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A B S T R A C T   

Recent advancements in remote sensing of forests have demonstrated the capabilities of three-dimensional data 
acquired by airborne laser scanning (ALS) and, consequently, have become an integral part of enhanced forest 
inventories in Northern Europe. In Sweden, the first national laser scanning revolutionised forest management 
planning through low-cost production of large-scale and spatially explicit maps of forest attributes such as basal 
area, volume, and biomass, compared to the earlier practice based on field survey data. A second scanning at the 
national level was launched in 2019, and it provides conditions for the estimation of height growth and site 
index. Accurate and up-to-date information about site productivity is relevant for planning silvicultural treat-
ments and for the prognosis of forest status and development over time. In this study, we explored the potential 
of bi-temporal ALS data and other auxiliary information to predict and map site productivity by site index ac-
cording to site properties (SIS) of Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) in even- 
aged stands in Sweden. We linked ground survey data of SIS from more than 11,500 plots of the Swedish National 
Forest Inventory (NFI) to bi-temporal ALS data to predict and map site index using an area-based method and 
two regression modelling strategies: (1) a multiple linear regression (MLR) model with an ordinary least-squares 
parameter estimation method, and (2) a non-parametric random forests (RF) model optimised for hyper- 
parameter tuning. For model development, permanent plots were used, whereas the validation was done on 
the temporary plots of the Swedish NFI and an independent stand-level dataset. Species-specific models were 
developed, and the root mean square error (RMSE) metric was used to quantify the residual variability around 
model predictions. For both species, the MLR model gave precise and accurate estimates of SIS. The RMSE for SIS 
predictions was in the range of 1.96 – 2.11 m, and the relative RMSE was less than 10 % (7.68 – 9.49 %) of the 
reference mean value. Final predictors of site index include metrics of 90th percentile height and annual 
increment in the 95th percentile height, altitude, distance to coast, and soil moisture. Country-wide maps of SIS 
and the corresponding pixel-level prediction errors at a spatial resolution of 12.5 m grid cells were produced for 
the two species. Independent validations show the site index maps are suitable for use in operational forest 
management planning in Sweden.   

1. Introduction 

Sweden’s forested land area is about 28 million hectares, from which 
23.4 million hectares have the potential to produce at least one cubic 
meter of wood per hectare per year (i.e. productive forestland). On 
productive forestlands, 50 % of the area is privately owned, and the 
other half is shared between large forest companies and the state. Wood 
production (mainly timber and pulpwood) is the most dominant objec-
tive (Lindahl et al., 2017). Therefore, finding strategies to improve total 

wood production is central to most silvicultural interventions. 
When optimising total wood volume production, large efforts are 

being made to individually plan silvicultural treatments for each forest 
stand. Access to fundamental data such as stem volume, mean tree 
height, and stem diameter for each stand is necessary to support this 
planning process. These stand attributes have been traditionally ob-
tained from field surveys. However, accurate estimates of these vari-
ables can directly or indirectly be made using modern remote sensing 
techniques (Maltamo et al., 2014). Of current mapping technologies, 
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airborne laser scanning (ALS) features prominently due to its superior 
ability to resolve three-dimensional (3D) vegetation structures (Mal-
tamo et al., 2014). Since its advent in a pilot study of a coastal Scots pine 
stand (Nilsson, 1996), ALS has been seen as a breakthrough for forest 
remote sensing in Sweden. Sweden’s first national laser scanning began 
in 2009 and ended in 2016. Compared to the earlier practice based on 
field survey data, the first scan revolutionised forest management 
planning by producing large-scale and spatially explicit maps of forest 
attributes. The maps are open for public use and highly appreciated by 
Sweden forest owners (Nilsson et al., 2017). The Swedish National 
Mapping Agency began a second nationwide scanning in 2019 and is 
expected to end by 2024. The second scan means new possibilities, for 
example, for the estimation of height growth and site index. 

Accurate and up-to-date information about site productivity is vital 
when deciding upon assumed efficient silvicultural treatments or when 
making a prognosis of forest status and development over time. Forest 
site productivity is defined here as the potential volume production that 
can be realised at a certain site with a given species, genotype and 
management (Skovsgaard and Vanclay, 2008). Site productivity decides 
the value of forestland, the choice of tree species and spacing, and the 
timing and priority of silvicultural operations. Site productivity is also 
used as a legislative boundary between productive and unproductive 
forestlands. National statistics about forest resources are reported 
differently based on this boundary (Nilsson, 2021). 

Site index is by far the most common expression of forest site pro-
ductivity. In the Swedish forest site classification system, site index 
based on height development curves (denoted as SIH) at a pre-
determined age (e.g., 100 years for Pinus sylvestris – Scots pine and Picea 
abies – Norway spruce) is the most preferred method in homogenous 
stands (Hägglund, 1981; Mensah et al., 2022). The curves show the 
development of mean heights of the dominant (top) trees (e.g., the 100 
largest trees in diameter per hectare) over age. At sites where the 
dominant height cannot be measured (e.g., after clear-cut or thinning 
from above), it is possible to assess the site index using ground vegeta-
tion and site properties (the resulting site index is denoted as SIS), 
although this is a less accurate alternative to SIH (Hägglund and Lund-
mark, 1977). SIS is also species-specific, age-independent, and expresses 
the expected height at a reference age of 100 years in even-aged stands. 
The application of SIS in Sweden is manifold. Due to poor age records 
(especially on the permanent plots) and difficulties in determining top- 
height trees, the SIS has been the basis for reporting by the Swedish 
National Forest Inventory (NFI) since 2003. SIS is also an important 
predictor in the growth models for projecting young stand height 
development in the forestry-planning package, Heureka (Wikström 
et al., 2011). Mensah et al. (2023) used SIS to study growth trends, and 
Ekö et al. (2008) to compare growth differences of the major tree species 
in Swedish forests. Most private forest owners and large forest com-
panies use SIS in their forest management plans. Nevertheless, a major 
limitation of SIS is its availability only limited to sample plots and field 
registers of forest companies that are not publicly available. To stimulate 
activities in the forest sector, increased availability of up-to-date and 
accurate spatial information on SIS is needed. Such readily available 
map data may be significant for local decision-making (Ulvdal et al., 
2023) and large-scale operational forest management planning (Wil-
helmsson, 2023). 

In recent years, 3D data acquired by ALS have been useful for site 
index prediction and mapping. Essentially, the use of bi-temporal ALS 
data to determine site index has gained popularity due to two main 
reasons: (1) the ability to detect and exclude disturbed forest areas im-
proves site index determination (e.g., Moan et al., 2023) and (2) because 
site index models are also height growth models, the addition of a 
growth rate parameter allows for both reliable predictions of the 
maximum potential height and inference of stand development (e.g., 
Sharma et al., 2011; Riofrío et al., 2023). For a forested country like 
Sweden, where there is a strong latitudinal gradient in growth (i.e. 
higher yield capacity in the south than in the north) and variation in 

forest management intensity (i.e. shorter rotation length in the south 
than in the north), information from repeated ALS campaigns is ex-
pected to improve the determination of site index in even-aged conif-
erous stands. 

So far, bi-temporal ALS-based site index estimation has been gener-
ally approached in two main ways, where site index is predicted from 
either individual tree segmentation from ALS data (e.g., Kandare et al., 
2017; Solberg et al., 2019) or employing an area-based approach (e.g., 
Persson and Fransson, 2016; Socha et al., 2017; Noordermeer et al., 
2018). Kandare et al. (2017) predicted the site index in a boreal forest 
site in Norway with an accuracy (relative RMSE) of 27 % by fusing ALS 
and hyperspectral data through individual tree crown delineation. A 
novel method of age-independent site index estimation using repeated 
single-tree ALS data was demonstrated with high accuracy by Solberg 
et al. (2019) in a spruce-dominated area in southern Norway. From an 
area-based approach, Noordermeer et al. (2018) also determined the site 
index of Scots pine (RMSE = 1.08 m) and Norway spruce (RMSE = 1.78 
m) dominated stands in southeastern Norway with bi-temporal ALS 
data. Persson and Fransson (2016) predicted the site index of a hemi- 
boreal forest in Remningstorp – Sweden, using data from two airborne 
laser scans (RMSE = 2.3 m). Socha et al. (2017) successfully estimated 
site-specific growth trajectories of Norway spruce stands from a short 
time series of repeated ALS data in Poland. Clearly, the above studies 
show that there is a potential in linking field-measured site indices to the 
time series of ALS data in Swedish forests. 

One potential area for improvement of site index determination is 
model development. For a given species, location, growth resources, and 
management, it is well established that site productivity shows signifi-
cant site-dependent variations and that it is very difficult to design the 
relations between the predictors and their effects appropriate for a 
specific site (Hägglund and Lundmark, 1977). For example, the 
geographical location (e.g., latitude and altitude) of a forest stand may 
affect the site index via its influence on the length of the vegetation 
period (Langlet, 1936). Further, the deficiency in precipitation in areas 
close to the coast also means that the site index maximum does not al-
ways occur at sea level. In such areas, the site index culminates at an 
altitude of 75 – 200 m, especially on dry and mesic sites (Lundmark, 
1974). Thus, the complexity of growth-site factors potentially affects the 
distribution of the expected site index as well as the structure and form 
of the site index model. In many studies of site index determination, site 
index is linked to remotely sensed data either through parametric sta-
tistical models (e.g., general and generalised linear models), semi- 
parametric models (e.g., generalised additive models), or non- 
parametric models (e.g., random forests and boosted regression trees) 
(e.g., Nothdurft et al., 2012; Noordermeer et al., 2018; Antón-Fernández 
et al., 2023). Non-parametric models (for instance, machine learning 
models) have gained some popularity due to their ability to automati-
cally learn from data, explain patterns and describe complex nonlinear 
relationships without making explicit assumptions about the error dis-
tribution, how the predictor variables relate to each other, and the 
response variable (Penner et al., 2013; Watt et al., 2021). However, a 
major drawback of these models is that erroneous predictions can be 
expected when the models are applied outside the range of the training 
data (Sabatia and Burkhart, 2014). On the other hand, parametric 
models are still relevant because they account for the distribution of the 
response variable (Næsset et al., 2005). Owing to the biological limita-
tions of the site index (Antón-Fernández et al., 2016), a logical para-
metric model would probably do better than a non-parametric machine 
learning model when applied outside the range of the training data 
(Zhao et al., 2018). 

This current study aims to provide cost-efficient site index informa-
tion for forest management using probability field samples and available 
remote sensing data in Sweden. Specifically, we aimed to (1) examine 
the suitability of bi-temporal ALS data and other remotely sensed data 
for SIS prediction, (2) compare the performance of parametric and non- 
parametric models for SIS prediction, and (3) produce national-level 

A. Appiah Mensah et al.                                                                                                                                                                                                                       



Forest Ecology and Management 547 (2023) 121395

3

maps of SIS and associated prediction errors. To address these objec-
tives, we used observations of SIS from the temporary and permanent 
plots of the Swedish NFI, bi-temporal ALS data from the National Land 
Survey, and other available auxiliary data describing site conditions (e. 
g., soil moisture, distance to coast and altitude above sea level). We 
explored two regression modelling strategies (general linear regression 
with ordinary least squares for parameter estimation and a random 
forests regression) to link SIS and the remotely sensed predictor vari-
ables. The validity of the functions was checked by comparison with 
data not used for constructing the functions. The best model was used to 
produce wall-to-wall fine-resolution (12.5 m × 12.5 m) SIS maps for the 
two most dominant tree species, Scots pine and Norway spruce, in 
productive forestlands in Sweden. 

2. Materials and methods 

2.1. Swedish NFI: design, tree, stand and site variables 

Knowledge of the Swedish forests – their area, volume, composition, 
etc. – has been obtained through forest inventories. For the whole of 
Sweden, inventories have been performed since 1923. The Swedish NFI 
is a probability sample with a statistical design characterised as sys-
tematic cluster sampling with partial replacement of units (Ranneby 
et al., 1987). Over the years, the survey methods have been changed 
several times and adapted to new conditions (Fridman et al., 2014). 
Between 1953, when the system with tracts (i.e. square clusters of 
sample plots) was introduced, and 1982, all the tracts were temporary. 
Since 1983, the NFI has been performed with an interpenetrating system 
where a set of temporary and permanent tracts are annually measured. 
Since 2017, the temporary sample plots have been designed based on a 
balanced sampling method (Grafström et al., 2017). The permanent 
plots are revisited every five years, and each plot has an area of 314 m2 

(radius of 10 m). The temporary plots are surveyed once, and each plot 
has an area of 154 m2 (radius of 7 m). The position of the plot centres is 
determined with GPS receivers (Garmin GPSMAP 64), which have a 
horizontal accuracy of about 5 m (Nilsson et al., 2017). 

On all plots, a large number of variables concerning the adminis-
tration (e.g. land ownership), site (e.g. latitude, altitude, and site pro-
ductivity), tree (e.g., total height, diameter, species, etc.), and stand (e.g. 
relative density, the basal area measured by relascope sampling, tree 
species composition, and the type and type of forest management ac-
tivities) are measured. The biometric measurements of tree and site 
variables are done on the 7 and 10-m radius plots respectively for the 
temporary and permanent plots. The stand variables are measured on a 
20 m radius in both plot types. 

2.1.1. SIS determination on NFI plots 
On a 10-m radius of temporary and permanent plots, site produc-

tivity is determined by the SIS-method, i.e., Site Index according to Site 
properties (SIS, m) using species-specific functions. The functions are 
based on primary site variables such as climate (average temperature 
sum within the growing season – degree days when air temperatures 
exceed + 5 ◦C), inclination and direction of the slope, soil depth, texture, 
moisture, humidity index, and field vegetation. The SIS function was 
developed earlier by (Hägglund and Lundmark, 1977), using site index 
predicted from height development curves (SIH) as the response vari-
able and the above site variables as the predictor variables in a regres-
sion analysis. Controlled assessments of SIS on the same plots by 
independent field crews have shown a measurement error of about 2 m 
and no bias (Fridman et al. 2019). Sites are classified as Scots pine sites 
or Norway spruce sites according to dominant species (i.e., species with 
more than 65 % of the total basal area on a plot) or the species with the 

Fig. 1. Locations of the NFI temporary sample plots (green points) where there 
are repeated ALS scanning in the years 2011 to 2021. Note that the permanent 
NFI plots are not shown here in order not to disclose their locations. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Descriptive statistics for NFI plot-level data separated by species and plot type.   

Permanent plots Temporary plots 
Variable, units Mean Median Min. Max. Mean Median Min. Max. 

Scots pine         
SIS, m 21 21 11 28 21 21 11 28 
Basal area, m2/ha 16 15 0 64 16 15 0 60 
Mean height, m 15 15 5 31 14 14 5 32 
Volume, m3/ha 122 108 0 796 118 99 0 758 
Yield capacity, m3/ha/yr 5 5 1 8 5 5 1 8 
Number of plots, n 2242    3740    
Norway spruce         
SIS, m 27 28 11 39 26 28 11 40 
Basal area, m2/ha 15 14 0 70 16 14 0 84 
Mean height, m 17 17 5 34 16 16 5 38 
Volume, m3/ha 132 99 0 963 135 92 0 1200 
Yield capacity, m3/ha/yr 8 8 2 16 8 8 2 17 
Number of plots, n 2077    3453     
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highest SIS value. 
In this study, plot-level observations of SIS were considered as the 

response variable in the regression analysis. We used field data from the 
years 2011 to 2020 (Fig. 1), corresponding to areas with repeated 
airborne laser scanning data. Descriptive statistics about the NFI field 
data used in the study are provided in Table 1. The distribution of SIS in 
the temporary and permanent NFI sample plots is shown in Fig. A1 
(appendix). 

2.2. Laser scanning data 

The campaign for a new national digital elevation model (DEM) in 
Sweden began in 2009 when the National Mapping Agency launched the 
first airborne laser scanning. The first nationwide ALS was completed in 
2019, with more than 90 % of the forestland scanned in 2016. The 
scanning campaign was organised in blocks of sizes 25 km × 50 km. The 
scanning altitude ranged from 1700 m to 2300 m, and a pulse density of 
0.5 – 1 pulses/m2. The ALS data were acquired in different seasons (i.e. 
leaf-on and leaf-off) using 13 different scanners from Leica (72.3 % of 
the scanned blocks), Optech (24.9 %), and Reigl and Trimble (2.8 %). 
Details of the first national scanning can be found in Nilsson et al. 
(2017). The second campaign began in 2019 and is planned to end in 
2024. It is carried out in the same way as the first scanning but with a 
slightly higher pulse density (1.0 – 1.51 pulses/m2) using Leica scanners. 
Presently, about 70 % of the productive forestland in Sweden has been 
scanned twice (Fig. 2). 

The new national DEM (2 m × 2 m) produced by the National 
Mapping Agency was used as the ground reference when computing ALS 
height returns above ground (Nilsson et al. 2017). For each NFI field plot 
and map unit, laser metrics were derived using the Fusion software 
(McGaughey, 2015) following the area-based method (Næsset, 2002). 
The metrics were calculated for 12.5 m × 12.5 m grid cells and 
comprised the mean, mode, standard deviation, interquartile distance, 
and percentiles from the height distribution of laser returns between 1.5 
m and 50 m height above ground. The metrics were computed inde-
pendently and separately for the two scanning campaigns. 

In addition to the standard metrics, we also computed metrics of 

change in height. Since the national laser scan occurs at different times 
of the year, affecting the length of the vegetation period, we normalised 
the change in height with the number of growing seasons between scans 
to produce estimates of annual height growth (hereafter referred to as 
height increment). The number of growing seasons between scans was 
adjusted for the start and end of the growing season based on the 
average values (of the start and end of the growing season) in the last ten 
years in Sweden (SMHI, 2018). The annual height increments were 
derived for the 80th, 90th, 95th, and 99th percentile heights as the 
quotient of the height difference between the second and first scanning 
and the number of growing seasons between scans. 

2.3. Other auxiliary data. 
To account for the variations in growth and site conditions from the 

north to the south of Sweden, environmental variables describing the 
location (e.g., latitude), altitude (meters above sea level, m a.s.l), dis-
tance to the nearest coast (km) and the degree of moisture in soils 
(expressed as a percentage, %) were obtained. Altitude was derived from 
the new national DEM. Distance to the coast was computed as the dis-
tance from the centre of a pixel or the field plot to the nearest coastline. 
The coastline was a vector file also provided by the National Mapping 
Agency. For soil moisture, we extracted the information from the 
available soil moisture maps with a spatial resolution of 2 m across the 
entire Swedish forest landscape (Ågren et al., 2021). The map data 
shows the degree of soil wetness, with values expressed in a probability 
index scale of 0 – 100 % (i.e., dry to wet). The maps were produced using 
machine learning and data from ALS-derived terrain indices and field 
plots of the Swedish NFI. These variables were selected because they are 
readily available. Before the statistical modelling, the spatial resolution 
of each raster was resampled to match that of the ALS metrics (i.e. 12.5 
m). 

2.3. Statistical models 

The area-based approach (Næsset, 2002) was considered for the 
model calibration. In the first stage, observed site indices in geo- 
referenced field plots were regressed on the ALS metrics available for 
each plot unit to develop a predictive model. In the second stage, the 

Fig. 2. The ALS data used in the study. Maps show areas with repeated ALS scanning (A – first scanning and B – second scanning) and the scanning season (leaf-on 
and leaf-off). Copyright Lantmäteriet Topographic Map. 
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models were applied over tessellations of individual grid cells available 
to predict and generate a countrywide wall-to-wall map of the site index. 

Before the calibration of models, we optimised the selection of 
candidate predictor variables by testing different ALS metrics and a 
large number of possible combinations following the method proposed 
by Ekström and Nilsson (2021). Afterwards, less strongly intercorrelated 
variables were selected (i.e. ρ ≤ 0.5) for the regression modelling. The 
final set of predictors were ALS-derived 90th percentile height at second 
scanning, the annual increment in the 95th percentile height, location, 
altitude, distance to the coast and soil moisture. The correlation levels 
(Pearson’s) among the final predictors are shown in Fig. A2 (appendix). 

For the treatment of outliers, we first used bivariate scatterplots (not 
presented here) to examine the relationship between laser-returned 95th 
percentile height at the second scanning and the field-measured basal 
area weighted mean height. Observations with differences of ±5 m in 
mean height were removed (about 5 % of the original data) since they 
were considered to be affected by silvicultural operations such as thin-
ning and clearcutting. 

The models were calibrated on the permanent sample plots of the 
Swedish NFI. In the regression analysis, each sample plot was treated as 
an independent observation without any consideration of potential 
spatial autocorrelation. This approach was motivated by the following 
reasons (see Ranneby et al., 1987): (1) the stratification of the country 
into five inventory regions to obtain the efficient orientation of the tracts 
(i.e., tracts are oriented at 45◦ to account for the elliptical correlation in 
the north–south and east–west directions), (2) the tracts have a distance 
between them of 5 km in the south and 15 km in the north and (3) the 
distance between sample plots in a tract is 300 m in the south and 600 m 
in the north to have low spatial autocorrelation. 

2.3.1. Model development 
The predictor variables were broadly grouped into the site, growth 

resource availability, and tree size. For given values of the predictor 
variables, we examined the model relating the expected mean site index 
(i.e., mean SIS) as a function of the predictor variables as: 

E(SIS) = f(site, resource, size) (1) 

Latitude (Lat) was used together with altitude (Alt) and distance to 
the nearest coastline (Distcoast) to describe the geographical location of a 
plot and thus represent essential features of temperature and light 
climate on the plot (Lundmark, 1974). Due to the supply of nutrients and 
oxygen to the soil, which follows the surface or subsurface water flow, 
we used soil moisture (Soilwet) (Ågren et al., 2021) as a proxy for the 
positive effect of mobile water on forest growth (Troedsson, 1965). 

The calculation of SIS does not necessarily require information about 
dominant height and age but rather it is computed based on combined 
geocentric and phytocentric indicators (see section 2.1.1). This implies 
that the resulting site index is density-dependent and may vary with 
stand development over time (e.g., due to the different light re-
quirements of understory vegetation). In addition, volume production 
varies within a given site index due to the differences in the carrying 
capacity of stands (Mensah et al., 2022). To capture the effects of density 
and variation in growth on predictions of SIS, it is imperative to include 
metrics of size and increment. Both Hp90 and Hp95 metrics correlate 
strongly with many important attributes (e.g., Lorey’s mean height, 
diameter, basal area and stem volume) in Sweden (Nilsson et al., 2017). 
Therefore, in Equation 1, the size and increment variables were defined 
by the mean height 

(
Hp90.t2

)
which is density-dependent and the annual 

height increment rate 
(
ΔHp95

)
which is strongly correlated with volume 

production. These variables can be regarded as direct biological in-
dicators of site productivity (Assmann, 1970). 

We expanded Equation 1, where the site index was modelled using 
two regression approaches: parametric general linear and a random 
forests model. The models were fitted separately for Norway spruce and 
Scots pine. 

2.3.2. Linear regression model 
For the linear model, we assumed that the expected mean SIS was 

linear in the parameters of the function f (Eq. 1), describing the rela-
tionship between the mean site index and the remotely sensed predictor 
variables. To decrease the influence of unknown and complex growth- 
site interactions, we chose a general multiple linear regression (here-
after referred to as the MLR model) with an additive error structure (Eq. 
1.1). This model was a contrast to the model by Hägglund and Lundmark 
(1977) which assumed that the effects of different site factors work 
together in a multiplicative way and therefore used a logarithmic site 
index as the dependent variable. 

E(SIS) = α0 + β • (site)+ γ • (resource)+ω • (size) 1.1 

where α0 is the intercept, β is the vector of coefficients for the 
physical site variables, γ is the vector of coefficients for the growth 
resource variable, and ω is the vector of coefficients for the tree size 
variables. The explicit forms of the various predictor variable groups 
were defined as: 

β • (site) = β1 • (Alt)+ β2 • (Lat)+ β3 • (Distcoast) 1.2  

γ • (resource) = γ1 • (Soilwet)+ γ2 • (Soilwet)
2 1.3  

ω • (size) = ω1 •
(
Hp90.t2

)
+ω2 •

(
ΔHp95

)
1.4 

Parameters of the MLR models were estimated by the ordinary least 
squares method, which minimised the sum of squares for the error. The 
MLR models were fitted respectively with the “lm” function in the R 
Statistical Environment (R Core Team, 2022), and the significance of the 
model parameters was tested at a 5 % alpha level. To determine whether 
each predictor variable introduced to the model contributes to signifi-
cantly improving the quality of fit of the model to the data, an F-test was 
used to compare the sum of square errors for the model with and without 
the variable of interest. Preliminary fits of the models to the data 
revealed that the individual random model errors were homoscedastic 
and that the assumption of additive errors seemed appropriate. 

2.3.3. Random forests regression model 
We fitted the random forests regression model (hereafter referred to 

as the RF model) to examine the relationship between the mean site 
index and the remotely sensed predictor variables (Eq. 1). The RF model 
is based on an ensemble tree method where a set of independent and less 
correlated decision trees are generated and aggregated to reduce the 
variance of predictions (Breiman, 2001). Further, the RF model is non- 
parametric; thus, no explicit assumptions about how the predictor var-
iables relate to each other and the response variable is needed. RF re-
quires two parameters to be set: (1) “mtry”, the number of predictor 
variables executing the data splitting at each node and (2) “ntree”, the 
total number of decision trees to be grown in the model run. To optimise 
the RF model, a two-stage hyperparameter tuning of mtry and ntree was 
carried out. First, a train control was set up using a resampling method 
with repeated cross-validation where the number of folds and repeats 
was set to 10 and 3, respectively. Second, a grid search where one to 
seven predictor variables were tested for splitting at each tree node, and 
the total number of trees grown in the model run was set to 500. We used 
the measure of the Gini decrease in node impurity to evaluate the 
importance of predictor variables in the RF model. The RF model was 
fitted using the “randomForest” function in the R Statistical Environ-
ment (R Core Team, 2022). 

2.4. Model validation and predictive site index maps 

To evaluate the predictive performances of the fitted MLR (Eq. 1.1) 
and RF models, validation was done on two independent data sets: (1) 
temporary plots of the Swedish NFI and (2) stand-level data from the 
state-owned forest company Sveaskog. The stand-level data was 
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collected for another management purpose by the company and con-
sisted of 311 stands (84 stands for Norway spruce and 227 stands for 
Scots pine) of average size 20 ha (range 0.6 – 159 ha). The stands were 
subjectively surveyed using on average eight circular plots (of radius 8 
m) per stand. Fig. A3 (appendix) shows the distribution of the validation 
stands. Model diagnostics involved the evaluation of predicted versus 
observed SIS and the distribution of the individual model errors on the 
plot-level predictions of SIS and other site characteristics. 

The accuracy of the final models was compared based on the 
following performance estimators (Eqs. 2 – 6): adjusted coefficient of 
determination (R2

adj, %), root mean square error (RMSE, m), relative 
root mean square error (RMSErel, %); mean deviation (MD, m) as a 
proxy for bias; and relative mean deviation (MDrel, %). 

R2
adj = 1 −

(n − 1)
∑n

i=1(ŷi − yi)
2

(n − k)
∑n

i=1(ŷi − yi)
2 2  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2

n − k

√
√
√
√
√

3  

RMSErel = 100 x
RMSE

y
4  

MD =
1
n
∑n

i=1
(ŷi − yi) 5  

MDrel = 100 x
MD

y
6 

where ŷi, yi, and yi are the predicted, measured, and average values 
of the response variable, respectively; n represents the total number of 
observations used for model fitting; and k denotes the number of model 
parameters. 

In addition to the above performance estimators, we also computed 
(Eq. 7) an index of relative efficiency (RE) to determine the stability of 
the predictive performance of the fitted models. Since the SIS of a given 
species is determined by the same field protocol for both the temporary 
and permanent NFI sample plots and the distribution of observed SIS is 
similar in the two plot types (Fig. A1, see appendix), lower values (RE 
less than and close to 1) of the ratio of the residual variability around 
model validation (i.e., on temporary plots) to residual variability around 
model calibration (i.e., on permanent plots) reflect better and a more 
stable predictive model and otherwise for an over-fitted model (i.e. RE 
values greater than 1). 

RE =
RMSEvalidation

RMSEcalibration
7 

where RMSEvalidation is the root mean square statistic of model vali-
dation (i.e. on temporary NFI plots), and RMSEcalibration is the root mean 
square statistic of model calibration (i.e. on permanent NFI plots). 

Predictive maps of site index for Scots pine and Norway spruce were 
developed based on the best-obtained model (i.e. the model with high 
statistical precision and low prediction error). The model was then 
applied to tessellated grid cells of the predictor variables to generate 
wall-to-wall maps of predicted SIS at a spatial resolution of 12.5 m ×
12.5 m. 

2.4.1. Uncertainty estimation 
Since the site index predictions are model-based and conditioned on 

the modelling data set (Saarela et al., 2020; Kangas et al., 2023), it is 
important to quantify the amount of uncertainty in the site index maps. 
The estimated uncertainty may serve both as a measure of model ac-
curacy and reflect the reliability of the estimated site maps for resource 
planning at different decision levels (Ulvdal et al., 2023). Further, sta-
tistical models are highly uncertain outside the range of the calibration 
data. This means future predictions of SIS at the areas presently not 
covered by the two ALS scans may be subjected to prediction errors. 
Generally, uncertainties in model predictions are influenced by model 
misspecification, values of the predictor variables, model form and 
parameter estimation, and the residual variability around model pre-
dictions (Nyström and Ståhl, 2001; McRoberts and Westfall, 2016). We 
focused on the latter two for the estimation of pixel-level prediction 
errors, as the site index maps are essentially predictions with locations 
(Kangas et al., 2023). 

In the case of the parametric MLR model, we utilised the error esti-
mates available from the model fit to the observed data. Specifically, the 
analytical form of the prediction error variance for each pixel prediction 
of SIS is a combination of the estimation error of model parameters and 
variance of the residual errors under the assumptions of model predic-
tion unbiasedness and homoscedasticity of model residuals (Eq. (5) in 
Saarela et al., 2020) as: 

̂RMSESISi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Xi • Ĉov(β̂) • Xi
T + V̂(εi)

√

8 

where ̂RMSESISi is the estimated standard error for the predicted SIS 
in pixel i (ŜISi ), Xi is a (k + 1) length vector of partial derivatives (ob-
tained by the delta method) of the MLR model concerning the estimated 
parameters (β̂s), Ĉov(β̂) is the estimated covariance matrix of the β̂s, 
and V̂(εi) is the variance of the residual errors. The corresponding 
relative uncertainty ( ̂RMSESISi − rel) was then calculated as follows: 

̂RMSESISi − rel =

(
̂RMSESISi

ŜISi

)

• 100 8.1 

In the case of the non-parametric RF model, bootstrapping was used 
to assess pixel-wise uncertainties. We used the pairs (i.e. non- 
parametric) bootstrap resampling method to estimate the standard er-
rors for the predicted SIS following Esteban et al. (2019). The following 
steps were carried out: (1) For each value of the predictor variable in 
pixel i, we generated 1000 bootstrap replications. (2) We applied the RF 
model where the number of decision trees was set to 500. (3) For each 
decision tree, a new bootstrap sample of size 1000 was randomly 
selected with replacement to predict SIS. (4) The standard deviation of 
the 500 estimates of the mean predicted SIS, one for each of the default 
500 RF trees, was then used as a proxy for the standard error of pre-
diction in pixel i. We selected 1000 bootstrap runs based on the criterion 
that larger values enhance the stability of the bootstrap estimate of the 
standard error over replications (McRoberts and Westfall, 2016), as well 
as to reduce computational cost. 

3. Results 

3.1. Models 

Table 2 summarises the predictive performance of the two fitted site 
index models – the general multiple linear regression model (MLR) and 

Table 2 
Goodness-of-fit statistics of the species-specific SIS models based on the NFI 
data. Calibration and validation refer to the permanent and temporary NFI 
sample plots.    

Scots pine Norway spruce 
Model Metric Calibration Validation Calibration Validation 

MLR RMSE (m)  1.958  2.019  2.072  2.105  
RMSErel (%)  9.209  9.492  7.683  7.983  
R2

adj (%)  63.471  60.775  87.409  87.641  
RE  1.03   1.02        

RF RMSE (m)  0.846  2.184  0.920  2.112  
RMSErel (%)  3.982  10.271  3.412  8.011  
R2

adj (%)  94.399  59.636  97.775  87.651  
RE  2.58   2.29   
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Table 3 
Coefficients of the MLR site index model (Eq. 1.1). SE is the standard error, and SErel is the standard error relative to the estimate.    

Scots pine 
Parameter Variable/Group Estimate SE SErel (%) P-value 

α̂0 Intercept 45.87  1.0120  2.206 < 0.0001 
β̂1 

Lat/Site − 3.877 × 10-6  1.427 × 10-7  − 3.681 < 0.0001 

β̂2 
Alt/Site − 0.0042  3.825 × 10-4  − 9.217 < 0.0001 

β̂3 
Distcoast/Site − 0.0012  5.168 × 10-4  − 44.939 0.0305 

ω̂1 Hp90.t2/Size 0.0079  3.547 × 10-4  4.507 < 0.0001 
ω̂2 ΔHp95/Size 11.66  0.4896  4.199 < 0.0001 
γ̂1 Soilwet/Resource 0.0649  0.0049  7.683 < 0.0001 
γ̂2 (Soilwet)

2/Resource − 0.0010  5.659 × 10-5  − 5.619 < 0.0001   
Norway spruce 

α̂0 Intercept 115.4  1.1210  0.971 < 0.0001 
β̂1 

Lat/Site − 1.326 × 10-5  1.685 × 10-7  − 1.271 < 0.0001 

β̂2 
Alt/Site − 0.0105  4.906 × 10-4  − 4.695 < 0.0001 

β̂3 
Distcoast/Site 9.319 × 10-4  5.976 × 10-5  6.413 0.119 

ω̂1 Hp90.t2/Size 0.0036  3.083 × 10-4  8.65 < 0.0001 
ω̂2 ΔHp95/Size 4.9340  0.4011  8.129 < 0.0001 
γ̂1 Soilwet/Resource 0.0096  0.0054  55.95 0.074 
γ̂2 (Soilwet)

2/Resource − 3.678 × 10-4  5.978 × 10-5  − 16.253 < 0.0001  

Fig. 3. Residuals diagnostics of the fitted MLR site index models.  
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the random forests regression model (RF). Scots pine and Norway 
spruce’s site index prediction accuracy was higher for the MLR models 
than for the RF models. Further, the relative efficiency (RE) values ob-
tained under the MLR models were close to 1 (1.03 for Scots pine and 
1.02 for Norway spruce), while the corresponding values obtained under 
the RF models were larger than two folds (2.58 for pine and 2.29 for 
spruce). Thus, the MLR models reflected an accurate and more stable 
predictive model of SIS than the RF models, which showed overfitting 
(Table 2 and Fig. A4). Hence, the RF models were excluded from further 
analysis. 

The full MLR site index model (Eq. 1.1) for the two species was 
explicitly determined as follows: 

SIS = α0 + β1 • (Lat)+ β2 • (Alt)+ β3 • (Distcoast)+ω1 •
(
Hp90.t2

)2
+ω2

•
(
ΔHp95

)2
+ γ1 • (Soilwet)+ γ2 • (Soilwet)

2 9 

An F-test was used to determine whether reduced models (i.e. models 
fitted with only variables of a predictor group, Eqs. 1.2 – 1.4) performed 
significantly better than the full model (Eq. 1.1). The obtained results 
show that the full model was significantly better than the reduced 
models and that each predictor variable introduced to the model con-
tributes to statistically significantly improve the quality of fit of the 

model to the data (Tables A.1 and A.2, appendix). The total variance 
explained (R2

adj) by the full model was 60 % for pine and 87 % for 
spruce. Further, the average model errors (RMSEs) ranged from 1.96 m 
to 2.11 m, and the corresponding relative errors were less than 10 % 
(7.68 – 9.49 %) of the reference mean values (Table 2). 

Coefficients for the effects of site (Eq. 1.2), resource (Eq. 1.3) and size 
(Eq. 1.4) in the final model are given in Table 3 by species. All estimated 
parameters, except for parameters γ1 and β3 in the Norway spruce 
model, were significant (p less than 0.05). The size coefficients (ω1 and 
ω2) were positive for both species, suggesting increasing SIS as average 
height and growth increase. The βi coefficients for the geographic effects 
of latitude, altitude, and distance to the coast were all significant and 
negative for pine, but the distance to the coast was non-significant for 
Norway spruce. The significance of parameter γ2 (Soilwet) indicates that 
the effects of mobile water on-site productivity can be best described in a 
quadratic form of soil moisture. 

Variable definitions: Lat is latitude; Alt is Altitude; Distcoast is the 
distance to coast; Hp90.t2 is 90th percentile height at second scanning; 
ΔHp95 is the annual increment in the 95th percentile height, and Soilwet is 
soil moisture. 

One statistical prerequisite for the general multiple linear regression 
(MLR) analysis was that the variance of the residuals should be constant. 

Fig. 4. Observed (y-axis) vs. predicted (x-axis) SIS (from the MLR model) on the calibration (permanent NFI plots) and validation (temporary NFI plots) data for 
Scots pine and Norway spruce-dominated stands. 
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Diagnostics of the MLR models showed that the variance of residuals was 
fairly constant over the predicted site index, but slight trends in the 
residuals were observed when validated against soil moisture and 
textural class from the Swedish NFI (Fig. 3). When evaluated against 
stand density (i.e., basal area) and productivity (i.e., stem volume), no 
obvious trends were observed in the residuals (Fig. A5). Further evalu-
ations (not presented) of the model residuals showed no trends for the 
leaf-on and off-scanning campaigns. The observed versus predicted SIS 
corresponded well in both the calibration and validation data for the two 
species (Fig. 4), and the accuracy generally increased with larger values 
of predicted SIS (Table 4). 

Further, to determine the reliability of the fitted MLR models, 
additional validation was made using independent data from stands 
managed by the state-owned forest company Sveaskog. About 84 and 
227 stands, respectively, for Norway spruce and Scots pine were used for 
the validation. The results from the validation are summarised in Table 5 
below. For Scots pine, the accuracy (RMSE) was 1.8 m (relative RMSE =
10 %) and a bias of less than 1 m (MD = 0.7 m and relative MD = 3.7 %). 
For Norway spruce, the model prediction accuracy (RMSE) was 1.56 m 
(relative RMSE = 6.2 %) and no bias (MD = 0.7 m and relative MD = 3.7 
%). 

3.2. Mapping and uncertainty estimation 

The species-specific fitted MLR site index models were applied to 
tessellated grid cells of the predictor variables to predict the SIS for each 
pixel unit and the corresponding prediction errors at a spatial resolution 
of 12.5 m × 12.5 m. Given that the variance of the residuals from the 
fitted MLR models was unbiased and homogenous over predictions of 
SIS (Fig. 3), we applied the estimators in Equations (8) and (8.1) to 

compute the standard prediction errors in each pixel. We utilised the 
combined information from the estimation error of the model parame-
ters (i.e., the estimated covariance matrix and derivative of the model 
concerning the parameters) and the residual error variance (given in 
Table 2). The estimated covariance matrix of the model parameters is 
given in Table A3 (appendix). The map of SIS predictions for Norway 
spruce-dominated stands is shown in Fig. 5. Maps at full resolution for an 
area of about 100 km2 around Sundsvall detail the predicted site index 
and the corresponding relative errors at the pixel level. Largely, the 
relative errors of prediction decreased with larger values of predicted 
SIS for both species (Fig. 6). 

4. Discussion 

4.1. Data and models 

The present study explored the potential of ALS data for site pro-
ductivity estimation by site index in even-aged dominant stands of Scots 
pine and Norway spruce in Sweden. Our approach utilised data from 
field observations by the Swedish NFI, the national ALS data, and other 
remotely sensed data describing site conditions. For many large area 
projects, such as making predictions and mapping forest attributes, ALS 
data has played a significant role in enhancing operational forest man-
agement planning and research (Maltamo et al., 2014). Mostly, ALS data 
are trained with field observations from NFIs through the area-based 
approach to generate wall-to-wall predictions of forest attributes such 
as mean height, basal area, stem volume, and biomass. Such large-scale 
mapping has been demonstrated with satisfactory accuracy in several 
countries (Nord-Larsen and Schumacher, 2012; Nilsson et al., 2017). 

So far, the use of ALS data for estimation and mapping of site index 
has been successful in operational forest management inventories (e.g., 
Tompalski et al., 2015; Socha et al., 2017; Noordemeer et al., 2018) and 
in many large area projects (e.g., Guerra-Hernández et al., 2021; Antón- 
Fernández et al., 2023). In the above studies, site index according to 
height development curves (i.e., from height–age observations, SIH) was 
predicted and used as a basis for characterising stand productivity. 
Strictly, this means that the stand itself is used as a biological marker of 
site productivity. However, such a test is valid only if the condition of 
the stand is such that the site index estimated is not unduly influenced by 
stand history and meets the standard assumptions of site index regarding 
age, stocking, and species composition (Elfving and Nyström, 1996). 
Thus, SIH models are species-specific and may be restricted to areas 

Table 4 
Goodness-of-fit statistics for different classes of predicted SIS. Values in parentheses correspond to the validation data (temporary NFI plots), and n refers to the number 
of observations per class.    

Predicted SIS (m) 
Species Metric 10 – 15 15 – 20 20 – 25 25 – 30 30 – 40 

Scots pine RMSE (m) 2.083 
(2.233) 

1.916 
(1.945) 

1.695 
(1.509)    

RMSErel (%) 11.357 
(12.137) 

8.565 
(8.733) 

6.682 
(5.858)    

MD (m) − 0.047 
(-0.048) 

0.081 
(0.116) 

− 0.559 
(-0.155)    

MDrel (%) − 0.254 
(-0.259) 

0.363 
(0.520) 

− 2.201 
(-0.602)    

n 721 
(1197) 

1377 
(2303) 

144 
(240)   

Norway spruce RMSE (m) 2.044 
(2.043) 

2.069 
(2.422) 

2.217 
(2.171) 

1.972 
(1.831) 

1.734 
(2.287)  

RMSErel (%) 11.594 
(11.868) 

9.203 
(11.021) 

7.874 
(7.798) 

6.112 
(5.742) 

4.932 
(6.596)  

MD (m) − 0.279 
(-0.602) 

0.139 
(-0.279) 

0.119 
(-0.235) 

− 0.042 
(-0.392) 

− 0.463 
(-1.005)  

MDrel (%) − 1.583 
(-3.497) 

0.618 
(-1.271) 

0.421 
(-0.845) 

− 0.129 
(-1.228) 

− 1.316 
(-2.898)  

n 304 
(539) 

428 
(729) 

604 
(1000) 

703 
(1134) 

38 
(51)  

Table 5 
Goodness-of-fit statistics of the species-specific MLR site index models based on 
independent stand-level data and n is the number of stands used in the 
validation.  

Metric Scots pine Norway spruce 

RMSE (m) 1.80 1.56 
RMSErel (%) 9.98 6.20 
MD (m) 0.7 0.2 
MDrel (%) 3.7 0.8 
Mean of observed SIS (m) 18 25 
n 227 84  
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where age and dominant (top) height information is known with less 
uncertainty. However, these variables (age and top height) are difficult 
to determine in NFIs, and their use for site quality assessment is ques-
tionable because of the initial suppression of advanced reproduction, 
especially for tolerant tree species like Norway spruce (Peng, 2000). 
Furthermore, the SIH method has poor precision in young stands and, of 
course, does not apply to areas without forests (Hägglund and Lund-
mark, 1977). These restrictions mean that SIH can only be used in 30 – 
40 % of the total Swedish forest area. In the Swedish forest site 

classification system, site index estimation using site properties (i.e., 
SIS) has been used to overcome most of the above restrictions, though 
the site index is predicted to have an accuracy considerably lower (~4 
m) than when using SIH in stands suitable for the two methods 
(Hägglund and Lundmark, 1977). 

The above restrictions make it challenging to compare the accuracy 
of our results to those reported in other studies. However, we compare 
and discuss the results obtained in this study with the literature in the 
context of the RMSE, which is a commonly reported uncertainty statistic 

Fig. 5. (A) Map of predicted site index (SIS) for Norway spruce for areas where there are bi-temporal ALS data. (B) Fine-resolution maps of predicted SIS based on 
Equation (9) and (C) corresponding relative standard errors of SIS predictions for the area around Sundsvall. Copyright Lantmäteriet Topographic Map. 

Fig. 6. Predicted site index (SIS) versus relative RMSE for Scots pine and Norway spruce.  
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in forest attribute predictions by remote sensing (Persson and Ståhl, 
2020). 

The accuracy obtained under the general multiple linear regression 
(MLR) site index model (Eq. 2.6) was higher than that of the non- 
parametric RF model (Table 2 and Fig. A4). This finding may be due 
to (1) the better generality and logical behaviour of parametric linear 
models compared to RF models (Zhao et al., 2018) and (2) the less 
complex structure of even-aged coniferous forests (e.g., homogeneity in 
stem diameter, height, and species) (Sabatia and Burkhart, 2014). Other 
studies (e.g., Aertsen et al., 2010, Nothdurft et al., 2012) have found 
generalised additive models (GAM) and generalised linear models 
(GLM) to be robust for site index determination. We emphasize that in 
the earlier investigations of the present study, a GLM model (with both 
Gaussian and square root link functions) was tested for site index pre-
diction. The accuracy obtained for the GLM models (not reported in the 
current study) was similar to that of the MLR models. As GAM is by 
default an extension of GLMs (Hastie and Tibshirani, 1990), we expect a 
GAM model (e.g., with a Gaussian link function) to yield similar results 
as those obtained for the MLR models. We postulate that a parametric 
linear model that adequately describes the population of interest may 
reasonably extrapolate beyond the range of the calibration data (Penner 
et al., 2013). Similar to previous reports, a well-formulated linear model, 
even with a relatively small sample size, can result in accurate and un-
biased predictions of attributes from LiDAR (Næsset et al., 2005; Bon-
temps and Bouriaud, 2014; Tompalski et al., 2021). 

The prediction accuracy obtained was similar to that reported for SIH 
prediction using ALS data (Noordemeer et al., 2018; Antón-Fernández 
et al., 2023). The reliability of the developed MLR-SIS functions was 
further strengthened by the evaluations of independent data not used for 
constructing the functions. Similar accuracies to that of the calibration 
data (i.e. permanent NFI sample plots) were obtained for the temporary 
plots of the Swedish NFI and stand-level data from the State-owned 
forest company Sveaskog (Table 5). The conclusion from the evalua-
tions suggests that the functions are sound and reliable and can be used 
for site index determination in Swedish forests. 

4.2. Sources of uncertainty in site index predictions 

Because our model was linear, and the accuracy of the prediction had 
been studied mainly using the residual sum of squares, we used the 
adjusted multiple correlation coefficients (R2

adj) as a measure of 
explained variation. The R2

adj values obtained were 63 % for pine and 88 
% for spruce, suggesting that a large part of the variance in SIS can be 
explained by the remotely sensed predictor variables. The estimated 
coefficients of the predictor variables had both biological and logical 
meanings (Table 3). For example, the size variables (Eq. 1.4) described 
by mean height 

(
Hp90.t2

)
and annual height increment 

(
ΔHp95

)
were all 

significant and positive. This suggests that for a given species and height, 
an increase in height growth may correspond to a larger site index 
(Assmann, 1970). The ALS height metrics Hp90 and Hp95 strongly 
correlate with stand basal area and volume (Fig. A6) and are used in 
forest attribute prediction models in Sweden (Nilsson et al., 2017). As 
the computation of the site index using the SIS-method does not require 
information about the dominant or top height, the use of an average 
height generally implies that SIS is sensitive to stand density. However, 
the plots of residuals from the MLR models against field-measured stand 
basal area (on NFI plots) indicated no obvious trends (Fig. A5). This 
probably suggests that the density effect on SIS may be captured in the 
models by the Hp90 metric describing average stand height. Similarly, 
the model residuals did not show any apparent trends over standing 
volume (Fig. A5), suggesting that the inclusion of an increment 

parameter (i.e. height growth rate - ΔHp95) adequately described the 
differences in volume production among sites along the latitudinal 
gradient (north to south) of Sweden. Those variables describing site 
characteristics (Eq. 1.2) were negative, and their effects were greater for 
Norway spruce than for Scots pine. 

The predictor variables and the functional form of the final MLR 
models imply that the site index predictions are biologically and sta-
tistically sound. However, it is important to highlight that there are 
more factors influencing site index than those included in our models. 
For example, we found an overestimation of the site index in peat and 
soils with bare rocks (Fig. 3). In the MLR models, we used only ALS data 
and other available remotely sensed data as predictors. Currently, 
spatial information on soil properties is lacking in Sweden. We 
acknowledge that if there exists any geographical information on the soil 
type with sufficient accuracy, including such variables may increase the 
accuracy of the final models. Also, those predictor variables included in 
the final model (Eq. 9) present additional sources of errors that might 
affect the residual sum of squares in the regression analysis. Here, these 
errors are not evaluated wholly in the present study, but we discuss their 
sources and potential effects on prediction accuracy and recommenda-
tions for further studies. 

The use of multiple data sources for site index prediction presents 
many sources of error, which may propagate in unknown ways (Nyström 
and Ståhl, 2001). Generally, uncertainty in model predictions is influ-
enced by (1) errors in the dependent variable, (2) model mis-
specification, (3) values of the predictor variables, (4) model parameter 
estimates and (5) the residual variability around model predictions 
(Nyström and Ståhl, 2001; McRoberts and Westfall, 2016). In this study, 
the uncertainty analysis (Eq. (8) and Figs. 5 and 6) mainly involved the 
latter two sources of errors, which might represent a conservative esti-
mate of the total uncertainty in the predicted SIS. 

Model misspecification results from the lack of appropriate data for 
model calibration (McRoberts and Westfall, 2016) and the form or 
structure of the model fit (Næsset et al., 2005). However, we assume 
these to have negligible influence since the calibration data were ob-
tained from representative ground plot measurements. Generally, the 
Swedish NFI is a probabilistic survey design with well-spread samples 
and covers large gradients of growth and climatic conditions. This 
guarantees an unbiased sample of the Swedish forest tree populations 
(Fridman et al., 2014). Thus, it is likely that the full range of variation in 
forest site productivity was captured during the calibration of the 
models. 

Errors in the values of the predictor variables may stem from, for 
example, the geolocation of sample plots, soil moisture map and ALS 
data. Geolocation errors between the field plot centres and ALS data can 
be small due to the use of enhanced GPS receivers (Garmin GPSMAP 64), 
which have a horizontal accuracy of about 5 m during the field in-
ventory (Nilsson et al., 2017). At the level of a large area inventory such 
as the Swedish NFI, such an accuracy of 5 m in geolocation can be highly 
substantial. An earlier evaluation by Nilsson et al. (2017) showed that at 
this accuracy level, good correspondence can be observed between the 
NFI plots and ALS data in Sweden. The soil moisture map has poor ac-
curacy near roads, at sites on coarse sediments and in areas with steep 
local topography (Ågren et al., 2021). When compared with soil mois-
ture information from the NFI sample plots, we observed trends in the 
model residuals, with large errors in the predicted SIS at dry and wet 
sites (Fig. 3). Probably, this effect can be minimised by examining the 
effect of the slope in and around the pixels together with the moisture 
index. 

Similarly, we used bi-temporal ALS data for the prediction of the site 
index, and the possibility of error introduction in the models cannot be 
ruled out. Such errors may be influenced by the scanner brands and 
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scanner configurations in the two ALS campaigns, as well as the size of 
the grid cell for height computation. In the first scan, ALS data were 
acquired using 13 different scanners from Leica (72.3 % of the scanned 
blocks), Optech (24.9 %), and Reigl and Trimble (2.8 %). Previous 
studies showed that the sensor effect is minimised largely by doing block 
modelling using only reference data scanned with the same scanner 
brand, acquired during the same season (leaf-on or leaf-off), and from a 
limited geographic area (Nilsson et al., 2017). We recommend such an 
approach to future studies on SIS modelling where separate model pa-
rameters can be estimated for the different scanner brands. Though SIS 
is determined on a radius of 10 m for both permanent and temporary 
plots, the determination of height from ALS data and subsequent pre-
dictions of site index were done on 12.5 × 12.5 m pixels. This was to 
ensure that the resolution of the SIS map data is compatible with other 
derived forest data products at the national scale. Again, from previous 
research (Nilsson et al. 2017), it was seen that the gain in precision 
(relative RMSE, %) of height estimation by increasing the grid-cell size 
was small, i.e., 7.4 % in 12.5 × 12.5 m to 7.3 % for 20 × 20 m grid-cell 
sizes. Thus, the chosen 12.5 m cell size can be regarded as optimal for SIS 
prediction in Swedish forests dominated by pine and spruce. 

4.3. Application of the site index maps 

So far, the models developed are species-specific SIS functions. From 
these models, generic SIS maps were produced separately for Scots pine 
and Norway spruce. At the application, it is expected that users choose 
the most suitable map according to the given tree species information, as 
tree species information derived from ALS data at the national scale is 
presently unavailable in Sweden. 

An important part of this study was to make the map data available 
to authorities, forest owners, forest companies, and the general public. 
Already, map data (at a spatial resolution of 12.5 m) on other forest 
attributes, such as basal area, mean height, standing volume, and 
biomass, are available for use in Sweden (Nilsson et al., 2017). The 
addition of the SIS maps may provide additional benefits. For example, 
in forest planning, it is seen that 3D information obtained from ALS data 
is imperative for modelling ecosystem processes using dynamic treat-
ment units optimised at the level of grid cells. Spatial information from 
SIS may improve the cell-level optimisations rather than the current 
approach of using a single value obtained from stand registers (Wil-
helmsson, 2023). 

The accompanying estimates of uncertainty in the cell-level pre-
dictions of SIS may also be valuable for large forest companies when 
handling uncertainties in forest information during the hierarchical 
planning process (Ulvdal et al., 2023). Predictions of SIS can facilitate 
site-adapted forest management on the one hand and, on the other hand, 
can enhance efficient sampling strategy by providing extra information 
on site productivity when selecting representative field samples during 
the design phase (Grafström et al., 2014). 

An important question is how the product can be updated in the 
future. It is not clear how often the nationwide ALS campaigns may be 
carried out in the future. Possible options might be to use RADAR and 
digital photogrammetry data. Already, Persson and Fransson (2016) 
showed that TanDEM-X data could be used to predict site index with 
satisfactory accuracy (RMSE = 4.4 m and relative RMSE = 12.1 %) in 
Sweden. Bohlin et al. (2017) also reported that point clouds derived 
from the national image program could be used for large-area forest 
attribute mapping. The above data sources may be combined with older 
ALS data within the framework of data assimilation to concurrently 
improve the predictions of and update the SIS map product (Lindgren 
et al., 2022). 

5. Conclusion 

This study evaluated the potential of bi-temporal ALS data and other 
remotely sensed data for site productivity determination by site index 
according to site factors (SIS) in even-aged coniferous stands (Scots pine 
and Norway spruce) on productive forestlands in Sweden. This was 
approached by utilising field observations from the Swedish NFI, bi- 
temporal ALS data from the National Land Survey, and other auxiliary 
data describing site conditions (e.g., soil moisture, distance to coast and 
altitude above sea level). Two techniques of regression analysis were 
evaluated for site index prediction, a general multiple linear regression 
(MLR) and a non-parametric random forests (RF) model. 

The results obtained showed that site index in even-aged coniferous 
stands could be determined by a sufficiently reasonable degree of ac-
curacy (1.96 m for Scots pine and 2.11 m for Norway spruce) using bi- 
temporal ALS data and the MLR model. Model validation on indepen-
dent data (i.e., data not used for model construction) gave similar ac-
curacy as those obtained during model fitting. Final predictors of site 
index include metrics of 90th percentile height (at time two) and annual 
increment in the 95th percentile height, altitude, distance to coast, and 
soil moisture. Evaluations of the final models revealed that the residual 
variations were homoscedastic for the predictions of site index as well as 
for wider ranges of density (stand basal area) and productivity (stem 
volume). 

Further, a map of site index predictions and the corresponding pixel- 
level prediction errors was produced at a spatial resolution of 12.5 m 
separately for stands of Scots pine and Norway spruce. The SIS maps 
have a potentially high value for operational forest management plan-
ning. The predictor variables may also be beneficial for the estimation of 
age and yield capacity in Swedish forests. 
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Appendix   

Table A.1 
F-test for comparing reduced (Eqs. 1.2 – 1.4) and full (Eq. 1.1) models of site index fitted by multiple linear regression (MLR) for Scots pine.  

*Predictor group 
Model DFres RSS DFdiff SSQdiff F Pr(>F)

Site Mred 2238 6298.9      
Mfull 2234 3482 4  2816.9  451.8 < 0.001         

Resource Mred 2239 8162.7      
Mfull 2234 3482 5  4680.7  600.6 < 0.001         

Size Mred 2239 5634.1      
Mfull 2234 3482 5  2152.1  276.2 < 0.001 

Variable definitions: Mred is reduced model (i.e. contains only variables for a specific predictor group), Mfull denotes the full model (i.e. contains all predictor variables 
of the reduced model and other predictors), DFres is residual degrees of freedom, RSS is the residual sum of squares, DFdiff is the degrees of freedom associated with the 
difference in DFres for the reduced and full models, SSQdiff is the sum of squares for the difference between RSS of the full and reduced models, and Pr(>F) denotes the 
significance of the calculated F-statistic at an alpha level of 0.05. 

* See Eqs. (1.2) – (1.4) for definitions of the predictor groups. 

Table A.2 
F-test for comparing reduced (Eqs. 1.2 – 1.4) and full (Eq. 1.1) models of site index fitted by multiple linear regression (MLR) for Norway spruce.  

*Predictor group 
Model DFres RSS DFdiff SSQdiff F Pr(>F)

Site Mred 2073  4348.2      
Mfull 2069  3384.8 4 963.4  147.2 < 0.001         

Resource Mred 2074  22925.5      
Mfull 2069  3384.8 5 19,541  2388.9 < 0.001         

Size Mred 2074  20135.2      
Mfull 2069  3384.8 5 16,720  2047.8 < 0.001 

Variable definitions: Mred is reduced model (i.e. contains only variables for a specific predictor group), Mfull denotes the full model (i.e. contains all predictor variables 
of the reduced model and other predictors), DFres is residual degrees of freedom, RSS is the residual sum of squares, DFdiff is the degrees of freedom associated with the 
difference in DFres for the reduced and full models, SSQdiff is the sum of squares for the difference between RSS of the full and reduced models, and Pr(>F) denotes the 
significance of the calculated F-statistic at an alpha level of 0.05. 

* See Eqs. (1.2) – (1.4) for definitions of the predictor groups. 

Table A.3 
Estimated covariance matrix of the MLR site index model parameters.   

Scots pine  
α̂0 β̂1 β̂2 β̂3 ω̂1 ω̂2 γ̂1 γ̂2 

α̂0 1.024        
β̂1 

− 1.43x10-7 2.04x10-14       

β̂2 
4.23x10-5 − 1.03x10-11 1.46x10-7      

β̂3 
− 5.67x10-5 8.99x10-12 − 9.72x10-8 2.67x10-7     

ω̂1 − 1.7x10-4 1.87x10-11 2.68x10-8 − 1.27x10-8 1.26x10-7    

ω̂2 − 0.132 1.39x10-8 − 1.09x10-5 2.52x10-6 6.81x10-5 0.239   
γ̂1 6.92x10-4 − 1.25x10-10 8.06x10-8 − 1.35x10-7 − 1.08x10-7 − 3.1x10-4 2.49x10-5  

γ̂2 − 9.73x10-6 1.55x10-12 − 4.98x10-10 1.02x10-9 2.36x10-9 5.22x10-6 − 2.71x10-7 3.2x10-9  

Norway spruce  
α̂0 β̂1 β̂2 β̂3 ω̂1 ω̂2 γ̂1 γ̂2 

α̂0 1.257        
β̂1 

1.87x10-7 2.84x10-14       

β̂2 
1.5x10-4 − 2.88x10-11 2.41x10-7      

β̂3 
− 3.18x10-5 5.59x10-12 − 1.30x10-7 3.57x10-7     

ω̂1 − 1.1x10-4 1.12x10-11 2.44x10-8 − 5.78x10-9 9.51x10-8    

ω̂2 − 0.124 1.35x10-8 1.43x10-5 − 9.34x10-6 4.91x10-5 0.161   
γ̂1 4.2x10-4 − 1.01x10-10 8.57x10-8 − 1.14x10-7 − 5.78x10-7 − 9.34x10-6 2.91x10-5  

γ̂2 − 3.12x10-6 7.54x10-13 − 7.33x10-10 3.85x10-10 1.35x10-9 2.59x10-6 − 3.11x10-7 3.57x10-9  
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Fig. A1. Distribution of observed SIS on the NFI sample plots. Calibration refers to permanent sample plots, whereas validation denotes temporary sample plots.  
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Fig. A2. Pearson’s correlation among the final predictors of SIS.  
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Fig. A3. Location of the forest stands (managed by Sveaskog) used for validation. Copyright Lantmäteriet Topographic Map.  
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Fig. A4. Observed vs. predicted SIS (from the RF model) on the calibration (permanent plots) and validation (temporary plots) dataset for Scots pine and Norway 
spruce dominated stands. 
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Fig. A5. Residuals vs. ground-measured forest stand attributes.  
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