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Abstract
Auxins play an important role in plant physiology and are involved in numerous aspects of plant development, such as cell 
division, elongation and differentiation, fruit development, and phototropic response. In addition, through their antagonistic 
interaction with cytokinins, auxins play a key role in the regulation of root growth and apical dominance. Thanks to this 
capacity to determine plant architecture, natural and synthetic auxins have been successfully employed to obtain more eco-
nomically advantageous plants. The crosstalk between auxins and cytokinins determines plant development and thus is of 
particular importance in the field of plant micropropagation, where the ratios between these two phytohormones need to be 
tightly controlled to achieve proper rooting and shoot generation. Previously reported anti-auxin PEO-IAA, which blocks 
auxin signalling through binding to TIR1 receptor and inhibiting the expression of auxin-responsive genes, has been suc-
cessfully used to facilitate hemp micropropagation. Herein, we report a set of new PEO-IAA-inspired anti-auxins capable of 
antagonizing auxin responses in vivo. The capacity of these compounds to bind to the TIR1 receptor was confirmed in vitro 
by SPR analysis. Using DESI-MSI analysis, we evaluated the uptake and distribution of the compounds at the whole plant 
level. Finally, we characterized the effect of the compounds on the organogenesis of hemp explants, where they showed to 
be able to improve beneficial morphological traits, such as the balanced growth of all the produced shoots and enhanced 
bud proliferation.

Keywords Anti-auxin · Arabidopsis thaliana · Indole-3-acetic acid (IAA) · Multiple shoot culture · DESI-MSI analysis · 
SPR analysis

Introduction

Phytohormones are naturally occurring compounds capa-
ble of modulating plant developmental, physiological, and 
metabolic processes, even at low concentrations (Fonseca 
et al. 2014; Hemelíková et al. 2021). The application of phy-
tohormones to manipulate plant development started in the 
1930s, when ethylene and the related compound acetylene 

were used to alter flowering and fruit formation in pineapple 
(Bartholomew 2014). Since then, the exogenous application 
of phytohormones to plants has become a staple in agricul-
tural and horticultural practices (Rademacher 2015). A better 
understanding of plant hormones and the structural require-
ments essential for their biological activity has allowed the 
creation of synthetic analogues, which have found use not 
only in agriculture, as growth promotors and herbicides, but 
also in plant science as tools to study different biological 
processes (Rigal et al. 2014; Jiang and Asami 2018).

Auxins, amongst which indole-3-acetic acid (IAA) is the 
most abundant one, were the first class of phytohormones 
to be discovered and had been postulated to regulate plant 
growth a century before their chemical identity was revealed 
(Enders and Strader 2015). Auxins are key regulators of 
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many aspects of plant development, including cell division, 
elongation and differentiation, fruit development, and organ 
photo- and gravitropism (Enders and Strader 2015). Canoni-
cal auxin signalling is dependent on nuclear Transport Inhib-
itor Response 1/Auxin Signalling F-box protein (TIR1/AFB) 
auxin receptors, which are capable of both binding the auxin 
and acting as F-box ubiquitin ligases mediating ubiquitina-
tion and protein degradation of Aux/IAA transcriptional 
repressors. These repressors interact and modulate the activ-
ity of several Auxin Response Factors (ARFs), the latter 
being able to recognize auxin response elements (AREs) 
in the promoter region of auxin-controlled genes with vari-
able specificity and affinity (Gallei et al. 2020). Addition-
ally, very rapid cellular non-transcriptional responses to 
auxin, such as the triggering of changes in plasma mem-
brane potential, have been known for decades (Dubey et al. 
2021). Since recently, processes that were believed to be 
regulated through the canonical TIR1/AFB pathway, such 
as the regulation of root growth, are now being reconsid-
ered, as such responses are too fast to involve transcription 
and protein expression, suggesting that an unknown non-
transcriptional branch of TIR1/AFB signalling exists (Friml 
et al. 2022). Selective auxin agonists, such as RubNed-
dins (RNs) (Vain et  al. 2019), and antagonists, such as 
4-(2,4-dimethylphenyl)-2-(1H-indol-3-yl)-4-oxobutanoic 
acid (auxinole) and 2-(1H-indol-3-yl)-4-oxo-4-phenylbuta-
noic acid (PEO-IAA) (Hayashi et al. 2012), can be used to 
study and regulate various plant growth and development 
processes. These anti-auxins have been suggested to bind 
to TIR1, block the formation of the TIR1–IAA–Aux/IAA 
complex, and thus inhibit the expression of auxin-responsive 
genes (Hayashi et al. 2012).

Thanks to the capacity to determine plant architecture, 
auxins, anti-auxins, and cytokinins, on their own or in com-
bination, have been successfully employed to yield plants 
with delayed senescence and improved grain yield, drought 
resistance, seed set, flowering, etc. (Shi et al. 2014; Tamaki 
et al. 2015; Koprna et al. 2016; Liang et al. 2020; Klos et al. 
2022). Moreover, through their antagonistic interaction 
auxins and cytokinins play an essential role in the regula-
tion of root and shoot growth (Aloni et al. 2006; Umehara 
et al. 2008; Kurepa and Smalle 2022), which is of particular 
importance in the field of plant micropropagation, where the 
ratio between these two groups of phytohormones needs to 
be tightly controlled in order to achieve proper shoot growth 
and rooting (Holmes et al. 2021).

Hemp (Cannabis sativa L.), a traditional multi-purpose 
crop which over the centuries has found applications in 
many areas, such as pharmaceutical, textile, paper and 
construction industries, animal feeding, or biofuel pro-
duction (Crini et al. 2020), is one of many species that 
could benefit from advancements in micropropagation 
techniques. Even though large-scale hemp cultivation has 

traditionally been done through seed cultivation, using 
heavily mechanized agricultural practices similar to other 
grain crops (Monthony et al. 2021b), for pharmaceuti-
cal uses clonal methods for plant propagation tend to be 
favoured, as they allow the production of genetically and 
phenotypically uniform, pathogen and disease-free plants 
with consistent growth rates (Crini et al. 2020; Monthony 
et  al. 2021b). Unfortunately, hemp clonal propagation 
in vitro has been proven to be particularly challenging due 
to the strong apical dominance (Smýkalová et al. 2019; 
Dreger and Szalata 2021) and the tendency to form callus 
(Movahedi et al. 2016), which is associated with bud orga-
nogenic recalcitrance (Monthony et al. 2021a). Achieving 
direct regeneration in hemp is problematic (Galán-Ávila 
et  al. 2020), often resulting in a reduced regenerative 
responsiveness in vitro. This is usually attributed to the 
significant genetic variability within each variety, which 
is further exacerbated by diversity in the ploidy status and 
occasional polyploidisation event (Mansouri and Bagheri 
2017; Crawford et al. 2021; Balant et al. 2022), as well 
as to the variability in the representation of female and 
male plants; even though most individuals are dioecious, 
monoecious cultivars also exist (Balant et al. 2022).

During the last couple of years, several synthetic auxin 
and cytokinin derivatives such as meta-topolin (mT) (Lata 
et al. 2016), thidiazuron (TDZ) (Lata et al. 2009; Piunno 
et al. 2019; Dreger and Szalata 2021), 6-benzylaminopu-
rine (BAP) and 1-naphthalene acetic acid (NAA) (Burgel 
et al. 2020) have been tested to better control the growth 
of new tissues, highlighting the potential use of novel syn-
thetic phytohormone derivatives in hemp clonal propaga-
tion. Moreover, we have previously demonstrated that the 
weak anti-auxin PEO-IAA, applied in combination with 
the cytokinin N-benzyl-9-(tetrahydro-2H-pyran-2-yl)
adenine (BAP9THP), is able to efficiently suppress the 
apical dominance of newly forming shoots in hemp. Such 
co-treatment resulted in a balanced multiple shoot culture 
which could be reliably rooted (Smýkalová et al. 2019). 
Therefore, the use of molecules with an anti-auxin charac-
ter to suppress auxin activity and manipulate cytokinin to 
auxin ratio in explants, thus facilitating bud organogenesis 
or embryogenesis, appears to be promising.

In this study, we aimed to further expand the library 
of available anti-auxins that could be used both for 
improving plant micropropagation as well as a tool in 
fundamental plant research. Thus, we synthesized several 
4-([1,1'-biphenyl]-4-yl)-2-(1H-indol-3-yl)-4-oxobutanoic 
acid derivatives, evaluated their anti-auxin activity in vari-
ous auxin bioassays in vivo, studied their effect on root and 
hypocotyl growth on the model plant Arabidopsis thali-
ana, and tested their possible use in hemp explant clonal 
propagation.
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Materials and Methods

Reagents and General Synthetic Methods

The reagents and solvents were purchased from commer-
cial suppliers and used without further purification. The 
microwave irradiation-assisted reactions were performed 
in CEM Discover SP microwave reactor; the reactions 
were carried out in 10 mL glass vials that were sealed 
with silicone/PTFE caps. Reaction progress was monitored 
by thin-layer chromatography (TLC) on aluminium plates 
coated with silica gel 60 F254 (Merck, USA) and the com-
ponents were visualized by UV light (254 and 365 nm) and 
staining solutions (vanillin or potassium permanganate). 
The purification of the products was performed by col-
umn chromatography on silica gel (40–63 micron Davisil 
LC60 A, Grace Davison, UK). 1H (500 MHz) and 13C 
(125 MHz) NMR spectra were recorded in DMSO-d6 or 
acetone-d6 as solvents at room temperature on a Jeol ECA-
500 spectrometer equipped with a 5 mm Royal probe. 
Complete assignment of the 1H and 13C NMR resonances 
was achieved using a combination of standard NMR 
spectroscopic techniques, including heteronuclear single 
quantum coherence (HSQC) and heteronuclear multiple 
bond correlation (HMBC) experiments. Asterisk (*) indi-
cates tentative assignment of solvent-overlapping signals 
based on 1H,13C-HMQC experiment. High-resolution mass 
spectrometry (HRMS) spectra of test compounds were 
recorded with a micrOTOF-Q III Bruker spectrometer in 
electron spray ionization mode. The LC–MS analyses were 
performed on an ACQUITY UPLC® H-Class system com-
bined with UPLC® PDA detector and a single-quadrupole 
mass spectrometer QDa™ (Waters, Manchester, UK) as 
previously described (Bieleszová et al. 2019).

Synthesis of (E)‑4‑(4‑Bromophenyl)‑4‑Ox‑
obut‑2‑Enoic Acid 2

To a solution of maleic anhydride (490 mg, 5 mmol) in 
dichloromethane (40 mL), aluminium chloride (1350 mg, 
10 mmol) was added portion-wise followed by bromoben-
zene (523 µL, 5 mmol). The resulting solution was stirred 
at room temperature for 4 h. Subsequently, reaction mix-
ture was quenched with 1N HCl (50 mL) and extracted with 
ethyl acetate (3 × 30 mL). The combined organic phases 
were washed with saturated ammonium chloride solution 
and brine, dried over anhydrous sodium sulphate, filtered, 
and evaporated under reduced pressure. The crude product 
was used in the next step without any additional purification.

Yield 99%, yellow solid,  Rf = 0.29 (ethyl acetate/metha-
nol 1/0.1). 1H NMR (500 MHz, DMSO-d6): δ 6.68 (d, 

J = 15.6 Hz, 1H, CH), 7.76—7.80 (m, 2H, 2 × CH), 7.84 (d, 
J = 15.5 Hz, 1H, CH), 7.94—7.98 (m, 2H, 2 × CH), 10.22 
(s, 1H, COOH). 13C NMR (125 MHz, DMSO-d6) δ 128.3 
(C), 130.9 (Ph 2 × CH), 132.2 (Ph 2 × CH), 133.3 (CH), 
135.2 (C), 135.9 (CH), 166.3 (COOH), 188.9 (C=O). 
LC–MS (ESI, pos. mode) m/z (%): 255/257 (M +  H+, 96).

Synthesis of 4‑(4‑Bromophenyl)‑2‑(1H‑Indol‑3‑yl)‑
4‑Oxobutanoic Acid 3

A mixture of (E)-4-(4-bromophenyl)-4-oxobut-2-enoic acid 
2 (1000 mg, 3.92 mmol) and indole (505 mg, 4.31 mmol) 
was heated at 80 °C in toluene (31 mL) for 8 h. Upon com-
pletion, resulting reaction mixture was concentrated to 
approximately 1/3 volume, diluted with petroleum ether, 
and then cooled. The formed precipitate was filtered off 
and recrystallized from a mixture of toluene and petro-
leum ether to obtain 4-(4-bromophenyl)-2-(1H-indol-3-yl)-
4-oxobutanoic acid 3 which was further purified by column 
chromatography.

Yield 81%, beige solid.  Rf = 0.77 (ethyl acetate/methanol 
1/0.1). 1H NMR (500 MHz, acetone-d6): δ 3.35 (dd, J = 18.1, 
2.3 Hz, 1H, CH(H)), 3.99—4.13 (m, 1H, CH(H)), 4.46—
4.56 (m, 1H, CH), 6.98—7.12 (m, 2H, Ind 5,6-H), 7.30—
7.41 (m, 2H, Ind 2,7-H), 7.64—7.77 (m, 3H, Ph 3,5-H; Ind 
4-H), 7.99 (d, J = 7.4 Hz, 2H, Ph 2,6-H), 10.22 (br s, 1H, 
NH). 13C NMR (125 MHz, acetone-d6): δ 38.6 (CH), 42.4 
 (CH2), 112.3 (Ind C-7), 113.5 (Ind C-3), 119.8 (Ind C-5), 
120.0 (Ind C-4), 122.4 (Ind C-6), 123.8 (Ind C-2), 127.5 
(Ind C-3a), 128.3 (Ph C-4), 130.8 (Ph C-2,6), 132.7 (Ph 
C-3,5), 136.8 (Ph C-1), 137.7 (Ind C-7a), 175.1 (COOH), 
198.0 (C=O). LC–MS (ESI, pos. mode) m/z (%): 372/374 
(M +  H+, 100).

General Procedure for the Synthesis of 4‑[(1,1'‑Bip
henyl)‑4‑yl]‑2‑(1H‑Indol‑3‑yl)‑4‑Oxobutanoic Acids 
4a‑d

To a solution of 4-(4-bromophenyl)-2-(1H-indol-3-yl)-4-ox-
obutanoic acid 3 (261 mg, 0.7 mmol) in a mixture of etha-
nol (4.2 mL) and water (1.4 mL), appropriate phenylboronic 
acid (1.05 mmol), caesium carbonate (456 mg, 1.4 mmol), 
and palladium(II) acetate (16 mg, 0.07 mmol) were added 
under argon atmosphere. The mixture was stirred at 100 °C 
under microwave irradiation (100 W, 300 Pa) for 30 min. 
Upon completion, the reaction mixture was cooled to room 
temperature and filtered through a pad of Celite and the filter 
cake was washed with ethyl acetate (20 mL). The residue 
was diluted with water (20 mL) and extracted with ethyl 
acetate (3 × 25 mL). The combined organic layers were 
washed with water (10 mL) and brine (10 mL), dried over 
anhydrous sodium sulphate, filtered, and then evaporated 
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under reduced pressure. The crude was purified by column 
chromatography.

Synthesis of 4‑[(1,1'‑Biphenyl)‑4‑yl]‑2‑(1H‑Indol‑3‑yl
)‑4‑Oxobutanoic Acid 4a—BP‑IAA

4-[(1,1'-Biphenyl)-4-yl]-2-(1H-indol-3-yl)-4-oxobutanoic 
acid 4a was prepared in accordance with general procedure 
from 4-(4-bromophenyl)-2-(1H-indol-3-yl)-4-oxobutanoic 
acid 3 (261 mg, 0.7 mmol) and phenylboronic acid (128 mg, 
1.05 mmol). Yield 77%, pale yellow crystals.  Rf = 0.30 
(petroleum ether/ethyl acetate/methanol 1/2/0.05). 1H 
NMR (500 MHz, acetone-d6): δ 3.43 (dd, J = 18.0, 3.8 Hz, 
1H, CH(H)), 4.17 (dd, J = 18.0, 10.6  Hz, 1H, CH(H)), 
4.58—4.62 (m, 1H, CH), 7.04—7.09 (m, 1H, Ind 5-H), 
7.11—7.16 (m, 1H, Ind 6-H), 7.38—7.44 (m, 3H, Ind 2,7-
H; CPh 4-H), 7.47—7.52 (m, 2H, CPh 3,5-H), 7.71—7.75 
(m, 2H, CPh 2,6-H), 7.78—7.83 (m, 3H, C(O)Ph 3,5-H; 
Ind 4-H), 8.15—8.18 (m, 2H, C(O)Ph 2,6-H), 10.27 (br s, 
1H, NH). 13C NMR (125 MHz, acetone-d6): δ 38.6 (CH), 
42.5  (CH2), 112.3 (Ind C-7), 113.6 (Ind C-3), 119.8 (Ind 
C-5), 120.0 (Ind C-4), 122.4 (Ind C-6), 123.8 (Ind C-2), 
127.5 (Ind C-3a), 127.9 (C(O)Ph C-3,5), 128.0 (CPh C-2,6), 
129.1 (CPh C-4), 129.6 (C(O)Ph C-2,6), 129.9 (CPh C-3,5), 
136.6 (C(O)Ph C-1), 137.7 (Ind C-7a), 140.6 (CPh C-1), 
146.2 (C(O)Ph C-4), 175.2 (COOH), 198.3 (C=O). HRMS 
(ESI TOF) for  C24H19NNaO3

+ ([M +  Na]+): calcd 392.1257, 
found 392.1258.

Synthesis of 2‑(1H‑Indol‑3‑yl)‑4‑[2'‑Meth‑
oxy‑(1,1'‑Biphenyl)‑4‑yl]‑4‑Oxobutanoic Acid 
4b—2MBP‑IAA

2-(1H-Indol-3-yl)-4-[2'-methoxy-(1,1'-biphenyl)-4-yl]-4-ox-
obutanoic acid 4b was prepared in accordance with general 
procedure from 4-(4-bromophenyl)-2-(1H-indol-3-yl)-4-ox-
obutanoic acid 3 (261 mg, 0.7 mmol) and 2-methoxyphe-
nylboronic acid (160 mg, 1.05 mmol). Yield 79%, pale yel-
low solid.  Rf = 0.30 (petroleum ether/ethyl acetate/methanol 
1/2/0.05). 1H NMR (500 MHz, DMSO-d6): δ 3.36—3.39* 
(m, 1H, CH(H)), 3.78 (s, 3H,  OCH3), 4.03—4.12 (m, 1H, 
CH(H)), 4.37 (dd, J = 10.7, 3.7 Hz, 1H, CH), 6.99—7.17 
(m, 4H, CPh 3,5-H; Ind 5,6-H), 7.33 – 7.43 (m, 4H, CPh 
4,6-H; Ind 2,7-H), 7.63 (d, J = 8.4 Hz, 2H, C(O)Ph 3,5-H), 
7.70 (d, J = 7.9 Hz, 1H, Ind 4-H), 8.07 (d, J = 8.4 Hz, 2H, 
C(O)Ph 2,6-H), 11.04 (s, 1H, NH), 12.19 (s, 1H, OH). 13C 
NMR (125 MHz, DMSO-d6): δ 37.7 (CH), 41.1  (CH2), 
55.6  (OCH3), 111.5 (Ind C-7), 111.9 (CPh C-3), 112.0 
(Ind C-3), 118.6 (Ind C-5), 119.1 (Ind C-4), 120.9 (CPh 
C-5), 121.2 (Ind C-6), 123.3 (Ind C-2), 126.3 (Ind C-3a), 
127.8 (C(O)Ph C-2,6), 128.7 (CPh C-1), 129.6 (C(O)Ph 
C-3,5), 129.8 (CPh C-4), 130.4 (CPH C-6), 134.8 (C(O)Ph 
C-1), 136.3 (Ind C-7a), 143.1 (C(O)Ph C-4), 156.17 (CPh 

C-2), 174.8 (COOH), 198.0 (C = O). HRMS (ESI TOF) 
for  C25H21NNaO4

+ ([M +  Na]+): calcd 422.1363, found 
422.1362.

Synthesis of 2‑(1H‑Indol‑3‑yl)‑4‑[3'‑Meth‑
oxy‑(1,1'‑Biphenyl)‑4‑yl]‑4‑Oxobutanoic 
Acid 4c—3MBP‑IAA

2-(1H-Indol-3-yl)-4-[3'-methoxy-(1,1'-biphenyl)-4-yl]-4-ox-
obutanoic acid 4c was prepared in accordance with general 
procedure from 4-(4-bromophenyl)-2-(1H-indol-3-yl)-4-ox-
obutanoic acid 3 (261 mg, 0.7 mmol) and 3-methoxyphe-
nylboronic acid (160 mg, 1.05 mmol). Yield 81%, pale yel-
low solid.  Rf = 0.27 (petroleum ether/ethyl acetate/methanol 
1/2/0.05). 1H NMR (500 MHz, DMSO-d6): δ 3.37—3.41* 
(m, 1H, CH(H)), 3.84 (s, 3H,  OCH3), 4.08 (dd, J = 18.1, 
10.7 Hz, 1H, CH(H)), 4.36 (dd, J = 10.6, 3.8 Hz, 1H, CH), 
6.98—7.04 (m, 2H, CPh 4-H; Ind 5-H), 7.06—7.13 (m, 1H, 
Ind 6-H), 7.26—7.45 (m, 5H, CPh 2,5,6-H; Ind 2,7-H), 7.70 
(d, J = 7.9 Hz, 1H, Ind 4-H), 7.84 (d, J = 8.2 Hz, 2H, C(O)Ph 
3,5-H), 8.11 (d, J = 8.3 Hz, 2H, C(O)Ph 2,6-H), and 11.05 (s, 
1H, NH), 12.21 (s, 1H, OH). 13C NMR (125 MHz, DMSO-
d6): δ 37.7 (CH), 41.2  (CH2), 55.2  (OCH3), 111.5 (Ind C-7), 
111.9 (Ind C-3), 112.5 (CPh C-2), 114.0 (CPh C-4), 118.6 
(Ind C-5), 119.1 (Ind C-4), 119.3 (CPh C-6), 121.2 (Ind 
C-6), 123.3 (Ind C-2), 126.3 (Ind C-3a), 127.1 (C(O)Ph 
C-3,5), 128.7 (C(O)Ph C-2,6), 130.2 (CPh C-5), 135.4 (C(O)
Ph C-1), 136.3 (Ind C-7a), 140.4 (CPh C-1), 144.5 (C(O)Ph 
C-4), 159.8 (CPh C-3), 174.8 (COOH), and 198.0 (C=O). 
HRMS (ESI TOF) for  C25H21NNaO4

+ ([M +  Na]+): calcd 
422.1363, found 422.1363.

Synthesis of 2‑(1H‑Indol‑3‑yl)‑4‑[4'‑Meth‑
oxy‑(1,1'‑Biphenyl)‑4‑yl]‑4‑Oxobutanoic 
Acid 4d—4MBP‑IAA

2-(1H-Indol-3-yl)-4-[4'-methoxy-(1,1'-biphenyl)-4-yl]-4-ox-
obutanoic acid 4d was prepared in accordance with general 
procedure from 4-(4-bromophenyl)-2-(1H-indol-3-yl)-4-ox-
obutanoic acid 3 (261 mg, 0.7 mmol) and 4-methoxyphe-
nylboronic acid (160 mg, 1.05 mmol). Yield 73%, yellow 
solid.  Rf = 0.27 (petroleum ether/ethyl acetate/methanol 
1/2/0.05). 1H NMR (500 MHz, DMSO-d6): δ 3.31—3.34* 
(m, 1H, CH(H)), 3.81 (s, 3H,  OCH3), 4.07 (dd, J = 18.1, 
10.7 Hz, 1H, CH(H)), 4.32—4.39 (m, 1H, CH), 6.98—7.13 
(m, 4H, CPh 3,5-H; Ind 5,6-H), 7.33—7.39 (m, 2H, Ind 
2,7-H), 7.67—7.75 (m, 3H, CPh 2,6-H; Ind 4-H), 7.79 (d, 
J = 8.3 Hz, 2H, C(O)Ph 3,5-H), 8.09 (d, J = 8.4 Hz, 2H, 
C(O)Ph 2,6-H), 11.04 (s, 1H, NH), 12.19 (s, 1H, OH). 13C 
NMR (125 MHz, DMSO-d6): δ 37.7 (CH), 41.1  (CH2), 
55.3  (OCH3), 111.5 (Ind C-7), 112.0 (Ind C-3), 114.6 (CPh 
C-3,5), 118.6 (Ind C-5), 119.1 (Ind C-4), 121.2 (Ind C-6), 
123.3 (Ind C-2), 126.2 (C(O)Ph C-3,5), 126.3 (Ind C-3a), 
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128.2 (CPh C-2,6), 128.8 (C(O)Ph C-2,6), 131.1 (CPh C-1), 
134.6 (C(O)Ph C-1), 136.3 (Ind C-7a), 144.3 (C(O)Ph C-4), 
159.7 (CPh C-4), 174.8 (COOH), 197.9 (C=O). HRMS (ESI 
TOF) for  C25H21NNaO4

+ ([M +  Na]+): calcd 422.1363, 
found 422.1362.

SPR Analysis

Surface plasmon resonance (SPR) experiments were done 
in accordance to previously described protocols (Lee et al. 
2014). TIR1 was expressed in insect cell culture using a 
recombinant baculovirus. The construct contained sequences 
for three affinity tags, namely 6 His, green fluorescent pro-
tein (GFP), and FLAG. Protein purified using the His tag 
was used for SPR assays by passing it over a streptavidin 
chip loaded with biotinylated IAA7 degron peptide in the 
presence of IAA and test compounds.

The SPR buffer was Hepes-buffered saline with 10 mM 
Hepes, 3 mM EDTA, 150 mM NaCl and 0.05% Tween-20. 
Compounds were premixed prior to testing with the protein 
to a final 50 μM concentration. Binding experiments were 
run at a flow rate of 30 μl  min−1 using 2 min of injection 
time and 4 min of dissociation time. Data from a control 
channel (a mutated IAA7 peptide) and from a buffer-only 
run supplemented with DMSO (final 1%) were subtracted 
from each sensorgram following the standard double-refer-
ence subtraction protocol.

DESI‑MSI and DESI‑MS/MSI Analyses

Arabidopsis thaliana wild-type ecotype Col-0 seeds were 
sterilized with 70% EtOH with 0.1% Tween-20 solution for 
10 min (2 ×) and rinsed with 96% EtOH for 10 min. After 
2 days of stratification (4 °C in dark), seeds germinated 
on sterile ½ MS medium (2.2 g/L Murashige and Skoog 
medium, 1% sucrose and 0.7% agar—all from Duchefa Bio-
chemie, the Netherlands, 0.5 g/L MES PUFFERAN from 
Carl Roth GmbH, Germany, pH 5.6) in long-day light condi-
tions (22 °C/20 °C, 16 h light/8 h dark, 100 μmol  m−2  s−1). 
Ten-day-old seedlings were transferred to horizontally 
divide heterogeneous media containing ½ MS (1.5% agar) 
medium supplemented with 0.05% dimethyl sulfoxide 
(DMSO) and 0.25% acetonitrile (ACN) (top half of the 
plate) or 0.05% DMSO, 0.25% ACN, and 10 µM of the tested 
compounds (bottom half of the plate). Plates were covered 
with aluminium foil and kept in a growth chamber with 
long-day light conditions (22 °C/20 °C, 16 h light/8 h dark, 
100 μmol  m−2  s−1) in a vertical position for 24 h. Around 
50–70 mm-long plants were freshly collected together with 
untreated control samples for Desorption Electrospray 
Ionization—Mass Spectrometry Imaging (DESI-MSI) and 
Liquid Chromatography—Tandem Mass Spectrometry 
(LC–MS/MS) analyses. The whole plant was rapidly washed 

in ultrapure water for 10 s to remove surface medium and 
mounted on Superfrost glass slides (Thermo Fisher Scien-
tific, Waltham, MA, USA) using non-conductive double-
sided tape (Plano GmbH, Wetzlar, Germany) and stored 
in − 80 ℃ freezer. Sample slides were rapidly dried in a 
vacuum desiccator (Merck), scanned, and then subjected to 
DESI-MSI acquisition. The acquired spectra were recali-
brated using the exact mass of palmitic acid (m/z 255.2324) 
and processed into an imzml format at the HDImaging 
(Waters). Subsequent analysis was performed using the msi-
Quant (Uppsala, Sweden), where the data were processed 
for low-intensity removal, total ion count (TIC) normaliza-
tion, peak alignment, and ion intensity map establishment. 
Deprotonated ions, representing compounds uptaken into 
the plants, were binning within the 0.0001 Da mass range of 
their theoretical masses after calibration. Target compounds 
BP-IAA, 2MBP-IAA, 3MBP-IAA, 4MBP-IAA, PEO-IAA, 
and auxinole assigned as deprotonated masses m/z 368.1292, 
398.1398, 398.1398, 398.1398, 292.0979, and 320.1292 and 
were used to establish the ion intensity maps and following 
statistical analysis.

To validate the results of targeted compounds detected 
in the DESI-MSI analysis, in  situ MS/MS analysis was 
performed using 2–3 mm of primary root tips from treated 
plants. Precursor ions of BP-IAA (m/z 368.1292), its meth-
oxy derivatives (m/z 398.1398), PEO-IAA (m/z 292.0979), 
and auxinole (m/z 320.1292) were scanned at 60 μm spa-
tial resolution and fragmented using 5 eV collision energy. 
Additionally, peaks with the molecular mass assigned to the 
indole ring, ions after the loss of an indole ring, and decar-
boxylated ions of BP-IAA, its methoxy derivatives, PEO-
IAA, and auxinole were also identified and assigned.

DR5::GUS Assay

Arabidopsis thaliana seeds expressing pDR5::GUS 
(Ulmasov et al. 1997) in a Col-0 background were sterilized 
with 70% EtOH with 0.1% Tween-20 solution for 10 min 
(2 ×) and rinsed with 96% EtOH for 10 min. After 2 days 
of stratification (4 °C in dark), seeds germinated on ster-
ile ½ MS medium (2.2 g/L Murashige and Skoog medium, 
1% sucrose, and 0.7% agar—all from Duchefa Biochemie, 
the Netherlands, 0.5  g/L MES PUFFERAN from Carl 
Roth GmbH, Germany, pH 5.6) in long-day light condi-
tions (22 °C/20 °C, 16 h light/8 h dark, 100 μmol  m−2  s−1). 
Five-day-old seedlings were incubated at room temperature 
in 24-well plates containing 1 mL of ½ MS liquid media 
supplemented with auxin derivatives in a final concentra-
tion of 20 μM, with 0.5% DMSO as a mock and 2 μM IAA 
as a positive control. The compounds were applied for 5 h 
treatment. Additionally, seedlings of the Arabidopsis thali-
ana transgenic pDR5::GUS reporter line were treated with 
auxin derivatives in defined concentrations (1, 5 μM) in the 
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presence of 2 μM IAA for 5 h. Seedlings were then incu-
bated in the presence of 500 μL of GUS staining solution at 
37 °C in the dark for 35 min. To stop the staining reaction, 
seedlings were transferred to 500 μL of 70% ethanol and 
kept overnight. Clearing of the roots was done with HCG-2 
solution (120 g chloral hydrate, 90 mL water, 30 mL glyc-
erol) (Ma et al. 2020). GUS expression was evaluated using 
an inverted light microscope (Olympus IX51) with transmis-
sion light mode and phase contrast.

GUS staining solution

Na phosphate buffer, pH 7.0: 4.7 g of  NaH2PO4
.  H2O and 

9.6 g of  Na2HPO4
. 2  H2O from Merck were dissolved in 

500 mL of distilled water to give a 0.2 M stock solution. 
50 mL of Na phosphate buffer was supplemented with 
0.08 g  K3[Fe(CN)6] from Merck, 0.12 g  K4[Fe(CN)6] from 
Lachema n.p., the Czech Republic, 50 µL 0.1% Triton from 
Koch-Light Laboratories, England, and 50 mg of X-Gluc 
from AppliChem GmbH, Germany dissolved in 500 μL of 
DMSO.

35S::DII‑VENUS Assay

Arabidopsis thaliana seeds expressing p35S::DII-VENUS 
(Brunoud et al. 2012) in a Col-0 background were sterilized 
with 70% EtOH with 0.1% Tween-20 solution for 10 min 
(2 ×) and rinsed with 96% EtOH for 10 min. After 2 days 
of stratification (4 °C in dark), seeds germinated on ster-
ile ½ MS medium (2.2 g/L Murashige and Skoog medium, 
1% sucrose, and 0.7% agar—all from Duchefa Biochemie, 
the Netherlands, 0.5 g/L MES PUFFERAN from Carl Roth 
GmbH, Germany, pH 5.6) in long-day light conditions 
(22 °C/20 °C, 16 h light/8 h dark, 100 μmol  m−2  s−1). Five-
day-old seedlings were treated in liquid ½ MS medium in 
the presence of BP-IAA compounds, auxinole and PEO-IAA 
(5 µM in 0.5% DMSO) or DMSO as a control for 1 h. The 
seedlings were then transferred to a glass slide with a drop 
of untreated medium and confocal images were taken using 
a Zeiss LSM 900 confocal microscope (Carl Zeiss, Ger-
many) with a 10 × objective and resolution of 1024 × 1024 
px. VENUS fluorescent protein was excited at 488 nm. At 
least 30 plants belonging to three independent biological 
replicates were measured.

Root Growth Assay

Arabidopsis thaliana wild-type ecotype Col-0 seeds were 
sterilized with 70% EtOH with 0.1% Tween-20 solution for 
10 min (2 ×) and rinsed with 96% EtOH for 10 min. After 
2 days of stratification (4 °C in dark), seeds germinated 
on sterile ½ MS medium (2.2 g/L Murashige and Skoog 
medium, 1% sucrose, and 0.7% agar—all from Duchefa 

Biochemie, the Netherlands, 0.5 g/L MES PUFFERAN 
from Carl Roth GmbH, Germany, pH 5.6) supplemented 
with 0.3% DMSO as a mock or 0.5 μM IAA as a positive 
control and tested compounds in defined concentrations (1, 
5, 10, 20 μM) with or without the presence of 0.5 μM IAA 
for 5 days in long-day light conditions (22 °C/20 °C, 16 h 
light/8 h dark, 100 μmol  m−2  s−1). Primary root length was 
measured using ImageJ software (https:// imagej. nih. gov/ 
ij/) and normalized to mock. At least 30 plants belonging 
to three independent biological replicates were measured.

Hypocotyl Elongation and Cytoskeletal Organiza‑
tion Assay

Arabidopsis thaliana MBD::GFP seeds (Marc et al. 1998) 
were sown in full MS (pH 5.7, 0.8% agar) and grown ver-
tically in a growth chamber (22 °C/20 °C, 16 h light/8 h 
dark, 60 μmol  m−2  s−1 light intensity). Five days after sow-
ing seedlings were transferred to a new media containing 
5, 10, or 20 μM of either BP-IAA or auxinole, with and 
without co-treatment with 0.5 μM NAA (final DMSO con-
centration of 0.9%). All samples were examined 1 and 3 days 
after treatment using an Axio imager Z.1 platform equipped 
with LSM700 module (Carl Zeiss, Germany) using 40 × oil 
objective, as previously described (Skalák et al. 2019). The 
light source included an argon–neon laser with wavelength 
488 nm for GFP fluorescence and 639 nm for chlorophyll 
auto-fluorescence to avoid interference of the two fluores-
cence channels. Cell length and microtubule density (esti-
mated as Mean Grey Intensity) were calculated using ImageJ 
software. The microtubule orientation and anisotropy of the 
microtubule array were also calculated on ImageJ, using the 
FibrilTool macro (Boudaoud et al. 2014). All parameters 
were calculated on at least 8 plants per treatment (at least 
200 total cells per treatment), belonging to three independent 
biological replicas.

Micropropagation of Hemp (Cannabis sativa L.) 
from Nodal Segments

Monoecious hemp (Cannabis sativa L.) seeds, variety USO-
31 (origin Ukraine), were obtained from the Czech Hemp 
Gene Bank (Agritec Ltd., the Czech Republic). Seeds were 
surface sterilized and germinated as described previously 
(Smýkalová et al. 2019) and nodal segments (i.e. the first 
node below the apex containing two meristems for two 
future shoots) were used as a type of an explant. For the 
experiment, 10 µM BAP9THP and 10 µM anti-auxin activ-
ity-possessing substances (BP-IAA, its methoxy derivatives, 
PEO-IAA, and auxinole) were added to the medium previ-
ously described (Smýkalová et al. 2019), which was sup-
plemented with macro- and microelements (Murashige and 
Skoog 1962) and vitamins (Gamborg et al. 1968), 100 mg/L 

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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myo-inositol, 40 mg/L adenine hemisulfate, 30 g/L sucrose, 
5 g/L activated carbon, 5.5 g/L agar (Difco Bacto), and pH 
5.8–6. Explants were cultured in a growth room at 21 ± 2 °C, 
light intensity 156 µmol  m−2  s−1, 16 h photoperiod, and 60% 
relative humidity. Nineteen to twenty six explants per treat-
ment, belonging to three (in case of BP-IAA) or four (in case 
of all other anti-auxins) biological replicates, were used. 
A selection of morphological parameters was recorded as 
either present or absent upon visual examination. Positively 
evaluated parameters for nodal segments: balanced growth 
of both shoots, proliferation of both buds, proliferation of 
more buds – i.e. more shoots, and proliferation of lateral 
buds at the base. Negatively evaluated parameters for nodal 
segments: formation of callus, long shoots, dominance of 
one shoot, and proliferation of one bud. The average num-
ber of shoots per explant was recorded. Data of positively 
and negatively evaluated parameters were processed with 
R 4.2.1 in environment of RStudio 2023.03.0 Build 386 (R 
Core Team 2022). Scripts were written using packages: stats 
4.2.1, readxl 1.4.2, rstatix 0.7.2, ggplot2 3.4.2, and gridExtra 
2.3. Chi-square test and respective P-values were computed 
by Monte Carlo simulation. Pairwise Fisher’s test was used 
as a post hoc test with Bonferroni correction of calculated 
P-values. Significance level was set to α = 0.05.

Results and Discussion

Synthesis of BP‑IAA and its Methoxy Derivatives

The synthetic strategy for target compounds is depicted in 
Fig. 1. Firstly, (E)-4-(4-bromophenyl)-4-oxobut-2-enoic 
acid (2) (Drakulić et al. 2011) was readily prepared by Frie-
del–Crafts acylation of bromobenzene (1) with maleic acid 
anhydride in dichloromethane, using  AlCl3 as a Lewis acid 

in accordance with previously reported procedure (Hayashi 
et al. 2012). In the next step, Michael addition of indole 
to (E)-4-(4-bromophenyl)-4-oxobut-2-enoic acid (2) in 
toluene at 80 °C afforded 4-(4-bromophenyl)-2-(1H-indol-
3-yl)-4-oxobutanoic acid (3) (Sayed and Elhalim 1981) in 
81% yield. Suzuki–Miyaura cross-coupling on auxin-like 
starting materials is typically done via a 3-step synthetic 
sequence, involving protection and deprotection of carbox-
ylic acid group (Do-Thanh et al. 2016; Uchida et al. 2018; 
Torii et al. 2018). In this work, 4-(4-bromophenyl)-2-(1H-
indol-3-yl)-4-oxobutanoic acid (3) was used in ligand-free 
Pd-catalysed Suzuki–Miyaura cross-coupling directly, with-
out protection of carboxylic acid group as an ester. Namely, 
4-(4-bromophenyl)-2-(1H-indol-3-yl)-4-oxobutanoic acid 
(3) was treated with various arylboronic acids in the pres-
ence of  Cs2CO3 as a base and catalytic amount of Pd(OAc)2 
in aqueous ethanol at 100 °C under microwave irradiation 
(Razmienė et al. 2021) furnishing products 4a-d in 73–81% 
yield (Fig. 1). The latter were designated as BP-IAA and its 
methoxy analogues, 2MBP-IAA, 3MBP-IAA, and 4MBP-
IAA, respectively (Fig. 2).

Determination of Biological Activity In Vitro by SPR 
Assay

First, using surface plasmon resonance (SPR) analysis (Lee 
et al. 2014), BP-IAA and its methoxy derivatives were tested 
for binding to auxin receptor TRANSPORT INHIBITOR 
RESPONSE 1 (TIR1) (Dharmasiri et al. 2005; Kepinski 
and Leyser 2005) and AUXIN/INDOLE-3-ACETIC ACID7 
(IAA7) co-receptor complex (Villalobos et al. 2012). As 
anticipated, derivatization of the PEO-IAA core with aro-
matic substituents resulted in generation of compounds with 
anti-auxin activity. When mixed with purified TIR1, neither 
BP-IAA compounds, nor auxinole were able to support TIR1 

Fig. 1  Synthesis of BP-IAA compounds 4a–d 
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co-receptor assembly with IAA7 on the SPR chip even at 
50 μM concentration (Supplementary Fig. S1). On the other 
hand, when co-treated with 5 μM IAA, BP-IAA compounds 
effectively inhibited TIR1 co-receptor assembly with IAA7 
degron (Fig. 3A), by competing with IAA for its binding 
site, thus reducing the signal in a dose-dependent manner 
(Fig. 3B for BP-IAA).

Validation of Uptake in Planta

The uptake of lipophilic compounds into roots is considered 
to be fast; however, their transport to the upper plant parts 
is slow (Schriever and Lamshoeft 2020). Due to the bulky 
aromatic structures of BP-IAA compounds, confirmation of 
their uptake was needed prior to the in vivo experimenta-
tion. Desorption Electrospray Ionization-Mass Spectrom-
etry Imaging (DESI-MSI) is emerging as a powerful tool 
for in situ identification and visualization of small molecules 
(Zhang et al. 2021). Therefore, ten-day-old Arabidopsis thal-
iana plants were transferred to ½ MS media containing BP-
IAA compounds and their presence in different plant tissues 
was visualized by desorption electrospray ionization—mass 
spectrometry (DESI-MS) and compared to the reference 
compounds PEO-IAA and auxinole (Fig. 4). In general, all 
six targeted compounds demonstrated high abundance in the 
primary root of treated plants, compared to the absence of 
peaks found in control plants (Fig. 4). The ions of BP-IAA 
and its methoxy derivatives were only detected in the mature 
root growing in the treated part of the medium, whereas the 
hypocotyl, root cap, elongation zone, and upper root in the 
non-treated part of the medium did not contain any afore-
mentioned ions. In the case of the least lipophilic compound 
PEO-IAA (Supplementary Table S1), a high signal intensity 
level was observed not only in the mature regions but also 
in almost all imaging tissues, from the root cap to hypocotyl 
and epicotyl. The ions of auxinole were widely present in 
the primary root attached to the treated medium with robust 
signal intensities (Fig. 4).

To validate the results of targeted compounds detected 
in the DESI-MSI, in situ MS/MS analysis was performed 
using 2–3 mm of primary root tips from treated plants. 
Notably, the peak assigned as the indole ring was identi-
fied in all fragmentation spectra and displayed very similar 
distributions with precursor masses of targeted compounds 
in their ion intensity maps (Fig. 5). Peaks of decarboxylated 
ions were identified and assigned for all the compounds, 
whilst peaks representing ions after the loss of the indole 
ring were identified for all compounds except PEO-IAA. In 
summary, peaks predicted as fragmentation ions of targeted 
compounds matched previous records in the standard frag-
mentation spectra and their spatial distributions were com-
patible with the ion intensity maps established by precursor 
masses, which proved the presence of targeted compounds 
in the treated plants.

Determination of Biological Activity in Arabidopsis 
Roots

The anti-auxin activity of BP-IAA compounds predicted by 
the SPR analysis was confirmed in vivo employing Arabi-
dopsis auxin-responsive reporter line pDR5::GUS. This 
line possesses a β-glucuronidase (GUS) reporter gene fused 
to the artificial canonical DR5 auxin-responsive promoter. 
The regulation of GUS expression responds to auxin levels, 
thus allowing the visualization of auxin maximas (Bai and 
DeMason 2008). Similarly to auxinole and PEO-IAA, BP-
IAA compounds did not induce pDR5::GUS expression in 
Arabidopsis primary roots. On the other hand, likewise to 
auxinole, all BP-IAA compounds were able to overcome 
2 µM IAA-induced GUS expression at 5 µM concentration, 
whilst the effect of PEO-IAA was milder (Fig. 6).

Additionally, the activity of BP-IAA compounds was fur-
ther evaluated using DII-VENUS line, which expresses fluo-
rescently labelled Aux/IAA auxin interaction DII domain 
(Brunoud et al. 2012). The DII domain is ubiquitinated and 
induces degradation of the protein in response to the auxin 
dose-dependent presence. The fluorescent signal is rapidly 

Fig. 2  Structures of PEO-IAA, auxinole, BP-IAA, and its methoxy derivatives
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degraded in response to exogenously applied auxin, whilst it 
increases upon treatment with TIR1-IAA-Aux/IAA complex 
formation inhibitor auxinole (Hazak et al. 2014). In a simi-
lar manner to auxinole and PEO-IAA, BP-IAA compounds 
induced the accumulation of the DII-VENUS reporter pro-
tein by repressing the endogenous IAA activity, resulting in 

an increase in the fluorescent signal in the elongation zone 
of Arabidopsis primary root (Fig. 7, Supplementary Fig. S2).

Arabidopsis roots react to the addition of auxin by 
extremely rapid root growth inhibition which gets restored 
once the auxin source is removed (Fendrych et al. 2018). 
Additionally, auxin-induced root growth inhibition can be 

Fig. 3  SPR analysis of the antagonistic effect of BP-IAA and its 
methoxy derivatives on auxin-induced interaction between TIR1 pro-
tein and IAA7 degron peptide. The sensorgrams show association for 
120  s followed by dissociation in buffer for 240  s. Results for IAA 

(5 μM) on TIR1 protein alone (red) and A in co-treatment with BP-
IAA, its methoxy derivatives, and auxinole (each at 50  μM) and B 
in co-treatment with BP-IAA in a concentration range (1, 5, 10, 20, 
50 μM) (Color figure online)

Fig. 4  DESI-MSI analysis revealing the different abundances of BP-
IAA, 2MBP-IAA, 3MBP-IAA, 4MBP-IAA, PEO-IAA, and auxinole 
ions in the treated (each at 10  µM) Arabidopsis plant samples. Ion 

intensity maps were established using RMS normalized peak intensi-
ties of targeted compounds. The signal intensity levels are displayed 
in the nearby scale bar
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reverted by co-treatment with the auxin antagonist auxinole 
(Hayashi et al. 2012) or several other anti-auxin activity-
possessing molecules (Bieleszová et al. 2019). On the other 
hand, other known anti-auxins, such as PEO-IAA, BH-
IAA, or PCIB, are not able to even partially revert auxin-
induced root growth inhibition (Oono et al. 2003; Hayashi 
et al. 2012). As anticipated, at high concentrations BP-IAA 
derivatives slightly reduced primary root growth of Arabi-
dopsis plants (Fig. 8A), which is a typical feature of anti-
auxins (Oono et al. 2003; Hayashi et al. 2012). However, 
despite the observed anti-auxin effect in SPR assay, analo-
gously to PEO-IAA and PCIB, BP-IAA compounds were 
not able to revert 0.5 µM IAA-induced root growth inhibi-
tion to the same extent as auxinole (Fig. 8B). This could 
suggest that BP-IAA compounds are probably not capable 
of antagonizing TIR1-independent auxin responses, such 
as the auxin-binding protein 1-transmembrane kinase 1 
(ABP1-TMK1)-dependant auxin signalling pathway, which 
has been shown to modulate the activation of plasma mem-
brane  H+-ATPases, cell wall acidification, and cell expan-
sion, amongst other processes (Lin et al. 2021; Friml et al. 
2022).

Effect of BP‑IAA on Hypocotyl Elongation 
and Cytoskeletal Organization

In the hypocotyl, auxins have been suggested to regulate cell 
expansion (Collett et al. 2000) and modulate microtubule 
orientation (Chen et al. 2014). It is generally assumed that 
there is a correlation between microtubule orientation and 
cell expansion, with transversal microtubule arrays usually 
being found in elongating cells (Baskin 2001; Chen et al. 
2014); even though the causality between both parameters is 
still being discussed. The effect of the newly developed anti-
auxins on microtubule orientation was analysed using Arabi-
dopsis thaliana expressing a GFP-tagged binding domain 
of the microtubule associated protein 4 (MBD::GFP) (Marc 
et al. 1998). Five-day-old MBD::GFP plants treated with 
0.5 µM NAA underwent a significant microtubule reorien-
tation favouring longitudinally oriented fibres (60–90°) in 
detriment of transversal ones (0–30°), leading to a higher 
average microtubule angle (Table 1, Fig. 9, Supplementary 
Fig. S3). In agreement with the work of Chen et al. (Chen 
et al. 2014), Arabidopsis plants showed decreased hypoco-
tyl cell elongation rate following NAA treatment (Table 1). 

Fig. 5  DESI-MS/MSI analysis of targeted compounds (BP-IAA, its 
methoxy derivatives, PEO-IAA, and auxinole) precursor ions, major 
fragmentation ions, and their distribution patterns acquired from 
treated Arabidopsis primary root tip. The molecular formulas of the 

identified fragments are also shown. Selected precursor masses of tar-
geted compounds are marked in green. Identified fragmentation ions 
of target compounds using 5  eV collision energy are marked in red 
(Color figure online)
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Treatment with the auxinole had a similar effect as NAA 
on the microtubule orientation which, interestingly, was not 
dose dependent. Furthermore, treatment with 5 to 20 µM of 
auxinole also decreased cell elongation rates in a fashion 
similar to NAA. This effect falls in line with the findings of 
Collett et al. (Collett et al. 2000), which suggest that auxin 
levels are already optimal in seedlings and any deviation 
from that concentration, either increase or decrease, results 

in a decrease in cell elongation. On the contrary, treatment 
with BP-IAA had a less severe effect on cytoskeletal organi-
zation, but it affected it in a dose-dependent manner, with 
5 µM BP-IAA having no significant effect on microtubule 
orientation and 20 µM BP-IAA showing an effect closer to 
that of NAA. This pattern was mirrored by the cell elonga-
tion rates, with 20 µM resulting in decreased rates, whilst 
supply of 5 µM BP-IAA showed no differences from controls 

Fig. 6  The effect of BP-IAA 
derivatives on GUS expression 
in pDR5::GUS transgenic plants 
of Arabidopsis thaliana. Five-
day-old seedlings were A kept 
untreated or treated with IAA 
(2 µM), B BP-IAA compounds, 
auxinole or PEO-IAA (each 
at 20 µM) for 5 h alone, or C 
co-treated with IAA (2 µM) 
and with BP-IAA compounds, 
PEO-IAA, or auxinole (each at 
1, 5 μM) for 5 h. Figures were 
chosen as representatives from 
three independent biological 
repetitions

Fig. 7  The effect of BP-IAA 
compounds on DII-VENUS 
expression in p35S::DII-
VENUS reporter line. Five-day-
old seedlings were incubated 
with anti-auxins BP-IAA, its 
methoxy derivatives, PEO-IAA, 
or auxinole (each at 5 μM) 
for 1 h. Fluorescent confocal 
images were chosen as repre-
sentatives from three independ-
ent biological repetitions
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(Table 1). Co-treatment with auxinole started to counter-
act the effect of NAA in microtubule orientation and cell 
elongation rate at 10 µM, but only managed to completely 
revert to the values found in controls at a concentration of 
20 µM (Table 1). On the contrary, co-treatment with BP-IAA 
showed a greater effect at counteracting NAA, as a concen-
tration of 5 µM was enough to revert the effect of NAA and 
bring the average microtubule angle back to the values found 

in controls (Table 1). Lastly, none of the treatments resulted 
in a decrease in the level of organization of the microtubule 
array (anisotropy) (Table 1).

When plants are subjected to certain stresses, such as 
salinity, low temperature, or hormonal and ROS unbalance, 
they usually undergo microtubule depolymerization and a 
consequent decrease in cytoskeleton density (Zhang et al. 
2012; Fujita et al. 2013; Araniti et al. 2016). In this case, 

Fig. 8  The effect of BP-IAA derivatives on Arabidopsis thaliana 
(Col-0) primary root growth. The primary root length was quantified 
in five-day-old seedlings grown on BP-IAA compounds (each at 1, 
5, 10, 20 μM) A in the absence or B presence of IAA (0.5 μM) and 
normalized to mock. IAA (0.5 μM), PEO-IAA, and auxinole (each at 
1, 5, 10, 20 μM) were used as controls. Statistical analyses were per-

formed using the t test, values are means ± S.E., and n > 30 from three 
independent replicates. White circles (○) indicate statistically sig-
nificant differences (P < 0.01) compared to mock, whilst black circles 
(●) indicate statistically significant differences (P < 0.01) between the 
effect of BP-IAA compounds, PEO-IAA, and auxinole compared to 
0.5 μM IAA treatment

Table 1  Microtubule angle (degrees), microtubule density and anisotropy of the microtubule array in five-day-old Arabidopsis thaliana 
MBD::GFP plants 1 day after treatment, and cell elongation rate (µm  day−1) between days 1 and 3 after treatment

Values show mean ± S.E.; n ≥ 8 plants. Different letters indicate statistically significant differences between treatments according to Tukey’s test 
(P < 0.05)

Treatment Cell elongation rate (µm 
 day−1)

Microtubule angle 
(degrees)

Microtubule density Anisotropy

mock 10.6 ± 0.6 ab 31 ± 1 g 38 ± 1 a 0.30 ± 0.01 bc
NAA (0.5 µM) 1.9 ± 0.7 e 45 ± 2 abc 24 ± 1 d 0.37 ± 0.02 abc
BP-IAA (5 µM) 10.6 ± 1.0 ab 34 ± 2 efg 35 ± 1 ab 0.29 ± 0.01 c
BP-IAA (10 µM) 8.6 ± 1.0 abc 37 ± 2 defg 33 ± 2 abc 0.33 ± 0.02 abc
BP-IAA (20 µM) 6.3 ± 0.9 bcd 45 ± 2 abcd 33 ± 2 abc 0.33 ± 0.02 abc
BP-IAA (5 µM) + NAA (0.5 µM) 11.1 ± 1.0 a 34 ± 2 fg 36 ± 1 a 0.34 ± 0.01 abc
BP-IAA (10 µM) + NAA (0.5 µM) 9.2 ± 0.8 ab 37 ± 2 defg 35 ± 2 ab 0.34 ± 0.02 abc
BP-IAA (20 µM) + NAA (0.5 µM) 9.2 ± 0.6 ab 37 ± 3 cdefg 36 ± 2 ab 0.35 ± 0.02 abc
auxinole (5 µM) 2.8 ± 1.0 de 51 ± 1 a 24 ± 1 d 0.33 ± 0.02 abc
auxinole (10 µM) 4.2 ± 1.0 cde 46 ± 2 ab 27 ± 1 cd 0.31 ± 0.02 abc
auxinole (20 µM) 1.1 ± 0.7 e 52 ± 2 a 23 ± 1 d 0.35 ± 0.02 abc
auxinole (5 µM) + NAA (0.5 µM) 0.6 ± 1.3 e 43 ± 2 abcde 22 ± 1 d 0.39 ± 0.01 a
auxinole (10 µM) + NAA (0.5 µM) 1.6 ± 1.1 e 40 ± 2 bcdef 27 ± 2 bcd 0.38 ± 0.02 ab
auxinole (20 µM) + NAA (0.5 µM) 8.9 ± 0.7 abc 32 ± 2 cdefg 27 ± 1 cd 0.35 ± 0.01 abc
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external NAA supply, in addition to inducing a microtubule 
reorientation, also decreased microtubule density (Table 1). 
Similarly, when added independently, both auxinole and 

BP-IAA might have created stress, which decreased microtu-
bule density, even though the effect was much more acute in 
the case of auxinole. However, the difference between aux-
inole and BP-IAA got accentuated when they were applied 
in co-treatment with NAA. In that context, no concentra-
tion of auxinole reverted the effect of NAA on microtubule 
density, whilst 5 µM of BP-IAA was enough to bring the 
microtubule density back to the values found in controls. 
This highlights the contradiction between the effect of BP-
IAA alone (where it shows a milder disruptive effect on cell 
growth and cytoskeletal organization than auxinole) and in 
combination with NAA (where it counteracts the effect of 
NAA at lower concentrations than auxinole), which deserves 
further investigation.

Application of BP‑IAA Compounds in Hemp Micro‑
propagation

In our previous work, we demonstrated that weak anti-
auxin PEO-IAA can efficiently suppress apical dominance 
of newly forming shoots in hemp. Co-treatment with BAP-
9THP and PEO-IAA gave a balanced multiple shoot culture 
for the formation of shoots which could be reliably rooted 
(Smýkalová et al. 2019). Having established PEO-IAA as 
a valuable component of hemp propagation medium, we 
further analysed if micropropagation of hemp could be 
further improved using BP-IAA compounds as a choice of 
anti-auxin.

The experiments were conducted on nodal segments of 
variety USO-31, using the newly prepared anti-auxins at 
10 µM concentration in combination with 10 µM BAP9THP 
as a choice of a cytokinin. The previously described meth-
odological procedure was used (Smýkalová et al. 2019) and 
a selection of positive and negative parameters was visually 
evaluated for each node and recorded as either present or 
absent (Fig. 10). In addition, the average number of shoots 
per explant was calculated.

The comparison of positive and negative morphologi-
cal traits of explants after the application of anti-auxins 
in a medium intended for the induction of multiple shoot 

Fig. 9  The effect of BP-IAA derivatives on microtubule orientation in 
the hypocotyl of Arabidopsis thaliana MBD::GFP plants. Five-day-
old seedlings were A kept untreated or treated with NAA (0.5 µM), 
B treated with BP-IAA or auxinole (each at 5, 10, 20 µM) for 1 day 
alone, or C co-treated with NAA (0.5 µM). Figures were chosen as 
representatives from three independent biological repetitions

Fig. 10  Examples of positively A–D and negatively E–H evaluated 
parameters at nodes: balanced growth of both shoots (A), prolifera-
tion of both buds (B), proliferation of more buds/shoots (C), prolif-

eration of lateral buds at the base (D), callus (E), longer shoots (F), 
dominance of one shoot (G), and proliferation of one bud (H)
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culture (MSC) in hemp micropropagation culture is shown 
in Table  2, Supplementary Fig. S4 and Supplementary 
Table S2. After cutting off the shoot apex, the nodal seg-
ment contains two meristems for the proliferation of two 
shoots. Due to high auxin concentrations in hemp nodal 
segments, apical dominance of one of the two shoots and 
callus formation are commonly observed in MSC (Smýka-
lová et al. 2019; Dreger and Szalata 2021). In the present 
study, co-treatment with BAP9THP and BP-IAA deriva-
tives suppressed the apical dominance, resulting in uniform 
development of both buds from one node and the reduction 
or prevention of callus formation on the basal part. Out of 
the four tested novel compounds, BP-IAA and 4MBP-IAA 
yielded the highest number of shoots per explant, which was 
comparable to that of auxinole and PEO-IAA. Moreover, 
in the case of BP-IAA, as well as the known anti-auxins 
auxinole and PEO-IAA, a slight increase in the percentage 
of explants that displayed proliferation of more buds was 
observed, which can enable easier multiplication of meris-
tems. However, it should be noted that none of the BP-IAA 
compounds promoted the proliferation of lateral buds at the 
base that was observed with auxinole and PEO-IAA.

The application of 10 μM BP-IAA compounds yielded a 
low percentage of explants with long shoots or with domi-
nance of only one shoot. The use of BP-IAA was particularly 
positive regarding dominance of one shoot, and it showed 
better results than PEO-IAA. On the contrary, PEO-IAA 
was the best option for keeping a low percentage of plants 
with only one developed bud. Lastly, the number of plants 
which developed callus was relatively high in case of all 
tested compounds, with 2MBP-IAA being the most potent 
to prevent callus formation.

Conclusion

In this work, we prepared a set of novel indolic compounds 
which are absorbed by Arabidopsis thaliana primary root 
and showed strong anti-auxin activity in SPR assay. Fur-
ther testing of biological activity in vivo using Arabidop-
sis pDR5::GUS and p35S::DII-VENUS lines proved that 
BP-IAA and its methoxy derivatives overcome the effect of 
exogenous and endogenous auxin, respectively. BP-IAA was 
also shown to counteract the effect of exogenous auxins on 
Arabidopsis hypocotyl elongation, without any strong nega-
tive effect on its own. Lastly, we tested the use of BP-IAA 
and its methoxy derivatives in hemp micropropagation as 
a supplement for the establishment of multiple shoot cul-
tures, where they improved positive morphological traits, 
such as the balanced growth of all the produced shoots and 
the proliferation of more than one bud, without negatively 
affecting the explants.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00344- 023- 11031-x.
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Table 2  Average number of shoots per node (mean ± SE) and per-
centage of hemp explants showing positively (white to blue scale) and 
negatively (white to red scale) evaluated morphological traits after 

application of 10 μM of BAP9THP and 10 μM of anti-auxins. Differ-
ent letters indicate statistically significant differences between treat-
ments according to Tukey’s test (P < 0.05) (Color figure online)

  BP-IAA 2MBP-IAA 3MBP-IAA 4MBP-IAA PEO-IAA auxinole 

Shoots per node (mean ± SE) 
1.89 ± 0.11 
ab 

1.57 ± 0.12 
b 

1.73 ± 0.10 
ab 

1.88 ± 0.07 
ab 

2.04 ± 0.07 
a 

1.84 ± 0.16 
ab 

Balanced growth of both shoots (%) 100 96.4 95.5 91.7 61.5 92.0 

Proliferation of both buds (%) 83.3 71.4 72.7 87.5 88.5 60.0 

Proliferation of more buds (%) 5.6 0 0 0 7.7 16.0 

Proliferation of lateral buds (%) 0 0 0 0 69.2 68.0 

Callus (%) 61.1 25.0 54.5 50.0 53.8 52.0 

Long shoots (%) 5.6 3.6 27.3 20.8 38.5 16.0 

Dominance of one shoot (%) 0 3.6 4.5 20.8 3.8 8.0 

Proliferation of one bud (%) 16.7 14.3 27.3 16.7 3.8 16.0 
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