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Abstract 
Revolutionary advances in AI and deep learning in recent years have resulted in an upsurge of papers exploring applications within the bio-
medical field. Within stem cell research, promising results have been reported from analyses of microscopy images to, that is, distinguish 
between pluripotent stem cells and differentiated cell types derived from stem cells. In this work, we investigated the possibility of using 
a deep learning model to predict the differentiation stage of pluripotent stem cells undergoing differentiation toward hepatocytes, based on 
morphological features of cell cultures. We were able to achieve close to perfect classification of images from early and late time points during 
differentiation, and this aligned very well with the experimental validation of cell identity and function. Our results suggest that deep learning 
models can distinguish between different cell morphologies, and provide alternative means of semi-automated functional characterization of 
stem cell cultures.
Keywords: pluripotent stem cells; cell differentiation; hepatocytes; quality control; artificial intelligence; image analysis; computer-assisted.
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Graphical Abstract 

Significance Statement
This study demonstrates that a convolution neural network can accurately predict the differentiation stage of stem cells differentiating 
toward hepatocytes, based on cell morphology in microscopy images. This potentially allows for semi-automated functional characterization 
of stem cells, to reduce costs, time, and expertise required to experimentally characterize differentiated stem cells.

Introduction
Developments in artificial intelligence (AI) over the past 
decade have promoted a surge of applications in different 
fields of science. Importantly, the success of deep learning has 
revolutionized image analysis, not only in computer vision 
but also in medical and cellular imaging. In contrast to tradi-
tional machine learning techniques, deep learning networks 
are able to automatically and efficiently learn higher-level 
representations of data without the need for manual fea-
ture engineering.1 Within the field of stem cell research, deep 
learning applied to cellular images holds the potential for 
accurate and automated analysis of cell cultures, as recent 
studies have demonstrated.2-7 In the study by Imamura et al., 
induced pluripotent stem cells (iPSCs) were generated from 
cells from healthy controls and patients with amyotrophic 
lateral sclerosis. The iPSCs were differentiated into motor 
neurons and immunostained, followed by image classification 

where 90% of the cell images were correctly classified.4 
Maddah et al. investigated the structural toxicity of iPSC-
derived hepatocytes and cardiomyocytes by treating cells with 
known toxic and non-toxic compounds. A network model 
trained on fluorescence microscope images was able to cor-
rectly identify structural changes from toxic compounds for 
both cell types.6 By developing a new ensemble-based deep 
learning method, Joy et al. were able to identify individual 
nuclei in dense human iPSC (hiPSC) colonies and perform cell 
tracking to study cell behavior over time.5

A commonly used deep learning architecture specialized 
for image classification is the convolutional neural network 
(CNN). It performs mathematical operations to translate 
an image of pixels into so-called feature maps, which rep-
resent visual features like edges and shapes. Several con-
volutional layers can be stacked on top of each other, each 
taking the previous map as input, such that the CNN learns 
higher-level features that are more informative for image 
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classification.8 Several recent studies have demonstrated 
the feasibility of using CNNs for predicting stem cell dif-
ferentiation states based on microscopy images. Waisman 
et al. differentiated mouse embryonic stem cells (mESCs) 
into epiblast-like cells, and trained a deep learning model 
to distinguish between culture images of mESCs and 
differentiated cells. They achieved perfect classification ac-
curacy after only 6 h following the onset of differentiation.9 
Similarly, Liu et al. differentiated human embryonic stem 
cells (hESCs) into trophoblast-like cells and trained a model 
to distinguish between trophoblast morphology and hESCs. 
Two networks used achieved >99 % accuracy on day 12.10 
In studies by Zhu et al.11 and Lan et al.,12 single-cell images 
were used instead to successfully recognize neural and oste-
ogenic differentiation, respectively.

The immense expectations on pluripotent stem cells (PSCs) 
in many areas of biomedical research place high demands on 
production procedures and rigorous quality control of stem 
cell cultures, that is, to identify successfully differentiated 
cultures, and to verify cell marker expression, cellular mor-
phology, and functionality. Since this is routinely done 
experimentally with microscopic inspections, qPCR, immu-
nocytochemistry, and various functional assays, the process is 
costly, time-consuming, and requires highly trained specialists. 
Hence there is a need for more efficient validation methods of 
PSC identity and function.13 If these steps could be automated 
through deep learning-based image analysis, large reductions 
in cost, and workload required for stem cell production could 
be made.

A few studies have explored the potential of using deep 
learning for quality control and automated assessment 
of stem cell cultures. Orita et al. trained a CNN to dis-
tinguish between hiPSC-derived cardiomyocyte cultures’ 
based on whether they were judged suitable for down-
stream experiments.14 The model achieved close to 90% 
accuracy, demonstrating the possibility of using deep 
learning for automated hiPSC quality control. In a study 
by Hirose et al., a deep learning method was developed for 
automated cell tracking of keratinocyte stem cells.15 The 
aim was to enable non-invasive and efficient quality con-
trol of cell cultures proliferative capacity, as an alternative 
to single-cell clonal analysis, which is expensive and de-
manding to perform. By relying on cell motion data from 
the deep learning method, the authors were able to signif-
icantly increase the probability of obtaining proliferative 
stem cell colonies. Similarly, Piotrowski et al. developed 
a deep learning method for non-invasive automated cell 
state recognition of hiPSC colonies.16 This method was able 
to distinguish between different cell states, such as hiPSC 
colony, differentiated cells, and dead cells, more accurately 
than a human expert.

The aim of the present study is to provide a  
proof-of-concept that CNNs can be used for automated 
quality control of cultures undergoing hepatocyte differenti-
ation, as a complement to visual inspection of cultures by an 
expert, to evaluate the maturity of the stem cell-derived hepa-
tocyte cultures. In this study, we hypothesize that the morpho-
logical features of cells captured in phase-contrast microscopy 
images are sufficient to distinguish between early and late 
stages of hepatocyte differentiation. Late stage corresponds 
to mature hepatocytes with functional properties that recapit-
ulate many features of primary human hepatocytes.17,18 Once 
a CNN has been trained to recognize these features, it could 

provide predictions of differentiation stages in line with data 
obtained from experimental verification.

Materials and Methods
Image Data
Convolutional neural networks were trained on phase-
contrast microscope photographs of stem cell cultures 
captured at different time points during differentiation to-
ward hPSC-HEP. Images of hPSCs differentiating into 
hepatocytes were obtained from Takara Bio Europe AB 
during routine differentiation processes, applying their cur-
rent hepatocyte differentiation protocol (Cellartis iPS Cell to 
Hepatocyte Differentiation System, Cat. No. Y30055, Takara 
Bio Europe AB; see also section on Human Pluripotent Stem 
Cells Differentiation below), as well as a previous hepatocyte 
differentiation protocol also developed by Takara Bio Europe 
AB.19

A total of 1331 images were collected from routine 
inspections of differentiation batches during a time period 
of several years. The images were obtained using a phase-
contrast microscope (magnification 10×) (EclipseTi-U, 
Nikon, Amsterdam, The Netherlands), with an ANDOR 
Zyla sCMOS digital camera and then processed using NIS-
Elements software package (version 4.30). Images were la-
beled as early differentiation (ED, days 1-14, in total of 693 
images) and late differentiation (LD, days 16-23, in total of 
638 images), respectively. The distinction between ED and LD 
was based on the change from differentiation to hepatocyte 
maturation culture medium on day 14.

Pre-Processing and Augmentation
The dimensions of the original images were between 1280 × 
1024 and 2560 × 2160 pixels. To generate a larger number 
of images for the analysis, each image was cut into a max-
imum of six patches (1000 × 1000 pixels) using MATLAB. 
This was carried out for 70% (932), 20% (266), and 10% 
(133) of the original images separately, and the 3 sets of 
patches were later used for training, validation, and testing, 
respectively. The total number of patches generated was 
6972. Pixel values for all patches were scaled to values be-
tween 0 and 1.

Data augmentation was performed and the patches were 
downsized to 400 × 400, 200 × 200, and 100 × 100 pixels 
to investigate how image size affects the performance of the 
CNN. The patches were subsequently randomly flipped (ver-
tically and horizontally) and rotated in the range between 
−0.2 and +0.2 of 360° rotation with TensorFlow. This step 
was performed when the patches were given as input to the 
CNN. The flipped/rotated sets of patches are referred to as 
LargePatchAug, MediumPatchAug, and SmallPatchAug, re-
spectively, and each set contains 6972 patches. These sets 
were used to evaluate how data augmentation affects CNN 
performance. The image processing and analysis workflow 
are illustrated in Fig. 1.

Model Specification
The CNN model was implemented in Python version 3.8.5 in 
the Anaconda 3 environment using Keras20 with TensorFlow 
2.3.1 as a backend. The model architecture is illustrated in 
Fig. 2 and consists of an input layer followed by 3 sets of con-
volutional/ReLU/max-pooling layers. The last max-pooling 
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layer is connected to a feed-forward network with 1 hidden 
layer and an output layer with 2 nodes for image classifica-
tion (ED vs. LD). The output layer used the Softmax activa-
tion function so the values of the output nodes sum to 1. This 
can be regarded as the probability of each image being ED 
or LD. Images were classified according to the class with the 
highest probability.

Training, Validation, and Testing
The He normal initializer was used to initialize the random 
weights of the CNN. The weights initialized by this method 
are random but also depend on the size of the upper layer of 
neurons in the network, allowing a faster and more efficient 

choice of weight range.21 According to Waisman et al.,9 
Adam, Adamax, and Adagrad optimizers performed equally 
well when training CNNs for classification of mouse ESCs 
differentiating into epiblast-like cells. Therefore, Adam, an 
optimization algorithm designed especially for training deep 
neural networks,22 was used in this study. The loss func-
tion used was binary cross entropy since the network was 
optimized for binary classification of images. The model was 
fitted for 500 epochs and early stop with a patience of 50 
epochs. This allowed the model to stop training earlier if the 
loss function converges on a minimum value. The training 
was performed with a learning rate of 0.001 and mini-batch 
size of 16.

Figure 1. Image processing and analysis workflow. Abbreviations: ED, early differentiation, CNN, convolutional neural network; LD, late differentiation.

Figure 2. Architecture of the convolutional neural network used in this study. The network consists of 3 convolutional layers extracting features from 
an input image, 3 max pooling layers reducing the feature map size followed by 2 fully connected layers for image classification. The kernel, a filter 
extracting features from the image, is represented by a red color square. Batch normalization layers were not applied.
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The model was trained on 70% of the LargePatchAug set 
and 20% was used for validation/hyperparameter optimization. 
The remaining 10% was reserved for testing. In addition, the 
following training set sizes were used to assess the impact of the 
number of training images on model performance: 4096, 3072, 
2048, and 1072. The number of images used for validation and 
testing was constant. Classification performance was reported 
using accuracy (ACC) and the F1 statistic according to Equations 
1 and 2, respectively. True positives (TP) denote LD images clas-
sified as LD, false positives (FP) denote ED images classified as 
LD, true negatives (TN) denote ED images classified as ED, and 
false negatives (FN) denote LD images classified as ED.

ACC =
TP+ TN

TP+ FP+ TN + FN
Equation 1

F1 =
TP

TP+ FP+FN
2

Equation 2

Analyses were performed on a personal computer with 
Windows 10 Pro 64 bits operating system, 3.3GHz Intel 
Xenon E-2126G CPU, 32 GB RAM, and NVIDIA Quadro 
P1000 GPU. GPU parameters were as follows: NVIDIA 
drivers 430.64, 512 Cuda cores, 4GB of dedicated video 
memory, and 20 GB of total available graphics memory. The 
runtime was between 20 min and 2h 15 min, depending on 
the dataset and hyperparameter settings.

Human Pluripotent Stem Cells Differentiation
For the experimental validation of CNN predictions, hiPSC 
lines including Cellartis Human iPS Cell Line 22 (ChiPSC22) 
(Cat. No. Y00325), Cellartis Human iPS Cell Line 18 
(ChiPSC18) (Cat. No. Y00305), and Cellartis Human iPS Cell 
Line 6b (ChiPSC6b), were obtained from Takara Bio Europe 
AB (Gothenburg, Sweden). The hiPSC lines were differentiated 
into human pluripotent stem cell-derived hepatocytes 
(hiPSC-HEP) by using the Cellartis iPS Cell to Hepatocyte 
Differentiation System (Cat. No. Y30055, Takara Bio Europe 
AB) according to the manufacturer’s recommendations.

RNA Extraction, cDNA Synthesis, and Real Time 
Quantitative PCR
Cell samples were collected in RNAprotect Cell Reagent (Cat. 
No. 76526, QIAGEN) during the differentiation procedure on 
days 9, 11, 14, 16, 18, 21, 23, and 25. RNA was extracted from 
these samples using MagMAX-96 Total RNA Isolation Kit 
(Cat. No. AM1830, ThermoFisher). cDNA was synthesized 
by applying High-Capacity cDNA Reverse Transcription Kit 
(Cat. No. 4368814, ThermoFisher). Real-time quantitative 
PCR (RT-qPCR) was performed using TaqMan Fast Advanced 
Master Mix (Cat. No. 4444557, ThermoFisher) for the fol-
lowing markers: KRT19 (Hs00761767_s1, ThermoFisher), 
CYP2C9 (Hs04260376_m1, ThermoFisher), MIR370 
(Hs04231551_s1, ThermoFisher), FLJ22447(Hs01382450_
m1, ThermoFisher), and FLJ22763 (Hs01396927_m1). 
GAPDH (Hs99999905_m1, ThermoFisher) was used as a 
reference gene, and cDNA synthesized on a cocktail of RNA 
extracted from different cell types was used as a calibrator.19

Albumin Secretion Assay
Albumin secretion was determined on days 9, 11, 14, 16, 
18, 21, 23, and 25 by applying Albumin Human ELISA Kit 

(Cat.No. EHALB, ThermoFisher) on 24 h conditioned me-
dium according to the manufacturer’s instruction. The results 
were normalized to total protein content. Protein content was 
measured by applying Pierce BCA Protein Assay kit (Cat. No. 
23227, ThermoFisher).

Periodic Acid Schiff Staining
Periodic acid-Schiff Staining (PAS) was performed to de-
tect glycogen storage in mature hiPSC-HEP. Fixed cells were 
incubated in periodic acid (Cat.No. 3951, Sigma-Aldrich) for 
15 min and washed 3 times with dH2O. Then the cells were 
incubated in SCHIFF reagent (Cat. No. 3952016, Sigma-
Aldrich) for 30 min. The cells were washed again 3 times 
with dH2O, and incubated in hematoxylin (Cat. No. GHS316, 
Sigma-Aldrich) for 90 s. Finally, the cells were washed 3 times 
with dH2O.

Immunocytochemistry
Cells were fixed at days 9, 11, 14, 16, 18, 21, 23, and 25 by 
incubation in 4% formaldehyde (Cat. No. 02176, Histolab) 
for 10 min at RT. The cells were permeabilized by incuba-
tion in 1% Triton X-100 (Cat.No. T8787, Sigma-Aldrich) in 
D-PBS +/+ (Cat. No. 14040-091, Gibco) for 15 min at RT, 
then the cells were blocked in 2% BSA (Cat. No. A9418, 
Sigma-Aldrich) in D-PBS +/+ for 60 min at RT. The cells were 
immunostained for the markers CK18 (Cat. No. MA5-12104, 
Invitrogen) and CAR (Cat. No. MA5-29208, Invitrogen). The 
antibodies were diluted in 0.1% BSA in D-PBS +/+ (1:100 
for primary antibodies, and 1:1000 for secondary antibodies). 
The primary antibodies were incubated overnight at 4 °C. 
The secondary antibodies Goat anti-mouse IgG Alexa 488 
(Cat. No. A11029, ThermoFisher), Donkey anti-rabbit IgG 
Alexa 594 (Cat. No. A21207, ThermoFisher), and DAPI were 
incubated in the dark for 2 h at RT. The photographs were 
processed by applying ImageJ software (http://imagej.nih.
gov).

Statistics
Data from qPCR and functional assays were imported into 
R version 4.1.223 and log2-transformed prior to analysis. 
Statistical testing was performed with repeated measures 
ANOVA to identify statistically significant differences in 
marker gene expression and albumin/urea abundance be-
tween time points. Post-hoc testing was performed with 
Tukey’s test. Results were considered statistically significant 
where P < .05.

Results
CNN Accurately Distinguishes Between Early and 
Late Hepatocyte Differentiation Stages
To test our hypothesis, 1331 phase-contrast microscopy 
images were obtained between days 1 and 23 following the 
onset of differentiation of several human PSC (hPSC) lines to-
ward hPSC-derived hepatocytes (hPSC-HEP). In accordance 
with the differentiation protocol, the culture medium was 
changed to a hepatocyte maturation medium on day 14 to 
direct the differentiation from hepatic progenitors into func-
tional hepatocytes. We wanted to investigate the possibility 
of distinguishing between images captured before and after 
this time point in the protocol, based on the morphological 
features of the cells. Therefore, images collected during days 
1-14 were labeled as early differentiation (ED, in total 693 
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images) and images collected during days 16-23 as late differ-
entiation (LD, in total 638 images). No images were collected 
on day 15. The original images were cut and processed into a 
larger dataset of 6972 smaller image patches prior to analysis 
with CNN.

A CNN architecture was then trained on 5086 images and 
validated on 1272 for hyperparameter tuning. The trained 
model was subsequently evaluated on the independent test 
set of 614 images to assess its predictive power. Image classi-
fication performance during training, validation, and testing 
is presented in Fig. 3, showing that the converged model was 
highly accurate. Training set accuracy converged at 0.98 
after around 200 epochs and validation set accuracy at 0.95 
slightly earlier, albeit with greater variation between epochs. 
The CNN was likewise accurate on the independent test set, 
where accuracy and F1 of 0.95 were achieved (Fig. 3C). This 
corresponded to 592 out of 614 images correctly classified as 
ED or LD.

To investigate the relationship between cell culture mor-
phology and predictions made by the CNN, we looked at 
cell culture images from early and late differentiation, and 
the reported classification probability from the CNN. This is 

computed by the output layer of the model and is a value 
between 0 and 1, where 0 corresponds to a high probability 
for ED and 1 to a high probability for LD. This allowed us 
to compare the morphology in ED and LD images that were 
correctly and wrongly classified, as well as where the CNN 
was unsure about the differentiation stage (probability close 
to 0.5). Representative images are shown in Fig. 4, with cor-
rectly classified in the top left and bottom right (marked by 
green border), wrongly classified in the top right and bottom 
left (marked by blue border), and images where the CNN was 
unsure in the middle.

A potential explanation for the incorrect classification of 
some images is a similar polygonal cell shape in the pro-
genitor stage and in the hepatocyte stages. Thus, some ED 
pictures were incorrectly classified by the CNN model as 
LD, though they do not show the typical hepatocyte mor-
phology (Fig. 4C and 4F). Similarly, the image labeled as LD, 
but classified by the CNN model as ED, shows cells in the 
early stages of differentiation where cultures were sparser 
than usual and the cells lost their typical morphology (Fig. 
4G). Among the images that were classified with equal prob-
ability as ED and LD, the 2 top ones (Fig. 4B and 4E) are 

Figure 3. Image classification performance of the CNN. A. Training and validation accuracy and loss. B. Confusion matrix for the independent test set of 
614 hiPSC images classified using the trained model. C. Accuracy and F1 were obtained for the independent test set. ED, early differentiation; LD, late 
differentiation.
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from the early stage of differentiation (days 11 and 14, re-
spectively). One likely cause for a difficult classification 
of this stage is that day 14-cultures can display different 
morphologies depending on slight variations in cell density 
(slightly higher density in Fig. 4B, slightly lower in Fig. 4E). 
The image for day 16 (Fig. 4H) shows cells in the late stage 
of differentiation, but cultures at the late stage can appear 
slightly blurry without distinct cell borders, which makes 
the classification more difficult.

Stem cell differentiation is a continuous process, and it 
may be difficult to define an exact time point dividing the 
cell differentiation stage into early and late differentiation. 
Hence, to further investigate the ability of the CNN model 
to properly classify the images, the predicted differentiation 
stage was assessed for test set images at each day separately 
(Table 1). The fraction of correctly classified images was 1.00 
for images taken on days 1-8 and 17-23, except for day 22, 
where 0.98 were correct. On days 14 and 16, which we used 
as a point of division between ED and LD, the fraction of 
correctly classified images was 0.86. According to the differ-
entiation protocol, the differentiation process switches from 
the progenitor stage to hepatocyte maturation on day 14. 

Taking into consideration that changes in cell function and 
morphology are gradual, the lower fraction around day 14 is 
not unexpected. In addition, differences in cell morphology 
on day 14 caused by slight variations in cell density may 
contribute to the lower fraction (see explanation in the pre-
vious paragraph). However, a fraction of 0.86 implies that the 
CNN nonetheless can recognize morphological changes that 
occur within just 2 days.

Experimental Validation of Cell Maturation During 
Late Differentiation
In practice, researchers rely on experimental assays to verify 
the functionality and differentiation stage of cell cultures. Four 
properties of cells are routinely measured to assess cell iden-
tity, namely cell morphology, gene expression, protein expres-
sion, and cell functionality. To investigate the differentiation 
efficiency of hPSCs toward hepatocytes, typically established 
marker genes and proteins, and functional assays that define 
the maturity of the cells are available.24 While the CNN was 
able to learn important morphological changes in micros-
copy images, we also wanted to experimentally characterize 
biological changes over the course of differentiation toward 

Figure 4. Representative images of hPSC cultures arranged according to their CNN classification. Images correctly classified with high probability for 
the correct class are shown in the left column for days 11 and 14 (panels A and D), and the right column for day 16 (panel I). hPSC images classified 
as ED and LD with approximately equal probability are presented in the middle column (panels B, E, and H). Images incorrectly classified with high 
probability (for the wrong class) are shown in the right column for days 11 and 14 (panels C and F) and the left column for day 16 (panel G). Scale bar: 
100 µm. Magnification: 10×.
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hPSC-HEP. Importantly, it was necessary to confirm that cell 
cultures in the late stage (corresponding to LD images) in-
deed have a mature hepatocyte phenotype. Therefore, exper-
imental assays were carried out where expression of hepatic 
marker genes and proteins, albumin secretion, and glycogen 
storage were assessed at several time points. Experimental 
results are shown in Fig. 5.

The experimental results show clear changes in marker 
expression and cell function around days 14 to 16 after 
the onset of differentiation. One of the key functions of the 
liver is the metabolism of chemicals, where more than 90% 
of reactions are catalyzed by the cytochrome P450 family 
of enzymes.25 CYP2C9, one of the most abundant enzymes 
in the adult liver, shows a significant upregulation on day 
16 and expression is further elevated on day 25 (Fig. 5A). 
Other important liver functions include secretion of al-
bumin and storage of glycogen. Albumin is a serum pro-
tein essential for the maintenance of oncotic pressure and 
is synthesized and secreted by hepatocytes.26 The concen-
tration of albumin in culture media was significantly ele-
vated on day 18 and was further increased on days 21-25 
(Fig. 5A). Another important liver feature is the storage of 
glycogen, which serves as a reservoir of glucose for other 
tissues in the body, and hepatic glycogen metabolism is 
important for the maintenance of blood glucose levels.27 
The experimental data shows that the amount of glycogen 
stored in cell cultures was strongly increased on day 16 and 
onward (Fig. 5B).

CK18 is a type-I intermediate filament protein highly con-
centrated in hepatocytes and cholangiocytes (epithelial cells 
of the bile duct) and comprises 5% of total liver protein.28 
The constitutive androstane receptor (CAR), also known 
as NR1I3, is a member of the nuclear receptor superfamily 
(subfamily 1, group I, and member 3) that is almost exclu-
sively expressed in the liver. CAR is known to interact with 

key signaling pathways involved in drug, energy, and bil-
irubin metabolism, and is an important biomarker for ma-
ture hepatocytes.29 The immunocytochemistry data show an 
increased expression of these 2 proteins in the late stages of 
the differentiation (days 16-18) (Fig. 5C).

These experimental results show that the hPSC cultures 
adopt hepatocyte features in the late stage of differentia-
tion. We can also see that the CNN is able to classify images 
captured at the beginning and end of the differentiation 
period with a fraction correctly classified images close to 1.00 
(Table 1). Thus, predictions made by the CNN based on cell 
culture morphology clearly reflect the underlying functional 
maturation of cells.

Impact of Image Size, Dataset Size, and Data 
Augmentation
To investigate the impact of image size on the training pro-
cedure, the CNN was trained with images of sizes of 400 × 
400, 200 × 200, and 100 × 100 pixels. When comparing the 
model performance for images with resolutions 400 × 400 
and 200 × 200 pixels (Fig. 6A), the lower resolution resulted 
in a small reduction in accuracy and F1 during the valida-
tion of the model, while the computational time required for 
training was reduced 3.5-fold. Further reduction of image res-
olution to 100 × 100 pixels resulted in a drop in accuracy and 
F1 from 0.96-0.97 to around 0.91. Therefore, images of size 
200 × 200 were used in this study.

One of the most common problems when training the CNN 
model is the lack of a sufficient number of images. It is diffi-
cult to estimate how much data is required for training since 
it is highly dependent on how challenging the classification 
problem is. Nonetheless, we investigated the sensitivity to 
changes in sample size to provide an indication for the classi-
fication of early and late differentiated stem cells. Initially, the 
set of 5088 images was used for training, followed by a con-
secutive reduction in the number of images until 1024 images 
were left in the training dataset. Accuracy and F1 varied be-
tween 0.94 and 0.97 as the size of the dataset was reduced 
from 5088 to 2048 images (Fig. 6B). When only 1024 images 
were used for training the model, a reduction in accuracy and 
F1 to 0.92-0.93 was observed.

Data augmentation were assessed in the present study by 
comparing classification performance on a dataset where 
images were flipped and rotated, with a dataset without one/
both augmentation steps. The results showed that both flip-
ping and rotation indeed had a strong positive impact on the 
performance of the CNN model by mitigating overfitting 
(Fig. 6C). Without augmentation, accuracy on the training set 
was close to 1.00 (data not shown), while accuracy on the 
validation set was only 0.82, which indicates that the model 
overfitted during the training. Excluding one step of image 
augmentation (flipping or rotation) likewise resulted in a re-
duction in classification accuracy.

Discussion
Quality control of stem cell cultures is a crucial yet laborious 
process. Motivated by recent successes in AI-based micros-
copy image analysis,10-12 we hypothesized that CNNs can 
be used to distinguish between different stages of hepato-
cyte differentiation, based on cell morphology in microscopy 
images. To evaluate this hypothesis, a CNN was trained to 

Table 1. Classification by differentiation day on hPSC images in the 
independent test set.

Differentiation stage Days of differentiation Fraction correctly 
classified

Early 1 1.00

2 1.00

3 1.00

4 1.00

6 1.00

7 1.00

8 1.00

9 0.92

10 1.00

11 0.97

14 0.86

Late 16 0.86

17 1.00

18 1.00

19 1.00

21 1.00

22 0.98

23 1.00
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Figure 5. Experimental characterization of hPSCs undergoing differentiation toward hPSC-HEP. A: qPCR expression data for 5 markers of hepatocyte 
maturation and albumin secretion in μg/mg protein/24 h (N = 3, number of cell lines). Horizontal bar denotes the mean and error bars represent 
standard error. X axis shows number of days following differentiation initiation. Statistical testing was performed with repeated measures ANOVA 
followed the Tukey test. For clarity, only comparisons between days 9-14 and 16 (qPCR), and days 9-14 and 18 (albumin) are shown. No expression 
values were obtained for FLJ22763 day 9. ** P < .01; *** P < .001. B: Representative pictures of PAS-stained cultures visualizing glycogen storage 
on days 11-18. C: Representative pictures of immunocytochemical staining showing expression of CK18 and CAR on days 11-18. Scale bar: 100 µm. 
Magnification: 40×.
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distinguish between images taken during early and late hep-
atocyte differentiation of hPSCs. Late differentiation was 
defined as the stage where hPSC-derived hepatic progen-
itor cells were differentiated further toward hPSC-derived 
hepatocytes (hPSC-HEP), which would correlate with mor-
phological changes toward the functional, mature cell type. 

Our results showed that the CNN was highly successful at 
this task, achieving 0.96 accuracy on the independent test 
set, and close to perfect classification performance on images 
taken at the beginning and end of the differentiation period, 
when differences in typical morphology were more pro-
nounced. The predictions made by the CNN aligned well 

Figure 6. Impact of data processing on performance. Panels show impact of varying image size (A), dataset size (B), and image augmentation (C) on 
the validation accuracy and F1 of the CNN model.
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with experimental data on gene and protein expression, and 
functional features such as glycogen storage, reflecting the 
functional maturation of cells. These results indicate that 
semi-automated CNN-based image analysis could serve as 
a complement to the extensive experimental characteriza-
tion of differentiated hepatocytes. The adoption of compu-
tational methods to assess cell maturation could therefore 
simplify and accelerate stem cell production and research. 
Importantly, this would provide a less subjective method for 
morphological assessments than visual inspection performed 
by different trained researchers. It is important to note that 
our model has not been validated on an external dataset and 
that the application of CNN models to stem cell production 
lines would require refitting or fine-tuning model parameters 
to the specific lab and cell type in question. For example, our 
model could possibly be used for transfer learning to other 
hepatocyte differentiation datasets.

The results from this study showed a clear improvement 
in results when the image data were augmented. The assess-
ment of data augmentation showed that the combination of 
rotating and flipping of images was the most successful ap-
proach, achieving a considerably higher accuracy compared to 
when these were not applied. Cutting the images into patches 
to increase dataset size also improved the performance of 
the model. Thus, the success of the CNN model trained in 
this study could therefore be largely attributed to the image 
augmentation and pre-processing steps. It is worth noting 
that we have used a fairly simple CNN model in this study, 
trained on approximately 1300 images. This shows that even 
shallow CNNs can be successfully applied to the classification 
of moderately sized microscopy datasets, depending on how 
challenging the classification problem is.

A strength of this study is the use of images from sev-
eral cell lines obtained during the everyday operation of a 
commercial lab. The original microscopy images were not 
specifically prepared or selected for the purpose of training 
a CNN. By using images obtained during everyday labo-
ratory work, the data will be more closely representative 
of the heterogeneity due to ,for example, instruments, lab 
personnel, reagent batches, variations in cell densities, 
etc. On the other hand, the images used to train, validate, 
and test the CNN were generated by processing the orig-
inal microscopy images. If the trained CNN was applied 
in practice, its task would be to classify cell cultures based 
on new uncropped microscopy images. The data used to 
train a CNN should be representative of those images, so 
the question arises to what extent training set image proc-
essing affects performance. One way to mitigate the risk 
of performance reduction in practice would be to use soft-
ware that pre-processes the new microscopy images in real-
time, generating multiple patches per image that the CNN 
classifies. This would result in several differentiation stage 
checks for different parts of the original image. Overall cul-
ture quality could then be assessed by combining the indi-
vidual stage checks.

Other CNN architectures such as VGG1630 and ResNet21 
could also be investigated depending on how challenging the 
image classification task is. Given that our CNN achieved 
close to perfect accuracy, we did not explore this further. 
Classification performance was lower though for images 
captured on days near the change from progenitor medium to 
maturation medium. This is not unexpected, since morpho-
logical changes occur continuously during the differentiation, 

and no sharp distinctions can be observed at specific time 
points. Even when using molecular markers, it might be 
difficult to distinguish between cells around 14-16 days of 
culturing for the same reason. We do not believe this restricts 
the use of CNNs in future stem cell production and research 
though, as the cells would typically be assessed at the end of 
the differentiation process.

The results from this study clearly demonstrate the great 
potential of CNNs for addressing challenging image analysis 
problems related to stem cell culture characterization, where 
subtle differences may be of critical functional importance. 
However, this approach may also have great potential for 
quality control of stem cell products intended for regenera-
tive medicine. In the promising area of advanced therapeutic 
medical products (ATMPs), the development of quality con-
trol procedures for the assessment of cell identity and cell 
quality is a key challenge,31 for which CNNs may be a viable 
automated approach in large-scale cell production.

Conclusion
Characterization and quality control of differentiated stem 
cell cultures are laborious and time-consuming. Here we have 
shown that convolutional neural networks, trained to recog-
nize the morphological features of functional cells, may serve 
as a complement to experimental validation and provide a 
means for semi-automated quality control. This has potential 
implications for a more efficient and objective assessment of 
stem cell culture quality.
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