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Abstract
Ixodes ricinus ticks are Scandinavia's main vector for tick- borne encephalitis virus 
(TBEV), which infects many people annually. The aims of the present study were 
(i) to obtain information on the TBEV prevalence in host- seeking I. ricinus collected 
within the Øresund- Kattegat- Skagerrak (ØKS) region, which lies in southern Norway, 
southern Sweden and Denmark; (ii) to analyse whether there are potential spatial pat-
terns in the TBEV prevalence; and (iii) to understand the relationship between TBEV 
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1  |  INTRODUC TION

The incidence of tick- borne encephalitis (TBE) has been increasing 
in Sweden, Norway and Denmark in the last few decades (Jaenson 
et al., 2018; MSIS, 2022; Public Health Agency of Sweden, 2021; 
Slunge et al., 2022; Statens Serum Institut, 2020). Sweden had the 
highest incidence of human cases, with 520 cases in 2021 (Public 
Health Agency of Sweden, 2021). The number of reported TBE 
cases in Norway has doubled from 2020 to 2021, with 72 cases re-
ported in 2021 (MSIS, 2022). The incidence of human TBE cases in 
Denmark has also increased, where 13 TBE cases, the highest num-
ber until now, were reported in 2019 (Statens Serum Institut, 2020). 
TBE is caused by different geographically distributed subtypes of 
tick- borne encephalitis virus (TBEV). Five subtypes of TBEV have 
been identified so far: the European (TBEV- Eu), Siberian (TBEV- 
Sib), Far Eastern (TBEV- Fe), Himalayan (TBEV- Him) and Baikalian 
(TBEV- Bkl) (Dai et al., 2018; Kovalev & Mukhacheva, 2017). In 
Scandinavia, I. ricinus is the most common tick species and is the 
primary vector for the European subtype of TBEV (TBEV- Eu). The 
virus is transmitted to humans by tick bites, mainly by nymphs, 
and occasionally through the consumption of unpasteurized dairy 
products (Caini et al., 2012; Hudopisk et al., 2013). TBEV has also 

been detected in raw milk from cows and sheep (Cisak et al., 2010; 
Paulsen et al., 2019; Wallenhammar et al., 2020). TBEV infection 
may vary from being asymptomatic to fatal meningitis, encephalitis, 

prevalence and meteorological factors in southern Scandinavia. Tick nymphs were 
collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 
10 nymphs, with RT real- time PCR, and positive samples were confirmed with py-
rosequencing. Spatial autocorrelation and cluster analysis was performed with Global 
Moran's I and SatScan to test for spatial patterns and potential local clusters of the 
TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to corre-
late parameters such as minimum, mean and maximum temperature, relative humidity 
and saturation deficit with TBEV pool prevalence. The climatic data were acquired 
from the nearest meteorological stations for 2015 and 2016. This study confirms the 
presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, 
three from Zealand and two from Bornholm and Falster counties. In total, five out of 
nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 
0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern 
Skåne region (one site), indicating a potential concern for public health. We report an 
overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern 
Scandinavia with a region- specific prevalence of 0.1% in Denmark, 0.2% in southern 
Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local 
clusters was found in the study region. We found a strong correlation between TBEV 
prevalence in ticks and relative humidity in Sweden and Norway, which might suggest 
that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging 
tick- borne pathogen in southern Scandinavia, and we recommend further studies to 
understand the TBEV transmission potential with changing climate in Scandinavia.

K E Y W O R D S
climate change, flaviviruses, I. ricinus, Nordic, tick- borne encephalitis virus

Impacts

• This is one of the most extensive studies aimed to de-
scribe the prevalence of TBEV in southern Scandinavia, 
screening 29,570 questing Ixodes ricinus nymphs.

• The virus was detected at 20 out of 50 locations, dem-
onstrating that it is widespread in this region. The study 
confirms the presence of TBEV in ticks in Denmark, with 
a higher prevalence in Norway's Oslofjord and Sweden's 
southern Skåne County.

• This study also highlights the possible influence of rela-
tive humidity in sustaining TBEV in the region. TBEV 
was detected from regions with and without previously 
reported human TBE cases, which is highly relevant 
information for public health considerations and risk 
evaluation.
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meningoencephalitis and meningoencephalomyelitis (Kaiser, 1999); 
however, infections with TBEV- Eu are often reported to be asymp-
tomatic (Gritsun et al., 2003; Larsen et al., 2014; Marvik et al., 2021; 
Svensson et al., 2021; Thortveit et al., 2020).TBE has been a notifi-
able disease in Sweden and Norway since 1969 and 1994, respec-
tively, but is not at present notifiable in Denmark.

In Southern Scandinavia, the spatial distribution of TBE cases 
does not fully coincide with the known distribution of TBEV in 
ticks. TBEV has been detected in ticks from coastal counties in 
Norway, from Viken in the southeast to Nordland in the north 
(Andreassen et al., 2012; Paulsen et al., 2015; Soleng et al., 2018; 
Vikse et al., 2020). However, all human TBE cases from Norway are 
reported from the southernmost parts of the country, specifically 
from the counties Agder, Vestfold and Telemark, and Viken (former 
Buskerud) (MSIS, 2022). The south- western coast of the Oslofjord is 
a known endemic area with several reported cases, while there are 
few reported cases on the eastern side, although TBEV has been de-
tected in ticks within the eastern side since 2015 (Larsen et al., 2014; 
Marvik et al., 2021; MSIS, 2022; Vikse et al., 2020). Studies report 
TBEV seroprevalence in healthy blood donors from both the eastern 
and western sides of the Oslofjord with seroprevalence of 0.65% 
and 0.4%, respectively, suggesting that TBEV infections within the 
population might have been asymptomatic or undiagnosed (Larsen 
et al., 2014; Marvik et al., 2021). TBE might not have been diagnosed 
due to a lack of awareness of tick bites and the distribution range of 
the virus (Paulsen et al., 2015).

Tick- borne encephalitis virus may be present at very low, po-
tentially undetectable concentrations in questing ticks but might 
replicate and become detectable under favourable conditions in 
engorged ticks (Belova et al., 2012; Pettersson et al., 2014). This 
might explain the lack of correspondence between TBEV sentinel 
studies and TBEV prevalence estimation from ticks. In Denmark, 
although TBEV seropositive deer are reported from multiple sites 
(Andersen, Bestehorn, et al., 2019; Andersen, Larsen, et al., 2019; 
Skarphédinsson et al., 2005), several tick pools collected in 2010– 
2011 from northern Zealand, Funen and Jutland were negative for 
TBEV (Fomsgaard, 2020). Very few human cases have been reported 
in Denmark, mostly from the Island of Bornholm and sporadic 
cases from northern Zealand (Agergaard et al., 2019; Fomsgaard 
et al., 2009). Locally acquired human TBE cases were reported from 
Jutland and southern Funen in 2018 and one from the island of 
Falster in 2020.

Sweden has wider known TBEV endemic areas from where 
human TBE cases, seropositive cervids and TBEV prevalence in 
ticks have been reported (Jaenson et al., 2012, 2018; Jaenson & 
Wilhelmsson, 2019; Lundkvist et al., 2011; Pettersson et al., 2014; 
Wilhelmsson et al., 2020). Human TBE cases are widely reported 
from the coastal and central areas of Sweden around Stockholm, 
Örebro and the western Götaland region. The human TBE cases are 
typically reported from places with high population densities, such 
as the Swedish capital of Stockholm and lately from around the great 
Swedish lakes, where TBEV in ticks previously has been reported 
(Brinkley et al., 2008; Melik et al., 2007).In the later 2010s, studies 

reported TBEV endemic foci from inland central Sweden to southern 
and western Sweden (Brinkley et al., 2008; Stjernberg et al., 2008). 
The virus has been detected in ticks up to Norrbotten in the Gulf 
of Bothnia in northern Sweden (Jaenson & Wilhelmsson, 2019; 
Pettersson et al., 2014). However, TBEV prevalence estimation in 
ticks is still limited in southernmost Sweden (Pettersson et al., 2014).

Tick- borne encephalitis virus primarily circulates among tick 
populations and rodent hosts that act as reservoirs to persist in 
the environment (Michelitsch et al., 2019). Climatic factors, such as 
temperature, humidity, snow cover and rainfall, can influence the 
distribution of ticks and their hosts, potentially leading to the ex-
pansion of TBEV's geographical range as a result of climate change 
(Jaenson et al., 2012). TBEV transmission in ticks is attributed to tick 
seasonal activity, which is dependent on the tick life cycle (Randolph 
et al., 2000). Ticks can acquire infection by feeding on viremic hosts, 
mostly rodents (Achazi et al., 2011). Larvae can be infected with 
TBEV from infected adult females through eggs known as transo-
varial transmission. Mathematical models have shown that when lar-
vae and nymphs feed in close proximity, nonviremic transmission of 
TBEV can occur from infected to uninfected ticks known as cofeeding 
transmission (Randolph, 2011; Randolph et al., 1996). This has been 
identified as a major route of TBEV transmission within a tick popula-
tion in eastern Europe (Nah & Wu, 2021). Once infected with TBEV, a 
tick remains infected throughout its life (Jaenson et al., 2012; Kozuch 
& Nosek, 1980). The prevalence of TBEV in ticks depends on a variety 
of other factors such as the availability of hosts for feeding opportu-
nities, the type of vegetation for suitable moulting environments and 
opportunities for transboundary transmission via for example migra-
tory birds. Studies have reported a higher tick abundance in forested 
areas compared with open meadow areas, due to humid conditions 
found in forested areas, protecting against desiccation, while open 
habitats are more exposed to the effects of sun and wind (Jaenson 
et al., 2018; Lindström & Jaenson, 2003; Medlock et al., 2013). The 
increase in tick host species, for example, roe deer (Capreolus capreo-
lus), has been suggested to cause the increase in human TBE incidence 
in Sweden (Jaenson et al., 2012). Other studies have found TBEV- 
infected ticks on migratory birds (Kazarina et al., 2015; Waldenström 
et al., 2007) thus, migrating birds may play a role in the geographical 
dispersal of TBEV- infected ticks, and their potential to start a new 
TBEV foci (Waldenström et al., 2007).

The vector, I. ricinus ticks are greatly influenced by tempera-
ture and show analogous seasonal variation; however, very less 
is known about the variation of TBEV and its relationship with 
the prevailing microclimate (Daniel et al., 2018). The vegetation 
period has been prolonged in Scandinavia, which has been identi-
fied as a key factor contributing to the increased abundance and 
activity of ticks in Sweden and Norway (Hvidsten et al., 2020; 
Jaenson et al., 2012). The impacts of climate change in Nordic 
countries are estimated by wetter and warmer climate with an 
increase in the length of growing season in the future (Hanssen- 
Bauer et al., 2017; Randolph, 2001). Although I. ricinus may expand 
its northern range in Scandinavia with climatic changes, it was 
also found that a potential range expansion in Scandinavia would 
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only affect a small additional fraction of the human population as 
most of the population already live close to established tick areas 
(Kjær et al., 2019). TBEV poses a health risk to people living close 
to areas with TBEV presence in ticks (Vikse et al., 2020). TBE 
is a climate- sensitive disease, and the risk of virus transmission 
can be influenced by environmental factors such as temperature, 
humidity and saturation deficit (Jaenson et al., 2012; Medlock 
et al., 2013; Randolph et al., 2000). It is important to note that the 
direct effect of temperature and humidity conditions on TBEV is 
practically unknown (Korenberg, 2009). It is usually agreed that 
microorganisms in ticks are generally well adapted to the vari-
ability of temperature and humidity as well as other environmen-
tal conditions that are important for reproduction, vertical and 
horizontal transmission (Sirotkin & Korenberg, 2019). Although 
the TBEV infection in ticks is affected by both temperature and 
relative humidity (RH), RH has been suggested to be the major de-
terminant for infection rate rather than temperature (Danielová 
et al., 1983). This highlights the importance of identifying regions 
with high pathogen prevalence. This study aims to provide up-
dated knowledge on TBEV distribution and prevalence in ticks 
in relation to climatic parameters in southern Norway, southern 
Sweden and Denmark.

2  |  MATERIAL S AND METHODS

2.1  |  Tick collection and stratification of study sites

We collected ticks at each site between 15 August and 30 
September 2016, from 11 sites along the Oslofjord and southern 
Norway, 30 sites in Denmark and nine sites in southern Sweden 
as part of the ScandTick Innovation project. Ticks were collected 
from areas below 450 m above sea level (masl). A total of 29,570 
tick nymphs were collected according to the tick identification 
key by Hillyard (1996) while larvae and adult ticks were excluded 
from the analysis. The collected nymphs were pooled in groups 
of 10, totaling 2957 tick pools. The procedures for vegetation 
stratification, site selection, tick collection and storage have 
been described in previous studies (Jung Kjær et al., 2019; Kjær 
et al., 2019, 2020). In short, each country within the study region 
was divided into a northern and southern part (of equal sizes) and 
furthermore divided into high and low values of the maximum 
normalized difference vegetation index (NDVI, from Fourier pro-
cessed satellite imagery 40). Lastly, these stratified regions were 
further divided into forest and meadow, using Corine land cover 
(all one × 1 km resolution 40), based on the Corine definitions; 
forest: broad- leaved forest, coniferous forest, mixed forest and 
meadow: land principally occupied by agriculture with signifi-
cant areas of natural vegetation, natural grasslands, moors and 
heathland, transitional woodland- shrub (Jung Kjær et al., 2019; 
Kjær et al., 2019, 2020). Tick collection sites were then selected 
at random within the stratified regions (80% forest and 20% 
meadow).

2.2  |  Laboratory methods

2.2.1  |  TBEV detection

Tick- borne encephalitis virus was detected as previously de-
scribed by Andreassen et al. (2012). Briefly, ticks were homog-
enized as described previously by Klitgaard et al. (2019) and sent 
to the Norwegian Institute of Public Health on dry ice. The sam-
ples were stored at −80°C until further analysis. Total RNA was 
extracted from homogenized nymphs using the RNeasy mini kit 
(QIAGEN Inc.) with an automated QIAcube instrument (Qiagen). 
Immediately after the extraction process, the RNA was reversely 
transcribed to cDNA with random primers (High- Capacity cDNA 
Reverse Transcription Kit, Applied Biosystems). An in- house real- 
time reverse transcriptase RT- PCR was performed targeting a 54- 
base pair (bp) fragment on the envelope gene of TBEV. As positive 
controls, RNA from the TBEV strains ‘Soukup’ or ‘Hochosterwitz’ 
(kindly provided by Christian Beuret, Spiez lab, Switzerland and 
Franz- Xaver Heinz, University of Vienna, Austria, respectively) 
were used, and nuclease- free water was used as a negative con-
trol. All the RT- PCR- positive TBEV pools were pyro- sequenced 
and compared with a positive control for confirmation as de-
scribed earlier (Andreassen et al., 2012). A pyro run was deemed 
valid when all TBEV controls were positive, all water controls were 
negative, and PCR- positive pools show pyrogram plots, which fol-
lowed the positive control pattern. PCR- positive pools that could 
not be confirmed by pyrosequencing were excluded from the 
prevalence calculation. A few PCR- positive samples could not 
be confirmed by pyrosequencing due to technical errors. These 
comprised 8 tick pools from Denmark. The total number of pools 
included in the study was 2957 (1790 from Denmark, 660 from 
Norway and 507 from Sweden).

2.2.2  |  TBEV prevalence in ticks

We calculated Estimated Pooled Prevalence (EPP) using the on-
line Epitools epidemiological calculator with fixed pooled size and 
perfect test (https://epito ols.ausvet.com.au/ppfre qone). We used 
EPP in all further analysis except for the spatial analyses. To test 
for differences in TBEV pool prevalence between sites, we used 
Pearson's chi- squared test statistics (test of equal or given pro-
portions). This test is nonspatial and only tests whether there is a 
statistically significant difference between the site- specific pool 
prevalences.

2.3  |  Spatial analyses

We tested Global clustering, in the context of a regional study 
‘global clustering refers to the identification of larger- scale pat-
terns or trends within the study area’, by Global Moran's I to test 
spatial patterns between the TBEV pool prevalence at each of the 
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50 sites. Global Moran's I measure spatial autocorrelation based 
on site location and the TBEV prevalence at the sites and evalu-
ates whether the observed prevalence patterns are clustered, dis-
persed or random.

To identify potential local clusters of TBEV within the study 
region, we used the program SatScan (Kulldorff, 2018) and the 
package rsatscan (Kleinman, 2015) in R 3.5.2 (R Development Core 
Team, 2018). We selected an elliptical scanning window and the 
Bernoulli probability model along with a maximum spatial window 
size of less than or equal to 50% of the total population at risk. 
The analysis looks for significant geographical clusters within cir-
cular or ellipsoid areas and tests whether EPP at sites included in 
the cluster on average has higher (hotspots) or lower (cold spots) 
prevalence compared with sites outside the clusters. The relative 
risk was used as a measure of clustering, which is the estimated 
risk within the cluster divided by the estimated risk outside the 
cluster. We used the Gini coefficient (Han et al., 2016) to evaluate 

the clusters, which measures the heterogeneity of the clusters, 
and thus determines whether to report multiple smaller clusters 
or a large joint cluster. In this analysis, we used the observed pro-
portion of TBEV (RT real- time- PCR) positive pools rather than the 
estimated pooled prevalence (EPP). Before running the analysis, 
we transformed site coordinates into a flat UTM projection (UTM 
zone 32 N).

2.4  |  Climatic analysis

We obtained climatic data from the Norwegian Meteorological 
Institute (www.met.no/), the Swedish Meteorological and 
Hydrological Institute (www.smhi.se) and the Danish Meteorological 
Institute (www.dmi.dk/) and compiled the data over the period 
2015– 2016. We chose data from weather stations, based on the 
closest distance to the sampling site. From these weather stations, 

TA B L E  1  Tick- borne encephalitis virus (TBEV) in Ixodes ricinus tick nymphs in southern Scandinavia.

Country
Number of PCR- positive pools/
total tick pools analysed

Positive sites/
total sites tested

Number of confirmed TBEV- 
positive pools by pyrosequencing

Estimated pooled 
prevalence (%) by country

Southern Norway 10/660 3/11 8 0.1 (0.1– 0.2)

Southern Sweden 11/507 5/9 8 0.2 (0.1– 0.3)

Denmark 21/1790 12/30 13 0.1 (0.1– 1.5)

Total 42/2957 20/50 29 0.1 (0.1– 0.2)

F I G U R E  1  Visualization of TBEV- positive areas in Denmark, southern Norway and southern Sweden. Areas with unconfirmed TBEV- 
positive sample are marked in black, blue dots are negative sites and red dots are positive sites.
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we acquired air temperatures (°C) and RH (%) along with their 
monthly extremes (mean, maximum and minimum) and we calculated 
saturation deficit (SD), which is the measurement of drying power 
of the air according to Randolph and Storey (1999) (Andreassen 
et al., 2012; Estrada- Peña et al., 2004; Perret et al., 2004; Randolph 
& Storey, 1999). Months were grouped into the following seasons: 
March, April and May were considered Spring; June and July were 
considered Summer; August, September and October were consid-
ered Autumn and November, December, January and February were 
considered Winter. A Pearson's Correlation analysis was conducted 
to examine the correlation between the EPP and several meteoro-
logical factors: temperature, RH and SD, as well as the extremes of 
these factors. This analysis included only TBEV- positive sites and 
classified the variables according to country, season and year. The 
analysis was conducted using SPSS version 22, and statistical signifi-
cance was assessed at either p < 0.05 or p < 0.01.

3  |  RESULTS

3.1  |  TBEV prevalence in southern Scandinavia

Of the 50 sites tested, 20 (40% of sites) were found to be positive for 
TBEV (Table 1). In total, we tested 2957 tick pools of which 29 pools 
were positive resulting in an overall TBEV prevalence of 0.1% in 
questing I. ricinus nymphs in southern Scandinavia (Figure 1, Table 2). 
The nonspatial Pearson's chi- squared test statistics testing for dif-
ferences in EPP between sites was statistically significant (�2

49
 = 70.9, 

p = 0.02) and thus not randomly distributed. All the TBEV- positive 
pools came from forested habitats.

3.2  |  TBEV prevalence in tick nymphs from 
southern Sweden

In southern Sweden, five of nine sites were positive for TBEV. A large 
proportion of the positive pools (five out of eight) came from two 
sites in northern Skåne County located only 11 km apart. Blekinge, 
Kalmar and Jönköping Counties all had one positive site. Among the 
two real- time RT- PCR- positive pools from Blekinge, one was lost 
due to technical errors during pyrosequencing. The overall TBEV 
prevalence in ticks in southern Sweden was 0.2%.

3.3  |  TBEV prevalence in tick nymphs from 
southern Norway

Tick- borne encephalitis virus was detected in eight pools out of 660 
pools tested giving an EPP of 0.1% in southern Norway. A total of 
three of 11 sites were positive for TBEV and two of those sites from 
Oslofjord showed a relatively high EPP of 0.7% and 0.5%, respec-
tively (Table 2). One positive tick pool came from the coastal area of 
Agder County in the southern part of Norway.

3.4  |  TBEV prevalence in tick nymphs 
from Denmark

In Denmark, a total of 12 of 30 sites were positive and 13 tick pools 
out of 1790 were positive, resulting in an overall TBEV prevalence of 
0.1% (Table 1). Seven of the positive sites were from Jutland, three 
from Zealand, one from Falster and one from Bornholm. Among the 
12 positive sites, 11 sites had one positive pool, while the last loca-
tion from southern Denmark, close to the North Sea, had two posi-
tive pools (Figure 1, Table 2). We lost five positive pools from three 
additional sites in Denmark during pyrosequencing (shown by black- 
filled dots, Figure 1). These contained two pools from one site on 
Funen, two pools from one site from western Zealand and one pool 
from one site from northern Jutland (Table 2). We also lost three 
pools out of four from one site on Bornholm, which site is included 
in the 12 positive sites above.

3.5  |  Spatial patterns in TBEV prevalence

We found no evidence of global clustering (Moran's I = 0.017, 
z = 0.38, p = 0.71) for site- specific pool prevalence, and none of the 
local clusters found within the study region using SatScan were 
statistically significant (p > 0.1). The results show that the amount 
of prevalence varied between the sites, but it did not seem to be 
grouped in any specific area within the region.

3.6  |  Correlation analysis of TBEV prevalence in 
ticks with meteorological factors

We used Pearson's correlation analysis to investigate the relation-
ship between EPP with meteorological factors on data from the au-
tumn and winter of 2015 and spring, summer and autumn of 2016. 
The meteorological factors included mean, minimum and maximum 
of temperature; mean, minimum and maximum of RH; and mean, 
minimum and maximum of SD during the autumn and winter of 2015 
and spring, summer and autumn of 2016.

We found a statistically significant correlation between the EPP 
and RH in Sweden and Norway. There was a positive relationship 
between EPP and monthly minimum RH in all seasons in Sweden: 
autumn of 2016 (df = 13, r = 0.7, p = 0.01), winter (df = 18, r = 0.6, 
p = 0.00), spring (df = 13, r = 0.6, p = 0.02), summer (df = 8, r = 0.63, 
p = 0.05) and autumn (df = 13, r = 0.58, p = 0.02). This relationship was 
also present for mean RH in winter 2015 (df = 18, r = 0.7, p = 0.01) 
and autumn 2016 (df = 13, r = 0.6, p = 0.02) (Table S1). In Norway, the 
EPP showed statistically significant negative correlation with maxi-
mum RH and statistically significant positive correlation with min-
imum SD in the spring, summer and autumn of 2016. Specifically, 
in spring (df = 7, r = −0.9, p = 0.00; df = 7, r = 0.8, p = 0.00), summer 
(df = 4, r = −0.9, p = 0.00; df = 4, r = 0.7, p = 0.01) and autumn (df = 7, 
r = −0.9, p = 0.00; df = 7, r = 0.9, p = 0.00), there was a strong nega-
tive relationship with monthly maximum RH and a strong positive 
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relationship with minimum SD. There was also a statistically signifi-
cant positive correlation between EPP and mean temperature (df = 4, 
r = 0.89 and p = 0.02) and minimum SD (df = 4, r = 0.98 and p = 0.00) 
in summer (Table S2). In Denmark, we did not see any clear pattern. 
However, during the winter of 2015/2016, we observed a weak 
negative correlation between EPP and mean RH (df = 46, r = −0.33, 
p = 0.02) and a weak positive correlation between EPP and mean SD 
(df = 46, r = 0.41, p = 0.00). There was also a weak positive correlation 
between EPP and mean SD (df = 34, r = 0.366, p = 0.03) in the spring 
of 2016 (Table S3).

4  |  DISCUSSION

This is the first study of TBEV in Scandinavia covering the whole 
Øresund- Kattegat- Skagerrak (ØKS) region. TBE is an emerging zo-
onosis in Scandinavia, which constitute the northernmost part of 
the distribution range of I. ricinus (Riccardi et al., 2019; Süss, 2011). 
Colder and dry winters and limited vegetation periods are a limiting 

factor for sustainable tick populations (van Oort et al., 2020) and 
thus the presence of TBEV in most of this region. The possible expan-
sion of ticks into new regions in Scandinavia has been documented 
in earlier studies (Hvidsten et al., 2020; Lindquist & Vapalahti, 2008; 
Randolph, 2001). This study reports the presence of TBEV in tick 
populations in most parts of Denmark, which to our knowledge is 
reported for the first time. According to our analyses, TBEV preva-
lence in ticks in Denmark is widespread as we found 12 confirmed 
TBEV- positive sites, seven sites were in Jutland, three on Zealand 
and one each on Lolland and Bornholm (Figure 1, Table 2). Our PCR 
results suggest TBEV presence at several other sites, but these could 
not be confirmed due to technical issues (Table 2).

It appears that TBEV circulation in Denmark is not a recent de-
velopment. Roe deer (C. capreolus) serum from 2003 to 2005 was 
analysed for the prevalence of tick- borne encephalitis complex virus 
and positives were found from southern Jutland, Lolland, Falster, 
northern Zealand and Bornholm (Skarphédinsson et al., 2005). The 
researchers indicated that although the TBE complex virus had 
emerged in new areas, the infection was still rare and focal in its 

TA B L E  2  Detailed description of the sites where TBEV was detected in host- seeking Ixodes ricinus nymphs in southern Scandinavia.

Country County SiteID Longitude Latitude Habitat type

No. of PCR- 
positive pools/
pools tested

No. of 
confirmed 
PCR poolsa

EPP% (range 
of EPP)

Norway Vestfold and Telemark NO- 124 8.92 58.61 Forest, high NDVI 1/60 1 0.2 (0.0– 0.9)

Norway Viken O- 111 11.1 59.19 Forest, high NDVI 4/60 3 0.5 (0.10– 1.5)

Norway Viken O- 238 10.51 59.53 Forest, low NDVI 4/60 4 0.7 (0.20– 1.8)

Denmark Jutland DK- 002 8.22 55.79 Forest, low NDVI 2/60 2 0.3 (0.0– 1.2)

Denmark Zealand DK- 025 11.55 55.42 Forest, low NDVI 1/60 1 0.2 (0.0– 0.9)

Denmark Falster DK- 120 9.56 54.92 Forest, high NDVI 1/60 1 0.2 (0.0– 0.9)

Denmark Zealand DK- 121 11.59 55.33 Forest, high NDVI 1/60 1 0.2 (0.0– 0.9)

Denmark Bornholm DK- 123 14.96 55.11 Forest, high NDVI 4/60 1, 3 lostb 0.2 (0.0– 0.9)

Denmark Zealand DK- 124 11.5 55.44 Forest, high NDVI 1/60 1 0.2 (0.0– 0.9)

Denmark Falster DK- 201 11.32 54.92 Forest, high NDVI 1/60 1 0.2 (0.0– 0.9)

Denmark Jutland DK- 485 9.36 55.93 Forest, low NDVI 1/60 1 0.2 (0.0– 0.9)

Denmark Jutland DK- 521 10.68 56.26 Forest, low NDVI 1/60 1 0.2 (0.0– 0.9)

Denmark Jutland DK- 554 9.65 56.04 Forest, low NDVI 1/60 1 0.2 (0.0– 0.9)

Denmark Jutland DK- 604 9.27 56.3 Forest, high NDVI 1/60 1 0.2 (0.0– 0.9)

Denmark Jutland DK- 616 9.33 56.08 Forest, high NDVI 1/60 1 0.2 (0.0– 0.9)

Sweden Skåne SE- 005 14.44 56.45 Forest, low NDVI 3/60 3 0.5 (0.10– 1.5)

Sweden Skåne SE- 011 14.26 56.43 Forest, low NDVI 2/60 2 0.3 (0.04– 1.2)

Sweden Jonkoping SE- 064 14.99 57.2 Forest, low NDVI 1/60 1 0.2 (0.0– 0.9)

Sweden Kalmar SE- 122 15.61 56.72 Forest, high NDVI 1/60 1 0.2 (0.0– 0.9)

Sweden Karlskrona SE- 221 15.64 56.45 Forest, low NDVI 2/44 1, 1 lostb 0.2 (0.0– 0.9)

Denmark Central Zealand DK- 237 11.81 55.51 Forest, high NDVI 2/60 2 lostb - 

Denmark Western Funen DK- 122 9.98 55.22 Forest, high NDVI 2/60 2 lostb - 

Denmark North Jutland DK- 721 8.74 57.09 Meadow, low 
NDVI

1/60 1 lostb - 

aPyrosequencing.
bTBEV RT- PCR- positive pools that were lost due to failure in pyrosequencing and could not be confirmed.
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distribution (Skarphédinsson et al., 2005). A follow- up study on 
the same deer species, roe deer sampled in 2013– 2014 found that 
TBEV seropositive deers were found all over Denmark with a na-
tional seropositivity of 6.9%. Compared with the results from the 
study conducted in 2005, the seropositive roe deers had expanded 
to most areas of northern and central Jutland and Funen (Andersen, 
Larsen, et al., 2019; Skarphédinsson et al., 2005). The sentinel study 
also reported the presence of roe deer sera with high antibody titers 
from northern and central Jutland, which shows that the infection 
response in the deer could be a recent infection or it can be trig-
gered by bites from multiple positive ticks. Our results confirm the 
findings that TBEV is more widespread in Denmark than previously 
anticipated. This study found seven positive sites from Jutland and 
supports TBEV foci being prevalent in Jutland. A seropositive roe 
deer was found on Funen (Andersen, Larsen, et al., 2019). In the 
present study, one PCR- positive pool was detected from Funen. 
Although the PCR- positive pool could not be confirmed positive 
due to technical difficulties during sequencing, this indicates that 
further assessment is needed to identify TBEV foci. The island of 
Bornholm in the Baltic Sea is a well- known TBEV endemic area 
since the 1950s (Kristiansen, 2002). The phylogenetic analysis of 
TBEV strains isolated from TBEV- infected patients from Bornholm 
showed relatedness to the eastern and central European strains in-
dicating the expansion of TBEV infection from around the Baltics 
(Andersen, Bestehorn, et al., 2019). Besides Bornholm, human TBE 
cases have been reported from Tokkekøb Hegn and Tisvilde Hegn 
in northern Zealand, where the infecting TBEV strain clustered with 
the Norwegian strain, Mandal 2009 indicating possible expansion of 
TBEV from southern Norway or vice versa (Agergaard et al., 2019; 
Fomsgaard et al., 2013).

The previous roe deer and tick studies combined with the present 
study show that TBEV is circulating in Denmark and is more wide-
spread than previously anticipated, although human TBE cases are 
rare. The low amount of human TBE cases could potentially be ex-
plained by TBEV not being a notifiable disease in Denmark. However, 
in Norway, TBEV is also prevalent in ticks and cervids (C. capreo-
lus, Cervus elaphus, Alces alces) along the coast until 65°N (Paulsen 
et al., 2020; Soleng et al., 2018; Vikse et al., 2020), but human cases 
occur only in restricted foci along the southern coast (Andreassen 
et al., 2012; MSIS, 2022). Jutland and the western coast of Norway 
are both influenced by the North Sea, and it might be important to 
understand climatic influences on ticks and TBEV that can have spe-
cial relevance to climate- sensitive zoonoses in the future. It is possi-
ble that a virus strain causing less severe disease circulates in these 
areas (Paulsen et al., 2015; Soleng et al., 2018; Vikse et al., 2020). 
The awareness of the general practitioners on the presence of TBEV 
might also play a role when diagnosing milder cases. TBEV detection 
methods also play a role in the detection of TBEV from questing ticks 
as the virus concentration is low (Schwaiger & Cassinotti, 2003). The 
length of the target sequence in the PCR might also be important to 
consider when the virus concentration is low in samples (Andreassen 
et al., 2012; Schwaiger & Cassinotti, 2003). False negatives due to 
limitations in the detection methods might be a reason for the lack of 

coherence in TBEV prevalence studies in ticks and sentinel studies in 
Denmark and Norway.

The present study found several new sites with relatively high 
TBEV prevalence along the Oslofjord in Norway. The Oslo and 
Viken counties in Norway are heavily populated areas where people 
drive to the city for work and live away from city areas. One loca-
tion 45 km south of Oslo centrum showed EPP of 0.7% and another 
location near Sarpsborg, showed EPP of 0.5%. Both these locations 
are new locations where ticks were not screened for TBEV before. 
In the last few years, the incidence of TBE has been reported from 
new areas in Viken County (MSIS, 2022). As mentioned earlier, TBEV 
is endemic on the southern coast of Norway and there is a concern 
about the virus establishing in ticks in the more northeastern parts 
where Oslo is located. TBEV EPP of 0.2%– 0.4% has been reported 
in Viken County from the former counties of Østfold, Akershus and 
Vestfold (Vikse et al., 2020) and the present study reports higher 
TBEV EPP along the Oslofjord in Norway than previously detected.

Although the presence of TBEV endemic foci along the west-
ern and southeastern coast was reported long ago, TBE foci in 
the inland part of southern Sweden is still a new emergence area 
(Brinkley et al., 2008; Fält et al., 2006; Lundkvist et al., 2011; Melik 
et al., 2007; Pettersson et al., 2014; Stjernberg et al., 2008; Waldeck 
et al., 2022). The nine sites in this study are from the seven neigh-
bouring counties; Skåne, Kronoberg, Halland, Jönköping, Blekinge, 
Kalmar and Västragötaland (Figure 1). We found two positive sites 
from the northern part of Skåne County with five of eight positive 
pools resulting in TBEV EPP of 0.5% (Table 1). Several human TBE 
cases have also been reported in this area (Fält et al., 2006). A TBEV 
prevalence above 0.5% in questing ticks for more than 1 or 2 years 
has been used to define an endemic focus (Andreassen et al., 2012; 
Gäumann et al., 2010; Pettersson et al., 2014). Endemic foci refer to 
a geographical location in space and time where TBEV circulation is 
persistent in nature (Dobler et al., 2011). In other words, this area 
may be a risk area for possible TBEV infections in the future.

The positive sites in Blekinge and Kalmar counties in Sweden 
are close to the southeastern coast, where migrating birds may 
have introduced TBEV to the areas. Öland Island along the coast of 
Kalmar County, is a well- known bird migration stop (Waldenström 
et al., 2007) and it could potentially be a hotspot for the dispersal of 
TBEV- infected ticks by birds. TBEV isolated from a patient in Kalmar 
in 1993 has been whole genome sequenced and showed the clos-
est resemblance to the NL/UH strain, isolated from I. ricinus ticks in 
the Netherlands and the Ljubljana strain, isolated from a patient in 
Slovenia (Paulsen et al., 2021). This suggests that there is a relation-
ship between the long transport of ticks with TBEV infection and 
tick/human infection.

A potential study limitation is the single sampling between 
August 15th and September 30th, possibly missing peak infection 
rates in ticks due to differences in feeding cycles and how it aligns 
with seasonal spikes in reported cases. We might not capture peak 
infection rates within the ticks since these differences in detection 
rates may be based on feeding cycles in April to July versus August 
to November. However, according to the Norwegian Surveillance 
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System for Communicable Diseases (MSIS), TBE cases in Norway 
starts to appear in May, but the peak season is typically in August 
and September. This makes the timing of our sampling particularly 
fitting, as it aligns with the peak of TBE incidence.

We did not find any geographical clustering of TBEV in southern 
Scandinavia, unlike other tick- borne pathogens (Kjær et al., 2020). 
This could be attributed to a unique transmission potential of TBEV 
during cofeeding. Cofeeding transmission is identified as one of the 
major routes of TBEV transmission and maintenance in foci despite 
the low prevalence in tick population (Nah & Wu, 2021; Randolph 
et al., 2000). The formation of TBEV foci is a result of the complex 
interaction between ticks, their host species and the environment 
and hence might not exhibit a specific pattern.

Relative humidity is a crucial factor in deciding tick survival as 
ticks are very sensitive to desiccation, which might also affect the 
virus in the tick; however, very little is known about the effect of RH 
in TBEV prevalence in ticks (Danielová, 1990; Danielová et al., 1983; 
Korenberg, 2009; Sirotkin & Korenberg, 2019). This study suggests 
that humidity may play a major role in influencing TBEV prevalence 
in ticks in southern Scandinavia. In the northern part of Skåne in 
Sweden, TBEV prevalence in ticks was positively correlated with 
minimum humidity levels in all seasons. This suggests that higher air 
humidity may support more TBEV- positive ticks in areas with a con-
tinental climate like Sweden. TBEV virus was negatively correlated 
with maximum humidity and positively correlated with minimum 
dryness in coastal regions of southeastern Norway. This suggests 
that in regions where humidity levels are already high, lower hu-
midity levels may be favourable. Overall, the study suggests that 
humidity might play an important role in TBEV virus prevalence; 
however, the effect may vary according to local microclimatic con-
ditions. Further studies on understanding the influence of climatic 
parameters particularly the RH might be of special relevance under 
changing climatic conditions in Scandinavia. It is important to note 
that the obtained climatic parameters were from the nearest mete-
orological stations and provide a general relationship. The impact 
of the difference in scales in climate and microclimate has been dis-
cussed as ticks mostly live close to the ground where microclimatic 
conditions are modified by vegetation (Estrada- Peña et al., 2004; 
Randolph & Storey, 1999). It is important to consider that the rela-
tionship observed is based on few positive sites from Norway and 
Sweden and a larger number of study locations might give more in-
formation. It may be necessary for future studies to consider envi-
ronmental data from local microclimate measurements rather than 
an aggregation of data collected from the national meteorological 
stations covering larger areas. This study confirms that TBEV is cir-
culating in many locations throughout southern Scandinavia, point-
ing out that people acquiring tick bites in these areas are at risk of 
developing TBE and as such implying a public health concern. Future 
studies should aim to assess the impacts of climate change and mon-
itor TBE foci in the region.
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