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Abstract

Ecological research and monitoring need to be able to rapidly convey informa-

tion that can form the basis of scientifically sound management. Automated

sensor systems, especially if combined with artificial intelligence, can contribute

to such rapid high-resolution data retrieval. Here, we explore the prospects of

automated methods to generate insights for seabirds, which are often moni-

tored for their high conservation value and for being sentinels for marine eco-

system changes. We have developed a system of video surveillance combined

with automated image processing, which we apply to common murres Uria

aalge. The system uses a deep learning algorithm for object detection (YOLOv5)

that has been trained on annotated images of adult birds, chicks and eggs, and

outputs time, location, size and confidence level of all detections, frame-by-

frame, in the supplied video material. A total of 144 million bird detections

were generated from a breeding cliff over three complete breeding seasons

(2019–2021). We demonstrate how object detection can be used to accurately

monitor breeding phenology and chick growth. Our automated monitoring

approach can also identify and quantify rare events that are easily missed in tra-

ditional monitoring, such as disturbances from predators. Further, combining

automated video analysis with continuous measurements from a temperature

logger allows us to study impacts of heat waves on nest attendance in high

detail. Our automated system thus produces comparable, and in several cases

significantly more detailed, data than those generated from observational field

studies. By running in real time on the camera streams, it has the potential to

supply researchers and managers with high-resolution up-to-date information

on seabird population status. We describe how the system can be modified to

fit various types of ecological research and monitoring goals and thereby pro-

vide up-to-date support for conservation and ecosystem management.

Introduction

The current rate of biodiversity loss requires urgent

actions to avoid devastating consequences for the world’s

ecosystems (IPBES, 2019). Such actions must be sup-

ported by robust knowledge of how ecosystems work and

respond to change, which in turn needs to be under-

pinned by high-quality data of sufficient coverage
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(Mouquet et al., 2015; Sun & Scanlon, 2019). Further-

more, given the often abrupt and nonlinear nature of eco-

system changes, it is important that signals can be

detected early on – something that requires high data res-

olution and signal-to-noise ratios (Clements et al., 2015;

Hillebrand et al., 2020; Scheffer et al., 2009; Schmeller

et al., 2018). Finally, in order to be useful in a practical

setting, these data need to be up-to-date and cheap to

obtain (Hampton et al., 2013; Purves, 2013).

The need for large amounts of high-resolution data is

increasingly being met by automated systems, moving

ecology into a ‘big data’ field with datasets of a size and

resolution previously unimaginable (Hampton

et al., 2013; Keitt & Abelson, 2021; Kelling et al., 2015;

Michener & Jones, 2012). A few examples include online

databases with billions of biotelemetry records (Davidson

et al., 2021), several online data products from global-

scale remote sensing (Wulder et al., 2012), regional net-

works of hundreds of audio recording units for species

occurrence monitoring (Roe et al., 2021) and global net-

works of aquatic data collection buoys (Marcé

et al., 2016; Roemmich et al., 2019).

Maximizing the utility of the vast amounts of data gen-

erated by automated sensor systems necessitates minimal

latency between data acquisition, analysis and inference,

in other words, high ecological velocity (Farley

et al., 2018). One way to increase ecological velocity is to

use artificial intelligence (AI), with machine learning algo-

rithms processing continuous streams of data to provide

inference and insights (Christin et al., 2019; Goodwin

et al., 2022; Makiola et al., 2020). Early applications in

this realm include real-time event identification in bio-

loggers for tracking animal movement (Korpela

et al., 2020), automatic identification and counting of

animals from camera trap images (Norouzzadeh

et al., 2021) and automated analysis of animal behaviour

from video data (Williams & DeLeon, 2020).

Here, we created an automated data collection system

based on video surveillance and deep learning (object

detection) and applied it to colonially breeding seabirds

(common murres Uria aalge; hereafter: ‘murres’) in the

Baltic Sea. In recent years, seabird monitoring and

research have become increasingly reliant on digital imag-

ing techniques, such as time-lapse cameras and drones

(Edney & Wood, 2021; Hinke et al., 2018; Jones

et al., 2018; Rush et al., 2018; Schwaller et al., 2013).

However, due to the large amounts of data produced,

time spent manually processing images often constitutes a

bottleneck (Edney & Wood, 2021). While there have been

some recent applications of machine learning approaches

to tackle this problem, this has so far primarily focused

on counting birds from still frames (e.g. Hayes

et al., 2021; Weinstein et al., 2022). In general, the

application of machine-learning algorithms to extract

more sophisticated information on behaviour, demogra-

phy and phenology from video data collected in the field

has been very limited (but see Ditria et al., 2021; Scho-

field et al., 2019; Williams & DeLeon, 2020). However,

the potential contribution to a better understanding of

ecosystem dynamics is vast, especially if combined with

high-resolution data on environmental conditions. As

such, we envision our work as part of a move towards

data-driven environmental management and research,

making full use of the recent large leaps in sensor tech-

nology and automated analysis.

Materials and Methods

Technical setup for video recording

We used an off-the-shelf digital video surveillance

(CCTV) system on the island of Stora Karlsö (57°170 N,
17°580 E), Baltic Sea, Sweden, to film murres at their

nesting sites (Figs. 1 and 2). The installation was made in

a previously constructed artificial breeding cliff, the Karlsö

Auk Lab (Hentati-Sundberg et al., 2012). The CCTV sys-

tem, which is easily scalable, consisted in 2019–2021 of

five 2-megapixel resolution IP-cameras (Avtech

AVM543P) The five cameras were mounted at five differ-

ent ledges and covered 23 pairs on average over the three

seasons. Details on the camera installation setup are pro-

vided in Supplementary Material S1. The cameras were

powered by a 24-channel PoE network switch (AETEK

C11-242-30-380) and connected to a Network Video

Recorder (NVR, Avtech AVH8516) via a 4G-router (Tel-

tonika RUT950) (Fig. 1). The router sets local IP

addresses to all devices on the local network (LAN) and

allows, via a static external IP address and port forwards,

remote real-time access to the NVR and all cameras

through a web interface (Fig. 1). The power consumption

of the system is approximately 4.5 W for each camera,

65 W for the NVR and 2–7 W for the router. Built-in IR

light (859 nm) in the cameras gives clear visibility of the

birds even at night, without affecting them (Fig. 2B).

Recording is continuous at 25 frames-per-second (FPS),

generating approximately 24 Gb data camera−1 day−1

with H.264 video compression. Backups, generating .avi

files, are made daily, although the storage capacity of the

internal hard drives in the NVR (80 Tb) fits a whole

three-month breeding season with 15+ cameras and thus

easily fit our setup with five cameras.

Development of approach

The video material generated by the system is consider-

able – one breeding ledge with seven breeding pairs of
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murres during three breeding seasons (May–July 2019–
2021), generated 5600 h of footage. Manual analysis of

the material to record the presence of adults, eggs and

chicks is thus a daunting undertaking. To combat this

problem, the first author of this paper arranged a ‘hacka-

thon’ in collaboration with AI Sweden, the Swedish

national centre for applied AI, in November 2019, where

several teams competed to come up with an automated

procedure for the task. As supervised machine learning

algorithms need annotated data for training, we anno-

tated 2668 randomly selected images with bounding boxes

for adults, chicks and eggs prior to the hackathon (see

Fig. 2 for examples of adults and chicks), using an online

annotation platform provided by Annotell (https://www.

annotell.com). Annotation took on average 1 min per

image after some training, meaning that approximately

44 h were spent on annotation. All annotated images are

freely available for training new generations of models

(see “Data Availability Statement” section).

The teams participating in the hackathon got 2 weeks

to develop a solution for automated seabird monitoring.

The teams were provided with the full video material, the

annotated images and access to a powerful computing

infrastructure for model training and inference (Nvidia

DGX, a datacentre class computer which has eight A100

graphical processing units (GPUs) suitable for AI compu-

tations). The winning team in the hackathon (authors S.

R., M. R. and S. K. in this paper) developed an analysis

pipeline written in Python 3, using the deep learning-

based YOLO object detection algorithm, which detects

pre-specified classes of objects and delineates their extent

with bounding boxes (Redmon et al., 2016) (Figs. 1

and 2). The same pipeline is described and employed in

this paper, with some minor modifications to the original

setup. The final data product is bird detections with class

(in this case: adult birds, chicks, eggs), timestamp, posi-

tion, bounding box size and confidence level of all objects

identified in each frame of the video.

Object detection using YOLO

The work presented in this paper builds on YOLO ver-

sion 5 (YOLOv5) (https://github.com/ultralytics/yolov5).

Since the hackathon, additional images have been anno-

tated, and the current number of annotated images is

4061, containing 22 658 adult birds, 1300 chicks and 155

Figure 1. Illustration of the data collection and analysis pipeline used in this paper.
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eggs. Another 800 random background images (without

birds, and thus no annotations) were added to the dataset

for increasing robustness of the model based on unpub-

lished YOLO recommendations. For training and testing

of model performance, the annotated images were split

into three sets: a train set, a validation set and a test set,

each containing 80, 15 and 5% of the images, respectively

(Table S1). The model was trained using the functions

provided in the ultralytics YOLOv5 GitHub repository,

using a Nvidia GEOFORCE RTX 3090 GPU.

In object detection, there is a trade-off between speed

and accuracy (Redmon et al., 2016). Models with fewer

parameters and running on smaller images are faster,

whereas models with more parameters running on larger

images are more accurate. YOLOv5 has pre-specified

model sizes (nano, small, medium, large, x-large), and we

evaluated models based on their Precision [P] (true posi-

tives/[true positives + false positives]) and Recall [R]

(true positives/[true positives + false negatives]) and F1

score (the harmonic mean of P and R). In each model

run, two parameters are set: Intersection-over-Union

(IoU, overlap between the annotated and the predicted

bounding box) and detection confidence (threshold level

for a detected object to be retained). We ran a systematic

parameter study across a range of IoU and threshold

values for four models: Yolov5-small-640, Yolov5-small-

960, Yolov5-medium-640 and Yolov5-medium-960 where

the number is the width of the images in pixels. Larger

models were disregarded as they would lead to an unrea-

sonable computation time given our current infrastruc-

ture, whereas smaller models (Yolov5-nano, and image

sizes below 640 pixels width) were considered too inaccu-

rate given initial experiments. Plots of F1 across models

and model parameters are provided in Supplementary

Material S2 (Figure S3). Based on these analyses, we used

Yolov5-medium-960 for inference with an IoU threshold

of 0.5 and a confidence threshold of 0.7 for the analyses

reported in the paper. For all models, the training was

stopped after 20 epochs of no improvements, using a

stopping criterion provided by Yolov5. The Yolov5-

medium-960 was trained for 130 epochs, with similar

values for the other models.

When we ran inference with the final model on the

complete dataset, we first used ffmpeg to resize the foot-

age to videos at one image per second (every 25th frame)

and resolution 960 × 544. This reduced the dataset size

from 4 to 0.57 Tb. The model used for the inference was

optimized and exported to TensorRT format. All image

preparation, model training and model inferences were

coded in Python 3 (van Rossum & Drake, 2009). Code

for image processing and training and running the

YOLOv5 model is available at https://github.com/

BalticSeabird/SeabirdDetection. Examples of raw video

data, all annotations and object detection outputs (SQLite

database) are available at Data Dryad Repository

(Hentati-Sundberg & Olin, 2022).

From detected objects to ecological
inference

Using the object detection data, we showcase how AI can

automate the study of several behavioural and demo-

graphic parameters in seabirds. We here present data

from one camera, filming one of the artificial ledges (‘Far-

allon 3’) in the Karlsö Auk Lab with seven breeding pairs

each year in 2019–2021. Several analytical processing steps

from the raw detections to summary statistics were

applied and are summarized under each section in the

“Results”. Post-processing and visualization of the object

detection data were done in R 4.1.0 (R Core Team, 2021).

Complete R code from detections in the SQLite database

to ecological interpretation is available at https://github.

com/BalticSeabird/ObjectDetectionInferences.

Real-time object detection in the field

In 2022, we implemented a pipeline for real-time object

detection in the field. Rather than analysing pre-recorded

video, we used the data streamed on the local network

from the cameras (Fig. 1). For real-time applications,

(A)

(B)

Figure 2. Example (A) day and (B) night-time images showing

detected adult birds (magenta squares) and chicks (blue squares).

Note that chicks partly covered by guarding parents are still detected.
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inference speed becomes more important than for pre-

recorded material, as a pre-requisite is that the analysis

can run in (at a minimum) real time. Similarly, field sites

often have limitations in electrical power which necessi-

tates small processing units with limited power use. For

the real-time experiments, we used some of the pre-

trained models described above, but also smaller models

(Yolov5-nano and smaller image sizes). We ran the

models on the following three hardwares: a standard lap-

top CPU (Intel Core i5-8265U) with 8 Gb RAM, a Goo-

gle Coral Dev Board2 with 4 GB RAM and a Nvidia

GEFORCE RTX 2080 graphics card. We report values on

price and power consumption of the three hardwares

(Supplementary Material S2, Table S3) and speed

obtained when running different model sizes and image

sizes (“Results”). The inference results obtained from the

devices were stored on a local SQLite database and then

regularly pushed to a cloud-based SQL database, gaining

global real-time access to data on presence of birds,

chicks and eggs in the colony.

Results

Here, we first evaluate the performance of YOLOv5 in

terms of accuracy and speed. Second, we provide some

examples of how the object detection data can be used

for ecological inference. Third, we explore the potential

for real-time monitoring.

YOLO performance

The object detection algorithm run over three consecutive

breeding seasons at one breeding ledge generated

139 342 009 detections of adults, 4 234 960 detections of

chicks and 139 167 detections of eggs. The number of

adults detected in each frame varied between 0 and 18.

The Precision and Recall of the YOLOv5-medium-960

model were 0.91 and 0.79, with an F1 score of 0.85, over

all classes. The model performed better for adults than

for chicks and eggs, with a P of 0.98, 0.84 and 0.92 and

an R of 0.98, 0.74 and 0.64 for the three classes, respec-

tively. High P means that there are few false positives,

whereas the lower R means there are some false negatives

(missing detections); in other words, at our chosen confi-

dence threshold 0.7, the model is conservative. Eggs,

which are almost always completely hidden under the

incubating parent and not visible from above, were

detected very rarely (≤0.1% of detections) and therefore

not analysed further. Full model performance scores are

reported in Supplementary Material S2 (Table S2).

Video combined with AI dramatically reduced the time

spent on analysis: we achieved an inference speed of 75

FPS for the Yolov5-medium-960 model. Images loaded

on the GPU takes about 4.3 ms to process, which would

ideally give a throughput of 230 FPS. However, loading

and preprocessing the footage is a bottleneck in the setup.

This means that we could process the whole 5600 h data-

set in 75 h, running in the background with no human

attention required. As manually annotating with bound-

ing boxes takes about 1 min per image, achieving the

same dataset would have taken 336 000 h (38 years) for a

human. More realistically, analysing a 1 h video for

recording number of adults and chicks present takes c.

10 min for an experienced analyst, which is 10 times

slower than the computer and generates a dataset with

much lower resolution.

We did not specifically monitor power consumption of

the training and inference process, but the Nvidia RTX

3090 GPU has a power consumption of up to 350 W, mean-

ing that the power use of the inference calculations may

have been up to 9 kWh with the GPU running on 30%.

Ecological inference from object detection

Nest attendance, breeding activity and phenology

The object detection data can be studied at several differ-

ent time scales to generate ecologically relevant informa-

tion. If aggregated at short time scales (e.g. median

number of adults detected per minute), it is possible to

examine fine-scale attendance behaviour and, for example,

identify disturbances (see Fig. 3A and further results

below). At slightly longer time scales (e.g. median number

of adults detected per hour), it is possible to examine diel

cycles and breeding activity. Based on the object detec-

tions, there is clear variation in attendance patterns

between days, as well as clear diel patterns (Fig. 3B).

It is also possible to track breeding activity and phenol-

ogy across the full breeding season, providing key metrics

for population monitoring. In our study system, this has

traditionally been done through daily visits to determine

the breeding status of each individual. Field data collected

in this way matched inferences from the object detection

data well, with birds detected in the middle of the night

(median number of adults detected 00:00–01:00) providing
a good predictor of active breeding (egg or chick) (Fig. 3C);

the predicted and observed numbers were identical in 60%

of 192 days in 2020 and 2021, and only off by 1 bird in over

20% in the remaining cases. Both breeding onset (first eggs

laid) and chick departure (fledging) matched the onset and

disappearance of night-time detections (Fig. 3C).

Chick growth

Growth is a key biological process that can provide

information on, for example, food availability and
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competition. Normally, one would have to catch the

birds to take measurements, but it is possible that

bounding boxes from object detection could be used to

monitor growth. To find out, we first manually assigned

chick detections to pairs with known hatch dates, based

on their location on the ledge, then for each chick

Figure 3. Attendance patterns for different time scales based on object detection. (A) Median number of adults per minute over the same hour

(06:00–07:00) during two consecutive days in 2020, one with an eagle disturbance (solid) and one without (dotted) (see also Fig. 5). (B) Median

number of adults per hour over 24 h for four different days in 2021 (before laying = 5th of May, peak incubation = 3rd of June, peak chick-

rearing = 28th of June, after fledging = 29th of July). (C) Median number of adults detected during night (00:00–01:00) over the whole breeding

season for 2020 and 2021 (thin lines and symbols), along with the actual number of active breeding pairs with egg or chick (thick lines) as based

on daily, manual nest checks. Note that only one parent is usually present in the middle of the night and that the phenology variation between

years are correctly tracked by the AI.
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calculated the hourly average bounding box size. We

found that bounding box sizes of chicks increased

steadily within seasons, reflecting growth (Fig. 4A). In

contrast, bounding box sizes of adults showed some var-

iation within and between seasons but not a clear trend

(Figure S4). There was a strong correlation between

bounding box size and weight-at-age of murre chicks

caught and weighed in the Auk Lab (linear regression,

P < 0.0001, R2
adj ¼ 0:87) (Fig. 4B and C), suggesting

that our method can potentially be used as a non-

invasive method for chick growth estimations. Further

work is necessary to determine whether this approach

can capture variation between individuals, years and

locations, especially as behaviour may also influence

bounding box size.

Detection of disturbance events

Another important goal of population monitoring is to

identify disturbance events, which may have effects on

productivity. A recent study from Stora Karlsö colony

revealed that the COVID-19 lockdown in 2020 led to an

unusually high rate of disturbances of murres from

white-tailed eagles, which in normal years are deterred

by the large number of tourists on the island (Hentati-

Sundberg, Berglund, et al., 2021). To investigate whether

our automated system could be used to identify such

events, we analysed the rate of disturbances in 2019,

2020 (lockdown year) and 2021 using the object detec-

tion data. We first calculated the maximum number of

adult birds per minute and then analysed the change in

number of birds from 1 min to another. We defined dis-

turbances as occasions where four or more adult birds

left from 1 min to the next (corresponding to >50% of

the seven breeding pairs on the ledge in these years).

The automated method identified a total of 277 such

disturbance events involving 1708 birds. In line with the

previous study, disturbances occurred much more fre-

quently during the lockdown year 2020 than in the year

before and after (Fig. 5). We validated this finding by

randomly selecting 30 AI-identified disturbance events

and manually checking the videos, from which we con-

cluded that 29 included a disturbance at the indicated

time, whereas one video did show a disturbance event

but the time stamp in the video frame was wrong due

to an unknown video system error. The automated

method also correctly picked up two out of four distur-

bance events previously reported as supplementary videos

in Hentati-Sundberg, Berglund, et al. (2021), whereas the

other two videos included disturbances with fewer birds

than the 4-bird limit described above, and were thus not

picked up by the AI.

Attendance in relation to temperature

Finally, the detections can also be paired with environ-

mental data to study responses to environmental change,

such as increasing temperatures. As seabirds often breed

on exposed cliffs and beaches, they may be particularly

vulnerable to extreme temperatures. Maintaining internal

temperatures on warm cliffs may drain both energy and

water reserves, and long-term heat exposure could poten-

tially affect physiological processes (Oswald &

Arnold, 2012). As such, we expect the murres to spend

more time away from sun-exposed breeding ledges at

high temperatures.

To explore this relationship between temperature and

nest attendance, we combined object detection data from

the hottest part of the day (15:00–21:00) with tempera-

ture readings at 2-min intervals (using a COMET U0541

datalogger with a PT1000 temperature probe) for 2020, a

season with unusually hot weather. For each 2-min inter-

val, we extracted the median number of adults detected

on the ledge and paired this with a temperature reading.

As we were interested in responses during the active

breeding phase, we only looked at the period during

which at least 50% of breeding attempts were active.

At all temperatures, there were generally more birds

than active breeding attempts, meaning that partners

and/or non-breeding birds were present on the ledge

(Fig. 6). However, at temperatures above 25°C, we

observed a rise in the number of occasions where AI

detected exactly the same number of birds as active

breeding attempts (i.e. meaning no extra birds present),

and at temperatures above 40°C, partners temporarily

abandoned eggs and chicks (Fig. 6). These results are in

line with results from detailed behavioural (manual)

observations of the birds (Olin et al., 2023), where effects

of day of year and time of day were also accounted for.

We manually scrutinized the videos from the 33 occa-

sions where the AI predicted egg/chick abandonment and

concluded that 29 cases actually showed abandonment

whereas 4 were due to missing detections, likely due to

dirt on the camera lens. The results presented here show

how high-resolution object detection data can help to

provide fine-scale understanding of animal responses to

climate change.

Potential for real-time AI

The field experiments running Yolov5 in the field revealed

a clear potential for real-time AI. Despite being signifi-

cantly slower than a high-end GPU, real-time inference at

a 25 FPS frame rate was possible for Yolov5-nano-320px

run on a standard laptop CPU, for Yolov5-small-320px

574 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Intelligent Seabird Surveillance J. Hentati-Sundberg et al.

 20563485, 2023, 4, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.329 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [03/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



run at a Google coral, and for Yolov5-medium-320 as

well as Yolov5-small-640 run on a medium-advanced

consumer gaming GPU (Nvidia RTX 2080) (Table S4).

However, none of these devices were able to run the

Yolov5-medium-960 used for ecological inference in this

paper in real time. This illustrates the trade-off between

speed, accuracy, cost and energy consumption. Although

a high-end computing infrastructure is preferable for

accuracy, it may not be realistic in a field setting, suggest-

ing that ‘edge’ devices such as the Google corals (which

could operate near the data collection edge) with low

cost, low energy consumption and reasonable computing

speed can be an attractive alternative for field and real-

time applications.

Figure 4. Chick growth as estimated from bounding box sizes in the object detection. (A) Growth curves for 10 chicks in 2019–2021, with

hourly mean bounding box size (points) and fitted log-logistic model predictions. Chick IDs indicated in the panels, after the year. (B) Growth

curve established in the same colony for murre chicks weighed at known age (n = 246) with fitted log-logistic model, and (C) correlation between

bounding box size from object detection and weight-at-age, with linear regression line.

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 575

J. Hentati-Sundberg et al. Intelligent Seabird Surveillance

 20563485, 2023, 4, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.329 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [03/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Discussion

In this paper, we present a new application of video sur-

veillance combined with deep learning for ecological

monitoring and research. In the context of seabirds, we

show how our approach can, for example, be used to

automatically provide standard monitoring metrics (phe-

nology, nest attendance), detect rare events (eagle distur-

bances) and explore climate change impacts by linking

object detections to automated temperature readings. Our

automated method generates data of high resolution and

complete temporal coverage, rendering it a useful comple-

ment to traditional field-based monitoring, which has

greater spatial coverage and flexibility, but only tends to

generate snapshots of data. It also reduces the disturbance

to the animals and minimizes costs (5600 h of continuous

data represents 140 weeks of full-time work if collected

manually, and would require multiple field assistants

throughout the field season). The approach is easily scal-

able to include multiple cameras and thereby achieve

larger sample sizes.

By monitoring animal behaviour and demography, we

can gain insights into broader ecosystem processes. For

example, as changes in marine prey stocks are reflected in

seabird phenology, attendance patterns and chick growth

(Cairns, 1988; Piatt et al., 2007), seabirds essentially

function as ecosystem sensors. Our system uses techno-

logical sensors (cameras) to pick up information con-

veyed through the seabirds, which can ultimately provide

up-to-date information on prey stocks, with the potential

to feed into local fisheries management (Hentati-

Sundberg, Olin, et al., 2021; ICES, 2021). In addition to

quickly providing information useful for short-term man-

agement decisions, our system also provides data of

incredible size and resolution, which can be useful for

developing a deeper understanding of ecosystem dynamics

(Keitt & Abelson, 2021; Michener & Jones, 2012; Mou-

quet et al., 2015; Purves, 2013). For example, combining

temperature data with nest attendance on a minute-by-

minute basis provides part of a much more detailed pic-

ture of how seabirds respond to climate change as com-

pared to, for example, combining annual mean

temperature with annual demographic metrics.

While machine learning approaches drastically reduce

processing time, the set-up can require substantial time

and effort (e.g. Ditria et al., 2021). Especially generating

a sufficient number of annotations can be time-

consuming. However, this time can be cut down by

using ‘active learning’ (selecting an optimal training set)

and by enrolling the public in classifying new data and

in validating predictions from the model (Jones

et al., 2018). We also echo previous calls (Christin

et al., 2019; Weinstein, 2018) for increased collaboration

between ecologists and computer scientists. In our case,

the collaboration with AI Sweden, the Swedish national

centre for applied AI, has not only benefited our work

but also given them access to new datasets that has been

highly useful for developing more widely applicable algo-

rithms and workflows (e.g. a proof of concept for feder-

ated learning on video data with potential applications

in the autonomous car industry, https://github.com/

aidotse/fedbird).

Camera-based ecological monitoring and research is

growing in scope and coverage (Bicknell et al., 2016;

Norouzzadeh et al., 2021; Steenweg et al., 2017), and we

believe there is potential for our setup beyond seabirds.

Similar systems could, for example, be deployed at pin-

niped haul-out sites, watering holes, bat roosting sites or

other locations regularly visited by animals. We relied

on standard surveillance equipment, a cheap, reliable,

and widespread technology, where the number of

deployed CCTV cameras has now likely passed 1 billion

(CNBC, 2019). In places with limited electricity and/or

network connection (which is a common situation in

ecological and environmental monitoring), our experi-

ments with edge computing, that is AI models that run

locally to send summarized information, could be fur-

ther developed and applied (e.g. Rausch & Dustdar, 2019;

Zhou et al., 2019). Possible real-time management

Figure 5. Number and timing of disturbance events (defined as >3
birds departing from the cliff from 1 min to another) in 2019–2021.
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applications could include adjustment of fishing activities

near the colony due to changed attendance patterns

and/or chick growth, and changes in human activities

(restricted access areas, scarecrows) due to eagle distur-

bances. As for the trained YOLOv5 model, this should

be more or less directly applicable in colonies of com-

mon murre and the closely related Thick-billed murre

(Uria lomvia), although local training data with other

angles and distances will improve performance and

result in a more general model (Weinstein et al., 2022).

Priority for further annotations should be given to

chicks and eggs, which were detected with lower confi-

dence than adults in the current model version. If the

approach is to be extended to other species, the trained

model can still be used as a starting point, but should

then be re-trained using new, annotated images (so-

called transfer learning) (e.g. Weinstein et al., 2022).

While we have shown that useful information can be

gained from simply detecting adult birds and their chicks,

the described approach could be taken further by also

developing a method for individual identification. Sea-

birds are long-lived animals, and interpreting behavioural

changes benefits from knowledge of past experience (e.g.

breeding success in previous year) and individual

characteristics (e.g. sex, age) (Clutton-Brock & Shel-

don, 2010; McNamara & Houston, 1996). We believe that

there is a lot of potential in identifying individuals based

on features that are easily overlooked by human observers

(see e.g. Chelak et al., 2021; Cheng et al., 2020; Ferreira

et al., 2020) and in taking advantage of behaviours and

movement patterns to identify individuals (Spiegel

et al., 2017). The latter is likely to be particularly success-

ful for seabirds, which often show very high site fidelity,

down to the scale of centimetres (Harris et al., 1996).

Combining individual identification with target tracking

(Athar et al., 2020; Pereira et al., 2020; Walter & Cou-

zin, 2021) would allow for continuous recording behav-

iour of individuals throughout extended monitoring

periods. As such, while we here present results mainly

pertaining to the behaviour at the ledge level (e.g. nest

attendance, disturbance), this could in the future be spe-

cific to the pair (e.g. phenology, attendance and success

at the nest level).

In this paper, we have used supervised learning, where

algorithms are trained for specific tasks, such as classify-

ing and counting birds, using annotated data. A major

and growing field within AI is unsupervised learning, that

is the identification of patterns without a training dataset

Figure 6. Bird presence in relation to temperature. Bars show temperature 5° intervals with the lower limit of each interval given on the axis.

Number of observations per temperature interval is given on top of the bars. At temperatures above 40°, parents temporarily leave the ledge and

thereby abandon chicks and eggs, to cool down in the water.
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or pre-specified categories (Berry et al., 2019). With con-

stantly improving sensors and processing technologies, we

foresee the formation of ‘data lakes’ in which unsuper-

vised learning algorithms trawl for new and unanticipated

dynamics – opening up for research questions beyond

our current imagination.

In this time of rapid biodiversity loss, we join the choir of

ecologists arguing that we need to make better use of high-

speed and high-resolution data collection systems (Hamp-

ton et al., 2013; LaDeau et al., 2017; Purves, 2013; Sun &

Scanlon, 2019). In addition to supplying the data necessary

for sustainable long-term management, real-time informa-

tion systems offer the possibility for near-immediate

responses by decision-makers (Grasso et al., 2019; Sun &

Scanlon, 2019). AI has even been suggested as a means to

not only automate data collection and analysis but even

decision-making and the subsequent actions taken (Cantrell

et al., 2017). Consequently, we foresee an increasing role of

intelligent surveillance in ecological research and manage-

ment, aided by the rapid parallel developments of sensors,

communication technologies, and AI.
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supported by Vetenskapsrådet (grant number 2021-

03892) and FORMAS (grant number 2021-02639). Olof

Olsson was also supported by Arctic Research Founda-

tion, Canada. The first steps in the development of the AI

algorithms were taken at the 2019 ‘Baltic Seabird Hacka-

thon’ hosted by AI Sweden and WWF, arranged by Vanja

Carlén and Johanna Bergman and initiated by Victor

Galaz at Stockholm Resilience Centre. Annotel provided

the platform for image annotation. WWF Sweden funded

cameras and fieldwork. Aron Hejdström and Karlsöklub-
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Figure S1. Outside view of the Karlsö Auk Lab. JHS, PAB

and AO from the author team are inside the construction

where the electronics (network switch, temperature logger

etc.) are located.

Figure S2. Inside view of the Karlsö Auk Lab during cam-

era installation, with several visible network cables and

wall-mounted rack cabinet in the background. Optic fibre
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cable connects the network switch with the recording unit

at the field office, at c. 35 m distance.

Figure S3. Performance of Yolov5 for different image and

model sizes. (A) Yolov5-small, image width 640 pixels,

(B) Yolov5-medium, image width 640 pixels, (C) Yolov5-

small, image width 960 pixels, (D) Yolov5-medium,

image width 960 pixels. Note how F1 is always higher for

adults at a given combination of confidence threshold

and IoU threshold and that F1 is highest for all classes in

using image size 960 pixels and the medium model.

Figure S4. Size estimations of (A) adult birds and (B)

chicks. Only days with more than 10 000 detections were

included in the analysis.

Table S1. Number of images and objects per class in the

training dataset used for all Yolo models.

Table S2. Performance metrics calculated for the Yolov5-

medium-960 model for the validation dataset.

Table S3. Hardwares used for field experiments on real-

time object detection. A100 was not used in the field but

is included for comparison.
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