations well, but produce biased estimates of 
spawning stock biomass and recruitment relative to correctly specified 
multispecies models in a simulation analysis. In the absence of simulated 
“truth” or independent data available to perform cross validations, 
hindcast fit to data is often the primary model selection benchmark. In 
such situations often the well-fitting simpler model may be selected for 
advice, although an analysis of forecast skills could point in another 
direction. Performance of hindcast and forecast may also differ across 
model outputs and examining performance for the most important 
outputs to the question at hand is critical. For example, hindcast per-
formance of an end-to-end model was variable across ecosystem metrics 
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that were not used in calibration, but forecast skill was better than 
hindcast skill for several of these metrics (Olsen et al., 2016; Fig. 4). In 
addition, there are several examples where relationships e.g., between 
environmental data and recruitment of fish stocks broke down although 
they were highly significant when fitted to historical data (e.g., Myers, 
1998; Howell et al., 2013). Therefore, it is most important that the 
forecast skills are also investigated to ensure a common understanding 
of model capabilities for decision making (Fig. 1). 

3.3.1. Do predictions show expected model behavior? 
The performance test of forecasts is more difficult than for hindcasts 

because future observations are simply not available and historical ob-
servations are often needed for model calibration and it is not always 
easy to leave out enough data for meaningful cross validations. How-
ever, general questions on model behavior can be used to challenge 
model forecasts in any case. For Ecopath with Ecosim key-runs WGSAM 
tested whether the fishing mortalities and fishing effort leading to 
maximum sustainable yield are in a sensible order of magnitude and not 
considerably above fishing levels where it is known that the stocks 
seriously declined in the past (ICES WGSAM, 2015, 2016). This would 
indicate that the productivity of stocks could be overestimated and at 
least further investigations (e.g., is future productivity positively influ-
enced by climate change) are needed. Another example of an expected 
model behavior is that in a simulation with no stochasticity, constant 

oceanographic forcing, and no fishing, the majority of species or func-
tional groups should show no significant trend in biomass over the final 
20 years of a long-term forecast (Kaplan and Marshall, 2016). 

3.3.2. How is the short-term, medium-term and long-term forecast 
performance? 

A common way of testing the forecast performance is to calibrate the 
model to a training data set and then compare model predictions to 
independent data points (e.g. years) not used for the calibration (cross 
validation). For example, one option is to leave out input data such as 
survey indices for some of the years and analyze if this induces bias in 
the survey and population predictions (Trijoulet et al., 2020). Univariate 
and multivariate skill metrics described for the hindcast performance 
testing can be used also for this purpose. 

In addition, Mean Absolute Scaled Error (MASE; Hyndman and 
Köhler, 2006) is a form of cross validation that has become a popular 
metric for testing prediction skills. It is a measure for determining the 
effectiveness of forecasts by comparing the predictions with the output 
of a naïve forecasting approach. MASE has the desirable properties of 
scale invariance, so it can compare forecasts across data sets with 
different scales. Kell et al. (2021) and Carvalho et al. (2021) used it in an 
“hindcasting” approach (observations are peeled back from the terminal 
year) of assessment model outputs. An observation at time t was 
compared to a prediction of that observation made x time steps 

Fig. 4. Skill metrics for ecosystem indicators emulating emergent ecosystem properties using the Northeast US (NEUS) Atlantis model, demonstrating the importance 
of identifying and evaluating outputs of interest for skill assessment. Performance in hindcast and forecast differed by metric and was not necessarily consistent (e.g. 
opposite MEF indicating poor hindcast but good forecast performance for Whales, TEPs, MTL catch, and Value). Pairwise comparison of forecast and hindcast skill 
metric performance for 5 skill metrics: Average Absolute Error (AAE), Average Error (AE), Modeling Efficiency (MEF), Root Mean Squared Error (RMSE) and 
Spearman rank correlation (S) between observed and predicted values. Note that these indicators were not used in model calibration. TEPs: Threatened, endangered 
and protected species. PP: Primary production. MTL: Mean trophic level. 
Reprinted from Olsen et al. (2016). 
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previously. 
An issue with cross validation is that data are required to be omitted 

when fitting the model. One could recalibrate the model with all of the 
data after the skill assessment, however this will change the model and 
its `skill’. Therefore, the new model, with updated parameter estimates, 
has different `skill’, which is unknown. An alternative is to leave the 
testing data out completely (e.g., several years of a time series). This has 
the disadvantage that the model is not utilizing all of the information 
when making predictions and therefore the estimates are more uncertain 
(and potentially biased if e.g., explaining variables become significant 
only if all data are used) than they could be. This requires careful 
thinking before performing cross validations. 

It is of utmost importance to test the predictive skills at the scale 
required by the advice and where possible to extend the evaluation 
across the short-, medium- and long-term to better understand the limits 
of the model applicability in the context of advice. 

3.4. Examples for applying the framework of guiding questions 

In order to demonstrate that the described framework of guiding 
questions can be applied to a wide variety of advice questions and 
models with different complexity, we applied the framework to five 
examples (Table S1). The models tested ranged from a single species 
assessment model (State-space Assessment Model (SAM); Nielsen et al., 
2021) for Western Baltic Spring Spawning Herring (WBSS) over MICE 
models (Georges Bank Hydra (Gaichas et al., 2017), Baltic Sea SMS 
(ICES WGSAM, 2019)) to ecosystem models (Georges Bank Rpath (R 
implementation of EwE; Lucey et al., 2020), Irish Sea EwE (Bentley 
et al., 2021)). The advice questions ranged from tactical advice on 
fishing opportunities over providing natural mortality rates to inform 
single species assessments to the use of ecosystem information as guid-
ance on setting target fishing mortalities within single species FMSY 
ranges (Rindorf et al., 2016; Bentley et al., 2021). The examples are 
based on key-run evaluations from ICES WGSAM (ICES WGSAM, 2019; 
ICES WGSAM, 2023) and the ICES assessment for Western Baltic Spring 
Spawning Herring (ICES HAWG, 2023). 

As envisaged, the proposed framework could be applied to any of the 
advice questions and models. The questions helped with scoping the 
needs for a successful advice delivery and conducting a structured 
target-oriented skill assessment. For Hydra and Rpath the framework 
was applied although the models were not yet fully developed. The 
questions helped here to plan future steps. This illustrates the iterative 
nature of the process as highlighted by Schmolke et al. (2010) in their 
recommendations on model documentation for advice. 

While hindcast performance was tested in all examples, predictive 
skills were not fully tested because forecasts were either unnecessary to 
answer the advice question (Baltic Sea SMS, Irish Sea EwE), or the 
models were not fully developed (Georges Bank Hydra and Rpath) or 
mainly qualitative information on predictive skills were available 
(WBSS SAM). Our proposed framework will hopefully help to make the 
assessment of predictive skills a standard as already practiced in e.g., 
Olsen et al. (2016) or Carvalho et al. (2021). 

3.5. Final judgment on model skills and limitations 

After the questions proposed in this framework have been answered, 
the information has to be combined into a final recommendation 
regarding whether and how a certain modeling approach can be used as 
a basis for advice. A particular challenge is to combine information from 
different analyses and sources to get a complete picture on the strength 
and weakness of a modeling approach. 

3.5.1. Summary of information 
Summary diagrams, such as Taylor diagrams (Taylor, 2001) can be 

useful in this respect. As example, Kell et al. (2016b) used Taylor dia-
grams to evaluate prediction skill for a variety of models conditioned on 

a wide range of scenarios based on different datasets and alternative 
model structures. Taylor diagrams are able to simultaneously present 
multiple skills over multiple variables and modeling options (find 
another example in Püts et al., 2020 comparing different parameteri-
zations of an Ecospace model). They also make explicit the correlations 
between skill metrics, thus warning about redundancy in the assessment 
(Jolliff et al., 2009). 

Radar plots are another way to summarize results. Taylor diagrams 
are mainly used for validation and selection across multiple models and 
scenarios, while Radar plots are often used to summarize how well 
multiple conflicting objects are met. However, Radar plots can be also 
used to summarize model skills on several variables as shown by Lehuta 
et al. (2013) or Vigier et al. (2018). 

Both examples have in common that they can become quite complex 
and a good explanation/ training for managers/ end-users is needed to 
ensure that results are interpreted in the right way. More generally, a 
complete documentation on model development including the skill 
assessment steps is desirable for any model intended to support decision 
making (Schmolke et al., 2010). 

In order to conclude in an objective way whether a model is fit for 
purpose, it needs to be ensured that the choices of outputs, metrics and 
thresholds are objective, transparent and relevant to the advice question 
(s). The uncertainty in relevant model output needs also to be commu-
nicated. The importance of using information from sensitivity analysis 
has to be highlighted again as often structural uncertainties are more 
important than parameter uncertainties, especially in the context of 
ecosystem modeling (Hill et al., 2007). 

Finally, based on all information available a decision has to be made 
regarding which model output can be used to provide advice and which 
cannot. For example, WGSAM concluded for an Ecopath with Ecosim 
model for the Irish Sea that the model key-run was accepted as a basis for 
generating ecosystem indicator(s) but the direct use of modeled fishing 
mortality values was not recommended (ICES WGSAM, 2019). 

All information leading to final conclusions and recommendations 
must be presented in a concise report. The set of questions provided can 
serve as a basis to present the evaluation results in a structured way (see 
e.g., ICES WGSAM, 2019). Because such reports can become quite 
extensive, e.g., model report cards could be added for stakeholders less 
familiar with technical details. Next to this, the results of the model and 
the results of the MSA have to be reproducible to allow especially other 
scientists to follow the decisions afterwards. This can be achieved by 
storing all information needed on repositories. 

3.5.2. Interaction with stakeholders 
The interaction with stakeholders is a challenging task that, how-

ever, often decides whether a modeling approach is finally used for a 
certain advice product. We provide examples in table S1 on how outputs 
from ICES WGSAM key-runs have been perceived and used by stake-
holders. The examples also show that work does not stop with a suc-
cessful skill assessment and further steps (e.g., stakeholder workshops, 
benchmarks) are needed before model results are used as a basis for 
advice. Already during the skill assessment phase input from stake-
holders is highly beneficial to build trust. 

To make complex model results accessible to other scientists and 
stakeholders it is most important to think about the dissemination of 
products (Pastoors et al., 2007; Lehuta et al., 2016). Poor documentation 
and lack of accessibility to input data, model source codes and model 
outputs are bad practices in the communication of any quantitative 
advice and become particularly important when working at the forefront 
of new formats of advice. The best skill assessment will not help to 
improve the uptake if models and their results are not easily accessible. 
This may also include summaries at different levels of technical detail 
because not all stakeholders want to read a full report. Also, the 
communication between scientists with different backgrounds is 
important and e.g., people from WGSAM often participate in assessment 
working groups. This substantially improves the communication 
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between scientists (i.e. traditional stock assessment scientists and 
ecosystem modelers), as well as the dissemination and explanation of 
results. 

3.5.3. Communication of uncertainties 
The communication of uncertainties is an integral part of the scien-

tific advice and supporting the decision process for a correct use of in-
formation on uncertainties is especially challenging (Kell et al., 2016a; 
Levontin et al., 2017). The delivery of information in an easy and un-
derstandable way especially for stakeholders without a scientific back-
ground is difficult. Misinterpretation of uncertainties as "errors’’ or 
turning towards models with lower parameter uncertainties, just 
because structural uncertainties are ignored (Bannister et al., 2021), 
needs to be avoided. It is often seen as problematic that, for example, 
fishing opportunities become lower the higher the number of sources of 
uncertainty incorporated - a phenomenon seen in MSE simulations (ICES 
WKNSMSE, 2019). To find a compromise between the number of sources 
of uncertainties tested (e.g., number of sensitivity runs) and delivering a 
useful advice product, especially from complex models, is challenging 
and needs to be found case by case. What is important is a level playing 
field when different models (of different complexity) are tested as can-
didates. Otherwise, there is a danger of uncertainties being under-
estimated and that the wrong model is chosen just because its 
weaknesses are not well understood or not presented. The framework of 
questions presented in this study can be an important step towards such 
a level playing field contributing to improve the quality of advice 
products for a successful implementation of EBFM. 

4. Conclusions 

In this work we propose a framework for target-oriented skill 
assessment of models to advance the implementation of EBFM. Several 
guidelines and best practices for model development and performance 
testing already exist (e.g., Link et al., 2012; Heymans et al., 2016; Kaplan 
and Marshall, 2016; ICES WKGMSE2, 2019, Carvalho et al., 2021). 
However, often such complex and detailed guidelines tend to be ignored 
(Schmolke et. al, 2010). A general framework for pragmatic and tar-
geted skill assessments applicable to models irrelevant of their 
complexity and approach is so far missing. The framework of guiding 
questions presented here contributes to fill this gap and allows for sys-
tematically testing and benchmarking models such as EMs before they 
are used as a basis for advice. It also intends to ensure a level playing 
field between models of different complexity by asking the same ques-
tions to all candidates for a given advice product. 

4.1. What the framework is not able to deliver 

The suite of questions proposed provides a framework that ensures 
that all topics required in a target-oriented skill assessment are covered. 
However, they do not provide best practice guidelines on methods or 
analyses to be carried out under specific questions. The reason for this is 
that the variety of potential advice questions and modeling approaches 
is simply too large to propose one or several methods as best practice. 
The development of new methods and model types in times of big data 
and machine learning is also increasingly fast and any best practice 
guidelines on specific methods risk to be outdated soon after publica-
tion. Nevertheless, our guiding questions provide a framework for sci-
entific communities to develop further technical guidelines for each 
question. 

The framework also focuses on the “exploitation” phase of a model 
life cycle in the sense of its operational use (NRC, 2007). It provides 
guidance on how to test whether an existing model is fit for purpose. 
Although it is useful for other steps in a model life cycle, the framework 
of questions presented here is not intended to be complete for e.g., the 
model development phase. However, also for the development phase the 
framework of questions may be useful to plan future steps as 

demonstrated in the examples for Georges Bank Hydra and Rpath 
models. 

4.2. What the framework is able to deliver 

Answering the outlined questions (Fig. 1) provides the possibility to 
find the best model for a given advice product from alternatives tested 
and/or whether a certain model is fit for purpose. An overall picture of 
model performance and sources of uncertainties can be derived from 
answering the questions proposed in this framework. The results of the 
skill assessment provide a suitable basis to judge on the strength and 
weakness of the model to determine which model output and at which 
scales may be useful for advice. This question is much more difficult to 
answer for ecosystem and multispecies models than for e.g., a single 
species stock assessment model. For example, it depends on the advice 
question whether a good performance for several but not all species/ 
stocks in the model is sufficient or not. 

Following the proposed framework can improve the trust in complex 
models and in any case will improve transparency in the modeling work 
performed. For example, MSEs with single species models as operating 
model are used all over the world to test harvesting strategies. Missing 
important processes could lead to biased population dynamics in the 
operating model, finally leading to biased results and potentially wrong 
management decisions. It has to be highlighted that the same rigor must 
be applied to all models independent of their complexity. In order to be 
able to simulate more processes (e.g., food web interactions, climate 
change impacts), there is an increasing demand to use EMs in MSE 
simulations (Kaplan et al., 2021). While full ecosystem or end-to-end 
models (e.g., Atlantis) are mainly used as operating models to be able 
to test e.g., the robustness of management strategies in providing sus-
tainable outcomes over a large variety of sources for bias and un-
certainties, MICE models may also be used in the assessment part of the 
MSE loop to test their performance (see also above under Simulation 
testing for statistical models). 

The guiding questions presented here are universal and can be 
applied to all models independent of their complexity and usage. The 
guiding questions can also easily be used for model ensembles. An 
increasing number of methods for multi-model inference is available for 
application in fisheries contexts (Gårdmark et al., 2013; Ianelli et al., 
2016; Anderson et al., 2017; Spence et al., 2018). Multi-model ensem-
bles are routinely used in weather and climate forecasting (e.g., Tracton 
and Kalnay, 1993; Tebaldi and Knutti, 2007; Semenov and Strato-
novitch; 2010, Krishnamurti et al., 2016; Du et al., 2018). Model en-
sembles have been shown to outperform single models in terms of error 
compensation and improved consistency, and also lead to a more com-
plete quantification of structural uncertainties (e.g., Hagedorn et al., 
2005; Lotze et al., 2019). Skill assessment of a model ensemble can be 
done in a similar way as for individual models by comparison to his-
torical observations and reserved current observations to evaluate 
forecast skill (e.g., Zhou and Du, 2010; Leonardo and Colle, 2017), or by 
using simulation analysis. 
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Vinther, M., Stäbler, M., Poos, J.J., Smout, S., Frost, H., van den Burg, S., Ulrich, C., 
Rindorf, A., 2016. The MSY concept in a multi-objective fisheries environment – 
Lessons from the North Sea. Mar. Policy 69, 146–158. https://doi.org/10.1016/j. 
marpol.2016.04.012. 

Kennedy, M.C., O’Hagan, A., 2001. Bayesian calibration of computer models. J. R. Stat. 
Soc.: Ser. B (Stat. Methodol. ) 63 (3), 425–464. https://doi.org/10.1111/1467- 
9868.00294. 

Kraak, S.B.M., Kelly, C.J., Codling, E.A., Rogan, E., 2010. On scientists’ discomfort in 
fisheries advisory science: the example of simulation-based fisheries management- 
strategy evaluations. Fish Fish. 11 (2), 119–132. https://doi.org/10.1111/j.1467- 
2979.2009.00352.x. 

Krishnamurti, T.N., Kumar, V., Simon, A., Bhardwaj, A., Ghosh, T., Ross, R., 2016. 
A review of multimodel superensemble forecasting for weather, seasonal climate, 
and hurricanes. Rev. Geophys. 54 (2), 336–377. https://doi.org/10.1002/ 
2015rg000513. 
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