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Abstract 

Viruses are intimately linked with their hosts and especially dependent on gene-for-gene interactions to establish 
successful infections. On the host side, defence mechanisms such as tolerance and resistance can occur within the 
same species, leading to differing virus accumulation in relation to symptomology and plant fitness. The identification 
of novel resistance genes against viruses and susceptibility factors is an important part of understanding viral patho-
genesis and securing food production. The model plant Arabidopsis thaliana displays a wide symptom spectrum in 
response to RNA virus infections, and unbiased genome-wide association studies have proven a powerful tool to 
identify novel disease-genes. In this study we infected natural accessions of A. thaliana with the pararetrovirus cau-
liflower mosaic virus (CaMV) to study the phenotypic variations between accessions and their correlation with virus 
accumulation. Through genome-wide association mapping of viral accumulation differences, we identified several 
susceptibility factors for CaMV, the strongest of which was the abscisic acid synthesis gene NCED9. Further experi-
ments confirmed the importance of abscisic acid homeostasis and its disruption for CaMV disease.

Keywords:  Abscisic acid, Arabidopsis, cauliflower mosaic virus, genome-wide association studies, virus disease, virus 
tolerance.

Introduction

Plant viruses are ubiquitous in wild and cultivated habitats, with 
profound impacts on host populations (Prendeville et al., 2012). 
As obligate intracellular parasites, they are fully dependent on 
host compatibility to complete their replication cycle, and ge-
netic variation within both the plant and the viral species can 
have major effects on the disease outcome (Cecchini et al., 
1998; Butković et al., 2022, Preprint). Of particular interest is 
the continuum of two mechanisms, tolerance and resistance, 
that plants employ against invading pathogens. Host resistance 

leads to reduced or absent viral replication and commonly 
functions through targeted degradation of viral components 
and incompatibility with the host machinery (Soosaar et al., 
2005). Tolerance is fundamentally different from resistance and 
is defined as a mitigation strategy aimed at minimizing the 
cost of infection in terms of plant growth, yield and reproduc-
tion, rather than investing in resources to fight the infection by 
suppressing pathogen multiplication (Pagán and García-Arenal, 
2020). The definition of tolerance can vary, and in the current 
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study we refer to it when virus accumulation is high in vis-
ibly healthy plants. A powerful example was recently reported 
for Arabidopsis latent virus 1, which has spread through nat-
ural and laboratory populations of Arabidopsis thaliana without 
detection (Verhoeven et al., 2023). While agricultural research 
has historically focused on resistance to combat virus disease, 
evidence is accumulating that tolerance plays a pivotal role for 
many plant–virus interactions, especially in natural ecosystems, 
where most plants are infected by at least one virus at any 
given time but still appear healthy (Roossinck, 2013; Paudel 
and Sanfaçon, 2018). Identifying the underlying genetics of the 
tolerance–resistance spectrum is a difficult task, and genome-
wide association studies (GWAS) have emerged as a potential 
tool to find novel genes and pathways implicated in plant–
pathogen interactions (reviewed in Bartoli and Roux, 2017). 
Compared with other pathogen classes, GWAS on plant–virus 
interactions are scarce and most have focused on crop and veg-
etable species (reviewed in Monnot et al., 2021) even though, 
thanks to the extensive 1001 Genomes project, Arabidopsis is 
a superb resource for GWAS, with over 1000 sequenced nat-
urally inbred accessions collected worldwide (1001 Genomes 
Consortium, 2016). To our knowledge, six recent GWAS 
have been conducted on RNA virus infections in Arabidopsis 
(Pagny et al., 2012; Rubio et al., 2019; Butković et al., 2021; 
Montes et al., 2021; Butković et al., 2022, Preprint; Liu et al., 
2022) and successfully identified genetic loci impacting viral 
infections.

In addition to discovering new disease and resistance genes 
for possible application in crop breeding and protection strate-
gies, natural genetic variation and associated phenotypic var-
iation in virus accumulation and symptomology can suggest 
fundamental perspectives on plant–virus interactions. Only one 
of the six virus/Arabidopsis GWAS determined both symp-
tomology and virus accumulation and found a weak positive 
correlation between the traits (Rubio et al., 2019). Yet, plant 
viruses generally do not show a correlation between symp-
tomology and accumulation across Arabidopsis accessions, as 
observed (Cecchini et al., 1998; Pagán et al., 2007; Shukla et al., 
2018; Bergès et al., 2021), suggesting that tolerance is a ubiqui-
tous process in plant viral diseases.

In this study we examined the disease spectrum of the 
double-stranded DNA Caulimovirus Cauliflower mosaic 
virus (CaMV; family Caulimoviridae) in 100 natural acces-
sions of Arabidopsis. We focused our analysis on only the 
plant’s vegetative stage and its rosette tissue, owing to ex-
tensive vernalization requirements for many of the acces-
sions to flower. The CaMV host range is limited to members 
of the Brassicaceae, including mustard, broccoli, and cabbage, 
and it infects natural populations of Arabidopsis (Pagán et al., 
2010). CaMV challenges its host with the establishment of 
large cytoplasmic viral replication centers, as well as an un-
common increase of global translation, due to the viral trans-
lational transactivator protein P6 (Schoelz and Leisner, 2017; 
Hoffmann et al., 2022). The unique properties of CaMV 

implicate the existence of a network of host factors possibly 
influencing CaMV disease. Interestingly, CaMV infection 
was shown to cause a range of disease severity in response 
to water deficit in natural accessions of Arabidopsis (Bergès 
et al., 2020), altogether making CaMV a suitable virus for a 
GWAS in Arabidopsis.

Here, we show that CaMV disease differs greatly among 
Arabidopsis accessions, dependent on the host genotype, and 
use this variety to map underlying host genes. We find that 
the abscisic acid (ABA) synthesis gene 9-cis-epoxycarotenoid 
dioxygenase 9 (NCED9) is an important susceptibility factor 
for CaMV, as infection is almost completely abolished in the 
nced9 mutant line. Additionally, ABA, an important plant hor-
mone in plant abiotic and biotic stress responses (Ton et al., 
2009; Verma et al., 2016), is targeted during CaMV infection, 
and misregulation of ABA homeostasis increases CaMV levels.

Materials and methods

Plant material and growth conditions
Arabidopsis thaliana accessions (n=100) (Supplementary Table S1) were 
provided by the group of Magnus Nordborg (Gregor Mendel Institute, 
Vienna). The T-DNA lines used in this study were ordered from the 
Nottingham Arabidopsis Stock Centre (NASC) and all generated in the 
Columbia (Col-0) background, which was used as a control for all mu-
tant experiments (Supplementary Table S2). Seeds were planted on damp 
soil and stored at 4 °C in the dark for 1 week to ensure germination syn-
chronization. Seedlings were separated into pots at six plants per pot 8 d 
after transfer to a walk-in chamber in short-day conditions (120 mmol, 
10 h light/14 h dark cycle) at 22 °C and 65% relative humidity. Pots were 
randomized within each tray and tray position within the chamber was 
switched randomly once a week. Infections were carried out 18 d after 
transfer to growth conditions. Infections of natural accessions were repeated 
twice in timely separated experiments. T-DNA lines were infected at least 
three times in timely separated experiments. Arabidopsis plants were grown 
in walk-in chambers in standard long-day conditions (16 h light/8 h dark 
cycle) at 22 °C and 65% relative humidity for propagation. For long day 
infection experiments, seeds were plated on damp soil and stored at 4 °C in 
the dark for 1 week to ensure germination synchronization. Seedlings were 
separated into four plants per pot 6 d after transfer to a walk-in chamber 
and infections were carried out 15 d after transfer to growth conditions.

Virus inoculation and symptom scoring
All Arabidopsis plants were infected with CaMV at growth stage 1.04 with 
four rosette leaves (18 d after germination in our conditions) (Boyes et al., 
2001). The first true leaves were infiltrated with Agrobacterium tumefaciens 
strain C58C1 carrying CaMV strain CM1841. Plants were scored for 
symptoms and photographed at 21 days post-infection (dpi). Symptoms 
were classified into categories (0–5) corresponding to no visible symp-
toms (0), mild vein clearing (1), leaf bending (2), rosette distortion (3), 
rosette shrinking (4), and early senescence with necrotic lesions (5), and 
were determined for each accession. Failed infections were removed from 
pots before taking aboveground fresh weights for individual plants. All 
infected plants (n=3–6) of one accession were pooled for titer measure-
ments and ground to a fine powder in liquid nitrogen. Infections with the 
RNA viruses were performed using clones described in Ling et al. (2013) 
for turnip rosette virus (TRoV; family Solemoviridae) and Garcia-Ruiz 
et al. (2010) for turnip mosaic virus (TuMV; family Potyviridae).
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Virus quantification and gene expression analysis
For CaMV DNA quantification, 100 mg pulverized frozen leaf material 
was resuspended in 300 µl 100 mM Tris buffer (pH 7.5), supplemented 
with 2% SDS, and treated with Proteinase K. Total DNA was precipi-
tated with isopropanol 1:1 (v:v). RNA extraction from rosette tissue was 
performed with a Qiagen RNeasy kit and on-column DNase I diges-
tion according to the manufacturer’s protocol. Approximately 500 ng of 
total RNA was used for first-strand cDNA synthesis with a Maxima First 
Strand cDNA Synthesis Kit (Thermo Fisher Scientific,4 Waltham, MA, 
USA). Quantitative real-time PCR (qRT–PCR) analysis of DNA and 
cDNA was performed with Maxima SYBR Green/Fluorescein qRT–
PCR Master Mix (Thermo Fisher Scientific) using the CFX Connect 
Real-Time PCR detection system (Bio-Rad, Hercules, CA, USA) with 
specific primers (Supplementary Table S3). Viral DNA was normalized 
to genomic ACTIN7 (AT5G09810) for all accessions and 18S ribosomal 
DNA for T-DNA lines. Viral transcripts and ABA-responsive transcripts 
were normalized to PP2a (AT1G69960).

Genome-wide association mapping
Genome-wide association (GWA) mapping was performed on 100 acces-
sions using an online portal provided by the Gregor Mendel Institute, 
Austria (https://gwas.gmi.oeaw.ac.at) (Seren et al., 2012) against the 
Imputed Fullsequence Dataset (Cao et al., 2011; Gan et al., 2011; Long 
et al., 2013) with an accelerated mixed model (AMM) (Seren et al., 2012). 
The AMM is based on EMMAX (Kang et al., 2010) and P3D (Zhang 
et al., 2010), correcting for population structure and accounting for ge-
netic relatedness as a random effect, but differs in the re-estimation of 
P-values for the 100 most significant single nucleotide polymorphisms 
(SNPs) through exact inference (Kang et al., 2008). For details, refer to 
Seren et al. (2012). Analysis was performed with untransformed data. For 
this report, SNPs were considered when they withstood a 5% false dis-
covery rate by Benjamini–Hochberg–Yekultieli thresholding (Benjamini 
and Hochberg, 1995) and a minor-allele count of ≥5. Fifteen T-DNA 
lines were chosen for the highest-scoring SNPs that fell into gene bodies, 
caused missense mutations, and had available T-DNA insertions in NASC.

Chemical treatments
For chemical treatments, ABA (Sigma-Aldrich, A1049) and nordihy-
droguaiaretic acid (NDGA) (Merck Chemicals and Life Science, 74540) 
were prepared in 99% ethanol for stock solutions. Seedlings (17 d old) 
were sprayed with dilutions of these solutions 24 h before infection. The 
treatment was repeated once a week at the same time until harvest. The 
last application was performed 24 h before harvest.

Broad-sense heritability calculation
The estimation of broad-sense heritability (h2b) was calculated as the 
percentage of the total variance accounted by genetic (accession) differ-
ences (h2b = σ2 G/σ2 P, where σ2 G is the genetic variance compo-
nent of σ2 P total phenotypic variance). σ2 P and σ2 G were derived by 
variance components analysis using separated univariate analyses (Shukla 
et al., 2018).

Transcriptome analysis
Transcriptome data were generated by Chesnais et al. (2022). For the 
re-analysis of the bulk RNA-seq data, raw data were downloaded from 
BioProject number PRJEB49403 from the European Nucleotide Archive 
(https://www.ebi.ac.uk/ena/browser/view/PRJEB49403). Analysis 
was done on three replicates of mock- and CaMV-infected samples. In 
brief, downloaded reads were trimmed and checked with TrimGalore 

[version 0.5.0; https://github.com/FelixKrueger/TrimGalore, based on 
Cutadapt (Martin, 2011)] using the options -q 20 --fastq --stringency 1 
--length 32 --paired. Afterwards, reads were mapped to the TAIR10 ge-
nome using Tophat2 (version 2.1.1; Kim et al., 2013) with the parameters 
--library-type=fr-firststrand -g 1 -a 10 -i 40 -I 5000 -r 150, using the 
TAIR10 reference annotations for all annotated genes. Mapped output 
files were sorted and indexed using samtools (version 1.6; Li et al., 2009). 
FeatureCounts from the subread package (version 2.0.1; Liao et al., 2014) 
was used with the options -T 8 -p -t gene -O -s 2 against all genes in 
the TAIR10 genome to generate a counts table for subsequent analysis 
of differentially expressed genes using the R package Deseq2 (Love et al., 
2014).

Bioinformatics
Plots were made with R 4.0.2, using the packages ‘ggplot2’ (Wickham, 
2016), ‘tidyverse’ (Wickham et al., 2019), ‘raincloudplot’ (Allen et al., 
2019), or base functions. All statistical calculations were performed in 
R with base functions. Test statistics can be found in Supplementary 
Table S4. Figure arrangements were finalized using AffinityDesigner 
1.10. Latitude and longitude data, as well as SNP data and impact pre-
diction, were taken from the https://1001genomes.org/ website and the 
POLYMORPH1001 tool (https://tools.1001genomes.org/polymorph/
index.html) (Supplementary Table S1). Gene loci and descriptors were 
assembled through the PANTHERDB website version 16.0 using bed-
tools v2.30.0 ‘closest’ function.

Results

CaMV disease severity is highly variable in Arabidopsis

CaMV occurs worldwide and infects Arabidopsis and other 
Brassicaceae in wild populations (Raybould et al., 1999; Pagán 
et al., 2010). In this study, we examined CaMV disease in 100 
Arabidopsis accessions under controlled conditions. Accessions 
exhibited a broad range of symptoms that were scored at 21 
dpi. We categorized symptoms from mild vein clearing (1) 
and leaf bending (2) through rosette distortion (3) and ro-
sette shrinking (4) to early senescence with necrotic lesions 
(5) (Fig. 1A; Supplementary Fig. S1C). Only two accessions, 
PHW-3 and IP-Oja-0, did not develop any visible disease 
(score 0), while most accessions developed moderate symp-
toms (Supplementary Table S5). Of the 100 tested accessions, 
83 were collected in Europe (Fig. 1B; see Supplementary Fig. 
S1A for a world map), but we could not find clustering of sim-
ilar disease severities along either the longitudinal or the latitu-
dinal gradient (Fig. 1B), and the main admixture groups (n>5) 
in our dataset did not reveal a pattern in symptom severity 
(Fig. 1C). Relative fresh weight after virus infection is a widely 
used proxy for disease severity, and it was strongly correlated 
with the visually determined disease categories in our dataset 
(Fig. 1D, Supplementary Table S5). Importantly, virus-induced 
fresh weight loss did not correlate with the total fresh weight 
of mock-inoculated plants, indicating that virus disease costs in 
these conditions are not dependent on differences in growth 
capacity between individual accessions (Supplementary Fig. 
S1B). We also tested a few accessions under different light 
conditions to evaluate the robustness of accession-specific 
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symptomology and found that the range of symptoms was es-
sentially reproduced (compare Fig. 1A and Supplementary Fig. 
S1C). These results reveal a large spectrum of CaMV-induced 
symptoms in Arabidopsis that appear to be largely independent 
of the global origin of the accession when grown in controlled 
conditions.

Tolerance and resistance govern CaMV disease in 
Arabidopsis

To evaluate the relationship between virus accumulation 
and disease symptomology, we determined viral genomic 

DNA levels in parallel with the symptom scoring and fresh 
weight analysis presented in Fig. 1. CaMV DNA accumu-
lation was measured from pools of infected plants from the 
two replicate experiments, with good reproducibility (Fig. 2A, 
Supplementary Table S6). We detected a 28-fold difference be-
tween the highest (IP-Ven-0) and the lowest (Lerik1-4) viral 
DNA measurement in symptomatic plants. Interestingly, we 
found only a weak correlation between viral titer and plant 
symptoms, and the four highest CaMV accumulators belonged 
to symptom groups 1, 2, 3 and 5, indicating that virus multi-
plication and virulence are largely uncoupled in the present 
setting (Fig. 2B). Likewise, several accessions from the severe 

Fig. 1. The broad spectrum of CaMV disease in Arabidopsis. (A) Representative images of the range of symptoms induced by CaMV infection at 21 
dpi. Upper panel: mock-infected plants; lower panel: CM1841-infected plants. Accession identifiers are shown below. Colors correspond to symptom 
categories. Scale bar=2 cm. (B) Geographical distribution of 83 Arabidopsis accessions from Europe, representing 83% of the examined accessions. 
Dot colors indicate symptom categories. (C) Fraction of symptom categories divided by admixture groups. The number of accessions in each admixture 
group is indicated in brackets. IBC, Italy/Balkans/Caucasus; C, Central; N, North; S, South; W, Western. (D) Dot plot of relative fresh weights of 
accessions in the different symptom categories. Numbers in brackets indicate the number of accessions in each category. The colored circle and line 
represent the mean ±SD. Grey dots represent individual accessions. Correlation was calculated with the Spearman rank test.
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symptom categories (4 and 5) accumulated low levels of virus, 
suggesting hypersensitivity. An equally poor but positive cor-
relation between symptoms and viral accumulation has been 
previously described for the potyvirus TuMV (Rubio et al., 
2019), while no correlation was found for the cucumovirus 

cucumber mosaic virus (CMV) (Pagán et al., 2007), altogether 
strengthening the idea that disease symptoms are frequently 
not a consequence of the amount of virus in a plant. We also 
could not detect differences in CaMV accumulation between 
the different admixture groups (Fig. 2C) other than a slightly 

Fig. 2. CaMV accumulation correlates only weakly with symptoms in Arabidopsis. (A) Raincloud plot of CaMV DNA accumulation in 100 Arabidopsis 
accessions at 21 dpi, in two independent replicates. The Spearman correlation coefficient (ρ) and P-value are given. (B) Dot plot of CaMV DNA 
accumulation in different symptom categories. The numbers in brackets indicate the number of accessions in each category. Colors correspond to 
symptom categories (see Fig. 1A). The colored circle and line represent the mean ±SD. Grey dots represent individual accessions. The Spearman 
correlation coefficient (ρ) and P-value are given. (C) Dot plot of CaMV DNA accumulation in admixture groups. Accessions depicted in (D) are highlighted. 
The number of accessions in each admixture group is indicated in brackets. The circles and lines represent the mean ±SD. Grey dots represent individual 
accessions. (D) Representative image of accessions Kor-3 and IP-Ven-0, with Col-0 for comparison. Both accessions accumulate twice as much CaMV 
DNA as Col-0 but fall on either side of Col-0 on the disease spectrum. Scale bar=2 cm.
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higher value for relics, but the low number of accessions in this 
group might confound the effect. Again, the highest CaMV 
accumulators were scattered between the admixture groups. 
These data show that many Arabidopsis accessions vary in their 
tolerance of CaMV in a manner that is largely uncoupled from 
accumulation and, thus, that symptom development in indi-
vidual accessions is far from a direct indicator of CaMV accu-
mulation (Fig. 2D).

A recent study by Liu et al. (2022) examined the quantita-
tive resistance of Arabidopsis to two distantly related strains 
of CMV; 41 (for CMV-Q) and 42 (Fny-CMV-Δ2b) acces-
sions were shared between that study and the present work. 
Interestingly, while no correlation could be detected between 
CaMV and CMV accumulation in general, individual acces-
sions, such as IP-Ven-0, accumulated high virus loads in both 
cases, and IP-Oja-0 showed full resistance to CaMV and accu-
mulated very low levels of CMV (Supplementary Fig. S2). 
Another study on CMV virulence in Arabidopsis accessions 
from the Iberian peninsula also found that CMV infection 
in IP-Ven-0 drastically reduced seed production (by 96.5%), 
whereas IP-Oja-0 seed production was decreased by only 20% 
after infection (Montes et al., 2021). The absence of a global 
correlation between CaMV and CMV accumulation across the 
accessions suggests that individual plant–virus interactions are 
commonly of high importance, but single accessions might still 
exhibit strong resistance or susceptibility to viruses generally, 
possibly as a consequence of physiological traits.

Genome-wide association mapping identifies novel 
CaMV susceptibility factors

We used the GWAPP tool (Seren et al., 2012) to conduct a 
GWA mapping of symptoms, relative fresh weight, and rela-
tive CaMV accumulation in the 100 accessions. It is impor-
tant to note that 100 accessions represents a small sample size 
for GWA mapping, which will result in limited resolution. 
Neither symptom category nor relative fresh weight data 
resulted in the identification of SNPs above the Benjamini–
Hochberg threshold (Supplementary Fig. S3); however, sev-
eral regions were associated with CaMV accumulation (Fig. 
3A, Supplementary Table S7). Broad-sense heritability for 
CaMV DNA accumulation was 0.58, similar to previous 
observations in plant–virus systems (Shukla et al., 2018; 
Monnot et al., 2021). After thresholding, we found 140 genes 
within a 2  kb region of significant SNPs for CaMV titer 
(Supplementary Table S8), in accordance with the multifac-
eted process of viral replication. Most associated genes had no 
annotated function in ThaleMine (v.5.1.0-20221003). A pro-
tein class ontology search on PantherDB.org (v17.0) showed 
that the largest group of genes (16) by protein class ontology 
encodes metabolite interconversion enzymes (PC00264), 
eight of which are oxidoreductases (PC00176), followed by 
protein-modifying enzymes (eight; PC00260) and transcrip-
tional regulators (six; PC00264). Since viral replication and 

accumulation could be influenced by as yet unknown mech-
anisms, we did not want to limit our downstream analysis, 
and randomly selected 15 SNPs above the threshold located 
in gene bodies that caused missense mutations (indicated by 
the colored arrowheads in Fig. 3A; Supplementary Table S2), 
for which we analysed CaMV accumulation in Col-0 based 
T-DNA insertion lines.

Intriguingly, of the 15 tested lines, eight showed a sig-
nificant reduction in CaMV accumulation compared with 
Col-0 (Fig. 3B). It is noteworthy that none of the tested 
lines showed increased CaMV accumulation, suggesting 
that our GWA mapping mainly identified susceptibility 
factors. All lines developed symptoms similar to those in 
Col-0 at 21 dpi except for SALK_123975.34.85.x, which 
also had the most striking reduction of viral DNA (~5% 
of Col-0). This line harbors an insertion in the only exon 
of AT1G78390 (Lefebvre et al., 2006). AT1G78390 encodes 
9-cis-Epoxycarotenoid Dioxygenase 9 (NCED9), an en-
zyme involved in the biosynthesis of ABA. The identified 
SNP causes a missense mutation of valine-415 to leucine in 
the NCED9 coding sequence, with a predicted moderate ef-
fect (Fig. 4A). This particular polymorphism occurs in only 

Fig. 3. GWA mapping of CaMV accumulation and candidate screening. 
(A) Manhattan plot of GWA results for CaMV accumulation in 100 natural 
accessions of Arabidopsis. Blue shading indicates the five Arabidopsis 
chromosomes. The blue horizontal line indicates the significance threshold 
after Benjamini–Hochberg correction; the red line represents the more 
stringent Bonferroni multiple testing correction. (B) Relative CaMV DNA 
accumulation in T-DNA lines of GWA candidates (indicated by ATG 
number) at 21 dpi compared with wild-type Col-0 (n=4–22). T-DNA 
lines are listed in Supplementary Table S2. The colored circles and lines 
represent the mean ±SD. Grey dots represent individual accessions. The 
grey bar represents the standard deviation of Col-0.
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29 natural accessions, all of one are clustered in central and 
northern Europe and Russia (Fig. 4B; Supplementary Table 
S9). We expanded the virus accumulation analysis and addi-
tionally tested five further lines for accessions harboring this 
SNP (Supplementary Table S7). On average, accessions with 
NCED9-415L accumulated significantly more virus than 
those with NCED9-415V (Fig. 4C).

NCED9 is essential for robust CaMV accumulation

NCED9 is best examined for its role during seed develop-
ment and germination (Tan et al., 2003; Lefebvre et al., 2006). 
We found that CaMV infection induced NCED9 expression 
in rosette tissue compared with healthy plants, albeit still to 
low levels (Fig. 5A). We used an independent publicly avail-
able transcriptome set of Arabidopsis infected with the same 
CaMV strain, CM184I, from 21 d after aphid inoculation 
(Chesnais et al., 2022) and could also find increased levels of 
NCED9 transcript in response to CaMV (Fig. 5B). The nced9 
T-DNA line developed no symptoms except for a mild vein 
clearing phenotype in older leaves over an infection time of 
44 d (Fig. 5C) and displayed no fresh weight loss compared 
with uninfected control plants when challenged with CaMV 
(Fig. 5D). This resistance phenotype was persistent also under 
long-day light regimes (Supplementary Fig. S4A). After back-
crossing nced9 into Col-0, we used symptom development to 
test whether homozygous nced9 alleles are needed for CaMV 
resistance. Close to 90% of Col-0 plants developed symptoms 
upon infection, whereas 0% of homozygous nced9 plants did. 
Three independent segregating F2 populations developed 
Col-0-like symptoms with a frequency of 69–72%, indicating 
that a homozygous line of nced9 is required for CaMV resist-
ance (Supplementary Fig. S4B). Plant resistance to viruses can 
be specific to the virus species and sometimes even the viral 
strain (Takahashi et al., 2002). The nced9 mutant is resistant 
to two strains of CaMV, the milder CM184I and the more 

virulent Cabb B-JI strain (Supplementary Fig. 4C), but is sus-
ceptible to infection with TuMV and TRoV (Supplementary 
Fig. S4D). Thus, NCED9 appears to be a CaMV-specific sus-
ceptibility factor. CaMV RNAs are very stable and can ac-
cumulate to high levels despite reduction in viral DNA 
(Hoffmann et al., 2022). In nced9, all three major viral RNA 
species were reduced, albeit not as drastically as the viral DNA 
(Figs 3B, Fig. 5E).

Exogenous ABA application enhances CaMV 
accumulation in Col-0

ABA is generated through the cleavage of C40 carotenoids by 
several enzymatic reactions, originating in the chloroplast and 
ending in the cytoplasm. The multigene NCED family encodes 
enzymes that cleave cis-isomers of violaxanthin and neoxanthin 
to xanthoxin, the last precursor of ABA generated in chloro-
plasts (Nambara and Marion-Poll, 2005). The established role 
of NCED9 in ABA biosynthesis prompted us to investigate the 
involvement of ABA during CaMV infection. ABA plays mul-
tifaceted roles during plant–pathogen interactions, and exoge-
nous ABA application was found to either increase or reduce 
pathogen load in planta (Alazem et al., 2014). We treated seed-
lings with ABA 24 h before infection with CaMV and then 
once a week throughout the 3-week infection time course, with 
the last treatment 24 h before harvesting of the whole rosette. 
Application of exogenous ABA by spraying reduced Col-0 ro-
sette growth in a concentration-dependent manner (Fig. 6A, B). 
The nced9 plants behaved comparably to Col-0, showing that 
the line has not lost its sensitivity to ABA (Fig. 6A, B). The well-
described aba2 mutant accumulates ~20–25% of wild-type ABA 
levels during undisturbed growth (González-Guzmán et al., 
2002), has a severely impaired growth phenotype, and is prone 
to wilting (Fig. 6A). The aba2 growth phenotype was fully res-
cued by exogenous ABA spraying, suggesting that this treat-
ment was applied successfully (Fig. 6B). CaMV accumulation in 

Fig. 4. Allelic variation in NCED9 influences CaMV accumulation. (A) Graphic representation of NCED9 protein (657 amino acids) with amino acid 
substitutions due to SNPs present in more than 10 accessions annotated from the POLYMORPH 1001 browser. (B) Geographical distribution of 29 
Arabidopsis accessions harboring NCED9-415L. Light green dots indicate accessions in our collection used for CaMV experiments. (C) CaMV DNA 
accumulation relative to Col-0 in NCED9-415V (n=95) and NCED9-415L (n=10) accessions. The P-value was calculated using a pairwise Wilcoxon rank 
rum test with continuity correction.
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Col-0 was not affected after spraying with low concentrations 
of ABA (10 µM or 50 µM), but 100 µM and, more strongly, 200 
µM increased the viral DNA content (Fig. 6C). Likewise, while 
virus levels were reduced in non-treated aba2-1 plants, virus 
load significantly increased upon spraying with 200 µM ABA 
(Fig. 6C). Intriguingly, exogenous ABA application had no ef-
fect on CaMV accumulation in the nced9 background, seem-
ingly uncoupling the function of NCED9 in CaMV infection 
from bulk ABA synthesis (Fig. 6C). 

The phenolic antioxidant NDGA is a commonly used in-
hibitor of lipoxygenases (NCEDs) and as such is an inhibitor of 
ABA synthesis (Creelman et al., 1992; Han et al., 2004). NDGA 
has been used previously in plant–virus studies and either made 
the plants more susceptible to the virus (He et al., 2021) or 
reduced viral load in planta (Alazem et al., 2014). We observed 
that NDGA treatment decreased plant growth in uninfected 
plants (Fig. 6A), but also that NDGA treatment increased 
CaMV DNA accumulation in Col-0 and aba2-1, whereas it 
had no effect on virus accumulation in nced9 (Fig. 6D). These 
results suggest that disturbance of ABA homeostasis, rather 
than ABA levels, might aid virus accumulation. We used CaMV 
transcriptome data (Chesnais et al., 2022) to visualize the ef-
fect of CaMV infection on ABA-responsive genes in 4-week-
old rosettes (Hoth et al., 2002). CaMV infection altered the 

expression of positively and negatively ABA-regulated genes 
drastically and in a non-specific manner, indicating a distur-
bance in ABA signaling pathways (Fig. 6E, F; Supplementary 
Table S10). To validate that these changes hold true in our ex-
perimental conditions, we chose four ABA-responsive genes 
that are down-regulated during CaMV infection according 
to the transcriptomics data and tested their expression with 
qRT–PCR, confirming their strong transcriptional repression 
during CaMV infection (Fig. 6G). Taken together, our data 
suggest that CaMV infection benefits from the disturbance 
of ABA homeostasis, probably through the misregulation of 
ABA-dependent pathways that ultimately helps viral accumu-
lation. However, the function of NCED9 for CaMV as part of 
these ABA-related mechanisms remains to be determined.

Discussion

Plants can exhibit amazing plasticity in response to patho-
gens and the Arabidopsis/CaMV pathosystem is no exception. 
Arabidopsis is a natural host of CaMV, yet it remains specula-
tive whether Arabidopsis evolved under CaMV pressure, as has 
been proposed for other viruses that naturally infect Arabidopsis 
(Montes et al., 2019). In our conditions, Arabidopsis exhibited 

Fig. 5. The nced9 mutant is resistant to CaMV infection. (A) qRT–PCR of relative transcript accumulation of NCED9 in mock- and CaMV-infected Col-0 
plants at 21 dpi normalized to PP2a (n=4). (B) Log2 fold change of NCED9 in CaMV-infected compared with mock-infected plants in the transcriptome 
dataset of Chesnais et al. (2022). (C) Representative images of Col-0 and nced9 plants at 21, 28, and 44 d after infection with CaMV strain CM184I. 
Scale bar=2 cm. (D) Relative fresh weight of infected Col-0 and nced9 plants at 21 dpi. The black line indicates the mean fresh weight of mock-infected 
plants (normalized to a value of 1). (E) qRT–PCR of relative transcript accumulation of viral RNAs in Col-0 (white bars) and nced9 (teal bars) plants at 21 
dpi, normalized to PP2a (n=3).
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a wide spectrum of responses to CaMV that ranged from no 
symptoms and no viral accumulation to full susceptibility with 
strong symptoms and high viral accumulation. Notably, we 
found tolerant and hypersensitive accessions as well, once again 
exemplifying that symptom severity and virus accumulation are 
largely uncoupled between host genotypes and that both resist-
ance and tolerance mechanisms shape plant–virus interactions 

(Fig. 7) (Pagán et al., 2007; Rubio et al., 2019; Bergès et al., 
2021). The defiance of pathogen-load/symptom connections 
(‘tolerance’) has been reported in other infection systems, in-
cluding bacteria and fungi (Chen et al., 2004; Gambetta et al., 
2007), although examples of clear resistance trajectories also 
exist, for example, for Pseudomonas syringae on Arabidopsis, 
which shows a strong positive correlation between symptom 

Fig. 6. Exogenous application of ABA enhances CaMV accumulation in a dose-dependent manner. (A) Representative image of mock-inoculated plants 
after three treatments with either ABA or NDGA. Scale bar=2 cm. (B) Violin plot of the relative fresh weight of mock-inoculated Col-0 (left panel), nced9 
(middle panel), and aba2 (right panel) plants after three treatments with the indicated concentrations of ABA. (C) Relative CaMV DNA accumulation at 
21 dpi in Col-0 (left panel), aba2 (middle panel), and nced9 (right panel) after three treatments with the indicated ABA concentrations (n=4). (D) Relative 
CaMV DNA accumulation at 21 dpi in the indicated genotypes after three treatments with 200 µM NDGA (n=4). (E) Log2 fold change of ABA-responsive 
genes (‘up-regulated after ABA treatment’, n=651; Hoth et al., 2002) in CaMV-infected compared with mock-infected plants in the transcriptome 
dataset of Chesnais et al. (2022). (F) Log2 fold change of ABA-responsive genes (‘down-regulated after ABA treatment’, n=680; Hoth et al., 2002) in 
CaMV-infected compared with mock-infected plants in the transcriptome dataset of Chesnais et al. (2022). (G) Relative transcript accumulation of ABA-
responsive genes (from the category ‘up’) in Col-0 plants at 21 d after mock or CaMV infection, normalized to PP2a (n=3).
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severity and bacterial density (Kover and Schaal, 2002). CaMV 
causes moderate symptoms in most accessions, a trend also seen 
with TuMV in 1050 Arabidopsis accessions (Butković et al., 
2022, Preprint) and in line with the theory that viruses evolve 
for intermediate severity to balance viral replication and host 
survival (Anderson and May, 1982; Torres-Barceló et al., 2010).

In our study, only two accessions, PHW-3 and IP-Oja-0, 
were fully resistant to CaMV infection (Fig. 2B). Previously, 
four more accessions (En-2, Wil-2, Sv-0, and Tsu-0) had been 
reported to be CaMV resistant (Leisner and Howell, 1992). 
Importantly, resistance phenotypes are often virus-strain spe-
cific. In accordance, the En-2 resistance locus (CAR1) on 
chromosome 1 (Callaway et al., 1996) is broken by the P1 pro-
tein of CaMV strain NY8153 (Adhab et al., 2018), while re-
sistance in Tsu-0 is broken by P6, pointing towards individual 
resistance mechanisms among the accessions (Hapiak et al., 
2008). The identification of additional CaMV-resistant acces-
sions will enable the identification of underlying resistance loci 
and help in the discovery of pathways implicated in plant–virus 
interactions.

Virus disease in plants is affected by the environment, as 
well as the genotype of the virus and host, forming a ‘disease 
triangle’. Manipulation of any factor in this triangle will affect 
the outcome of virus infection (Hily et al., 2016). By con-
trolling for environmental factors in standardized laboratory 

conditions, as well as for virus genotype by directed infil-
tration, we could elucidate the effect of host genotype on 
CaMV infection in Arabidopsis through GWA mapping. 
Previous GWA mappings in Arabidopsis/virus systems have 
identified resistance loci for the potyvirus TuMV, including 
the well-studied RESTRICTED TEV MOVEMENT 3 
(RTM3) gene (Cosson et al., 2010; Pagny et al., 2012; Rubio 
et al., 2019), and novel regulators of RNA silencing during 
CMV infection (Liu et al., 2022). Our GWA mapping iden-
tified numerous SNPs associated with differences in CaMV 
accumulation, in agreement with the diverse challenges that 
virus infections impose on host cells (Fig. 3A). Importantly, 
no resistance gene is known for Caulimoviruses, except the 
CAR1 locus in the Arabidopsis En-2 accession, which has 
not been further mapped (Adhab et al., 2018). Nonetheless, 
several genes involved in various cellular homeostatic pro-
cesses have been identified through genetic studies that influ-
ence CaMV accumulation (Love et al., 2005; Schepetilnikov 
et al., 2011; Hafren et al., 2017; Shukla et al., 2021, Preprint; 
Hoffmann et al., 2022). Eight out of the 15 T-DNA insertion 
lines that we tested displayed reduced CaMV accumulation 
in the Col-0 background compared with wild-type Col-0 
(Fig. 3B), a surprisingly high number considering that SNPs 
identified via GWA are frequently effective only in their nat-
ural genetic background (Corwin et al., 2016; Gallois et al., 
2018). Notably, none of these eight genes had previously been 
associated with CaMV disease, underscoring the potential of 
GWAS to uncover hidden CaMV disease genes. All identified 
SNPs appear to be susceptibility factors for CaMV, as their de-
letion negatively affects virus accumulation. This could point 
to either the importance of recessive resistance to CaMV, or 
more efficient identification of susceptibility factors in our 
GWAS. Even though the identified SNP for NCED9 has a 
low allele frequency and was not among the highest-scor-
ing ones, the nced9 mutant had by far the greatest effect and 
is, to our knowledge, the most CaMV-resistant Arabidopsis 
T-DNA insertion mutant identified so far. The same T-DNA 
line has been commonly used and well described for ABA 
experiments during seed germination, where NCED9, to-
gether with NCED6, is the main biosynthesis gene (Tan et al., 
2003; Lefebvre et al., 2006). To our surprise, CaMV infection 
in nced9 could not be rescued by application of exogenous 
ABA by spraying, unlike the aba2-1 mutant (Fig. 6C). Two 
other viruses were able to systemically spread through nced9 
and cause wild-type-like symptoms, indicating that the resist-
ance is specific for CaMV (Supplementary Fig. S4D). While 
we could not determine which function of NCED9 is essen-
tial for CaMV infection, the drastic defect in nced9 mutant 
warrants more attention.

Interestingly, even though the virus accumulation defect 
in nced9 could not be alleviated by exogenous ABA appli-
cation during CaMV infection, ABA hormone levels had an 
impact on CaMV accumulation. Plant hormones are an in-
tegral part of signaling mechanisms in response to biotic and 

Fig. 7. Tolerance and resistance shape CaMV disease in Arabidopsis 
thaliana. Line plot of disease score (relative fresh weight/ symptom 
category) color coded by symptom category, overlaid with a scatterplot 
of CaMV accumulation within the same accession. Identified groups are 
circled and color coded for their response. Accessions within the circles 
are listed below the graph, named by their accession identifier.
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abiotic environmental stimuli (Verma et al., 2016). The level 
and inducibility of hormonal responses exhibits a large range 
between Arabidopsis accessions, as identified for the major 
stress hormones salicylic acid (Bruessow et al., 2021) and ABA 
(Kalladan et al., 2017). Upon pathogen attack, ABA mediates 
the closure of stomata and deposition of callose at the plasmo-
desmata to slow the spread of the pathogen (Ton et al., 2009). 
While callose deposition could reduce the plasmodesmal traf-
ficking of CaMV, as observed for many other viruses (Iglesias 
and Meins, 2000; Li et al., 2012; Zavaliev et al., 2013), this is 
unlikely, as spraying with ABA increased systemic CaMV ac-
cumulation. Additionally, ABA antagonizes the salicylic acid-
mediated systemic acquired resistance (SAR), which could 
make it a general target of pathogens to subvert the antimicro-
bial SAR (Yasuda et al., 2008), and could be used by CaMV to 
escape SAR (Love et al., 2005). However, for virus infections 
including CaMV, the role of ABA appears to be complex. 
Increased ABA content was measured in Nicotiana tabacum 
after TMV infection (Whenham et al., 1986), in rice after 
rice stripe virus infection (Cui et al., 2021), and with CMV 
(Alazem et al., 2014) but not plum pox virus (PPV) infec-
tion in Arabidopsis (Pasin et al., 2020). Further treatment with 
ABA increased plant resistance to tobacco mosaic virus (Chen 
et al., 2013), PPV (Pasin et al., 2020), Chinese wheat mosaic 
virus (He et al., 2021), and bamboo mosaic virus (BaMV) 
in Arabidopsis (Alazem et al., 2014), and reduced the lesion 
size in local infections of tobacco necrosis virus (TNV) (Iriti 
and Faoro, 2008). CaMV, on the other hand, accumulated to 
higher levels upon treatment of plants with ABA, in line with 
a reduction in the aba2 mutant that was furthermore rescued 
by ABA application. However, the strong increase in CaMV 
accumulation upon treatment with NDGA, an inhibitor of 
the ABA biosynthetic NCED family, is difficult to understand, 
but notably, ABA and NDGA also acted similarly in that both 
reduced BaMV accumulation in Arabidopsis (Alazem et al., 
2014). Thus, our data suggest that CaMV benefits from dis-
ruption of ABA homeostasis; indeed, we also found that ABA-
responsive genes are widely affected by CaMV and highly 
deregulated when compared with ABA treatment (Fig. 6E–G) 
(Hoth et al., 2002). This could be at least partially attribut-
able to the CaMV P6 protein interacting with and repress-
ing the function of histone deacetylase H2DC, a regulator 
of ABA-mediated gene expression (Sridha and Wu, 2006; Li 
et al., 2021).

Taken together, our findings demonstrate that GWA is a 
powerful tool to identify novel players in DNA virus disease. 
The large plasticity of Arabidopsis towards CaMV and the 
independent resistant lines indicate independently evolved 
resistance mechanisms that should be explored further. We 
found evidence that resistance as well as tolerance mecha-
nisms play a role during CaMV infection. Finally, ABA was 
identified as a novel inducer of CaMV accumulation and 
CaMV infection drastically misregulates ABA-responsive 
genes.
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