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Abstract
1. How demographic factors lead to variation or change in growth rates can be 

investigated using life table response experiments (LTRE) based on structured 
population models. Traditionally, LTREs focused on decomposing the asymptotic 
growth rate, but more recently decompositions of annual ‘realized’ growth rates 
using ‘transient’ LTREs have gained in popularity.

2. Transient LTREs have been used particularly to understand how variation in vital 
rates translate into variation in growth for populations under long- term study. 
For these, complete population models may be constructed to investigate how 
temporal variation in environmental drivers affect vital rates. Such investigations 
have usually come down to estimating covariate coefficients for the effects of 
environmental variables on vital rates, but formal ways of assessing how they lead 
to variation in growth rates have been lacking.

3. We extend transient LTREs to further partition the contributions from vital rates 
into contributions from temporally varying factors that affect them. The decom-
position allows one to compare the resultant effect on the growth rate of differ-
ent environmental factors, as well as density dependence, which may each act via 
multiple vital rates. We also show how realized growth rates can be decomposed 
into separate components from environmental and demographic stochasticity. 
The latter is typically omitted in LTRE analyses.

4. We illustrate these extensions with an integrated population model (IPM) for data 
from a 26 years study on northern wheatears (Oenanthe oenanthe), a migratory 
passerine bird breeding in an agricultural landscape. For this population, consist-
ing of around 50– 120 breeding pairs per year, we partition variation in realized 
growth rates into environmental contributions from temperature, rainfall, popula-
tion density and unexplained random variation via multiple vital rates, and from 
demographic stochasticity.

5. The case study suggests that variation in first year survival via the unexplained 
random component, and adult survival via temperature are two main factors be-
hind environmental variation in growth rates. More than half of the variation in 
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1  |  INTRODUC TION

Populations in the wild regularly experience changes in their envi-
ronments, resulting in variation in demographic rates such as sur-
vival, birth, immigration and emigration rates. Life table response 
experiments (LTREs) are a suite of methods developed with the aim 
of understanding how such change in demographic rates translate 
into variation or change in population growth (Caswell, 1989). The 
use of LTREs initially focused on decomposing changes in the as-
ymptotic growth rate of stage or age structured deterministic matrix 
models into contributions from demographic rates and also from en-
vironmental factors determining those rates. In a frequently chang-
ing environment asymptotic growth rates may, however, never be 
attained as constant perturbations hinder the population from ap-
proaching the stable stage structure associated with any particular 
environmental state. In such dynamic environments, LTREs based 
on asymptotic growth rates may not accurately capture the demo-
graphic causes of variation. For instance, Koons et al. (2016) showed 
that the demographic factors highlighted as important in explaining 
variation in asymptotic growth rates by classical LTREs were not the 
same as those causing variation in the short term.

As an alternative, LTREs have been developed from stochastic 
matrix population models (Davison et al., 2013). These too study 
long- run asymptotic behaviour, but of the stochastic growth rate 
(Cohen, 1977) rather than of the deterministic growth rate of any 
particular environment. A more empirical approach is to base LTREs 
on the growth rate over a single time step and study how this ‘re-
alized’ growth rate varies over a finite period of time such as the 
duration of a study. This was used by Brown et al. (1993), who de-
rived exact decompositions of variation in realized growth rates into 
contributions from vital rates. Koons et al. (2016) instead defined 
‘transient LTREs’ using Taylor approximations to decompose the 
variation in realized growth rates into contributions from vital rates 
and stage- structure. While these are called transient LTREs, they are 
not only useful in non- stationary environments or in a state away 
from equilibrium but also to analyse population variation in station-
ary stochastic environments.

LTREs have often been used as a theoretical tool to gain a deeper 
understanding of already parametrized population models but 
LTREs of realized growth rates also lend themselves well in an infer-
ential context. One example is integrated population models (IPMs; 
Besbeas et al., 2005; Plard et al., 2019) that can be used to fit fairly 
complete structured population models by combining multiple types 
of demographic and population data. When such models include 

temporal variation in vital rates, they can be combined with tran-
sient LTREs to estimate contributions of variation in demographic 
vital rates to variation in population growth along with its uncer-
tainty (Koons et al., 2017; Paquet et al., 2019).

Population models can further be used to investigate relations 
between temporal variation in environmental variables and vari-
ation in growth rates, mediated via demographic rates (Clark- Wolf 
et al., 2023; Weegman et al., 2017; Zhao et al., 2021). Such studies 
have usually used estimated covariate coefficients to assess the in-
fluence of environmental variables on demographic rates. A large 
coefficient does, however, not necessarily imply a large impact on 
the growth rate if the sensitivity of the vital rate is low. Similarly, 
opposing directions of effects of the same environmental variable 
on multiple vital rates can lead to unclear resultant effects on the 
growth rate (Canonne et al., 2023). Investigations into how environ-
mental variation translates into variation in growth have been done 
with asymptotic LTREs (Caswell, 2001; Davison et al., 2013) but 
rarely with transient LTREs. An exception is Maldonado- Chaparro 
et al. (2018) who suggested regression on simulated population tra-
jectories to decompose variation in annual growth into environmen-
tal contributions for integral projection models.

The aim of this paper is to explore a decomposition of variation 
in realized growth rates into contributions from environmental fac-
tors and density dependence acting via the vital rates, extending 
the methods of Koons et al. (2016). In addition, we propose an ap-
proach to quantify the relative contributions of environmental and 
demographic stochasticity to variation in growth rates. We apply 
these decompositions to an IPM of northern wheatears (Oenanthe 
oenanthe), where we include temperature and rainfall during differ-
ent periods of the annual cycle, as well as breeding period density 
dependence, as explanatory covariates for vital rate variation.

2  |  MATERIAL S AND METHODS

2.1  |  Scope

We consider a modelling framework where we have a structured 
population model with environmental variation and, possibly, de-
mographic stochasticity. Environmental variation refers to tem-
poral fluctuations in demographic rates across a population and 
demographic stochasticity to chance events of demographic out-
comes for individuals (Engen et al., 1998). Environmental variation 
can be captured by projection matrices At for each time step t , 

growth rates is suggested to come from demographic stochasticity, demonstrat-
ing the importance of this factor for populations of moderate size.

K E Y W O R D S
demographic stochasticity, environmental stochasticity, growth rate, integrated population 
model, life table response experiment
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which are determined by a set of vital rates. Below, we will assume 
that t represents year, so that we have annual projection matrices. 
The vital rates determining the At matrices may vary over years and 
can be driven by environmental variables. In general, we think of 
the annual vital rates as modelled with some link function for an ap-
propriate scale (e.g. logit for survival probabilities) and with a linear 
predictor that may include population level annual environmental 
covariates and random effects. We also include the possibility of 
simple density dependence, for example via total population size, 
in the linear predictors. This framework covers common types of 
models inferred via fitting IPMs (Schaub & Kéry, 2021).

2.2  |  Contributions from population structure and 
environmental variation

We start by considering only environmental variation in population 
dynamics and decompose variation in realized growth rates into 
contributions from population structure (in terms of age or stage), 
density dependence and environmental factors. Later (Section 2.4), 
we will also consider demographic stochasticity.

Under environmental variation only, age or stage structured 
population dynamics are fully described in terms of the annual pro-
jection matrices At, and nt+1 = Atnt, where nt is a vector containing 
the population numbers in the different ages or stages. The realized 
annual growth rate (as defined in Koons et al., 2016) is then

where ‖ ⋅ ‖ is the l1 vector norm (i.e. the total of all elements in the 
vector) and ñt is the normalized population age or stage- structure 
vector. We use the superscript ES to highlight that this growth rate 
is determined by the state of the environment (At) and by the stage 
structure.

Koons et al. (2016) used a Taylor approximation of �ES
t

 to break 
down its variance V

(
�ES
t

)
 into contributions from time varying vital 

rates. The same type of first order Taylor approximation is also com-
monly used for computing classical LTREs of deterministic asymp-
totic growth rates (Caswell, 2001). For these classical LTREs, the 
first order approximation has further been used to compute contri-
butions from environmental factors acting on the vital rates. We use 
the same approach here but apply it to realized annual growth rates 
instead of deterministic asymptotic growth rates.

To help illustrate the approximation, we write the annual re-
alized growth rate as a function of all its underlying time varying 
parameters:

so that �ES
t

 is completely determined by �. A first order Taylor expansion 
around the mean of � gives

where ∇ f� =
(

�f

��1

|||� , ⋯ ,
�f

��k

|||�
)
 is the gradient of f  evaluated at the 

(temporal) mean of the vector �, and T denotes vector transpose. 
Using rules for how to compute the variance of a vector of random 
parameters multiplied by a fixed vector, the variance of f  can be ap-
proximated as

where Σ� is the covariance matrix of �. This is identical to a delta ap-
proximation (Ver Hoef, 2012) for the variance of the function f  given 
the covariance matrix of its parameters.

The formula can be used to define contributions to the variance 
from each �i by summing the variance and covariance terms involv-
ing �i,

The sum of these contributions is the total (approximate) variance of 
�ES, and relative contributions can be computed through dividing by 
this total variance. Contributions for some parameters can become 
negative when the covariance terms are negative and dominate the 
variance. A computationally convenient formula to simultaneously cal-
culate all contributions is

where ◦ denotes element- wise multiplication (Hadamard product).
We note that the above definition of contributions follows com-

mon practice in LTRE analyses of splitting covariance terms equally 
between covarying factors. Covariances can however be of impor-
tance on their own (Coulson et al., 2005; Doak et al., 2005) and could 
be studied via a full contributions matrix

We do not pursue this further here.
Koons et al. (2016) treated the � as the set of all time varying 

vital rates (e.g. reproduction and survival at different ages) plus the 
elements of the population structure vectors. To decompose the 
variance further we can instead think of � as containing time varying 
components of the linear predictors that determine the time varying 
vital rates, plus the population structure. As an example, suppose 
we model first year survival as a function of population density, a 
covariate x and a random effect,

then the time varying components of this linear predictor are �xt, � ‖nt ‖ , 
and �t. If we collect all such terms across all time varying vital rates and 
add the population structure, �ES

t
 is again completely determined by � 

and we can use the variance approximation formula to decompose the 
variance of the realized growth rate into contributions from the terms 
in the linear predictors. To do this, we need to compute the gradient 
∇ f� and the covariance matrix Σ�. The gradient ∇ f� is usually straight-
forward (but potentially tedious) to compute as �ES

t
= ‖Atñt ‖ tends to 

�ES
t

=
‖Atnt ‖
‖nt ‖ = ‖Atñt ‖ ,

�ES
t

= f(�),

f(�) ≈ f
(
�
)
+ ∇ fT

�

(
� − �

)
,

Var(f(�)) ≈ ∇ fT
�
Σ� ∇ f� ,

contribution
(
�i
)
= V

(
�i
)( �f

��i

)2

+
∑
j≠ i

Cov
(
�i , �j

) �f

��i

�f

��j
.

contribution(�) ≔ ∇ f� ◦Σ� ∇ f� ,

diag
(
∇ f�

)
Σ� diag

(
∇ f�

)
.

logit
�
�0,t

�
= � + �xt + � ‖nt ‖ + �t ,
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contain simple terms (sums of products between vital rates and pop-
ulation structure) that are easy to differentiate (Appendix S3). This 
gradient is similar to the gradient when the � are treated as vital rates 
(Koons et al., 2016) but with the addition that we also need to take the 
derivative of the inverses of any link function. The covariance matrix Σ� 
can be estimated by the sample covariance matrix of the full � vector 
across time. With IPMs, which are typically implemented using MCMC 
in a Bayesian framework, it is easy to set up computations so that all 
the elements of � are directly available and the covariance matrix can 
then be computed for each posterior iteration to give a posterior dis-
tribution of the contributions.

2.3  |  Diagnosing the linear approximation

The approximation used to break down variation in �ES into its contrib-
uting components will not work well if there is strong non- linearity in 
the relationships between the components and the growth rate over 
the range of variation in the components. Fortunately, the perfor-
mance of the approximation can be easily checked by comparing the 
variance of �ES to its total variation as indicated by the approximation 
(sum of all its contributions; Caswell, 2001; Koons et al., 2017). This 
comparison is also useful for diagnosing coding errors or incorrect 
calculations of derivatives.

2.4  |  Measuring contributions of demographic 
stochasticity

Demographic stochasticity can be included in population models 
using distributions that describe outcomes of life- history events at the 
individual level. For instance, annual survival of an individual may be 
modelled as a Bernoulli trial and, assuming independence and identi-
cal rates among individuals in the same stage in the population, the 
total number of survivors in a life- stage has a binomial distribution.

In this situation, we define the matrix At as the expected pro-
jection matrix in year t given the environment (and population size) 
where the expectation is taken over the demographic stochasticity. 
In other words, we define At using the expected vital rates in year t, 
e.g. the expected survival probability of an age class. The population 
vector nt+1 is then no longer equal to Atnt and we define

so that

The numerator of �D
t
 is the difference between actual population size 

and the projected population size we would expect from environ-
mental variation alone, and �D

t
 therefore represents growth beyond 

what is captured by age structure and variation in the environment, 
i.e. the total combined effect of demographic stochasticity. It can be 

a complex quantity involving products or sequences of demographic 
stochasticity from multiple vital rates, but can be implemented by sim-
ulating from the distributions representing demographic stochasticity, 
e.g. within an IPM as we illustrate in the case study below. Note that �D 
unlike �ES can be both negative and positive but this would be avoided 
if the decomposition is defined at the log- scale. For large n, �D should 
become small.

We then use

as a measure of the relative contribution of environmental variation 
and population structure to variation in the realized growth rate, and, 
correspondingly,

for the relative contribution of demographic stochasticity. Covariance 
terms are included so that the sum of the two relative contributions 
is 1.

The same idea can also be used to compute contributions from 
environmental variation and age structure to the overall variation in 
� instead of to just �ES. For this, one can use the same formulas for 
the contributions as in the previous section but including �D

t
 as one 

of the components of the parameter vector � with a corresponding 
derivative equal to 1, or alternatively modify the contributions to �ES 
by adding covariance terms between each of the components and �D 
(see Appendix S3 for an illustration).

2.5  |  Contributions to �D

It may be of interest to decompose �D and compute contributions 
to its variance. While one could potentially try to decompose it into 
contributions from each vital rate, as for the decomposition of �ES , 
it is not obvious how to do this when vital rates enter At as products 
(but the methods of Hernández et al. (2023) could potentially be em-
ployed for this, see Section 3). We instead consider the simpler ap-
proach of decomposing �D into additive components of ‖Atnt ‖ . The 
numerator of �D

t
, ‖nt+1 ‖ − ‖Atnt ‖, may be written as a sum of dif-

ferences between the number of individuals arising as a result of 
demographic stochasticity and the expected number of individuals 
from environmental stochasticity alone for each of the additive com-
ponents, and given the initial stage structure vector nt. From these 
differences, contributions to the variance of �D can be computed 
similarly to above (see Appendix S3 for how to do this for the case 
study below).

2.6  |  Case study using transient LTREs with IPMs

The above decompositions can be used in combination with infer-
ence via IPMs. We will illustrate this in a case study where we first 

�D
t
=

‖nt+1 ‖ − ‖Atnt ‖
‖nt ‖ ,

�t =
‖nt+1 ‖
‖nt ‖ = �ES

t
+ �D

t
.

V
(
�ES

)
+ Cov

(
�ES, �D

)
V(�)

V
(
�D

)
+ Cov

(
�D , �ES

)
V(�)
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compute the contribution of environmental covariates, density de-
pendence and population structure to variation in �ES as in the pre-
vious section, and then separately estimate the relative magnitude 
of environmental and demographic variation. For the case study, 
we use field data from 26 years (1993– 2018) from a population of 
wheatears, a migratory bird species wintering in the Sahel region and 
breeding in an agricultural landscape near Uppsala in Sweden. We 
use mark- resighting data of birds ringed either as adults or as chicks 
in the nest, data on reproductive performance and census data on 
occupied breeding territories to parametrize an age structured popu-
lation model by combining data in an IPM. The model has two age 
classes describing the number of young males (1 year old) and the 
number of males older than 1 year (>1 year) in a pre- breeding census 
formulation. We chose these two age classes because the species is 
short- lived and because short- lived birds in general tend to show the 
most prominent change in vital rates from an age of 1– 2 years (e.g. 
Newton, 1989). We only consider males as they can be categorized as 
young or older than 1 year in the field based on plumage characteris-
tics (Pärt, 2001), whereas the same female age classes are harder to 
determine. Details of the wheatear study system and how data are 
handled and combined in the IPM are provided in Appendix S1, and 
we focus below on the annual dynamics resulting from the IPM.

2.7  |  Annual projection matrix

The basic structure of the environmental annual projection matrix 
At is

Briefly, �1,t and �2,t represent the probability of early nest survival from 
initiation of breeding until chicks are approximately 6 days old for 
young parents (subscript 1) and parents older than 1 year (subscript 2), 
and r is the expected number of 6 days old chicks produced per nest. 
Nestling survival is represented by two parameters: � t is the probabil-
ity that the nest survives as an entity (i.e. that the nest is not destroyed, 
for example by predation or adverse weather events) from the time 
nestlings are 6 days old until 15 days when they fledge, and � is the 
probability of individual nestlings to survive until fledgling given that 
the nest survives. The parameter �0,t represents first year apparent 
survival probability after fledging and includes the probability that 
the bird is a male (because chicks cannot be sexed in the field, see 
Appendix S1), �1,t and �2,t are apparent annual survival probabilities 
of young males and males older than 1 year. The survival probabilities 
include the probability of not emigrating out of the study area. The 
immigration rates into each of the two age classes, �1,t and �2,t, capture 
the opposite effect of entry into the population for individuals origi-
nating from outside of the study area. A more precise definition of the 
vital rates is given in Table 1.

Except for r and �, which are estimated as fixed among years, 
the vital rates are modelled via link functions (logistic for survival 

probabilities and log for immigration rates) as depending on environ-
mental covariates, density dependence and annual random effects. 
For early nest survival and nestling survival we used local rain and 
temperature during those stages as covariates, for first year survival 
after fledging we used breeding population density and rainfall in 
the wintering area, and for survival of young males and males older 
than 1 year we used local rainfall and temperature in summer as well 
as rainfall in the wintering area (Table 1). Further motivation behind 
the choice of environmental covariates is given in Appendix S1. All 
covariates were defined at the population level, and therefore are 
the same for all individuals in a given stage and year, not taking into 
account the timing of individual breeding events within seasons.

2.8  |  Demographic stochasticity

The components of demographic stochasticity enter the IPM natu-
rally in the likelihood for the demographic data as one source of sam-
pling variation. For instance, demographic stochasticity in survival 
is naturally integrated and accounted for in mark recapture models. 
Demographic stochasticity can also be included in the population 
model associated with the census part of the IPM likelihood (e.g. 
Abadi et al., 2012). We do this starting with the number of individuals 
in each age class in a given year and sequentially drawing the num-
ber of resulting individuals for each vital rate from the respective 
demographic distributions. These random variables representing 
demographic stochasticity are modelled with binomial distributions 
for all survival rates. For the number of chicks we used a categorical 
distribution and for the number of immigrants into each age class we 
used Poisson distributions. The expected rates of these distributions 
are the annual vital rates of the matrix At.

As a consequence, the total number of young males in year 
t + 1, n1,t+1, is the sum of the result of a sequence of binomial and 
categorical draws involving young males breeding in year t, a se-
quence of draws involving males older than 1 year breeding in year 
t and immigration via a Poisson

((
n1,t + n2,t

)
�1,t

)
 distributed vari-

able. Likewise, the number of males older than 1 year in year t + 1,  
n2,t+1, is the sum of a Binomial

(
n1,t ,�1,t

)
, a Binomial

(
n2,t ,�2,t

)
 and a 

Poisson
((
n1,t + n2,t

)
�2,t

)
 distributed variable.

Using these draws �D
t
 can be computed as the difference be-

tween ‖ nt+1 ‖‖ nt ‖  (= �t) and �ES
t

. We can also compute contributions to the 
variance in �D from its additive components consisting of the number 
of internal juvenile recruits of 1 year olds from each age class, the 
number of adult survivors from each age class and the number of 
immigrants into each age class. More details about how to carry out 
the calculations in practice are given in Appendix S3.

2.9  |  Model fitting details

We formulate the model in a Bayesian framework and therefore 
need priors for model parameters. For regression coefficients at 
the logit scale we used normal priors with zero mean and standard 

At =

⎛
⎜⎜⎝

�1,tr� t��0,t+�1,t �2,tr� t��0,t+�1,t

�1,t+�2,t �2,t+�2,t

⎞
⎟⎟⎠
.
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deviation 1.5 for intercepts and 1 for covariate slopes (Northrup 
& Gerber, 2018). We used uniform priors over (0, 1) for detection 
probabilities and for �. For the categorical distribution of number of 
chicks in the nest we used a Dirichlet prior with parameter 1 for all 
eight categories (representing 1– 8 chicks in the nest), yielding a uni-
form prior over the probability vector.

For vital rates for which there are no direct observed data, typ-
ically immigration as in our case, contributions tend to get inflated 
when temporal random effects for them are modelled (Paquet 
et al., 2021). To reduce this effect we put exponential shrinkage 
priors (rate = 20) on the random effect standard deviations (for all 
vital rate random effects, not only immigration). These priors aim to 
reduce model complexity (Simpson et al., 2017) by shrinking varia-
tion toward zero. As a consequence, a small posterior random effect 
variance does not necessarily mean that the variation in the param-
eter is small, but simply that there is no evidence of strong variation.

We also put a shrinkage prior on the intercepts for immigration 
(rate = 10) as we do not have direct data on immigration, which might 
lead to unstable estimation of this parameter.

The IPM was implemented in NIMBLE (de Valpine et al., 2016) 
using four MCMC chains, each with 21,000 iterations and discard-
ing the first 1000 iterations (code available at github). For each it-
eration of the MCMC output we computed contributions from each 
component of the linear predictors of the vital rates, age structure 
and demographic stochasticity, to yield the posterior distribution of 
the contributions. Convergence of the MCMC was assessed using 
the R- hat statistic on the 4 chains. These were all below 1.03.

Model fit was assessed by posterior predictive p- values 
(Appendix S2). The fit was deemed acceptable for the aspects of the 
model that we investigated.

In addition to the main model we considered an alternative 
with a different specification of nestling survival. The alternative 
model assumed that variation in nestling survival rates was due 
to deaths of individual young in the nest, as opposed to total nest 
failure in the main model (see Appendices S1 and S2 for further 
discussion).

The age- structure vector in our case has two components that 
sum to 1, so that there is only one degree of freedom in its variation. 
We therefore parameterized �ES

t
 as a function of ñ1,t only (i.e. with ñ2,t 

replaced by 1 − ñ1,t) when computing the gradient and contributions.

2.10  |  Results of case study

The population declined over the study period with a marked vari-
ation in annual growth rates (Figure 1). Decomposing the variance 
in the realized growth rate without demographic stochasticity (�ES ) 
into contributions from vital rates (similarly to Koons et al., 2016, 
2017) suggests that most of the variation comes from first year 
survival, and with seemingly smaller contributions from survival of 
males older than 1 year, young males and nestlings (Figure 2). Early 
nest survival and immigration both have small contributions, and 
variation in age structure contributed almost nothing to variation in 
growth.

Breaking the contributions down into environmental compo-
nents affecting the vital rates suggests that random effects and 
winter rain for first year survival, and summer temperature for sur-
vival of males older than 1 year provide the largest contributions 
to environmental variation in the growth rate (Figure 3). The ef-
fects of these two rain and temperature covariates, as well as the 

F I G U R E  1  Left panel: Observed (points) and estimated (shaded area, showing 50% credible intervals) population size over the study 
period. Right panel: Observed (points) and estimated (shaded areas, showing 50% credible intervals) annual growth rates. The green shaded 
area shows estimated annual growth rates including environmental variation and variation in age structure (i.e. �ES), the purple shaded area 
shows estimated growth rate also including demographic stochasticity (i.e. �ES + �D).
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contributions, are however uncertain (Figure 4). There is a clearer 
effect for summer temperature on nestling survival, but the result-
ing contribution to variation in growth is small.

Alternatively, we may compute total contributions of different 
groups of variables that may act across different vital rates. For ex-
ample, Figure 5 shows total contributions of weather, density, ran-
dom effects and population structure to the variance in the realized 
growth rate, indicating that roughly equal portions of the variance 
are due to weather and random effects in the model. The weather 
contributions were computed by summing contributions from all 
temperature and rainfall covariates across all vital rates, and the 
random effect contributions by summing all random effects compo-
nents across all vital rates (including immigration).

Comparing the actual variance of �ES to the approximated vari-
ance (i.e. the sum of all contributions) shows that the approximation 
slightly underestimated the actual variance with a relative error of 
−1% on average over the posterior distribution, but with larger er-
rors for some posterior draws (95% CI: −16%– 14%).

The above results show contributions to environmental varia-
tion in growth only. If we consider the population across the cen-
sused area, which has around 50– 120 individual males per year, 
demographic stochasticity accounts for a large portion of the vari-
ance in the realized growth rate. Specifically the contribution of 
demographic stochasticity via �D is ca 56% (95% CI: 31%– 82%), 
while the remaining contribution is due to variation in �ES. The 
contributions to �D are uncertain and split among internal juve-
nile recruitment, survival and immigration of the two age classes 
(Figure 6).

In the alternative model where variation in nestling survival is 
assumed to be due to death of individual chicks instead of total nest 
failure (Appendix S2), there is a large contribution of nestling sur-
vival to variation in growth, and a smaller contribution from first 
year survival compared to the main model (Figure S1). In this model, 
the contributions from temperature and rainfall via nestling survival 
are also larger (Figure S2). Because distinguishing the two models is 

difficult (Appendix S2), it is not fully clear during which part of the 
time period from the ringing of chicks to their return the following 
year that some of the variation contributing to variation in growth 
occurs. The approximation of contributions to �ES performed less 
well than for the main model with an average relative error of −6%.

3  |  DISCUSSION

Transient LTREs have previously been used mainly to decompose 
variance in realized growth rates into contributions from vital rates 
and age- structure, even when environmental predictors have been 
included in models (e.g. Canonne et al., 2023; Nater et al., 2022). 
We show how transient LTREs can be used to also decompose the 
variation in vital rates into contributions from environmental factors 
and density dependence, and to assess the overall contribution of 
environmental versus demographic stochasticity, two conceptual 
extensions of the approach of Koons et al. (2016).

3.1  |  Estimating contributions

The decomposition of environmental variation relies on approxi-
mating the environmental realized growth rate using a first order 
Taylor expansion, which may not be accurate if there is strong en-
vironmental variation or strong non- linearity in the response to the 
environment. In our case study the average relative error was a mod-
est −1%, but was higher over parts of the posterior distribution and 
also higher for the alternative model. Other decompositions to try to 
reduce error have been proposed. Rees and Ellner (2009) suggested 
LTREs of the realized growth rate for integral projection models that 
rely on multiple regression of growth rates against vital rates for 
simulated population dynamics. This approach has been extended 
to LTREs of environmental factors determining the vital rates, also 
for integral projection models (Maldonado- Chaparro et al., 2018). It 

F I G U R E  2  Total relative contributions 
to environmental variance in the realized 
growth rate for each vital rate (summed 
across all linear predictor components 
of the vital rates). Error bars show 50% 
(thick) and 95% (thin) credible intervals.
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differs from the approach taken here in that a simulation scheme 
for hypothetical environmental variables, which assumes station-
arity in the environment, as well as a regression model to analyse 
the simulated growth rates need to be set up. In contrast, Taylor 
approximation- based LTREs are directly derived from the model and 
no design choices are necessary in the calculation of contributions. 
Another difference is that while we estimate only direct effects on 
the growth rate, Maldonado- Chaparro et al. (2018) aim to also esti-
mate lagged effects of environmental variables. Such lagged effects 
would appear in the age structure contributions of our approach.

Another possibility is to use functional decompositions 
(Hooker, 2007) as a basis for LTREs. Hernández et al. (2023) pro-
posed this approach and used it to decompose differences in the 
asymptotic growth rate between treatments. It could at least in 

theory be used to approximate the variance in realized growth rates, 
potentially including both �ES and �D, to an arbitrary degree of pre-
cision by increasing the order of the functional expansion, but in 
practice computation time and interpretation will be limiting factors 
(Hernández et al., 2023).

It is unclear to us when and if these alternative decompositions 
would perform better than the Taylor approximation- based LTREs. 
We suggest that the more direct Taylor based or functional decom-
position approaches could be used in first attempts to compute 
contributions from environmental variables. In cases where the per-
formance turns out to be poor, a simulation approach (Maldonado- 
Chaparro et al., 2018) could be considered.

To measure contributions from demographic stochasticity, we 
compare the growth rate when random outcomes from all the model 

F I G U R E  3  Relative contributions 
(summing to 1) to environmental variation 
in the realized growth rate from all linear 
predictor components and vital rates. 
Error bars show 50% (thick) and 95% (thin) 
credible intervals.
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components that represent demographic stochasticity are included 
to the expected growth rates when these components are fixed at 
their annual means. The relative effect of the demographic stochas-
ticity components will decrease with population size and hence the 
relative contribution of demographic stochasticity will depend on 
the size of the population that is considered. In an IPM with cen-
sus data, an obvious choice is to estimate the contribution of de-
mographic stochasticity for the population that is being censused 
as we have done in our case study. However, the contribution of 
demographic stochasticity could be predicted more generally by 
simulating the outcomes of demographic events for a population of 
any given initial size.

3.2  |  Case study

For the wheatear population model, an LTRE decomposition into 
vital rate contributions suggests that environmental variation 
in annual growth rates mainly comes from variation in first year 
survival after fledging and in survival of males older than 1 year 
(Figure 2). Further decomposing these contributions into compo-
nents from environmental variables shows that the contribution 
from first year survival is mainly linked to unexplained random 
variation while the contribution from survival of males older than 
1 year is related to summer temperatures. In total, around half of 
the environmental variation in growth were explained by weather 
covariates while the other half came from the unexplained random 
components. Another new aspect of our IPM analysis is that we 
also quantify the magnitude of demographic stochasticity, and a 
large portion of the variance in the realized growth rate seems to 
come from this component.

The importance of first year and adult survival is partly in agree-
ment with a previous transient LTRE analysis of vital rates in this 
population using a different model (Paquet et al., 2019). Our re-
sults are also partly compatible with previous analyses of weather 
variables in the wheatear population, conducted at an individual 
level rather than at the population level adopted here. These sug-
gested, among other things, that rainfall during the nestling period 
reduced fledging success and that temperature increased it (Öberg 
et al., 2015). Our results point in the same direction although the 
negative effect of rainfall was uncertain in the main model. The im-
plications on variation in population growth however was strongly 
dependent on the specification of the nestling survival model. In the 
main model the contribution from these weather effects via nestling 
survival were very small, but substantial in the alternative model. 
This shows how seemingly innocuous model specification choices, in 
this case whether variation in nestling survival was due to complete 
nest failure or to death of individual chicks, can sometimes lead to 
substantial differences in contributions.

F I G U R E  4  Estimated slopes for all environmental covariates 
on vital rates. Error bars show 50% (thick) and 95% (thin) credible 
intervals.
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F I G U R E  5  Relative contributions 
from weather (rainfall and temperature), 
population density, random effects 
(including for immigration) and age 
structure to environmental variance in 
realized growth. Error bars show 50% 
(thick) and 95% (thin) credible intervals.
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Similarly to Paquet et al. (2019), the contribution from age struc-
ture was small. This is a result both of limited age differences in vital 
rates and limited variation in age structure across years. Including 
more age classes would be unlikely to affect this result as the pro-
portion of individuals in higher age classes decreases rapidly for 
short lived species, and the main age related changes in vital rates 
tend to occur in the first 2 years for short- lived birds (Newton, 1989).

The large contribution from demographic stochasticity (56%) may 
seem high, but is not unreasonable for a population of this size (100 
males, cf. Lande et al., 2003; Steiner et al., 2021). Nevertheless, es-
timating environmental variability in demographic rates from study 
populations of limited size is a challenge because its signals can be ob-
scured by demographic stochasticity, even for long term studies (Ross 
& Weegman, 2022). This may partly explain the large uncertainty 
often seen in estimated contributions, here and in other studies.

In contrast to several other studies (Millon et al., 2019; Nater 
et al., 2022; e.g. Weegman et al., 2017), including the previous IPM 
study on wheatears (Paquet et al., 2019), our results suggest limited 
contribution of immigration to annual variation in growth rates. We 
believe this is mainly a consequence of our use of penalized com-
plexity priors (Simpson et al., 2017) for random effects variances. 
Using an uninformative weak prior for variation in immigration will 
often result in a large contribution because direct information about 
immigration is typically missing (Paquet et al., 2021) and estimated 
variation is dependent on the prior. Penalized complexity priors are 
a convenient way of mitigating this effect by allowing some variation 
in immigration rates but not a lot more than is indicated by the data 
(Simpson et al., 2017).

A flatter prior on the standard deviation of the random compo-
nents would also likely have led to a larger posterior mean relative 
contribution of environmental stochasticity, especially via immi-
gration. Thereby the mean relative contribution of environmental 
stochasticity would have been inflated, but at the same time larger 
uncertainty in the estimate of the contribution would be expected.

4  |  CONCLUSIONS

LTRE analyses of realized growth rates have been used to shed light 
on how variation in vital rates over a study period contribute to pop-
ulation change. The methods illustrated here provide a means of as-
sessing how these contributions are mediated by lower level drivers, 
including environmental factors, intraspecific density dependence 
and conceivably interspecific density dependence, and additionally 
to determine contributions from demographic stochasticity. They 
can give us a more complete picture of the different paths along 
which a population model moderates fundamental sources of varia-
tion into variation in population growth.
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