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Contributions to the Theory of Environmental Sampling
Abstract

Environmental monitoring plays a crucial role in guiding climate change and conser-
vation policy decisions. To obtain reliable insights from environmental populations,
it is essential to adopt probability sampling. Furthermore, the availability of auxiliary
variables can greatly enhance the quality by reducing estimator variability.

Auxiliary information can be used in different ways in a sampling design. Some
designs aim to satisfy the balancing equation, i.e. selecting samples where the sam-
ple means of the auxiliary variables equal the population means. Other designs are
constructed in an attempt to obtain samples well-spread, or spatially balanced, in
auxiliary space, creating the sample as a miniature of the population. Paper III
provides an improvement of an existing design, making it possible to increase the
average spread of the sample. In Paper IV, a novel metric is introduced to assess a
design’s capability to yield spatially balanced samples.

Papers II and V introduce sampling designs for different types of populations
one might encounter in nature. The variant of adaptive cluster sampling developed
in Paper II facilitates the study of rare and clustered populations, utilizing circular
plot shapes popular among practitioners. Paper V addresses the sampling of linear
objects like storm-felled trees, employing aerial photographs from drones in the data
collection processes.

When data are gathered from multiple surveys, various methods exist to con-
solidate results. A common approach involves constructing a linear combination
weighted by variances. Paper I introduces a novel estimator that employs a linear
combination, particularly valuable when a correlation is suspected between the es-
timator and the variance estimator – a frequently encountered scenario in studies
involving environmental populations.

In conclusion, this thesis contributes to the field of environmental monitoring
by emphasizing the critical role of probability sampling, utilization of auxiliary vari-
ables, and introducing innovative sampling designs tailored to the intricacies of en-
vironmental populations.
Keywords: area frame sampling, auxiliary variables, design-based inference, sam-
pling design, spatially balanced sampling
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Utveckling av samplingmetoder för miljöövervakning

Sammanfattning
Miljöövervakning har en viktig roll för att vägleda beslut inom klimatförändrings-
och naturvårdsområdet. För att erhålla pålitlig information från populationer i na-
turen är användningen av sannolikhetsbaserade urval avgörande. Vidare kan nytt-
jandet av hjälpvariabler öka informationskvaliteten genom att minska estimatorernas
variabilitet.

Hjälpinformation kan användas på olika sätt i en urvalsdesign. Vissa de-
signer syftar till att uppfylla balansekvationen, det vill säga att välja urval där
stickprovsmedelvärdena för hjälpvariablerna motsvarar populationsmedelvärdena.
Andra designer är konstruerade för att producera urval som är väl spridda, eller
rumsligt balanserade, i hjälpvariablerna, vilket kan skapa stickprov som efterliknar
miniatyrer av populationen. I Studie III förbättras en befintlig design genom att öka
den genomsnittliga spridningen av enheter i urvalet. Studie IV introducerar en ny
metrik för att bedöma en designs förmåga att producera rumsligt balanserade urval.

Studie II och V introducerar urvalsdesigner för olika typer av populationer som
är vanligt förekommande i naturen. Den variant av adaptivt klusterurval som utveck-
lats i Studie II underlättar undersökningar av sällsynta och klustrade populationer.
Designen använder cirkulära provytor, vilka är populära bland fältarbetare. Studie V
behandlar urval av linjära objekt, som stormfällda träd, genom användandet av flyg-
fotografier från drönare i datainsamlingen.

När data samlas in från flera undersökningar finns olika metoder för att kon-
struera ett gemensamt resultat. En vanlig metod är att använda en linjär kombination
av estimatorerna, viktade med varianser. I Studie I introduceras en ny estimator,
baserad på en linjär kombination, som är särskilt inriktad på populationer där det
misstänks finnas en korrelation mellan estimatorn och variansestimatorn – något som
är vanligt förekommande bland populationer i naturen.

Sammanfattningsvis bidrar denna avhandling till utvecklingen av miljööver-
vakningen genom att betona den avgörande roll som sannolikhetsbaserade urval
spelar, hur hjälpvariabler kan användas och analyseras, samt genom att introducera
innovativa urvalsdesigner anpassade till de förutsättningar som finns hos popula-
tioner i naturen.





"I may not have gone where I intended to go, but I think I have ended up
where I needed to be."
— Dirk Gently.
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1 Introduction

Environmental monitoring is becoming increasingly important, as policy
makers seek information to guide decisions on climate change and conser-
vation. In the European Union, the European Commission has decided on
the Biodiversity strategy for 2030, outlining several environmental goals
and measures, relying on better and more precise data and information (The
European Commission, 2020). Simultaneously, the Forest strategy for 2030
directly outlines forest monitoring, reporting and data collection as strategic
targets for the European Union (The European Commission, 2021).

In order to collect objective information about a population, surveys are
often used. When a population is small, it might be possible to measure
every unit in the population. However, for large populations, a survey often
consists of utilizing a sample, as complete censuses are deemed to costly to
perform. Different samples will yield different information. If one has a good
knowledge of the population, a sample may be selected purposely to consist
of the most average population units with respect to the quantity of interest
(Kiær, 1976). The information that can be gained from a sample taken this
way might be very good, i.e. close to the truth, however it would be hard
to quantify the goodness of the information without looking into the process
that selected the sample. If the pre-acquired knowledge of the population was
poor, the information that can be gained from the sample will most likely also
be poor.

Probability sampling is an objective way of selecting a sample. When
using probability sampling, each possible sample is assigned a probability to
be selected, in a way that guarantees a possibility for all units in the pop-
ulation to be selected. An algorithm then decides on which unit to select,
while respecting the probabilities. The randomization of a probability sam-
ple ensures objectivity, and eliminates any selection bias (Särndal et al., 2003,
9). The probability distribution of the possible samples is called a sampling
design.
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An estimator is a function of the data, which is used to tell us something
about a population parameter. If the estimator is unbiased, the probability
weighted average of the estimator for all possible samples – the estimator’s
expected value – is equal to the desired quantity in the population. As an
example, the sample mean is a commonly used unbiased estimator for the
population mean, when the sample is taken through simple random sampling.
The sampling design and an accompanying estimator is called a sampling
strategy (Särndal, 1978).

The estimator described above adheres to the design-based inference
paradigm. In design-based inference, randomness is only considered as a
consequence of the sampling design. The other paradigm is model-based
inference, in which we assume the gathered data as a realization of some
abstract model or super-population distribution. Commonly, model-based
inference is used to infer the properties of this model, as the expected value
of the model distribution, or relationships between different variables in
the model-based world, rather than infer the properties of any observed or
unobserved realization of this model. Model-based inference mainly con-
siders the randomness as a consequence of drawing values from the random
distribution which constitutes the model. See the papers of Särndal (1978)
and Gregoire (1998) for more on the differences between the inferential
paradigms. This thesis only considers design-based inference, and as such
any randomness invoked is only a consequence of the sampling design.

The variation of the estimator in a sampling strategy can be measured
through the variance as the probability weighted squared deviation around the
estimators expected value. Generally, it is desirable to use a strategy which
gives an unbiased, or at least approximately unbiased estimator. Of the set
of unbiased or approximately unbiased strategies, it is sensible to opt for the
strategy with the lowest variance.

Use of auxiliary variables, i.e. variables for which the measurements are
known for all population units prior to the sampling effort, has been of great
interest in efforts to reduce the variance of the estimator in a strategy. Strat-
ified or ordered systematic sampling are examples of early uses of auxiliary
variables in the design, so is sampling with probabilities proportional to size.
Historically, the focus has mainly been on reducing the variance of the esti-
mator, through the use of ratio, difference and regression estimators.

As available computer power has increased, together with an increase in
available auxiliary information, recent years has seen a shift in focus to the
development of more efficient designs. An example is balanced sampling
methods, which serves to respect the means of the auxiliary variables in the
sample. This group of methods have historically been associated with pur-
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posive sampling (Brewer, 1994). With recent developments, it is possible to
select at least approximately balanced samples using probability sampling.
If there is a linear relationship between the auxiliary variables and the vari-
able of interest, balanced samples can be very efficient for certain estimators
(Cochran, 1977). Other approaches have instead focused on selecting sam-
ples well-spread in the auxiliary variables, in the hope of capturing the gen-
eral distribution of the population. In addition, well-spread designs are also
approximately balanced (Grafström and Lundström, 2013).

In Section 2, the general estimators will be introduced, together with
some methods for incorporating auxiliary information in the design. Sec-
tion 2.3 will introduce some measures for spatial balance, i.e. tools for deter-
mining how well a design captures the general distribution of the population.
As many environmental applications lack sampling frames, indirect sampling
designs are needed, such as sampling from an area frame, for which Section 3
is devoted. Finally, some final remarks are given in Section 4.
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2 Sampling from a finite population

Sampling is often performed when wanting to estimate some function of a
variable of interest y, observable for all units in the population, while deem-
ing a complete census infeasible due to financial or practical reasons. A com-
mon function is the population total Y = ∑i∈U yi, where U denotes the set
of labels 1, . . . ,N corresponding to the N units in the population. Although
other variations may be of interest, such as the population mean Y/N, we will
solely consider the population total in this thesis. In order to draw a sample,
we need a sampling design, directing how the selection process should be.

A common sampling design for sampling from finite populations is the
Simple Random Sampling without replacement (SRS). For SRS, a sample of
size n is drawn without replacement, where each unit in the population has an
equal probability of being included into the sample. We call this probability
the inclusion probability πi of a unit i. For SRS, πi = n/N.

A general estimator of Y for sampling designs performed without re-
placement, i.e. Single Count (SC) designs, is the Horvitz-Thompson (HT)-
estimator

Ŷ = ∑
i∈U

yi

πi
I(Si > 0) , (1)

where I(·) denotes the indicator function, and Si is the number of inclusions
of unit i (Horvitz and Thompson, 1952). This estimator is unbiased for all
designs where πi > 0 for all units i ∈U .

For designs producing fixed sized samples, such as the SRS, the variance
of (1) is

V
(
Ŷ
)
=−1

2 ∑
i∈U

∑
j∈U

(
yi

πi
− y j

π j

)2

(πi j −πiπ j), (2)

where πi j denotes the second order inclusion probability, or the probability of
two units i, j being included together in a sample. The second order inclusion
probability for SRS is πi j = n(n− 1)/(N(N − 1)) when i ̸= j. The form of
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variance (2) is called the Sen-Yates-Grundy (SYG)-form variance (Sen, 1953;
Yates and Grundy, 1953), and can be estimated through

V̂
(
Ŷ
)
=−1

2 ∑
i∈U

∑
j∈U

(
yi

πi
− y j

π j

)2
πi j −πiπ j

πi j
I(Si > 0∩S j > 0) . (3)

Not all designs can guarantee fixed sized samples. For such designs, the
general variance of the HT-estimator is

V
(
Ŷ
)
= ∑

i∈U
∑
j∈U

yiy j

πiπ j
(πi j −πiπ j),

which can be estimated through

V̂
(
Ŷ
)
= ∑

i∈U
∑
j∈U

yiy j

πiπ j

πi j −πiπ j

πi j
I(Si > 0∩S j > 0) . (4)

Both (3) and (4) are unbiased if πi j > 0 for all pair of units i, j.
Some designs allows the same unit to be selected multiple times, i.e.

Multiple Count (MC) designs. An example of an MC design is the Simple
Random Sampling With Replacement (SRSWR), where n units are randomly
drawn, and each unit in the population has an equal expectation of number
of inclusions in the sample. This expectation is called the expected number
of inclusions µi of a unit i. For SRSWR, µi = n/N, as each unit has a draw
probability of 1/N, and n independent draws are made. A general estimator
for MC designs is the Hansen-Hurwitz (HH)-estimator

Ŷ = ∑
i∈U

yi

µi
Si, (5)

which is unbiased for designs where µi > 0 for all units i (Hansen and Hur-
witz, 1943).

When the sample size is fixed, such as for the SRSWR design, the vari-
ance in SYG-form of (5) is

V
(
Ŷ
)
=−1

2 ∑
i∈U

∑
j∈U

(
yi

µi
− y j

µ j

)2

(µi j −µiµ j),

which has an estimator

V̂
(
Ŷ
)
=−1

2 ∑
i∈U

∑
j∈U

(
yi

µi
− y j

µ j

)2
µi j −µiµ j

µi j
SiS j. (6)

18



The general variance of (5) is

V
(
Ŷ
)
= ∑

i∈U
∑
j∈U

yiy j

µiµ j
(µi j −µiµ j),

and can be estimated through

V̂
(
Ŷ
)
= ∑

i∈U
∑
j∈U

yiy j

µiµ j

µi j −µiµ j

µi j
SiS j, (7)

where µi j denotes the second order expected number of inclusions for a pair
of units i, j. The estimators (6) and (7) are unbiased for all designs where
µi j > 0 for all pair of units. For SRSWR, µi j = n(n− 1)/N2 for all pairs
i ̸= j.

2.1 Sampling designs for finite populations

For a more formal definition of a sampling design, we first consider the ran-
dom vector S ∈ NN

0 containing the numbers of inclusions of the population
units, with elements Si = k if the ith unit in U is included in the sample k
times. The sampling design can then be defined by the probability distribu-
tion p on the inclusion vector S. LetR = {s ∈NN

0 : p(s)> 0} be the support
of p, i.e. the set containing the possible outcomes of the designs, where s
denotes the realization of the random vector S. IfR ⊆ {0,1}N , the sampling
design is without replacement, as elements in S is confined to having values
{0,1}. On the other hand, the design is with replacement ifR \{0,1}N ̸= /0,
i.e. it is possible to select some unit multiple times. A design produces fixed
sized samples of size n ifR ⊆Rn, whereRn = {s∈NN

0 : ∑i∈U si = n}. (Tillé,
2006, 7).

Through the design, the inclusion probabilities of the units in the popula-
tion can be described as

πi = ∑
s∈R

p(s) I(si > 0) = P(Si > 0) ,

whereas the expected number of inclusions is defined by

µi = ∑
s∈R

p(s)si = E(Si) .

We call these terms the (first order) design properties. Similarly, the second
order design properties are defined as

πi j = ∑
s∈R

p(s) I(si > 0∩ s j > 0) = P(Si > 0∩S j > 0) ,
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and
µi j = ∑

s∈R
p(s)sis j = E(SiS j) .

The estimators (1) and (5) are unbiased as long as the support of the
design allows all units to be selected, i.e.

∀i ∈U ∃ s ∈R : si > 0,

whereas the variance estimators are unbiased if the support allows all pairs of
units to be selected together

∀i, j ∈U ∃ s ∈R : sis j > 0.

2.2 Using auxiliary variables

The use of auxiliary variables in sampling is almost as old as sampling itself
(Kiær, 1976). As an example, consider a survey of the average use of public
transportation, where prior knowledge is available on the subjects in the pop-
ulation on whether or not they live in a rural or urban area. If we expect that
the availability of public transformation differs between rural and urban ar-
eas, it seems natural to want to ensure that the sample includes subjects from
both types of areas. Using an SRS could, however, result in a sample con-
taining only rural or only urban subjects. Thus, we might be inclined to use a
stratified sampling design, i.e. a design constructed to respect the proportion
of rural and urban subjects. In this case, it is reasonable to suspect that using
the prior information – the auxiliary variable – would lead to a decrease in
variance of the estimator.

For another example, the prior knowledge instead contains information
about the subjects ages. If we expect that school-aged subjects and elderly
subjects uses the public transportation more than others, we would be in-
clined to use this knowledge in the sampling process. However, compared
to the previous example, we no longer have categorical data, but continuous,
why we cannot employ the stratified design. Instead, we can use an ordered
systematic sample, where every subject is ordered by age, selecting every kth
subject, k = N/n, with a randomized start. By doing so, we eliminate the
risk of selecting a sample containing only school-aged subjects, and ensures
a greater similarity between the distribution of ages in the population and the
distribution of ages in the sample.

When the Swedish National Forest Inventory (NFI) started in 1923, the
initial design selected trees to survey through placing belts in a regular pat-
tern over Sweden, measuring all trees along the 10m wide corridors. Later,
in 1953, the strategy shifted to randomly placing circular plots in a square

20



formation over the landscape, as information about the forest state acquired
during the previous years hinted towards similarity between nearby units
(Fridman et al., 2014). The observed tendency has later been popularized
by Tobler (1970), as Tobler’s first law of geography: "everything is related
to everything else, but near things are more related than distant things." This
tells us that we should aim to separate the units in the sample, increasing
the distance between them, as close units are more likely to convey the same
information compared to units farther apart.

This idea is analogous to the designs in the examples. The stratified and
ordered systematic designs ensures that no part of the population is over-
represented in the sample – i.e. the risk of clustering is reduced. However,
while efficient, these designs have an obvious drawback in that they are lim-
ited to a single or few auxiliary variables, and other methods are needed if we
want to utilize multiple auxiliary variables in the sampling design, especially
if wanting to use unequal probability sampling.

Although the specific scenario of the Swedish NFI is a case of sampling
finite populations using area frames, which is the topic of Section 3, there are
many other examples of direct sampling from finite populations in environ-
mental studies. In many of these, longitude and latitude is an obvious set of
auxiliary variables.

An early method which attempted to spread samples in longitude
and latitude is the General Random-Tessellation Stratified (GRTS) design
(Stevens and Olsen, 2004). The GRTS works similarly to Peano curves,
or space-filling curves, by recursively tessellating the quadrants of the
two-dimensional auxiliary space into smaller and smaller squares, until at
most one unit exists in each square, while preserving the order through the
depth of the tessellation. The main difference to Peano curves is that the
ordering of the quadrant in each step of the tessellation process is random.
When the tessellation process is complete, a one-dimensional ordering has
been constructed, from which it is possible to draw a sample using an ordered
systematic design, with unequal probabilities if needed.

While the GRTS retains some kind of ordering of the population, infor-
mation is obviously lost when going from two dimensions to one dimension.
Another approach was introduced by Grafström (2012), called Spatially Cor-
related Poisson Sampling (SCPS), an adaptation of Correlated Poisson Sam-
pling (CPS) by Bondesson and Thorburn (2008). In SCPS, a decision is
taken for a single unit at a time, to either include or exclude it from the sam-
ple, by random. After the decision is made, any undecided units gets their
probabilities updated in a way that ensures that the unconditional inclusion
probabilities remains the same, i.e. the conditional inclusion probabilities are
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martingales (Bondesson and Thorburn, 2008). The main difference between
CPS and SCPS is that probabilities are updated according to a priority order,
updating units close to the included/excluded unit before units far away. In
short, the process can be described as:

a) Initialize the conditional inclusion probabilities π
(t)
i at step t = 0 to the

prescribed inclusion probabilities, i.e. π
(0)
i = πi. Any unit that has inte-

ger conditional probability mass, i.e. 0 or 1, at any step, is considered
(definitely) excluded from or included in the sample.

b) Select a unit i(t) from the undecided units U (t), i.e. units for which 0 <

π
(t)
i < 1. This unit can be selected at random or by traversing through

the frame. Draw a random number U (t) ∼ U(0,1). If u(t) ≤ π
(t)
i(t), set

π
(t+1)
i = 1, otherwise set π

(t+1)
i = 0.

c) Order the remaining units by some distance measure in auxiliary space,
into an ordered list.

d) Sequentially, through the ordered list, update the conditional inclusion
probabilities to

π j(t+1) =

{
π j(t)− (1−πi(t))wi(t), j(t), if i(t) was included,
π j(t)+πi(t)wi(t), j(t), if i(t) was excluded,

where w denotes the largest weights

0 ≤ wi(t), j(t) ≤ min
(

π j(t)

1−πi(t)
,
1−π j(t)

πi(t)

)
,

while ensuring that the sum of the used weights is not larger than 1. Fig-
ure 1 shows an example of a unit selected in b), and two units which would
get their probabilities updated as an result of the outcome of the selected
unit.

e) Repeat the process from b) as step t+1, until all units are either considered
included or excluded. If only one unit remains, the process is finished after
b).

The inclusion of c) in the process described above creates a negative cor-
relation between the numbers of inclusions Si, and S j, dependent on the dis-
tance between i, j, which effectively spreads the sample in auxiliary space.
A similar idea is behind Local Pivotal Method (LPM), introduced by Graf-
ström et al. (2012). In LPM, or more specifically LPM 2, one competing unit
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Figure 1: A unit (dark dot) is selected at some step in the SCPS process.
The two closest units, i.e. units within the circle, will have their probabilities
updated as a result of the outcome of the selected unit.

is chosen at random, together with its nearest neighbour, amongst the units
without integer conditional inclusion probabilities. An example of the set of
pairs possible to choose randomly from is shown in Figure 2. By a random
decision, the conditional inclusion probabilities of the competing units are
updated, moving as much probability mass as is possible in the direction of
one of the units, ensuring that at least one of the competing units get integer
conditional inclusion probability.

In the other variant of LPM, LPM 1, competing units are selected only
from the set of pairs of mutual nearest neighbours. Figure 2 highlights these
pairs by solid lines.

As the average distance between competing units in LPM 1 is lower, com-
pared to LPM 2, the negative correlation created between the numbers of in-
clusions Si and S j is generally higher for close units in LPM 1, resulting in
a greater spread between the units (Grafström et al., 2012). In Paper III, this
idea is applied on SCPS by modifying the selection part in b), resulting in
the method Locally Correlated Poisson Sampling (LCPS). For SCPS, the se-
lected unit i(t) in b) is randomly drawn, or sequentially traversed through U .
By instead choosing i(t) by minimizing the distance of the furthest away unit
with a positive weight, see Figure 3, we can increase the negative correla-
tion introduced between numbers of inclusions Si and S j that are nearby each
other.

Another set of designs are designs which aims to satisfy the balancing
equation

∑
i∈U

xi = ∑
i∈U

xi

πi
I(Si > 0) , (8)
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Figure 2: Example of possible pairs of units, which can be selected at random
at some step in the LPM process. In LPM 2, any of the pairs can be selected,
whereas in LPM 1, only the pairs with a solid line between them can be
selected.

Figure 3: Example of five candidate units (dark dots) to select at some step
in the LCPS process. The decision to include or exclude any of these units
would affect the conditional inclusion probabilities for units with positive
weights. The affected units are shown to be inside some distance metric
around the candidate units (circles). The LCPS chooses to decide the outcome
of the candidate unit which affects units within the smallest possible distance,
shown by the unit with a solid line circle.
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for the available auxiliary variables x. This is equivalent to selecting a sample
where the estimate of the total (or mean) of the auxiliary variables are exactly
the total (or mean) of the population (Yates, 1946), and has been shown to
have desirable properties, especially if there exists a linear relationship be-
tween the auxiliary variables and the variable of interest (Royall and Herson,
1973). It has been shown that designs that produces well-spread samples are
approximately balanced (Grafström and Lundström, 2013).

The first general approach which managed to approximately respect the
balancing equation for multiple variables is the Cube method by Deville and
Tillé (2004). Similarly to LPM and SCPS, the Cube method works sequen-
tially, deciding the outcomes for at least one unit at each step of the process.
Being a SC design, Section 2.1 stated that the support of the number of in-
clusions is R = {0,1}N , which can be considered as the vertices of the hy-
percube [0,1]N , for which the vector of inclusion probabilities πππ is a member.
The Cube method operates by finding the hyperplane within this hypercube
for which the balancing equation holds, and at each step of the process mov-
ing in the direction of at least one vertex of the hypercube in a manner that
respects the inclusion probabilities.

Today, there exists a multitude of sampling designs that successfully
incorporates auxiliary variables. Some more recent includes the Balanced
Acceptance Sampling, which selects well-spread samples using quasi-
random numbers, i.e. evenly spread uniform random numbers (Robertson
et al., 2013); a sampling design with probability function proportional to
the distances, which iteratively reshapes the sample in order to achieve a
greater spread, measured through an index dependent on the distance matrix
(Benedetti and Piersimoni, 2017); the Local Cube method, a variant of the
Cube method, aiming to achieve both well-spread and balanced samples
(Grafström and Tillé, 2013); the Weakly Associated Vector (WAVE) method,
another variant of the Cube method, however traversing through a hyperplane
defined by a stratification matrix instead of the balancing equation (Jauslin
and Tillé, 2020).

The principle behind the mentioned methods, excluding the design with
probability function proportional to the distances, is that they all operate by
adjusting the second order inclusion probabilities. Some in order to create a
negative correlation between nearby numbers of inclusions Si and S j, others
in order to achieve balance. As such, variance estimators such as (3) and (4)
can often not be used, either due to it being infeasible to calculate the second
order inclusion probabilities, or because some might be 0. For these designs,
alternative variance estimators are needed. A strategy is to use the variance
estimator of assuming a SRS desing, another to use some local variance es-
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timator (see Grafström and Schelin, 2014; Stevens Jr and Olsen, 2003; Zhao
and Grafström, 2023).

2.3 Measuring the Spatial Balance

The idea behind designs that are well-spread in auxiliary space is the as-
sumption that the values which are similar in auxiliary space may also be
similar among the variables of interest. By spreading the observations, it
should therefore be possible to get a sample with a better representation of
the population. As exemplified through Tobler’s first law of geography, this
assumption is well accepted in the study of environmental populations. If a
well-spread design is used and no relationship exists between the variables
of interest and the auxiliary variables, one would still be left with a design
that cannot perform any worse than if the auxiliary variables had been disre-
garded.

The quantification of how well a design manages to represent the popu-
lation is the measure of spatial balance of the design B. The basis for this
quantification is the similarity between the distribution of the auxiliary vari-
ables of the samples produced by the design, and the population distribution.
However, for an unequal probability design, such a basis would need to dis-
regard the inclusion probabilities, as the unequal probability design can be
seen as an intentional transformation of the auxiliary space.

Grafström and Schelin (2014) makes a distinction between representative
samples and spatially balanced samples. A representative sample is said to
be a sample where

∑
i∈U∗

I(Si > 0) =
n
N

N∗, (9)

for every coherent subset U∗ ⊂U with size N∗. A subset is considered coher-
ent if it is possible to construct a convex region in auxiliary space containing
only the units in the subset. Thus, a sample is representative if it resembles
a miniature of the population, i.e. the empirical distribution of the sample
resembles the empirical distribution of the population. A sample is said to be
spatially balanced if

∑
i∈U∗

I(Si > 0) = ∑
i∈U∗

πi, (10)

for every coherent subset U∗ ⊂ U . This can be interpreted as the design
selecting the correct amount of sample units within each subset U∗. It is easy
to see that if πi = n/N for all units i, there is an agreement between (9) and
(10).

We make a distinction between the measure of spatial balance for a sam-
ple, and the measure of the spatial balance for a design, where the latter is the
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Figure 4: The Voronoi tessellation of the auxiliary space, with population
units as dots and four sample units marked by dark colour.

expected spatial balance for all possible samples in the design. A measure of
the spatial balance of a sample is the Voronoi spatial balance measure, intro-
duced by Stevens and Olsen (2004). Let U1, . . . ,Un be the partition of units in
the population around the sample points, such that U j includes all units closer
to the jth sample unit than any other sample point, i.e. a partition of the units
created by the Voronoi tessellation of the auxiliary space, see Figure 4. A
spatially balanced sample should, on average, have a probability mass

v j = ∑
k∈U j

πk,

of 1 inside each Voronoi polytope (Grafström and Schelin, 2014). The
Voronoi spatial balance measure can then be defined as

BVO(s) =
1
n

n

∑
j=1

(v j −1)2.

A drawback with the Voronoi spatial balance measure is that the measure
has no clearly defined boundaries, as it is highly dependent on the spatial
pattern of the population. In order to evaluate a design, one needs to compare
the design with that of a baseline, normally SRS. The spatial balance measure
based on Moran’s I is a modification of the Moran’s I measure of spatial
correlation (Moran, 1950), normalized to be defined on [−1,1], indicating
perfect spatial balance to maximum clustering, with a clear benchmark value
at 0 (Tillé et al., 2018). The measure is dependent on specifying a weight
matrix, with two variants given in Tillé et al. (2018) and Jauslin and Tillé
(2020).

27



In Paper IV, a new definition of the spatial balance (10) is proposed. Let
G be the design-weighted empirical distribution of the population for some
auxiliary variable vector x, as

Gx(U∗) =
1
X ∑

i∈U∗
xi,

where X denotes the total of the auxiliary variable x. Furthermore, let Ĝ
denote the design-weighted empirical distribution of the sample, as

Ĝx(U∗,s) =
1
X ∑

i∈U∗

xi

πi
I(si > 0) .

A sample has perfect spatial balance if

Ĝx(U∗,s) = Gx(U∗), (11)

for all coherent subsets U∗ ⊂U and auxiliary variables x. This can be seen as
a generalization of (10), as when x=πππ , (10) and (11) are equivalent. Notably,
Ĝx(U,s) = Gx(U) is proportional to the balancing equation (8).

Paper IV also proposes a new measure of spatial balance, based on a
Voronoi partitioning of the population, similar to the Voronoi spatial bal-
ance measure. The proposed measure promotes samples where the balanc-
ing equation is fulfilled locally within each Voronoi polytope. Let dx be the
disparity of the design-weighted empirical distributions, i.e.

dx(U j,s) = X
(

Ĝx(U j,s)−Gx(U j)
)
,

and let d(U j,s) be the vectorization over all auxiliary variables. The proposed
balance measure is defined as

BLB(s) =

√
1
N

n

∑
i=1

d(U j,s)⊺Q−1d(U j,s),

where Q = ∑i∈U xix
⊺
i . As the proposed measure takes into account the local

balancing of other auxiliary variables, the measure can be used to more ef-
fectively discriminate between individual samples, something that is harder
to with the Voronoi spatial balance measure. Furthermore, simulations shows
that the proposed measure yields more consistent results over different sam-
ple sizes, compared to the other measures, which makes it more suitable to
use if comparing samples of different sizes. An example of the different mea-
sures, denoted VO and MI for the measures based on Voronoi polytopes and
Moran’s I respectively, and LB for the proposed measure, is shown in Fig-
ure 5.
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Figure 5: Rows of six samples, from a population of six units choosing two,
and their corresponding measures of spatial balance. The measure based on
Moran’s I is undefined for the 4th sample.
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3 Sampling finite populations using area
frames

In the previous section, we considered sampling designs using list frames,
i.e. frames where we are able not only to conceptualize the population U , but
can actually label the frame according to the labels in U . For many environ-
mental studies, such as the Swedish NFI previously used in an example, a list
frame like that cannot be constructed without an effort almost as tedious as
conducting a complete census.

An approach to the problem of sampling a finite population without a
list frame is to use an indirect sampling scheme, such as cluster sampling,
where we cluster the population through some auxiliary information, creat-
ing a sampling frame. After the sampling frame is constructed, a sample is
drawn according to some finite population design, and the results are aggre-
gated from the observational units to the sampling units, and a finite popu-
lation estimator can be used. An example of a clustered sampling procedure
could be a random selection of school classes, where all children within each
selected class would be surveyed. In environmental studies, the area frame
(i.e. the map) is readily available to be used in the clustering process, and a
sampling frame can be created by tessellating the area frame, creating a finite
frame of geographical units from which a sample can be drawn, see Figure 6.

Another approach is to use plot sampling, where sample units are selected
by placing plots, through some random procedure, on the area frame, survey-
ing any units which falls within the boundaries of these plots (Gregoire and
Valentine, 2007, 207). The random procedure placing the plots on the area
frame is defined by drawing a random point as the plot centre using some
probability density function (pdf) f on the area frame. Another way to look
at the selection process is to imagine each unit having an inclusion zone, as
the horizontal and vertical reflection of the plot shape, see Figure 7. A unit is
included if the plot centre is located within the unit’s inclusion zone.
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Figure 6: 16 sampling units created by tessellating an area frame by a regular
grid. The value of the variables of interest are determined by aggregating the
observational units (dots) within each cluster.

Figure 7: Three examples of plots (solid lines) around plot centres (dark dots),
and inclusion zones (dashed lines) around units (light dots). If a plot centre
falls within the inclusion zone of a unit, the unit will be selected, as it will be
inside the plot border.
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We can describe plot sampling as follows. A population U exists within
an area frameF ⊂R2. Around each unit i ∈U , there is an inclusion zone Ai,
such that if a sample point zk drawn from a distribution defined by the pdf f
lands within Ai, unit i is included in the sample. A derivation of the general
design properties is done in Paper I.

It is sometimes desirable to ensure equal inclusion probabilities for all
population units, i.e. by choosing f to be the uniform distribution over F .
If any unit has an inclusion zone not fully within F , that unit would have
a smaller inclusion probability compared to units with inclusion zones fully
within F . A simple way to handle this issue is to extend the area frame so
that it is guaranteed to include all inclusion zones fully, i.e. by extending the
area frame by the radius of the plot.

3.1 Continuous population approach

When the population is continuous, another approach is needed in order to
estimate a total. For continuous populations, instead of having countable
population units, the population exists as a Lebesgue integrable function y
on the frame F ⊂ Rk, as an per-area density. Here, the total of the function
y, Y =

∫
F y(x)dx, or some variation thereof, is of interest. In environmental

sampling, it is usually the case that F is a subspace of R2, i.e. a map. A
sample is drawn by selecting n sample points Zi on F , each according to
some (marginal) pdf fi. The joint pdf then constitutes the sampling design on
F (Cordy, 1993).

From the marginal pdf’s, we can derive the sampling intensity function

π(z) =
n

∑
i=1

fi(z),

and the second order sampling intensity function

π(z,z′) =
n

∑
i=1

∑
j ̸=i

fi j(z,z′),

where fi j denotes the joint marginal pdf of sample points i, j.
An estimator for the total is the continuous HT estimator

Ŷ =
n

∑
i=1

y(Zi)

π(Zi)
. (12)

The estimator is unbiased if π(z) > 0 for all z ∈ F , and y is bounded or
non-negative. Assuming that y is bounded, the variance of (12) is

V (Ŷ ) =
∫
F

y(z)2

π(z)
dz+

∫
F

∫
F

y(z)y(z′)
π(z)π(z′)

(π(z,z′)−π(z)π(z′))dzdz′.
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An estimator of the variance is

V̂ (Ŷ ) =
n

∑
i=1

y(Zi)
2

π(Zi)2 +2
n

∑
i=1

n

∑
j=i+1

y(Zi)y(Z j)

π(Zi)π(Z j)

π(Zi,Z j)−π(Zi)π(Z j)

π(Zi,Z j)
,

and is unbiased if π(z,z′)> 0 for all z,z′ ∈F (Cordy, 1993).
When discrete populations are sampled from an area frame through plot

sampling, it can be useful to map the values yi of the discrete population U to
the continuous function

y(z) = ∑
i∈U

yi

|Ai|
I(z ∈ Ai) ,

assuming fixed shaped plots and inclusion zones fully within F (Mandal-
laz, 2007, 56). The mapping above ensures that the function total

∫
F y(z)dz

equals the discrete population total Y (Grafström et al., 2017).

3.2 Adaptive cluster sampling

A common feature of environmental populations is clustering or fragmenta-
tion. An example is dead wood, which occurs in higher rates in old-growth
forests, compared to managed forests (Talvitie et al., 2006). When popula-
tions show these kind of patterns, plot sampling might be relatively costly, as
the sample size will have to increase in order to achieve acceptable levels of
confidence when many plots will experience absence (Thompson, 1990).

If clustering is expected, it might be beneficial to use Adaptive Cluster
Sampling (ACS), which makes use of the observed values y in the sampling
process, increasing the sampling effort near plots where occurrence has been
found.

Similarly to the cluster sampling procedure previously described, ACS
begins by tessellating the area frame into a grid of plots, see Figure 8. From
the plots created by the tessellation, a sample is drawn using a finite sampling
design. When a plot is visited, and occurrence is observed, neighbouring
plots are also visited. If occurrence is observed in any neighbouring plots,
unvisited neighbouring plots are visited as well, and so forth, until the cluster
has been fully surveyed (Thompson, 1990). Thus, if any plot in a cluster is
selected during the sampling process, the whole cluster will be surveyed. As
such, the design properties cannot be calculated when taking the sample, but
can be calculated after the survey. The ACS can be effective, if the cost of
checking occurrence is low relative to the cost of measuring.

Let S(1) denote the number of inclusions of plots resulting from the ini-
tial sample, taken without replacement, with first and second order inclusion
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Figure 8: Tessellation of an area frame into 100 square plots. Out of the
100 square plots, the population of interest (dots) only exists within 9 dark
squares.

probabilities πi and πi j respectively. Let C(i) denote a cluster formed around
plot i, or i itself if empty. Furthermore, let S denote the number of inclusions
of plots resulting from the survey, i.e. the sum of plots either surveyed in S(1)

or as a result of the expansion around any such plot, as

Si = ∑
k∈C(i)

S(1)k . (13)

The expected number of inclusions for a plot becomes

µi = ∑
k∈C(i)

πk, (14)

with second order expected number of inclusions

µi j = ∑
k∈C(i)

∑
l∈C( j)

πkl, (15)

and the HH-estimator (5) can be used for the total.
Plot sampling commonly uses circular plot shapes. One reason may be

that circular plots are relatively easy to use in field work, as one needs to
locate a centre point, and then only have to account for the distance to this
centre point. In Paper II, we introduce a development of the ACS, named
Two-Phase Adaptive Cluster Sampling (2PACS), where the plots in the ini-
tial sample consists of circles, instead of squares. As circles cannot fully
tessellate an area, a two-phase sampling design is needed.

In the first phase, a regular lattice of circular plots is randomly placed
upon the surface with centre points z, see Figure 9. Let U1 denote the set of
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Figure 9: A lattice of 100 circular plots on an area frame. Out of the 100
plots, the population of interest (dots) only exists within 7 dark circles.

these plots. This first phase constitutes a sample according to the continuous
population approach, with plot values

yi =
y(zi)

π(zi)
,

where the sampling intensity π(z) = λ−2 is defined by the separation of the
plot centres λ . The first phase continuous HT-estimator, according to (12),
becomes

Ŷ1 = ∑
i∈U1

yi.

The clusters C(i) formed around each plot i is conditional to this first
phase sample U1, and the second phase sample is taken by using a without
replacement sampling design from U1. This leads to the number of inclu-
sions S, defined as in (13), being conditioned on the first phase sample, and
hence also the second phase design properties (14) and (15), resulting in a
conditional HH-estimator

Ŷ2 = ∑
i∈U1

yi

µi
Si.

While the law of total expectation shows this estimator as unbiased

E
(
Ŷ2
)
= E1

(
E2

(
Ŷ2|U1

))
= E1

(
Ŷ
)
= Y, (16)

where E1,E2 denotes the expectation under the first and second phase respec-
tively, an alternative variance estimator is needed and presented in Paper II.

If the population has a form which tends to create large clusters, it may
be that the resulting surveying effort is considerable. In Paper II, we suggest
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a restriction on the definition of the clusters C(i) so that it never expands far-
ther away than a set distance from the plot i, reducing the sample size for
worst-case scenarios. Other strategies for restricting the final sample size in-
cludes increasing the cut-off rate, i.e. expanding until yi > c, and sequentially
placing the initial sample plots (Brown, 2003; Brown and Manly, 1998).

3.3 Line intersect sampling

While many environmental populations can naturally be represented as point
objects, such as standing trees, or to be more precise, the seedling points of
trees, others are better represented by other shapes, for example road net-
works and rivers. When the population can be represented by lines, and have
values that can be measured as a function along these lines, line intersect sam-
pling can be useful. In line intersect sampling, the sampling units consists of
line segments, being placed randomly over the area frame. The line segments
are traversed, and any crossings of the line segments and the population are
recorded. In the simple case, consider a single line object i of length li placed
inside an area frame F , and a single sampling unit of length L placed uni-
formly with uniform rotation onF . The probability of a crossing occurring,
i.e. the line object being included in the sample, is

P(Si = 1) =
2
π

liL
|F | ,

as stated by Matérn (1964). If n sampling units are placed independently on
the area frame, the expected number of inclusions for the line object becomes

µi = n
2
π

liL
|F | ,

which can be shown to hold for line objects of any form, and/or linear sam-
pling units of any form.

In Paper V, we apply line intersect sampling together with spatially bal-
anced sampling in a two-phased approach in order to estimate the total vol-
ume of felled trees using aerial photographs. In a first phase sample, a large
number of linear sampling units are placed in a systematic pattern, with ran-
dom start and rotations, on the area frame, and auxiliary information is col-
lected for each unit. From this first phase sample, a second phase sample
is taken by a sampling design utilizing the collected auxiliary information.
The second phase sample is surveyed, registering any crossings between the
linear sampling units and any storm-felled trees.

Let yi denote the volume of a storm-felled tree i ∈U . The systematic first
phase sample is taken by placing n1 linear sampling units in a grid, spaced out
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L
l

Figure 10: Representation of storm-felled trees as a function along a line.

by F1,F2 such that n1F1F2 = |F |, as U1. The expected number of crossings
of U by U1 in this first phase sample is

∑
i∈U

µi =
n1

n1

2
π

L
F1F2

∑
i∈U

li =
2
π

lL
F1F2

, (17)

where l is the total length of the storm-felled trees. An alternative represen-
tation of the total volume Y of the storm-felled trees is

Y =
∫
L

y(z)dz,

where y(z) denotes the cross-sectional area of the storm-felled trees, repre-
sented as a continuous line segment, see Figure 10.

Through the line segment representation, the sampling intensity of the
crossings along the line segment can be deduced from (17) as

π(z) =
2
π

L
F1F2

,

since the intensity is uniform along all storm-felled trees. Denote as Z(i)
the set of crossings on L between a first phase sampling unit i ∈U1 and the
storm-felled trees U . A first phase estimator can then be given by

Ŷ1 = ∑
i∈U1

∑
z∈Z(i)

y(z)
π(z)

.

The second phase sample S is drawn from the first phase sample U1 with
inclusion probabilities πi, resulting in a conditional HT-estimator

Ŷ2 = ∑
i∈U1

I(Si > 0)
πi

∑
z∈Z(i)

y(z)
π(z)

.

As with (16), this estimator is unbiased.

3.4 Combining surveys

Sometimes there exists a need for combining multiple, independent surveys.
If domain estimates are needed of a subset of the population, a primary survey
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of the whole population might lack sufficient information about the subset to
achieve acceptable levels of confidence, why complementary domain level
surveys are needed. In other cases, one might want to incorporate existing
data from several surveys into a larger survey. In either case, it would be
unwise to discard already collected data.

A general strategy is to calculate the design properties for the
combined design. Let D denote a set of independent designs, and let
S(d)i ,π

(d)
i ,π

(d)
i j ,µ

(d)
i ,µ

(d)
i j be the design properties for units i, j ∈ U for a

single design d ∈ D. Naturally, the number of inclusions Si of the combined
design is just the sum of the inclusions

Si = ∑
d∈D

S(d)i . (18)

From this, we can deduce that the probability of inclusion for a unit i in the
combined design becomes the complement to the probability of the unit not
being included in any sample

πi = 1− ∏
d∈D

(
1−π

(d)
i

)
.

Similarly, for the second order inclusion probability, it can be shown that

πi j = πi +π j − ∏
d∈D

(
1−π

(d)
i −π

(d)
i −π

(d)
i j

)
.

For a combined MC-design, the expected number of inclusions is

µi = ∑
d∈D

µ
(d)
i ,

with the second order expected number of inclusions as

µi j = µ
(d)
i µ

(d)
j + ∑

d∈D

(
µ
(d)
i j −µ

(d)
i µ

(d)
j

)
.

Using these combined design properties, it is possible to use the estimators
(1) or (5) (Grafström et al., 2019).

An estimator for combining multiple surveys over the same frame is the
linear combination of the form

Ŷ = ∑
d∈D

αdŶ (d), (19)
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where αd is the weight of design d, with ∑αd = 1. The values of αd yielding
the lowest variance of the linear combination is found by

αd = V
(

Ŷ (d)
)−1

/ ∑
k∈D

V
(

Ŷ (k)
)−1

,

where V(·) denotes the variance operator. As the variances are often not
known, a strategy could be to use the estimators of the variances instead

α̂d = V̂
(

Ŷ (d)
)−1

/ ∑
k∈D

V̂
(

Ŷ (k)
)−1

.

The estimator (19) using α̂d is unbiased if the design variance estimators are
independent from the design estimators (Rubin and Weisberg, 1974).

For environmental surveys, it is rather unlikely that the estimators are in-
dependent from the variance estimators, as positive correlation is expected
between the two (Grafström et al., 2019). As a simple example, if a sur-
vey only manages to sample bushes, the variance will probably be rather
low, compared to a survey which only manages to sample in old growth for-
est, where the plants generally are taller with higher variation between them.
A combination of these two surveys would promote the sample with only
bushes, as the variance is lower.

In Paper I, we propose a pooled variance estimator to be used as weights,
of the forms

V̂p

(
Ŷ (d)

)
= ∑

i∈U
∑
j∈U

yiy j

π
(d)
i π

(d)
j

π
(d)
i j −π

(d)
i π

(d)
j

πi j
I(Si > 0∩S j > 0) ,

for HT-estimators, and

V̂p

(
Ŷ (d)

)
= ∑

i∈U
∑
j∈U

yiy j

µ
(d)
i µ

(d)
j

µ
(d)
i j −µ

(d)
i µ

(d)
j

µi j
SiS j,

for HH-estimators, using all available information in estimating the variances.
The results shows that this can help reduce the bias for the linear combination,
however with an additional effort required in order to match sample units of
different surveys.
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4 Final remarks

Environmental studies have a long history of utilizing auxiliary variables,
through the locations of the population units on the map. Through digiti-
zation and registers, more and more populations gain complete coverage of
some information prior to the surveying effort. The remote sensing efforts
provide new possibilities of having full coverage of new landscape attributes.
The line transect design in Paper V provides a practical example of how to
incorporate auxiliary information in the sampling phase, as well as utilizing
remote surveying equipment.

The design in Paper II utilizes the auxiliary variables in order to provide
a well-spread sample. When running a design utilizing auxiliary variables on
a computer, two main constraints exist in time complexity and space com-
plexity. For taking a single sample, space complexity is probably going to
be the restricting factor, which would imply that sampling algorithms which
do not rely on the computation of large matrices are favourable compared to
those that do. Nevertheless, the development of faster algorithms remains im-
portant for the broad adaptation of spatially balanced or balanced sampling
designs.

As more focus is put upon conservation and monitoring of important and
protected habitats, there is an increased need for sampling designs able to
efficiently capture these kind of populations (Adler et al., 2020). The design
in Paper III can be useful if the population structure is clustered, and the
linear combination of Paper I can be used if there exists data from multiple
surveys. Nevertheless, further research is needed in order to provide accurate
information as the level of detail required through legislation increases.

When auxiliary variables are available, there is no disadvantage in using
them in the sampling design, as the worst case scenario implies effectiveness
on par with SRS. The conclusion therefore seems to be that sampling designs
should always make use of any auxiliary information, regardless of the aim
of the study. Paper IV discusses the various ways to measure spatial balance.
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If well-spread designs are able to provide miniatures of the population, such
designs seem desirable even for model-based studies, as a way to reliably
get a good coverage, of the population, and therefore minimize the risk of
extrapolation.
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Popular science summary

In order to make informed decisions, one needs access to reliable data. For
the decisions regarding climate change and conservation issues, information
of the current state and changes in natural resources and habitats is needed.

Information about the unknown can be gained in multiple ways. If it is
possible, one can survey everything deemed relevant. Oftentimes, the cost
associated which a full scale survey is significant, and a sample of the whole
is needed. In order to ensure objectivity, random samples are preferred over
subjective samples, as it reduces the risk of the researcher influencing the
outcome.

Sometimes information is known about the whole population prior to the
sampling effort. In such cases, it makes sense to use this information when
selecting the random sample. This can decrease the risk of getting a highly
unrepresentative sample. For example, if the locations of the population units
are known in advance, we rarely want to have a sample that is all clustered
together on the map, as nearby things tend to be more similar compared to
things far apart. Thus, a strategy can be to use a sample selection algorithm
that spreads the sample on the map.

Furthermore, for different types of populations we need different types of
tools in order to select a sample. When surveying the trees in a forest, one
can randomly place plots in the landscape, and measure any trees inside the
plots, as trees can be thought of as points on a map, if seen from above. If
the population is rare, not enough plots may catch the phenomenon we are
interested in, and some other sampling technique is needed in order to ensure
that enough data can be gathered. Other combinations of populations and
variables of interest may not even be suitable to survey using plot sampling,
and yet different designs are needed.

This thesis explores different ways of selecting samples, focusing on the
utilization of prior information. The different papers give new tools for select-
ing well-spread samples (Paper III), how to evaluate if a sample is well-spread
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(Paper IV), how to sample from rare and clustered populations (Paper II), how
to sample storm-felled trees using aerial drone photos (Paper V), and how to
combine multiple surveys in order to increase the accuracy of our estimators
(Paper I).

48



Populärvetenskaplig sammanfattning

För att kunna fatta välinformerade beslut krävs tillgång till pålitlig data. För
beslut som rör klimatförändringar och naturvård krävs information om det
nuvarande tillståndet samt om förändringar i naturresurser och arters utbred-
ningsområden.

Ett sätt som kan användas för att få information är genom en totalunder-
sökning, där man fullständigt undersöker en hel population. Ofta är dock
kostnaden för en sådan totalundersökning betydande, vilket gör att en stick-
provsundersökning är nödvändig. För att säkerställa objektiviteten i en stick-
provsundersökning behöver man göra ett slumpmässigt urval, då den som
genomför undersökningen annars riskerar att påverka resultatet.

Ibland finns det information om enheterna i populationen innan urvalet
tas. I sådana fall är det möjligt att använda denna information när man genom-
för det slumpmässiga urvalet, för att minska risken för att ett skevt urval väljs.
Som exempel, om vi vet positionerna för enheterna i populationen i förväg så
vill vi sällan ha ett stickprov där alla enheter är väldigt nära varandra. Detta
eftersom närliggande objekt tenderar att vara mer lika varandra jämfört med
objekt som är långt ifrån varandra. En strategi kan därför vara att använda en
urvalsalgoritm som sprider ut urvalet på kartan.

Vidare behövs olika typer av samplingverktyg för olika typer av popu-
lationer. När man undersöker träd i en skog kan man slumpmässigt placera
ut provytor i landskapet, och sedan mäta eventuella träd som hamnat inom
provytorna, då träd kan betraktas som punkter om de ses uppifrån. För pop-
ulationer där enheterna är sällsynt förekommande så riskerar dock inte till-
räckligt många provytor att träffa av det fenomen vi är intresserade av, och
andra tekniker behövs för att säkerställa att vi får tillräckligt med data för att
kunna dra säkra slutsatser. För andra typer av populationer och variabler kan
det vara så att provytor inte lämpar sig alls, varför ytterligare andra metoder
behövs.

Denna avhandling behandlar olika sätt att välja urval med fokus på nyt-
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tjande av hjälpinformation. De olika studierna presenterar nya verktyg för
att ta spridda urval (Studie III), hur man utvärderar om ett stickprov har en
bra spridning (Studie IV), hur man väljer urval från sällsynta och klustrade
populationer (Studie II), hur man väljer urval av stormfällda träd med hjälp
av flygfoton från drönare (Studie V) och hur man kombinerar resultaten flera
undersökningar för att öka noggrannheten för en skattning (Studie I).
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Combining Environmental Area Frame
Surveys of a Finite Population

Wilmer Prentius, Xin Zhao, and Anton Grafström

Newways to combine data frommultiple environmental area frame surveys of a finite
population are being introduced. Environmental surveys often sample finite populations
through area frames. However, to combine multiple surveys without risking bias, design
components (inclusion probabilities, etc.) are needed at unit level of the finite population.
We show how to derive the design components and exemplify this for three commonly
used area frame sampling designs. We show how to produce an unbiased estimator using
data from multiple surveys, and how to reduce the risk of introducing significant bias
in linear combinations of estimators from multiple surveys. If separate estimators and
variance estimators are used in linear combinations, there’s a risk of introducing negative
bias. By using pooled variance estimators, the bias of a linear combination estimator can
be reduced. National environmental surveys often provide good estimators at national
level, while being too sparse to provide sufficiently good estimators for some domains.
With the proposed methods, one can plan extra sampling efforts for such domains,
without discarding readily available information from the aggregate/national survey.
Through simulation, we show that the proposed methods are either unbiased, or yield
low variance with small bias, compared to traditionally used methods.

Key Words: Combining data sources; Combining estimators; Environmental
monitoring; Linear combination estimator; Sample design properties.

1. INTRODUCTION

For a traditional finite population survey, one often think of some well-structured list
frame covering the population of interest, from which a statistician can draw a sample
according to some procedure, in order to produce an efficient and unbiased estimator of
some population parameter. When conducting environmental surveys, however, this is often
not the case.

Environmental surveys often lack well-structured, comprehensive list frames to sample
from. In such settings, it is common to use area frames covering the assumed spread of
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the population of interest. Examples of environmental surveys using such area frames are
national forest inventories (Axelsson et al. 2010), agricultural inventories (Fecso et al. 1986),
landscape inventories (Allard 2017), among others. By using area frames, a sample unit
becomes a point from a continuous population—the area surface—why there is a need to
map the sample properties for the sampled points to the indirectly sampled units in the
population of interest.

Other desirable outcomes in environmental surveys are domain estimates, or their coun-
terparts, estimates created by aggregating domain estimates. In the first case, primary surveys
are seldom planned with domain estimates in mind, why complementary surveys are often
considered. The latter case may especially be considered when dealing with rare popula-
tions, or wanting to incorporate a previously conducted domain survey into an aggregate
survey (Benedetti et al. 2015).

Scenarios like these, or when dealing with two samples with different designs, connect
to the multiple-frame research area. When combining such samples, an optimal linearly
combined estimator should be weighted by the variance (Lohr and Rao 2006). Since true
variances are most likely not available, variance estimates are often used instead. However,
environmental surveys conducted using area frames often have target variables with highly
skewed distributions, since the units in the population of interest might be absent in large
parts of the area frame. Under such circumstances, the estimators and the variance estimators
are susceptible to correlation, which can introduce significant bias into linearly combined
estimates using variance estimates as weights (Grafström et al. 2019).

In order to reduce the bias of a combined estimate, we propose two methods: The first
approach is a generalization of the combining samples approach derived by Grafström et al.
(2019), which combines unit sample properties from an arbitrary number of designs into
design components for the combined design. The second approach uses a pooled variance
estimator to estimate the variance of each survey’s estimator by using all available informa-
tion from the surveys.

The targeted applications are primarily environmental surveys andmonitoring, where it is
common to use area frames. Several countries have national landscape and forest monitoring
programs that may not be enough to produce regional or domain level estimates, and thus
need be complemented on some level to reach specific accuracy targets (Christensen and
Ringvall 2013).

With the methodology presented in this paper, there might be a need to link surveys
relating to different definitions of statistical units. Hence, this is something that should be
planned for from start. We need be able to detect if the same population unit is included in
more than one sample (ormultiple times in the same sample). However, inmost applications,
the size of the area being sampled is likely to be very large compared to the area covered
in the samples, which makes overlap not particularly common. In area-based surveys, we
are likely to have geographical coordinates for at least the statistical unit. These coordinates
can easily be used to detect possible overlap between different surveys. In the rare case of
possible overlap, it may be difficult identify exactly which population unit that is included
multiple times. If this is thought to be an issue, then it may be needed to use markings of
coordinates and/or population units in the field to make such identification easier.
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In some cases, e.g., for unbiased variance estimation using a combined sample, we need
at least partial knowledge of the geographical coordinates of the sampled population units.
Such knowledge can be included by the use of accurate satellite-based positioning systems,
as is done, e.g., for permanent sample plots in the Swedish national forest inventory (Fridman
et al. 2014).

In Sect. 2, we provide a general procedure to produce unit sample properties for a discrete
population sampled using an area frame. Through Sect. 2.1, we show examples on unit
sample properties for a discrete population sampled through three different, commonly
used area frame designs. In Sect. 3, we recall the single and multiple count estimators that
are used to estimate population totals. Then, in Sect. 4, we present the theory for combining
samples, and for combining estimators using pooled variance estimators. In Sect. 5, we use
a simulation to compare a naive linear combination with the combined sample and the linear
combination using pooled variance estimates. Finally, we discuss the results in Sect. 6.

2. UNIT SAMPLE PROPERTIES FOR GENERAL DESIGNS

Assume that there is a finite, but unknown population U , represented by fixed points on
an area of interest FU , that has some measurable properties of interest. If a sample point
X

(k), with probability density function (pdf) f (k)(x), falls within the inclusion zone A(k)
i of

an unit i ∈ U , the unit is included in the sample.
Let P be the set of independent but not necessarily equally distributed sample points.

For any sample point X(k) ∈ P , and units {i, j} ∈ U , we make the following definitions:

S(k)
i := I

(
X

(k) ∈ A(k)
i

)
, (1)

π
(k)
i := Pr

(
S(k)
i > 0

)
=

∫

A(k)
i

f (k)(x)dx, (2)

π
(k)
i j := Pr

(
S(k)
i > 0, S(k)

j > 0
)

=
∫

A(k)
i ∩A(k)

j

f (k)(x)dx, (3)

E (k)
i := E

[
S(k)
i

]
= π

(k)
i , (4)

E (k)
i j := E

[
S(k)
i S(k)

j

]
= π

(k)
i j , (5)

where I (·) denotes the indicator function, S(k)
i is the number of inclusions of unit i by sample

point X(k), π(k)
i is the first-order inclusion probability of unit i by sample point X(k), i.e.,

the probability of unit i being included into the sample by a sample point X(k), π(k)
i j is the

second-order inclusion probability for units i, j to be included in the sample simultaneously
by sample point X(k), E (k)

i is the (first-order) expected number of inclusions of unit i by

X
(k), and E (k)

i j is the second-order expected number of inclusions of units i, j by X
(k).

For the set of independent sample points P , we extend the definition in (1) to

S(P)
i :=

∑

X
(k)∈P

S(k)
i . (6)
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Expanding the definition of (4) to the first-order expected number of inclusions for unit i
by the set of sample points P , we have

E (P)
i := E

[
S(P)
i

]
=

∑

X
(k)∈P

E (k)
i , (7)

while it can be shown (see “Appendix” for further details), that the expected number of
inclusions of the second-order for units i, j by the set of sample points P can be extended
from (5) to

E (P)
i j :=E

[
S(P)
i S(P)

j

]
=E (P)

i E (P)
j +

∑

X
(k)∈P

(
E (k)
i j −E (k)

i E (k)
j

)
. (8)

Moreover, the inclusion probabilities of the first and second-order of units i, j by the set
of sample points P can be expressed similarly to (2) and (3) as

π
(P)
i := Pr

(
S(P)
i > 0

)
= 1 −

∏

X
(k)∈P

(
1 − π

(k)
i

)
, (9)

π
(P)
i j := Pr

(
S(P)
i > 0, S(P)

j > 0
)

= π
(P)
i + π

(P)
j

−
⎛
⎝1 −

∏

X
(k)∈P

(
1 − π

(k)
i − π

(k)
j + π

(k)
i j

)⎞
⎠ . (10)

For any set of sample points P to be used to make an unbiased estimator of a parameter of
U , we require that all units in the population have positive inclusion probabilities, equivalent
to ensuring that a sampling design satisfies

∀i ∈ U ∃X(k) ∈ P : π
(k)
i > 0. (11)

For an unbiased estimator of variance by any set of sample points P , we require that all
pairs of units {i, j} ∈ U have positive second-order inclusion probabilities, equivalent to
ensuring that a sampling design satisfies

∀{i, j}∈U ∃{X(k),X(k′)}∈ P, k �=k′ : π
(k)
i j +π

(k)
i π

(k′)
j >0. (12)

While the requirements in (11) and (12) are necessary and sufficient for positive inclusion
probabilities of the first and second-order, they are in reality often not assessable if the units
in U are unknown. Instead, sufficient counterparts with respect to FU can be formulated as

∀x ∈ F ∃X(k) ∈ P : f (k)(x) > 0, (13)

∀{x, x′}∈F ∃{X(k),X(k′)}∈ P, k �=k′ : f (k)(x) f (k′)(x′)>0, (14)

where F , the sample frame, is connected to FU so that
∫
FU \F dx = 0, assuming reasonably

defined inclusion zones. It holds that (14) is sufficient for (13).
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2.1. SAMPLE PROPERTIES FOR THREE COMMON DESIGNS

Provided the derived sample properties, it is easy to show the sample properties for three
common designs—i.i.d., one point per stratum stratified, and systematic—given uniform
sample point distributions. Assuming that unit i’s inclusion zones are identical for all sample
points within a specific design, i.e., A(k)

i = Ai for allX
(k)
d , we define F as the area enclosing

all possible inclusion zones, aF as the area of F , ai as the area of Ai , and ai j as the area of
Ai ∩ A j .

An i.i.d. design defined by P1 implies that f (k)
1 (x) = f (k′)

1 (x) for every pair of sample

points X(k)
1 ,X

(k′)
1 . The inclusion probabilities for units i, j by a single sample point X(k)

1
can thus be described as

π
(k)
i =

∫

Ai

f (k)
1 (x)dx = ai

aF
,

π
(k)
i j =

∫

Ai∩A j

f (k)
1 (x)dx = ai j

aF
.

From this, it follows that the first-order sample properties for unit i are

π
(P1)
i =1 −

(
1 − ai

aF

)n1
, E (P1)

i =n1
ai
aF

,

with the second-order sample properties for units i, j

π
(P1)
i j = π

(P1)
i + π

(P1)
j −

(
1 −

(
1 − ai + a j − ai j

aF

)n1)
,

E (P1)
i j = n1(n1 − 1)

aFaF
aia j + n1ai j

aF
,

where n1 denotes the cardinality of P1, i.e., the number of sample points in the design.
A systematic design with uniform pdf’s, and a repeating pattern in the inclusion zones

defined by the stratification (exemplified in Fig. 1), is a special case of the i.i.d. design where
only one point is sampled. Thus, for the systematic design, the sample properties for units
i, j are π

(P2)
i = E (P2)

i = ai/aF and π
(P2)
i j = E (P2)

i j = ai j/aF .
The final example is the one point per stratum stratified design defined by P3, where one

point is sampled from each of a fixed number of disjoint strata. Let the stratum for sample
point X(k)

3 be given as F (k) = {x : f (k)
3 (x) > 0}, a(k)

F be the area of F (k), a(k)
i denote the

area of Ai ∩ F (k), and let a(k)
i j denote the area of Ai ∩ A j ∩ F (k). The inclusion probabilities

for units i, j by X(k)
3 , given uniform pdf’s, can then be described as

π
(k)
i =

∫

Ai

f (k)
3 (x)dx = a(k)

i

a(k)
F

,

π
(k)
i j =

∫

Ai∩A j

f (k)
3 (x)dx = a(k)

i j

a(k)
F

,
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Figure 1. Examples of a i.i.d., b stratified, and c systematic frames and inclusion zones. The outer areas represent
the sample frames (F), the inner areas represents the areas of interest (FU ), and the circles represents the inclusion
zones (A) for units. In both a and b, the sample frame expands around the area of interest so that the largest of
the inclusion zones will always be fully within the area frame. In b four disjoint strata of unequal sizes and shapes
are exemplified through the dashed lines. c shows inclusion zones for two units, where dashed circles and x’es
indicate the units’ positions. These types of inclusion zones would exemplify systematic plot sampling.

from which the results in (7), (8), (9), and (10) follows. In the case of equally sized and
disjoint strata, a(k)

F = aF/n3, where n3 represent the number of strata/sample points.

3. SINGLE AND MULTIPLE COUNT ESTIMATORS

The sample properties derived in Sect. 2 are needed for two common estimators used
when estimating the population total Y = ∑

i∈U yi of a finite population U . The first of
these two estimators is the single-count (SC) Horvitz–Thompson estimator (Horvitz and
Thompson 1952), defined as

ŶSC =
∑
i∈U

yi
πi

I (Si > 0) ,

where Si denotes the number of inclusions of unit i , πi = Pr (Si > 0) denotes the inclusion
probability for unit i , i.e., the probability for unit i to be included in the sample, and I (·)
denotes the indicator function. The variance of ŶSC can be shown to be

V
(
ŶSC

)
=

∑
i∈U

∑
j∈U

yi
πi

y j
π j

(
πi j − πiπ j

)
,

where πi j = Pr
(
Si > 0, S j > 0

)
denotes the second-order inclusion probability, i.e., the

probability for units i, j to be included in the sample simultaneously. Given that the second-
order inclusion probabilities are strictly positive for all pairs {i, j} ∈ U , an unbiased variance
estimator for ŶSC is

V̂
(
ŶSC

)
=

∑
i∈U

∑
j∈U

yi
πi

y j
π j

(
πi j − πiπ j

)

× I (Si > 0) I
(
S j > 0

)

πi j
.
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The second estimator to be used in this paper is the multiple-count (MC), or Hansen–
Hurwitz, estimator (Hansen and Hurwitz 1943), defined as

ŶMC =
∑
i∈U

yi
Ei

Si ,

where Ei = E [Si ] denotes the expected number of inclusions for an unit i . The variance of
ŶMC is

V
(
ŶMC

)
=

∑
i∈U

∑
j∈U

yi
Ei

y j
E j

(
Ei j − Ei E j

)
,

where Ei j = E
[
Si S j

]
denotes the second-order expected number of inclusions for two

units i, j . Given that the second-order expected number of inclusions are strictly positive
for all pairs {i, j} ∈ U , an unbiased variance estimator of ŶMC is

V̂
(
ŶMC

)
=

∑
i∈U

∑
j∈U

yi
Ei

y j
E j

(
Ei j − Ei E j

) Si S j

Ei j
.

As by the requirements in (13) and (14), the variance estimators presented here are not
applicable when using a one-per-stratum stratified or systematic sample design such as those
presented in Sect. 2.1. However, when combining two or more independent samples, these
criteria will be evaluated on the combined sample.

4. COMBINING SAMPLES

LetD = {Pd}d denote a combined sample, i.e., a set of independent sets of sample points
Pd . By extending the definition of (6) to the number of inclusions by the combined sample
as

S(D)
i :=

∑
Pd∈D

S(Pd )
i , (15)

the inclusion probability of unit i by a combined sample D becomes

π
(D)
i = 1 −

∏
Pd∈D

(
1 − π

(Pd )
i

)
, (16)

similar to (9). Comparable to (7), (8), and (10), the rest of the necessary sample properties
for units i, j by a combined sample D follows as

π
(D)
i j =π

(D)
i + π

(D)
j

−
⎛
⎝1 −

∏
Pd∈D

(
1 − π

(Pd )
i − π

(Pd )
j + π

(Pd )
i j

)⎞
⎠ , (17)

E (D)
i =

∑
Pd∈D

E (Pd )
i , (18)
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E (D)
i j =E (D)

i E (D)
j +

∑
Pd∈D

(
E (Pd )
i j − E (Pd )

i E (Pd )
j

)
. (19)

By using these combined sample properties, the estimators in Sect. 3 can be applied directly.
When combining samples, for example in amultiple frame setting, the individual designs’

sample frames do not need to be identical, nor do they need to individually cover the area of
interest. The requirements in (11) and (12) needs to be fulfilled with respect to the sample
points in∪d Pd , i.e., the necessary condition for positive second-order inclusion probabilities
and positive expected number of inclusions for all pairs in the combined sample D is

∀{i, j} ∈ U ∃{X(k)
d ,X

(k′)
d ′ } ∈ ∪d Pd ,

(k, d) �= (k′, d ′) : π
(k)
i j + π

(k)
i π

(k′)
j > 0, (20)

with sufficient counterpart

∀{x, x′} ∈ F ∃{X(k)
d ,X

(k′)
d ′ } ∈ ∪d Pd ,

(k, d) �= (k′, d ′) : f (k)
d (x) f (k′)

d ′ (x′) > 0, (21)

both ofwhich imply positive first-order inclusion probabilities and positive expected number
of inclusions for all units by the combined sample D.

If sample frames are extended in ways similar to those in Fig. 1, or if combining multiple
frames, there will be some oversampling. In such cases, it will be required to be able to
identify objects not part of the population of interest.

These results are not limited to area frames. As per an example in Lohr and Rao (2006),
it is possible to combine, for example, a sample taken from an area frame with full coverage
of the population of interest, and a list frame with unknown coverage of the population of
interest, as long as it is possible to identify units in the list frame that are not part of the
population of interest, and units sampled from the area frame that are also present in the list
frame.

4.1. COMBINING ESTIMATORS BY LINEAR COMBINATIONS

When combining a set of unbiased estimates formed of the samples in D by linear
combinations, the form

Ŷ (D)
L =

∑
Pd∈D

α(Pd )Ŷ (Pd )

is often considered, since it will yield an unbiased result. Often the inverse variance propor-
tion is used as the weight in order to increase accuracy. However, as described by Grafström
et al. (2019), if true variances are not available, using variance estimates may in certain
cases introduce bias to such a linear combination, especially when the variance estimator is
correlated with the estimator of the population parameter. We denote a linear combination
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using variance estimates as

Ŷ (D)
L∗ =

∑
Pd∈D

α̂(Pd )∗ Ŷ (Pd )∗ , α̂(Pd )∗ =
V̂

(
Ŷ (Pd )∗

)−1

∑
Pd′ ∈D V̂

(
Ŷ

(Pd′ )
∗

)−1 ,

with ∗ for either SC (single-count) or MC (multiple-count).
To overcome the issue with biased variance estimators, we propose a pooled variance

estimator, using all available information to estimate the separate variances. We denote the
linear combination estimator using such pooled variance estimates as

Ŷ (D)
LP∗ =

∑
Pd∈D

α̂
(Pd )
P∗ Ŷ (Pd )∗ , α̂

(Pd )
P∗ =

V̂P

(
Ŷ (Pd )∗

)−1

∑
Pd′ ∈D V̂P

(
Ŷ

(Pd′ )
∗

)−1 , (22)

where

V̂P

(
Ŷ (Pd )
SC

)
=

∑
i∈U

∑
j∈U

yi

π
(Pd )
i

y j

π
(Pd )
j

(
π

(Pd )
i j − π

(Pd )
i π

(Pd )
j

)

×
I
(
S(D)
i > 0

)
I
(
S(D)
j > 0

)

π
(D)
i j

,

V̂P

(
Ŷ (Pd )
MC

)
=

∑
i∈U

∑
j∈U

yi

E (Pd )
i

y j

E (Pd )
j

(
E (Pd )
i j − E (Pd )

i E (Pd )
j

)

× S(D)
i S(D)

j

E (D)
i j

,

are both unbiased estimators of the variances of the single and multiple count estimators,
given∀{i, j} ∈ U, π

(D)
i j > 0 and∀{i, j} ∈ U, E (D)

i j > 0.Note that thefinal fractions for both
variance estimators for a design Pd assures that all available information are used through
S(D)
i , π

(D)
i j and E (D)

i j , as defined in (15), (17) and (19). However, if many second-order
design properties are positive, but small, the variance estimators might produce negative
and unstable estimates, making them unsuitable for combinations.

5. SIMULATION

In order to evaluate the proposed combinations of samples and estimates, a simulation
study was performed. The simulation sampled 10,000 times from a simulated population
generated from the SLU (Swedish University of Agricultural Sciences) Forest Map (Reese
et al. 2003). The SLU Forest Map, previously known as kNN-Sweden, has extensive infor-
mation about Swedish forest land and is based on satellite and field data from the Swedish
national forest inventory (NFI). The map contains information about age, height, species
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Figure 2. Location and the total biomass volume (m3/ha) for the area used as a boilerplate for simulating the
population. Darker colors indicate higher volumes (Color figure online).

Figure 3. Total biomass volume (m3/ha) per species for the simulated population. Darker colors indicate higher
volumes (Color figure online).

of wood and woodland for the country’s forest land. The basic format is raster data with a
resolution of 25 × 25 square meters.

From the SLU Forest map, an area of 1000 × 1000 square meters of southern Sweden
was cropped to represent the area of interest. Figure 2 illustrates the location as well as the
total volume of the stand for the cropped area. Using individual tree data variables from the
Swedish NFI, the three dominating tree species—birch, pine, and spruce—were randomly
added to the population according to species-specific volume maps of the cropped area. In
the resulting population, the number of trees for each species is 7411 (13%), 24,428 (41%)
and 27,212 (46%), respectively. The resulting population is presented in Fig. 3, color-coded
by volume intensity.

For each of the 10,000 simulation runs, four samples were generated from the sample
frame using uniform densities—two i.i.d. samples, one systematic sample, and one stratified
sample. Each design used circular inclusion zones of common sizes per design, correspond-
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Table 1. Sample designs used in the simulation study

Design n Radius (m) Sample frame (m2) Stratum size (m2) Sampled area (m2)

i.i.d. 1 10 10 1020 × 1020 3142
i.i.d. 2 40 5 1010 × 1010 3142
Systematic 16 8 1016 × 1016 254 × 254 3217
Stratified 16 8 1016 × 1016 254 × 254 3217

n Sample size; Radius Radius of inclusion zones

ing to plot sampling. In order to have equal first-order expected number of inclusions for all
units, the sample frames were expanded around the area of interest in each direction by the
size of the inclusion zone radius, guaranteeing that all inclusion zones are fully within the
sample frames. In Table 1, the designs are described in further detail.

For each sample and combination, single (SC) and multiple count (MC) estimates were
calculated. To show the effect of different ways of combining data, we compared the esti-
mators using combined samples, with sample properties derived through (16), (17), (18)
and (19), with the estimators based on linear combinations of estimates using estimated
variances and pooled variance estimates as in (22).

As mentioned in Sect. 3, for variance estimators to be unbiased, we require positive
second-order sample properties for all pairs in the population. While the systematic and
stratified designs fulfills the requirements in (20) and (21) in combination with each other
or any of the i.i.d. designs, they do not fulfill (12) and (14) individually, while also being
prone to negative and unstable pooled variance estimates due to small second-order design
properties, making them unsuitable to use in a linear combination. In environmental surveys,
one often deal with this by using a more conservative variance estimator, for example by
using the i.i.d. variance estimator (Benedetti et al. 2015). However, using the i.i.d. variance
estimator might be too conservative, i.e., reducing the assumed efficiency of the stratified
and systematic designs.

For this simulation, second-order design properties were calculated as if they were sam-
pled using a i.i.d. design, when calculating the linear combination of estimates using pooled
variances. For the naive combination, plot variance estimates in the linear combination

V̂Plot

(
Ŷ (Pd )
MC

)
= 1

nd(nd − 1)

∑

X
(k)
d ∈Pd

(
y(k)
d − ŷd

)2
,

ŷd = 1

nd

∑

X
(l)
d ∈Pd

y(l)
d ,

were used, where y(l)
d is the plot l estimate of the total. In order to reduce the efficiency

impact of the stratified and systematic designs, plot variances were calculated using a variant
of the local mean variance estimator proposed by Grafström and Schelin (2013)
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Table 2. Results from 10,000 simulations for the i.i.d. 1 (i), systematic (sy), and stratified (st) designs showing
[empirical relative bias] and relative root-mean-squared error (RRMSE) for birches and all species in
percent

SC MC LPlot LPSC LPMC

Birches
i 50.22 50.14 – – [–] – [–] –
sy 42.79 42.79 [–] – [–] – [–] –
st 41.76 41.76 [–] – [–] – [–] –
i / sy 32.77 32.83 [-13.92] 36.79 [-0.70] 32.21 [-0.76] 32.19
i / st 32.49 32.55 [-13.92] 36.36 [-0.90] 31.90 [-0.96] 31.88
sy / st 30.01 30.05 [-12.32] 33.65 [-0.26] 30.05 [-0.27] 30.05
i / sy / st 25.95 26.01 [-18.98] 33.81 [-0.69] 25.64 [-0.73] 25.63

All species
i 28.53 28.49 [–] – [–] – [–] –
sy 21.62 21.62 [–] – [–] – [–] –
st 19.69 19.69 [–] – [–] – [–] –
i / sy 17.88 17.91 [-2.48] 18.83 [-0.83] 17.44 [-0.89] 17.44
i / st 17.23 17.25 [-2.40] 17.46 [-0.78] 16.55 [-0.84] 16.54
sy / st 14.71 14.69 [-2.44] 15.95 [-0.35] 14.69 [-0.35] 14.69
i / sy / st 13.63 13.65 [-3.32] 14.91 [-0.70] 13.25 [-0.74] 13.25

SC Single-count estimator; MC Multiple-count estimator; LPlot Linear combination weighted by plot variances;
LPSC Linear combination weighted by pooled SC-variances; LPMC Linear combination weighted by pooled
MC-variances

V̂Plot

(
Ŷ (Pd )
MC , n∗) = n∗

n∗ − 1

∑

X
(k)
d ∈Pd

(
y(k)
d − ŷ∗

d (k, n
∗)

)2
,

ŷ∗
d (k, n

∗) = 1

n∗
∑

X
(l)
d ∈P∗

d (k)

y(l)
d ,

where P∗
d (k) is the set of n∗ sample points of design d closest to X

(k)
d . For this simulation,

the fixed number of neighbors was set to n∗ = 4.
The results, presented in Table 2, show that while any combination reduced the variance

in the estimator, the combination based on plot variance estimates introduced bias at least
three times of that generated by the pooled variance estimates. Because of the relatively
small probability of two sample points sampling the same tree, the SC and MC estimators
perform similarly.

In Table 3, bias, MSE, and variance estimates are presented for the i.i.d. 1 and 2 designs,
and the combinations of the two. Comparing the combined samples versus the combined
estimates, one can observe the trade-off between unbiased estimates and estimates with
reduced variances.

6. DISCUSSION

In Table 2, we showed that combined samples and linear combinations based on pooled
variances (pooled combination) will probably always be preferable to linear combinations
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Table 3. Results from 10,000 simulations for the i.i.d. 1 and 2 designs showing [empirical relative bias] in percent,
mean variance estimates, and empirical mean-squared error (MSE) for birches and all species

Estimator Rel. bias Mean var. (104) MSE (104)

Birches
i.i.d. 1 SC [–] 26.08 26.02

MC [–] 26.16 25.95
i.i.d. 2 SC [–] 13.91 14.25

MC [–] 13.96 14.21
i.i.d. 1 / 2 SC [–] 9.93 10.07

MC [–] 9.99 10.12
LMC [-12.61] 6.63 12.15
LPSC [-3.83] 8.71 9.08
LPMC [-3.97] 8.74 9.07

All species
i.i.d. 1 SC [–] 1675.85 1716.50

MC [–] 1671.77 1711.94
i.i.d. 2 SC [–] 640.74 646.99

MC [–] 639.36 645.09
i.i.d. 1 / 2 SC [–] 573.51 589.58

MC [–] 573.24 591.06
LMC [-2.03] 437.48 538.30
LPSC [-2.03] 454.02 506.76
LPMC [-2.19] 453.07 507.65

SC Single count estimator; MC Multiple count estimator; LMC Linear combination weighted by estimated vari-
ances;LPSCLinear combinationweighted by pooled SC-variances;LPMCLinear combinationweighted by pooled
MC-variances

based on individual variances (naive combination), given that the target variable has a skewed
distribution. Even if no correlation exists between the estimator and its variance estimator,
the pooled combination should be more efficient than the naive combination, as more infor-
mation is used. The main drawback of the pooled combination is the need to compute
additional second-order design properties, which may be difficult if positional data is not
available or accurate enough to map the sample properties of the designs. Furthermore, for
some designs the pooled variance estimator might be unstable, which makes it an unsuitable
choice for such designs. However, the combined samples approach will function sufficiently
in most cases, as its estimate is not dependent on second-order design properties, why the
impact of absence of reliable positional data should be small, for most designs.

While the results from the simulation are conditional to the simulated population, we
expect the bias to be proportional to the heterogeneity of the population, why we may
draw some general conclusions. We believe both of these methods to be useful for domain
estimates. For the domain estimate of a primary survey, the target variable will have a
skewed distribution, even if the target variable over the domain is not. It is thus expected
that significant bias will be introduced by using the naive combination.

Another scenario where both presented methods might be useful are when combining
designs like those used in the simulation here, where it is not possible to get an unbiased
variance estimator for one or more of the individual designs. The pooled combination is
unbiased if the combined second-order sample properties are positive for all units in the
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population, whereas the naive combination needs positive second-order sample properties
for all units and all designs. Furthermore, the combined samples approach has none of these
restrictions and is also more relaxed in terms of first-order sample properties.

Table 3 provides results regarding MSE and variance estimates for i.i.d. designs. These
results highlight the bias–variance trade-off between the pooled combination and the com-
bined sample approaches. The combined samples approach produces unbiased estimators,
however, in the simulation, with larger empirical mean-squared errors than the pooled com-
binations. A statistician deciding between these two approaches should thus know to what
extent the end product needs to be accurate or reliable.

In Tables 2 and 3, we see that the bias is, as expected, more apparent when dealing with
skewed target variables, as the volume of birch. It is not uncommon to reach acceptable
MSE’s for some dominant or aggregate target variable in a primary survey, here represented
by the total wood volume, while needing complementary surveys to study some target
variable with a more skewed distribution. The results of the simulation show that different
methods of combination will affect the reliability of the combined estimates.

Further research would study the effects of errors in the positioning of units, to see how
previously describedmismatchingwould affect the estimates. For plot sampling procedures,
that are commonly used in forest inventories, one can assume two types of mismatching to
be common: One where there is a difference between the location of the studied plot and
the sampled location, and one where the positioning of units within a plot are inaccurate.
Depending on designs, these errors will have different effects.
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APPENDIX: UNIT DESIGN PROPERTIES

LetU be a finite, unknown population, representable by fixed points on an area of interest
FU . If a sample point X(k), with probability density function (pdf) f (k)(x), falls within the
inclusion zone A(k)

i of unit i ∈ U , the unit is included in the sample.
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Let P be the set of independent sample points. For any sample point X(k) ∈ P , and units
{i, j} ∈ U , we make the following definitions:

S(k)
i := I

(
X

(k) ∈ A(k)
i

)
, (23)

π
(k)
i := Pr

(
S(k)
i > 0

)
=

∫

A(k)
i

f (k)(x)dx, (24)

π
(k)
i j := Pr

(
S(k)
i > 0, S(k)

j > 0
)

=
∫

A(k)
i ∩A(k)

j

f (k)(x)dx, (25)

E (k)
i := E

[
S(k)
i

]
= π

(k)
i , (26)

E (k)
i j := E

[
S(k)
i S(k)

j

]
= π

(k)
i j , (27)

where I (·) denotes the indicator function, S(k)
i is the number of inclusions of unit i by

sample point X(k), π
(k)
i is the first-order inclusion probability of unit i by sample point

X
(k), i.e., the probability of unit i being included into the sample by a sample point X(k),

π
(k)
i j is the second-order inclusion probability for units i, j by sample point X(k), E (k)

i is the

(first-order) expected number of inclusions of unit i by X
(k), and E (k)

i j is the second-order

expected number of inclusions of units i, j by X
(k).

For a set of independent but not necessarily equally distributed sample points P , we
extend the definitions to

S(P)
i :=

∑

X
(k)∈P

S(k)
i , (28)

π
(P)
i := Pr

(
S(P)
i > 0

)
, (29)

π
(P)
i j := Pr

(
S(P)
i > 0, S(P)

j > 0
)
, (30)

E (P)
i := E

[
S(P)
i

]
, (31)

E (P)
i j := E

[
S(P)
i S(P)

j

]
. (32)

It follows quite clearly from (31), (28), and (26) that

E (P)
i =

∑

X
(k)∈P

E (k)
i =

∑

X
(k)∈P

π
(k)
i ,

and by expanding (29), we can express it in terms of (24)

π
(P)
i = 1 − Pr

(
S(P)
i = 0

)
= 1 − Pr

( ⋂

X
(k)∈P

S(k)
i = 0

)

= 1 −
∏

X
(k)∈P

(
1 − π

(k)
i

)
.
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Through some work, we can get the second-order expected number of inclusions for
units i, j by the set of sample points P

E (P)
i j = E

[∑

X
(k)∈P

S(k)
i

∑

X
(k′)∈P

S(k′)
j

]
=

∑

X
(k)∈P

E
[
S(k)
i S(k)

j

]

+
∑ ∑

X
(k)∈P, X(k′)∈P

k �=k′

E
[
S(k)
i S(k′)

j

]

=
∑

X
(k)∈P

E (k)
i j +

∑∑

X
(k)∈P, X(k′)∈P

k �=k′

E (k)
i E (k′)

j = E (P)
i E (P)

j

+
∑

X
(k)∈P

(
E (k)
i j − E (k)

i E (k)
j

)
,

due to the independence of sample points in P . For the second-order inclusion probability
for units i, j by the set of sample points P , we start by showing that

π
(P)
i j = Pr

(
S(P)
i > 0

)
+ Pr

(
S(P)
j > 0

)

−Pr
(
S(P)
i > 0 ∪ S(P)

j > 0
)

= π
(P)
i + π

(P)
j −

(
1 − Pr

(
S(P)
i = 0, S(P)

j = 0
))

. (33)

Through the independence between sample points in P , the following equality holds

Pr
(
S(P)
i = 0, S(P)

j = 0
)

=
∏

X
(k)∈P

Pr
(
S(k)
i = 0, S(k)

j = 0
)
,

and conversely, apparent from (33), we have

Pr
(
S(k)
i = 0, S(k)

j = 0
)

= 1 + π
(k)
i j − π

(k)
i − π

(k)
j ,

leading to

π
(P)
i j =π

(P)
i +π

(P)
j −

⎛
⎝1 −

∏

X
(k)∈P

(
1 − π

(k)
i − π

(k)
j + π

(k)
i j

)⎞
⎠.
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Abstract
Adaptive cluster sampling (ACS) is extended to the case when the primary
sampling units consist of circular field plots. When conducting field work for
environmental monitoring, circular field plots are often preferred as they are eas-
ily set up by field workers. ACS was developed by tessellating the area frame into
square plots. By using a two-phase sampling procedure, a first-phase sample of
circular field plots can be established as the primary sampling units, from which
ACS can be performed. However, the two-phase approach introduces some addi-
tional complexity in estimation. We derive estimators and conservative variance
estimators for two-phase ACS using circular field plots. For some populations,
ACS may produce a highly variable sample size. To deal with this issue, we
provide a way to reduce the maximal possible sample size. By using simulated
populations, we compare the efficiencies of two-phase methods with ordinary
simple random sampling. The simulations show that the two-phase approach
is a competitive alternative to regular ACS, and that adding a restriction to the
maximal possible sample size makes ACS a viable alternative for a larger set of
populations.

K E Y W O R D S

adaptive sampling, area frame sampling, design-based sampling, environmental monitoring,
spatially clustered populations

1 INTRODUCTION

For environmental surveys, we often have some well-defined area on which the population of interest is located. However,
we rarely know the number of units in the population or their exact locations within the area. In such a situation, it is not
feasible to construct a comprehensive list frame to select a sample. Instead, environmental surveys are often conducted
using an area frame.

A popular way to select a sample from the population is then through plot sampling, where fieldworkers collect data
from circular sample plots randomly placed on the area frame. Examples of such sampling efforts are national forest
inventories, forest damage inventories, and landscape inventories. The use of circular field plots eases the field effort, as
circles are easy to emulate using a rope or a stick of a fixed length around the center point, whereas other shapes are
harder to recreate with accuracy.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Environmetrics published by John Wiley & Sons Ltd.
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If the population units are spread out and can be found in a large part of the area, then it is preferable to make sure
that the field plots are also well spread in the area. By doing so, more of the variation is captured and less redundant
information is collected. The reason for this comes from Tobler’s first law of geography (Tobler, 1970): “everything is
related to everything else, but near things are more related than distant things.”

Another implication of Tobler’s first law of geography would be that if gold is struck, we expect more to be nearby.
Thus, for rare populations, that is, populations for which it is hard to find sufficiently large samples through conventional
sampling methods, it may be advantageous to increase a sample with nearby units, even though the additional units are
slightly less informative.

One dynamical sampling effort, where nearby plots are sampled if the primary plots recorded any of the features of
interest, is the adaptive cluster sampling (ACS) (Thompson, 1990). In ACS, the primary sampling units are the squares
created by superimposing a regular grid over the area frame. Whenever a sample unit matches some criteria, all nearby
units are included in the sample, and if any of these match the criteria, its neighbors are added until the cluster has been
fully included in the sample. In Section 2, the ACS method is reiterated.

This article presents a further development of the ACS, where the sampling units consist of a lattice of circular field
plots over the area of interest, instead of rectangles, in order to reduce the in-field effort. As any lattice of circles cannot
fully cover an area frame, positive inclusion probabilities are ensured by deciding the lattice through a first-phase sample.
This approach will increase the variance of the estimator. However, the variance added will tend to be negligible and is
likely to be fully compensated for by a reduced cost, as a wall-to-wall rectangular lattice of circles would correspond to
about 80% of the frame. A similar method has been proposed before, but without determining the effects of the additional
sampling phase or providing a rigorous theory (Talvitie et al., 2006).

The final sample size of ACS is random, which is an undesirable property in many environmental surveys or moni-
toring programs. There have been some attempts to reduce the variability of the final sample size for ACS. Among others,
Brown and Manly (1998) proposed a method that sequentially updates the initial sample with new plots if the total sam-
ple size is below some threshold, however, without providing an unbiased estimator. Salehi and Seber (1997) showed that
by stratifying the primary plots, the final sample size can be reduced by not allowing expansion of plots over the stratum
boundaries. In this article, we propose to reduce the variability in the final sample size through restricting how far away
from the initial sample plots the expansion is allowed, which we present together with the general theory of the proposed
two-phase ACS in Section 3.

In Section 4, the methods are evaluated using simulated populations with different spatial structures. Finally, we
discuss the results in Section 5.

2 ADAPTIVE CLUSTER SAMPLING

A region F is tessellated into N square plots of size 𝜆2 as S1. F contains some finite population of units, with some variable
of interest y, assumed to be clustered together into one or more clusters, with a total of Y over F. Let yi be the plot total of
y over a plot i, making it possible to express the total as

Y =
∑

i∈S1

yi.

Let C(i) denote a cluster of plots including plot i. There exists an indicator of the fulfillment of some kind of conditions
or criteria on plot i. If the criteria of plot i are not fulfilled, then C(i) includes only plot i. Otherwise, C(i) includes plot i
together with all connected neighbors also fulfilling the criteria, where a neighbor is defined by some measure of distance.
In Figure 1, the concept of a cluster is shown.

From S1, a sample of plots is drawn without replacement as S2a, with first- and second-order inclusion probabilities

𝜋i = Pr (i ∈ S2a) , 𝜋ij = Pr (i ∈ S2a, j ∈ S2a) .

Let Mi denote the number of inclusions of a plot i, either directly by itself being included into S2a, or indirectly through
the inclusion of any other plot in C(i) into S2a. Furthermore, let Ei be the first-order expected number of direct or indirect
inclusions of a plot i, such that

Mi =
∑

k∈C(i)
I (k ∈ S2a) , Ei ∶=

∑

k∈C(i)
𝜋k.
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PRENTIUS and GRAFSTRÖM 3 of 11

F I G U R E 1 Cluster (green) defined around the plot with bold borders, with a criteria for inclusion yi > 0. Gray plots are plots that will
be checked during the sampling effort to determine if they belong to the cluster. Black dots represent some objects with positive values y.

From this, the Hansen-Hurwitz estimator (Hansen & Hurwitz, 1943) can be expressed as

Ŷ =
∑

i∈S2

yi

Ei
Mi, (1)

where S2 = ∪i∈S2a C(i). The variance of (1) is

V(Ŷ ) =
∑

i∈S2

∑

j∈S2

yi

Ei

yj

Ej
(Eij − EiEj),

which can be estimated through

V̂(Ŷ ) =
∑

i∈S2

∑

j∈S2

yi

Ei

yj

Ej

Eij − EiEj

Eij
MiMj,

where the second-order expected number of direct or indirect inclusions of plots i, j is

Eij ∶= E
(

MiMj
)
=

∑

k∈C(i)

∑

l∈C(j)
𝜋kl.

3 TWO-PHASE ADAPTIVE CLUSTER SAMPLING

Let S1 be a sample of N circular plots i of radius r, centered on xi. The plots in S1 are taken as a systematic sample from a
region F, such that the plot centers are separated by 𝜆 ≥ 2r. Note that N might be random, for certain shapes of F.

The region F contains some finite population of units U, with some variable of interest y′, assumed to be clustered
together in one or more clusters, with a total of Y over F. Any unit j ∈ U is inside a circular plot i if xi falls inside
its inclusion zone Kj of size |Kj|. Let y(x) denote the per-area plot mean of y′ on a circular plot centered around x,
such that

y(x) =
∑

j∈U

IKj (x)
|Kj|

y′j ,

where IKj(x) is equal to 1 if x ∈ Kj, 0 otherwise. If some buffer of at least r is added around F, then |Kj| = r2
𝜋 for all units

j ∈ U. As shown by Grafström et al. (2017), the population parameter Y can thus be expressed as

Y =
∫F

y(x)dx =
∑

j∈U
y′j .
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4 of 11 PRENTIUS and GRAFSTRÖM

F I G U R E 2 Clusters defined around the plot with bold borders with unrestricted (left) and restricted (middle, right) expansion, with a
criterion for inclusion yi > 0.

As the sampling intensity of any point x is 𝜋(x) = 𝜆
−2, a Horvitz–Thompson (HT) estimator (Cordy, 1993) of the

total Y is

Ŷ1 =
∑

i∈S1

y(xi)
𝜋(xi)

=
∑

i∈S1

yi, (2)

where yi = y(xi)∕𝜋(xi).
Given the sample S1, let C denote the set of clusters Ci, where each cluster Ci is defined around and includes plot

i ∈ S1. There exists an indicator of the fulfillment of some kind of conditions or criteria on plot i.
If the criteria of inclusion of plot i are not fulfilled, then Ci contains only i. If the criteria of inclusion of plot i are

fulfilled, then the cluster Ci contains all connected neighbors also fulfilling the criteria, where a neighbor is defined by
some measure of distance. Furthermore, the expansion can be restricted, such that a cluster Ci never expands further
away than 𝛽 plots from the initial plot i, measured by some node distance. In this article, the node distance measure is
exemplified by using the minimum number of plots traversed, travelling horizontally and/or vertically, in order to reach
another plot. Figure 2 shows such unrestricted (i.e., 𝛽 = ∞) and restricted clusters. It can be noted that if unrestricted
expansion is allowed, Ci = Cj if j ∈ Ci.

From S1, a second sample of plots is drawn without replacement as S2a. According to the design from which S2a is
selected, the first- and second-order inclusion probabilities for plots i, j to be included into S2a given S1 are denoted as

𝜋i = Pr (i ∈ S2a|S1) , 𝜋ij = Pr (i ∈ S2a, j ∈ S2a|S1) .

Let Mi be the number of times a plot i is included through any cluster sampled by S2a conditional on S1. Mi can thus be
expressed as

Mi =
∑

k∈S2a|S1

I (i ∈ Ck) =
∑

k∈Ci

I (k ∈ S2a|S1) .

since i ∈ Ck implies k ∈ Ci.
Let S2 denote the set of plots directly or indirectly included by S2a, that is, S2 = ∪k∈S2a Ck. The expected number of

direct or indirect inclusions of a plot i through S2a, given the first sample S1, is

Ei ∶= E (Mi|S1) =
∑

k∈Ci

𝜋k, (3)

that is, the sum of the individual inclusion probabilities of the plots in the cluster to which plot i belongs.
An estimator of Y is thus given as

Ŷ2 =
∑

i∈S2

yi

Ei
Mi, (4)
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PRENTIUS and GRAFSTRÖM 5 of 11

β = ∞ β = 12 β = 2

F I G U R E 3 Sampling effort after a plot has been selected by S2a for unrestricted (left) and restricted expansion (middle, right), with a
criterion for inclusion yi > 0. Green plots are inventoried completely, gray plots are only recorded on their criteria for inclusion.

which can be shown to be unbiased through the law of total expectation

E
(

Ŷ2
)
= E1

(
E2

(
Ŷ2|S1

))
= E1

(
Ŷ1
)
= Y .

By using a design with independent observations, it is possible to construct Ŷ2 as a HT estimator (see Appendix). For a
general design it becomes more difficult to derive inclusion probabilities of first and second order.

The sampling process of unrestricted and restricted sampling will record the variable of interest of all plots in Ck ∶
k ∈ S2a, while also needing to explore (however, not necessarily recording) all clusters defined around the plots in Ck, see
Figure 3. The process can be summarized as the following:

(a) Randomly place a systematic grid of plots (S1).
(b) Through some design with known first-order inclusion probabilities, select sample S2a without replacement from S1.
(c) For each plot in S2a (the initial plot):
(d) Record if the criteria of inclusion are fulfilled;
(e) If (d) is true, or if the plot is the initial plot, record the variable of interest;
(f) If (d) is true, and the distance to the initial plot is less than 𝛽, go to all neighboring plots and repeat from (d);
(g) If the distance to the initial plot is equal to 𝛽 (this plot is a max-dist plot), then:

i. if the criteria of inclusion is fulfilled, go to all neighbors;
ii. record if the criteria of inclusion is fulfilled;

iii. if the distance to the max-dist plot is less than 𝛽, repeat from i.

3.1 Conditional variance

The conditional variance of the estimator (4) is

V2
(

Ŷ2|S1
)
=
∑

i∈S1

∑

j∈S1

yi

Ei

yj

Ej
(Eij − EiEj), (5)

where the second-order expected number of direct or indirect inclusions of two plots i, j through S2a is

Eij ∶= E
(

MiMj|S1
)
=

∑

k∈Ci

∑

l∈Cj

𝜋kl.

The conditional variance (5) can be unbiasedly estimated through

V̂ 2
(

Ŷ2|S1
)
=
∑

i∈S1

∑

j∈S1

yi

Ei

yj

Ej

Eij − EiEj

Eij
MiMj, (6)

if Ei > 0,Eij > 0 for all plots i, j.
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6 of 11 PRENTIUS and GRAFSTRÖM

If the sampling design used for S2a does not have known or universally positive second-order expected number of
inclusions, such as a systematic design or a design using auxiliary information, a more conservative variance estimator
can in many cases be found by assuming a proportional to size (PPS) or simple random sample with replacement (SRSWR)
design (Stevens & Olsen, 2003). In such cases, the following replacements

M∗
i =

∑

k∈Ci

∑

l∈S2a|S1

I(k = l),

E∗i = n
∑

k∈Ci

pk,

E∗ij =
n − 1

n
E∗i E∗j + n

∑

k∈Ci∩Cj

pk,

can be used in (6), where pk denotes the single-draw probability of selecting plot k into S2a, that is, pk = N−1 in case of
SRSWR.

3.2 Variance

The variance of the estimator Ŷ2 can be partitioned into two parts

V
(

Ŷ2
)
= E1

(
V2

(
Ŷ2|S1

))
+ V1

(
Ŷ1
)
, (7)

where Ed,Vd denotes the expectation and variance under respective phase d, which can be considered as the variance
stemming from the two sampling phases. When the second-order sampling intensity for two points x, x∗ is strictly positive,
an unbiased estimator of V1(Ŷ1) is given by

V̂ 1
(

Ŷ1
)
=
∑

i∈S1

y2
i +

∑

i∈S1

∑

j∈S1⧵i
yiyj

𝜋(xi, xj) − 𝜋(xj)𝜋(xj)
𝜋(xi, xj)

. (8)

As not all plots in S1 are observed in the proposed sampling scheme, a conditional estimator must be used

̂̂V1
(

Ŷ1
)
=
∑

i∈S2

y2
i

Ei
Mi +

∑

i∈S2

∑

j∈S2⧵i
yiyj

𝜋(xi, xj) − 𝜋(xj)𝜋(xj)
𝜋(xi, xj)Eij

MiMj. (9)

If indeed 𝜋(xi, xj) > 0 for all pairs of points, the estimator

V̂
(

Ŷ2
)
= V̂ 2

(
Ŷ2|S1

)
+ ̂̂V1

(
Ŷ1
)
, (10)

is an unbiased estimator of (7), as

E1

(
E2

(
V̂ 2

(
Ŷ2|S1

) |||S1

))
= E1

(
V2

(
Ŷ2|S1

))
,

E1

(
E2

(
̂̂V1
(

Ŷ1
) |||S1

))
= V1

(
Ŷ1
)
.

However, as S1 is selected as a systematic sample, the second-order sampling intensity for two points x, x∗ will not be
universally positive if 𝜆 > 21.5r. By assuming a SRSWR design, a most likely conservative estimator can be found by using

𝜋
∗(x, x∗) = N(N − 1)

(N𝜆2)2
, 𝜋

∗(x) = 𝜋(x),

thus in (10) substituting ̂̂V1
(

Ŷ1
)

for

̂̂V∗
1
(

Ŷ1
)
=
∑

i∈S2

y2
i

Ei
Mi −

1
N − 1

∑

i∈S2

∑

j∈S2⧵i

yiyj

Eij
MiMj. (11)
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3.3 Cost of sampling effort

Thompson (1990) propose a cost equation that is linear, cost = c0 + c1n + c2n2, where c0 denotes a fixed cost, c1, c2 and
n,n2 denotes the marginal costs and sizes of the initial second-phase sample S2a and the subsequently sampled plots
respectively. Furthermore, Thompson (1990) notes that the marginal cost for sampling a plot not satisfying the criteria of
inclusion might be lower compared to conducting a full inventory of a plot.

The variable costs primarily associated with environmental surveys are mostly related to labor costs. As such, the
marginal costs for an ACS design could be divided into time spent travelling to a survey site (i.e., a plot), time spent
identifying if the criteria of inclusion of a plot are fulfilled, and time spent recording the variable of interest. For ACS,
travelling between plots in and around a cluster could be considered negligible or included in the cost of checking the
criteria of a plot. Thus, the cost for ACS could be modified as

cost = c0 + c2an + cInI + ccnc, (12)

where c2a is the cost associated with travelling to each plot in S2a, cI is the cost associated with recording the variable of
interest on the nI plots that need to be inventoried, and cc is the cost associated with resolving the criteria of inclusion for
the nc plots visited.

Given a fixed initial ACS sample n2a, the sample size of a SRS design can with equal expected cost, can be derived as

nSRS =
c2an + cIE(nI) + ccE(nc)

c2a + cIE(p) + cc
,

where E(p) is the expected proportion of plots fulfilling the criteria of inclusion in a sample S2 (see Appendix for further
details).

4 SIMULATION

To evaluate the proposed methods, a simulation was conducted. Six populations were simulated according to a Poisson
cluster process similar to those used by both Thompson (1990) and Christman (1997). In this process, 𝜆p parent locations

(a) (b) (c)

(d) (e) (f)

F I G U R E 4 Artificial populations on area frames of (200 m)2 (a–e) and (1000 m)2 (f). Reference grids are shown at 10 m intervals.
Superpopulation parameters as (𝜆p, 𝜆c, 𝜎). (a) (5, 40, 4); (b) (5, 50, 2); (c) (5, 50, 5), (d) (5, 50, 10), (e) (10, 50, 5), (f) (5, 50, 10)
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8 of 11 PRENTIUS and GRAFSTRÖM

are randomly placed uniformly over a square area frame. Each parent location spawns a random number of children
according to a Poisson distributed with mean 𝜆c, where each child is placed relative to its parent following a bivariate
normal distribution with variance 𝜎

2I.
Any objects falling outside of the area frame were mirrored back onto the frame, and a buffer of size r = 5 m was

placed around the frame to ensure equal inclusion probabilities for all objects. In Figure 4, the six artificial populations
are shown. The artificial populations were created using R 4.0.4, and the simulations were conducted using Go 1.17.6.

The parameters defining the superpopulations, see Figure 4, were chosen similar to those used in Thompson (1990)
and Christman (1997), scaled to the areas used.

For each population, a systematic grid of square plots was randomly placed over the area frame with distance 𝜆 = 10 m
as the sampling units for the ACS. Note that this is slightly different from Thompson (1990), as the primary sampling units
are random. However, with little importance in practice, as most grids for a single survey could probably be considered
random. The area frame was extended by a buffer of 𝜆 in both directions, in order to ensure equal inclusion probabilities
for all units. The center point of each square were also considered as the center point for the circular field plot of radius
r = 5 m, which constitutes the first sample S1 for the Two-phase ACS with circular field plots (2PACS(𝛽)). This process
was repeated 100,000 times.

For each iteration, samples were selected for ACS, 2PACS(∞), and 2PACS(1). Initial samples S2a for the designs were
selected using SRSWOR and the Local Pivotal Method (LPM), where LPM is used to achieve geographically well-spread
samples (Grafström et al., 2012). The size n of the initial samples S2a were chosen so that around 90% of the initial samples
had at least one plot satisfying the criteria of inclusion. The mean number of inventoried and visited plots for each of the
methods are provided in Table 1, together with the mean of the variance estimates relative to the empirical variance, over
the 100,000 iterations.

T A B L E 1 The mean number of inventoried (inv.) and visited (vis.) plots, and the mean of the variance estimates relative to the empirical
variance (RV) for ACS and 2PACS (unrestricted and restricted), using two strategies (SRS, LPM) for selecting the initial sample S2a of size n.

SRS LPM

Pop. Method n Inv. Vis. RV Inv. Vis. RV

(a) ACS 35 12.3 62.2 1.00 14.0 67.0 1.09

2PACS(∞) 35 9.8 57.4 1.18 11.1 61.2 1.30

2PACS(1) 35 5.8 50.6 1.16 6.2 52.9 1.25

(b) ACS 65 6.2 79.4 1.00 7.0 82.2 1.11

2PACS(∞) 65 4.7 76.4 1.27 5.1 78.4 1.38

2PACS(1) 65 4.0 75.5 1.27 4.3 77.2 1.38

(c) ACS 30 15.2 61.8 1.00 17.4 67.4 1.11

2PACS(∞) 30 12.4 57.0 1.14 14.1 61.5 1.26

2PACS(1) 30 6.7 47.2 1.13 7.1 49.6 1.22

(d) ACS 15 32.4 70.2 1.01 37.7 79.6 1.19

2PACS(∞) 15 26.2 61.5 1.05 30.3 69.2 1.23

2PACS(1) 15 7.1 32.5 1.04 7.4 34.2 1.23

(e) ACS 15 20.2 56.4 1.01 22.6 61.8 0.96

2PACS(∞) 15 16.0 48.8 1.07 17.6 53.0 1.05

2PACS(1) 15 6.9 33.4 1.06 7.1 35.0 1.05

(f) ACS 250 32.4 310.0 1.00 37.4 320.0 1.14

2PACS(∞) 250 26.4 300.5 1.04 30.1 308.2 1.17

2PACS(1) 250 6.8 268.1 1.03 7.1 269.5 1.20

Note: See Figure 4 for the populations.
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T A B L E 2 Efficiencies (Eff), MSE(*)/MSE(SRS), of the methods when compared to cost-relative sample sizes of an ordinary SRS, using
two strategies (SRS, LPM) for selecting the initial sample S2a of size n.

SRS LPM

Pop. Method n n1 n2 Eff1 Eff2 Eff1 Eff2

(a) ACS 35 63 47 0.90 0.64 0.67 0.48

2PACS(∞) 35 58 44 0.84 0.62 0.65 0.48

2PACS(1) 35 51 40 0.83 0.64 0.66 0.50

(b) ACS 65 80 71 0.75 0.65 0.60 0.52

2PACS(∞) 65 77 69 0.77 0.68 0.66 0.58

2PACS(1) 65 76 68 0.78 0.67 0.67 0.58

(c) ACS 30 62 44 1.12 0.76 0.83 0.56

2PACS(∞) 30 57 41 1.04 0.73 0.79 0.55

2PACS(1) 30 48 36 0.99 0.72 0.78 0.56

(d) ACS 15 71 44 3.07 1.77 2.02 1.17

2PACS(∞) 15 62 39 2.81 1.67 1.92 1.14

2PACS(1) 15 33 21 1.82 1.12 1.30 0.80

(e) ACS 15 57 33 2.02 1.12 1.70 0.94

2PACS(∞) 15 49 29 1.77 1.00 1.52 0.86

2PACS(1) 15 34 21 1.38 0.83 1.22 0.74

(f) ACS 250 310 283 0.77 0.70 0.54 0.49

2PACS(∞) 250 301 277 0.77 0.71 0.55 0.51

2PACS(1) 250 269 256 0.86 0.82 0.64 0.61

Note: Eff1 compares against an SRS of size n1, using marginal cost parameters c2a = cI = 0, cc = 1, that is, n1 is decided solely by the number of visited sample
units. Eff2 compares against an SRS of size n2, using marginal cost parameters c2a = cI = 1, cc = 0.1. See Figure 4 for the populations.

The results from the simulations were then evaluated against an ordinary SRS of comparable expected cost, and the
relative efficiency of each strategy is presented in Table 2. The cost function of Thompson (1990) considered each visited
unit as equally expensive, independent of whether or not the plot was inventoried. However, as is mentioned in Section 3.3,
it is probably reasonable to expect that it is less expensive to sample an empty sample unit. Thus, two cost functions were
used, one reflecting the conservative cost function of Thompson (1990), whereas the other considered (12) with marginal
cost parameters c2a = cI = 1, cc = 0.1.

Results in Table 2 highlight the effects of the cost function used to compare, as the 2PACS(𝛽) methods are increasingly
competitive as the cost of just visiting a plot goes down. Furthermore, the results show that as clusters become larger or
more spread out, the usefulness of any ACS design decreases. This effect can be countered to an extent by restricting the
sizes of the sampled clusters.

5 DISCUSSION

As is often the case with sampling, the optimal strategy is heavily dependent on the population of interest. Cluster sam-
pling can be shown to be beneficial if one is expecting the population to be grouped into small and relatively few clusters.
As the clusters increase in size or abundance, cluster sampling ceases to be useful.

In inventories where the marginal cost of visiting empty plots is expected to be relatively small in comparison to
the marginal costs of travelling between sites or inventorying nonempty plots, cluster sampling can be competitive for
populations with larger or more clusters. However, this does not take into account the increased administrative cost of
going for a more complex sampling strategy.
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10 of 11 PRENTIUS and GRAFSTRÖM

Circular field plots are the standard of many environmental surveys, especially in forestry, as they are easily established
by field workers. Compared to a grid of square plots, circular plots naturally exclude part of the population, which has the
effect of creating smaller clusters on average. For populations where the clusters are many or large, this can be beneficial,
as the maximal sampling effort is reduced, even though the effect is probably rather small. Restricting the sampling
process through 2PACS(1) can however have a larger effect, as small clusters will at most only be slightly smaller compared
to when using 2PACS(∞), whereas large clusters will not get too costly.

Generally, a HT estimator would be expected to yield lower variance compared to a Hansen-Hurwitz (HH) estima-
tor, using similar designs. This stems from a larger variation of the number of inclusions for the HH estimator. For a
non-adaptive sample (i.e., 𝛽 = 0), this effect might be quite small, but as the clusters grow larger with increasing 𝛽, there
is an increased likelihood of including plots multiple times. When the expansion is unrestricted, Thompson (1990) shows
that the HT estimator outperforms the HH estimator. However, by using a sampling procedure that spreads the initial
sample geographically, such as the LPM, we can reduce the probability of selecting plots from the same clusters multiple
times, thus mitigating this effect.

Another effect of 2PACS(1) is that the expected number of inclusions of a plot is likely to have a higher correlation with
the variable of interest, compared to 2PACS(∞). A positive correlation between the variable of interest and the expected
number of inclusions should yield lower variance, as is the basis for designs using probabilities proportional to size. For a
cluster with a uniform distribution of objects, the total of the variable of interest for plots at the edge of a cluster will on
average be lower, as plots will encircle fewer objects. At the same time, plots at the edge of a cluster have fewer neighboring
plots fulfilling the criteria of inclusion, leading to a lower expected number of inclusions for such plots under 2PACS(1).
This has been shown in preliminary simulations, for the populations in this manuscript.

Further research should explore the effects of available auxiliary information, as data on where the clusters might be
located may reduce the possible gain of using a variant of ACS.

ORCID
Wilmer Prentius https://orcid.org/0000-0002-3561-290X
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APPENDIX A

A.1 Horvitz–Thompson estimator
Let pi be the draw probability of plot i being selected into S2a. Let pCi be the draw probability of any plot in Ci being selected
into S2a. Given independent draws, we have

Ŷ2 =
∑

i∈S2

yi

𝜋i

pCi =
∑

k∈Ci

pk

𝜋i = Pr (i ∈ S2) = 1 −
n∏

k=1
(1 − pCi )

𝜋ij = Pr (i ∈ S2, j ∈ S2) = 1 − Pr (i ∉ S2 ∪ j ∉ S2)
Pr (i ∉ S2 ∪ j ∉ S2) = 2 − 𝜋i − 𝜋j − Pr (i ∉ S2, j ∉ S2)

Pr (i ∉ S2, j ∉ S2) =
n∏

k=1
(1 − pCi∪Cj)

𝜋ij = 𝜋i + 𝜋j +
n∏

k=1
(1 − pCi∪Cj ) − 1,

forming the basis for a HT estimator (Horvitz & Thompson, 1952).

A.2 Comparable SRS sample size
We assume the cost function

cost = c0 + c2an + cInI + ccnc,

where c0 is a fixed cost relating to the survey, c2a is the marginal cost associated with moving to a plot selected in the initial
sample S2a, cI ,nI are the marginal cost and the number of plots which need to be inventoried, and cc,nc is the marginal
cost and the number of plots that need to be checked regarding to criteria of inclusion.

Using this cost function, we can express the cost for a SRS sample (i.e., a sample without adaptive expansion) as

costSRS = c0 + c2anSRS + cIPnSRS + ccnSRS,

where P is the proportion of plots fulfilling the criteria of inclusion (a random variable through the first-phase sample).
Similarly, we can express the cost for an ACS sample as

costACS = c0 + c2anACS + cInI + ccnc.

For a given initial sample size nACS, we can find the sample size nSRS which gives the same expected cost for both sampling
schemes:

E (costSRS) = c0 + nSRS (c2a + cIE(P) + cc) ,
E (costACS) = c0 + c2anACS + cIE (nI) + ccE (nc) ,
E (costSRS) = E (costACS)

⇒ nSRS =
c2anACS + cIE (nI) + ccE (nc)

c2a + cIE(P) + cc
,

getting a rough estimate of nSRS by replacing the expected values with the Monte Carlo estimates.
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