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Establishing field inventories can be labor intensive, logistically challenging and expensive. Optimizing a sample
to derive accurate forest attribute predictions is a key management-level inventory objective. Traditional
sampling designs involving pre-defined, interpreted strata could result in poor selection of within-strata sampling
intensities, leading to inaccurate estimates of forest structural variables. The use of airborne laser scanning (ALS)
data as an applied forest inventory tool continues to improve understanding of the composition and spatial
distribution of vegetation structure across forested landscapes. The increased availability of wall-to-wall ALS
data is promoting the concept of structurally guided sampling (SGS), where ALS metrics are used as an auxiliary
data source driving stratification and sampling within management-level forest inventories. In this manuscript,
we present an open-source R package named sgsR that provides a robust toolbox for implementing various SGS
approaches. The goal of this package is to provide a toolkit to facilitate better optimized allocation of sample
units and sample size, as well as to assess and augment existing plot networks by accounting for current forest
structural conditions. Here, we first provide justification for SGS approaches and the creation of the sgsR toolbox.
We then briefly describe key functions and workflows the package offers and provide two reproducible examples.
Avenues to implement SGS protocols according to auxiliary data needs are presented.

Introduction
Mensuration is a cornerstone of forest management. Quanti-
tative and qualitative measurements acquired for trees, plots
and stands are essential for forest planning, policy and research.
Although constrained by cost, labour availability and logistics,
innovation in field measurement methods via increased tech-
nological integration and augmentation is promising (Katila and
Tomppo, 2001; Melville et al., 2015; Puliti et al., 2018). Methods
for leveraging field data through space and time to support forest

inventories are also well understood (Lefsky et al., 1999; Næsset,
2002; Bechtold and Patterson, 2005; White et al., 2013; Dash
et al., 2015; Tompalski et al., 2019; van Ewijk et al., 2020).

Information needs dictate the scope and scale of forest inven-
tories, and by association, the data and methods used to derive
that information (McRoberts and Tomppo, 2007; Tomppo et al.,
2010). Fundamentally, the purpose of any forest inventory and
associated sampling framework is to obtain knowledge about
the population under investigation and estimate target pop-
ulation parameters. Tomppo (2010) comprehensively outlined
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how a variety of national forest inventories (NFIs) around the
world use long-standing probability-based approaches where
permanent and non-permanent field samples provide an effec-
tive means of acquiring data on a variety of forest attributes
for multi-purpose resource management. The re-measurement
of permanent sample units (plots) in NFIs, rather than routine
plot re-establishment, effectively manages costs and provides
time-series information facilitating estimates of forest attribute
change, a critical component of strategic inventories. Operational
and tactical inventories, unlike NFIs, are smaller in scale and are
generally focused on production and management of timber and
non-timber resources. The scope of these inventories is therefore
less focused on long-term changes and more on providing man-
agers with the best possible predictions of forest attributes (e.g.
timber volume and stem density) to support product demand
and effective environmental stewardship.

Given the highly dynamic nature of forest environments and
the socio-economic factors dictating their management, rou-
tine sampling is important for ensuring up-to-date operational
and tactical inventory attribute estimates. The costly process
of establishing new sample networks, and augmenting existing
ones, stands to benefit from objective methods outlining where
and how to optimally locate plots to enable effective manage-
ment and planning decisions (Melville et al., 2015). Research con-
tinues to suggest that sampling algorithms leveraging auxiliary
remotely sensed datasets can be used to improve estimates of
forest population parameters and inform on key management
objectives (Hawbaker et al., 2009; McRoberts, 2012; Junttila et al.,
2013; Papa et al., 2020).

Forest attribute models yield greater error rates when
calibration datasets fail to capture the full range of predictor
variability (e.g. Demaerschalk and Kozak, 1974; Hawbaker
et al., 2009; Maltamo et al., 2011). Models that operate within
the bounds of the original calibration data, i.e. the smallest
convex set containing all the design points (Cook, 1975), will
often perform poorly when extrapolating beyond this region
(Montgomery et al., 2006). Outside the calibration region,
parameter estimation methods are in ‘extrapolation mode’
where predictions are less reliable (Demaerschalk and Kozak,
1974; Montgomery et al., 2006). The same applies to (oft-
used) non-parametric modeling approaches (such as k-nearest
neighbours) that depend on the close proximity of nearest
neighbors in a reference set to impute plausible predictions.
In the scope of management-level, production-based forestry,
such approaches are likely to produce extrapolation errors when
imputing less abundant forest structural types that are rare in the
population, and consequent sample, when not treated differently
in the sampling design. With sustainable forest management
objectives becoming increasingly pertinent, regions with rare
spatial and structural complexity must be sampled given
their potential to contain disproportionately large quantities
of biomass or habitat value (Davies and Asner, 2014). Hence,
regardless of whether parametric or non-parametric modelling
approaches are applied, model-based inference is well suited for
small area estimation (McRoberts, 2012; Melville et al., 2015).
That being said, sampling the full range of structural variability
is more important for non-parametric methods, which are also
becoming more common for the implementation of area-based
inventory approaches (White et al., 2017).

In the effort to improve spatial and compositional variability
within model calibration data, a priori integration of spatially
explicit remotely sensed data and geospatial layers has become
increasingly common (Maltamo et al., 2011; Tomppo et al., 2014;
Dash et al., 2016; Papa et al., 2020). The use of aerial and/or
satellite imagery to provide estimates of condition and compo-
sition, and land cover classifications to differentiate forested and
non-forested ecosystems has aided in the design of field surveys
(Corona, 2010; McRoberts et al., 2014). Remotely sensed data
that differentiate, stratify or characterize areas of interest prior
to field surveys have helped to improve sampling strategies while
maintaining the statistical precision required for decision-making
(Gobakken et al., 2013; Melville et al., 2015; Papa et al., 2020).
Photointerpretation of aerial imagery to delineate stand bound-
aries and estimate species composition has provided a basis for
delineating forest strata (Leckie, 2003; Maltamo et al. 2021).
Sampling designs that leverage these data have been found to
directly integrate landscape heterogeneity, increasing the empir-
ical range of predictors in an acquired sample and improving
accuracy and precision of model predictions (McRoberts et al.,
2012).

Forest structure is both a product and a driver of ecosystem
processes and diversity that provides insight into forest yield,
condition, disturbance history, habitat characteristics and opera-
tional development (Spies, 1998; Thom and Keeton, 2019). Active
remote sensing technologies such as airborne laser scanning
(ALS) can be analyzed to derive measures of vegetation struc-
ture and underlying terrain (Holopainen et al., 2014; Tompalski
et al., 2019; Queinnec et al., 2021a). The ability to structurally
characterize forest vegetation using ALS metrics has led to the
development and implementation of enhanced forest invento-
ries (EFIs) (White et al., 2017). EFIs leverage data, such as ALS,
to integrate previously inaccessible or cost-prohibitive informa-
tion (e.g. forest structural descriptions, digital terrain models) to
develop forest information layers and predictions that are wall-
to-wall, spatially explicit and at a finer spatial resolution than
traditional inventories. The operational and economic benefits
provided by EFIs for forest management and planning are well
documented (Eid et al., 2004; Borders et al., 2008; White et al.,
2013; Ayrey et al., 2019), and as the acquisition of ALS continues,
so too does the creation and augmentation of EFI frameworks.
Empirical characterizations of forest structure within EFIs have
been demonstrated to correlate well with desirable field mea-
sured forest attributes like height and timber volume (Tompalski
et al., 2021). The linkage between field measurements and ALS
data facilitate area-based inventory approaches (Næsset, 2002),
wherein forest structure may be characterized using a parsimo-
nious set of ALS point cloud metrics in conjunction with field plot
data (e.g. tree height, canopy cover; Lefsky et al., 1999; Bouvier
et al., 2015) to predict a wide range of inventory attributes (e.g.
above ground biomass, stem volume, Lorey’s height; Wästlund
et al., 2018; Yu et al., 2020).

A major benefit of using remotely sensed data to help guide
sampling frameworks is that they provide information about
the population that can be leveraged in sampling designs
(Benedetti et al., 2015). Statistical approaches that minimize
bias and variance of parameter estimates can be referred to as
optimal designs (Smith, 1918; O’Brien and Funk, 2003; Silvey,
2013). A growing number of studies have demonstrated that
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the use of structural metrics from ALS as auxiliary information
for allocating sample units offers opportunities to optimally
design experiments (Hawbaker et al., 2009; Maltamo et al.,
2011; Melville et al., 2015; Queinnec et al., 2021a, 2021b).
These approaches can provide transparent, repeatable, tuneable
and spatially explicit methods to accurately represent the full
structural variation of a forest resource and/or augment sample
networks to include less frequently occurring, yet managerially
or ecologically important forest structural conditions. Practical
approaches to the operational implementation of optimal
designs using ALS data for forest management, which we refer
to as structurally guided sampling (SGS) approaches, have also
been outlined (White et al., 2013; White et al., 2017).

Leiterer et al. (2015) and Kane et al. (2010) suggested that
information contained in ALS data can be condensed to a few
parsimonious metrics and through dimensionality reduction
approaches such as principal component analysis, which has
been prevalent in the literature (see Table 1). Maltamo et al.
(2011) emphasized that an appropriate method to decide
among ALS metrics is to determine their relative importance
to attributes of interest (e.g. if accurate estimates of stand
height or volume are desired, then metrics such as the 90th

percentile of height are logical to include). Methods of stratifying
ALS metric populations to guide sampling strategies have varied.
Standardized breaks (Hawbaker et al., 2009; Gobakken et al.,
2013) and statistical summaries (e.g. principal components)
(Fedrigo et al., 2018; Papa et al., 2020; Queinnec et al., 2021a,
2021b) are common, while sampling algorithms that incorporate
spatial variation without the need for stratification are growing
in application (Grafström and Ringvall, 2013; Grafström et al.,
2014; Melville et al., 2015). Outcomes from these studies have
suggested that model performance can be improved by ensuring
representativeness both spatially over the forest estate and
within the empirical predictor space. This increases the potential
to achieve a greater degree of efficiency in sampling while
optimizing sample size, leading to potential reductions in overall
inventory costs (Junttila et al., 2013; Queinnec et al., 2021a).
One caveat to this approach is that optimizing stratification and
sampling efforts to estimate a particular population parameter
(e.g. mean biomass) may lead to a greater degree of uncertainty
in estimates of other attributes (e.g. mean stem density). This
emphasizes the importance of establishing inventory objectives
and associated attributes of interest early in the planning
stage.

SGS approaches using ALS data have been shown to pro-
vide empirical rigor for determining the quantity and spatial
allocation of sample units (Table 1). Herein, we present sgsR, a
free, open-source, customizable and efficient software toolbox
implemented in the R statistical computing environment (R Core
Team, 2022). sgsR is primarily focused on management-level
forest inventory applications where model-based inference will
be used to estimate population attributes (Gregoire, 1998; Chen
et al., 2016). This manuscript is structured to provide an overview
of sgsR functionality and outline theoretical processing strategies
with applied and reproducible examples. We then comment on
the managerial value of a consolidated toolbox capable of imple-
menting SGS approaches and its ability to support operational EFI
planning.

Methods
The fundamental processing objectives of sgsR are to facilitate
incorporation of forest structural metrics, such as those derived
from the lidR package (Roussel et al., 2020), in the design of forest
management inventories. ALS metrics are the intended inputs
to sgsR because they provide information on three-dimensional
forest structure. Other remotely sensed or auxiliary data can
however be used (e.g. optical imagery) if the spatial resolution
of inputs is consistent. Here, we focus on the use of ALS met-
rics in the context of management-level inventory applications.
sgsR is an open-source and robust toolbox to enable objective
methods for creating, augmenting and analyzing forest inventory
samples. The package is currently hosted on the comprehensive
R archive network (https://cran.r-project.org/package=sgsR) and
Github (https://github.com/tgoodbody/sgsR).

Processing strategies using sgsR
sgsR provides a collection of sampling algorithms that use auxil-
iary information for allocating sample units over an areal sam-
pling frame. Probability-based sampling methods (e.g. simple
random sampling, systematic sampling), where inclusion proba-
bilities of sample units are known or can be derived (see Gregoire,
1998) are included, though these methods are not the principal
focus of the package.

Functions within sgsR can be separated into two main process-
ing streams: stratification and sampling (Table 2). By separating
the two processing components into individual steps, users can
easily design and customize both the initial stratification and
subsequent sampling to best fit auxiliary data and inventory
objectives. Supplementary processing steps include calculating
functions, which perform various intermediary tasks such as cal-
culating covariate values, as well as extracting functions, which
extract co-located covariate values for each sample unit. The pro-
cessing workflow therefore starts with a stratification, followed
by sampling and ends with extracting. A summary of potential
processing workflows is presented in Figure 1.

A stratified sampling example entails a user first providing a
population (wall-to-wall coverage of ALS data where each raster
cell is a potential sample unit), which is then stratified (e.g. using
the strat_breaks function) to produce a stratified raster output.
The generated stratification is then used as an input, along with
the desired sample size, to sample proportionally among strata
using the sample_strat algorithm. The output sample is then
paired with the input ALS metrics using extract_metrics, attribut-
ing co-located metric values to each sample unit to enable down-
stream forest attribute modelling.

Stratification algorithms
Auxiliary rasters

Functions denoted with strat_ are stratification algorithms within
sgsR. These algorithms use auxiliary raster data (e.g. ALS metric
populations) as inputs and provide stratified areas of interest
as outputs. Algorithms are either supervised (e.g. strat_breaks),
where the user provides empirical values that drive stratifications,
or unsupervised (e.g. strat_quantiles), where the user specifies
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Table 1 Literature where ALS and/or forest inventory information were used as auxiliary data for sampling.

Study General topic Data/metric(s) used Attribute of interest

van Aardt et al. (2006) Stratification Canopy height model (CHM) Volume and biomass
Junttila et al. (2008) Sample selection Height and intensity metrics Volume, stem count, basal area
Hawbaker et al. (2009) Stratification Mean and standard deviation (SD) Vegetation structure and biomass
Maltamo et al. (2011) Plot selection Height, density and ground vs canopy

echoes
Volume and stem count

Junttila et al. (2013) Plot selection Principal components height Biomass
Gobakken et al. (2013) Plot selection 70th percentile of height, density Volume
Leiterer et al. (2015) Stratification Relative frequency distribution of echoes

(full waveform)
Canopy structure

Melville et al. (2015) Stratification and plot
selection

Height and stocking density. Canopy cover
and occupied volume

Volume

Melville and Stone (2016) Plot selection Monte Carlo random selection of height and
density

Volume

Niemi and Vauhkonen (2016) Stratification Textural CHM metrics Volume, basal area and mean diameter
Fedrigo et al. (2018) Stratification Height, plant area volume density, plant

area index
Forest stand types

Papa et al. (2020) Stratification and plot
selection

Canopy height, leaf area density and index,
voxel-based vegetation density

Structural variation

Queinnec et al. (2021b) Stratification Height, canopy cover and height variability Canopy height, cover and canopy height
variability

Queinnec et al. (2021a) Stratification and plot
selection

Principal components of height, cover and
variability

Lorey’s height, basal area, diameter,
stem density, volume and biomass

Table 2 Stratification (strat_) and sampling (sample_) algorithms implemented in the R package sgsR v1.3.4

Function name Description

Stratification strat_breaks Stratify using user-defined breaks.
strat_quantiles Stratify using quantile breaks.
strat_kmeans Stratify using kmeans1.
strat_poly Stratify based on a polygon coverage.
strat_map Combine (map) two stratifications.

Sampling sample_srs Simple random sampling.
sample_systematic Systematic sampling within a regular or hexagonal tessellation.
sample_strat Stratified random sampling. Requires stratified raster as input (Queinnec et al., 2021a).
sample_clhs Conditioned Latin hypercube sampling using clhs2 functionality. Requires metrics as input

(Roudier, 2011).
sample_balanced Balanced raster sampling using lcube3 and lpm2_kdtree4 methods. Requires metrics as input

(Grafström and Lisic, 2018).
sample_ahels Adapted hypercube evaluation of a legacy sample (ahels). Requires metrics as input (Malone

et al., 2019).
sample_nc Nearest centroid algorithm (Melville and Stone, 2016). Requires metrics as input.
sample_existing Sub-sample an existing sample using clhs2 functionality.

1stats package – kmeans – https://rdrr.io/r/stats/kmeans.html 2clhs package – clhs – https://rdrr.io/cran/clhs/man/clhs.html 3BalancedSampling
package – lcube – https://rdrr.io/cran/BalancedSampling/man/lcube.html 4SamplingBigData – lpm2_kdtree – https://rdrr.io/cran/SamplingBigData/
man/lpm2_kdtree.html

the desired number of output strata (nStrata) and stratification
is handled by the algorithm.

All stratification algorithms allow the user to supply individual
or multiple input metric rasters. For example, as of sgsR v1.3.4

the strat_breaks algorithm allows for single and dual metric
stratifications. A single metric (e.g. 90th percentile of height)
can be provided where desired breakpoints are supplied by the
user. In these cases, raster cells situated between breaks along
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Figure 1 sgsR processing workflow detailing potential inputs, a selection of stratification and sampling algorithms, and supplementary processing
strategies.

the metric distribution are allocated to an individual stratum
(Figure 2A,B). The same can also be done in cases where two
metrics are provided (e.g. 90th percentile of height and standard
deviation of height), with corresponding breaks specified for
each metric. In this case, strata are defined by breakpoints in
both metrics, where raster cells situated within the dual bounds

of a stratum define their delineation (Figure 2C,D; Hawbaker
et al., 2009; Gobakken et al., 2013). It is also possible for the
user to supply metric summaries such as principal components
(calculated using calculate_pcomp) as metric rasters (see
Queinnec et al., 2021a), with the same stratification rules
applying.
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Figure 2 Single (90th percentile of height) and dual (90th percentile of height and standard deviation of height) stratification scatter plots (A and C,
respectively) and rasters (B and D, respectively) colored to distinguish classes and delineated with black boundaries. Stratifications were generated
using the strat_quantiles function in sgsR.

Polygon coverages

Forest inventories with polygon coverages summarizing for-
est attributes such as species, management type or photo-
interpreted estimates of volume can be stratified using the
strat_poly algorithm. The algorithm requires that the user defines
the inventory of interest, as well as an auxiliary raster to define
the output extent and spatial resolution. Users can then specify
the population of interest (e.g. species) for stratification and
provide vectors for how categorical or numeric values should
be stratified (e.g. strata representing pine/spruce/fir). Grouping of
values is also possible (e.g. strata representing pine/spruce and
fir) to allow for a greater degree of control in stratum composition
and outputs.

With the recognition that managers may wish to pair polygon-
based stratifications with those derived using ALS metrics, the
combination of two stratifications is possible using the strat_map
algorithm. Two stratifications of matching extent and resolu-
tion are provided as input (Figure 3A,B), which are then mapped
against one another to generate unique strata based on stratum
pairings (Figure 3C). This facilitates the user to generate stratifi-
cations detailing quantitative and qualitative measures, such as
structure by species, or multiple qualitative measures, such as
species by management type.

Sampling algorithms
Functions denoted with sample_ are sampling algorithms in sgsR.
Depending on the sampling algorithm, users are able to provide
either auxiliary metrics or stratifications derived from strat_

functions as inputs. A number of customizable parameters can
be set including the sample size (nSamp), a minimum distance
threshold (mindist) between allocated sample units and the
ability for the user to define an access network (access) and
assign minimum (buff_inner) and maximum (buff_outer) buffer
distances to constrain sampling extents.

Probability-based sampling

Commonly used probability-based sampling algorithms, includ-
ing simple random sampling (sample_srs) and systematic
sampling (sample_systematic), are implemented in sgsR. The
sample_systematic function provides the user with the ability
to choose a tessellation shape (regular or hexagonal grid) and
uses a random start point and rotation. Users define a sampling
interval distance and sample location within the tessellation
(tessellation center, corners or random). The use of non-default
values for select parameters (e.g. mindist and access) will result
in changes to sample unit inclusion probabilities and a resulting
shift to a model-based inference approach (Gregoire, 1998;
Gregoire and Valentine, 2007).

sample_strat

The stratified random sampling algorithm (sample_strat) has
two implemented approaches. First, traditional stratified ran-
dom sampling, where inclusion probabilities for all sample
units within strata are equal given default parameterization
(method = ‘random’), and the method described in Queinnec et al.
(2021a) (method = ‘Queinnec’) is described in the following text.
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sgsR: a structurally guided sampling toolbox

Figure 3 Stratification into three classes using strat_poly (A); 5 class p90 stratification derived using strat_quantiles (B); mapped combination of strata
from A and B derived using strat_map (C). Mapped raster stratum indices combine to form the final stratum values (e.g. stratum A1 and B1 combine
to make C11).

sample_strat is the only sampling algorithm where a stratification
is a mandatory input. By default, the algorithm uses the Queinnec
method, where inclusion probabilities are proportional to stratum
size (spatial coverage), and sample units are allocated without
replacement, using the following two-step hierarchical rule. First,
grouped stratum pixels are identified using a moving window
(e.g. a 3 × 3 set of pixels of the same strata), and random
sampling within grouped pixel subsets is performed to meet
the desired overall sample size. Second, if the desired overall
sample size cannot be met due to a lack of available pixel groups,
stratum pixels not meeting the group definition are randomly
sampled until the desired overall sample size is obtained. This
two-step approach is designed to prioritize sampling in areas of
homogenous strata coverage, instead of isolated strata pixels.

The method in which sample allocation is performed can be
changed using the allocation parameter (calculated internally
using the calculate_allocation function). By default, samples are
allocated proportionally to the size of each stratum. Additional
allocation options include optimal allocation with equal sampling
cost (allocation = ‘optim’) as outlined in Gregoire and Valentine
(2007), equal allocation (allocation = ‘equal’), where the same
number of samples are allocated to each stratum, and manual
allocation (allocation = ‘manual’), where users can assign relative
weights to each stratum.

Latin hypercube and balanced sampling

Functions developed to simplify and consolidate prominent sam-
pling approaches have been implemented via sample_balanced
and sample_clhs. Both of these algorithms take auxiliary metrics
as inputs and provide an efficient means of sampling from mul-
tivariate distributions. sample_balanced leverages functionality
from the BalancedSampling (Grafström and Lisic, 2018) and Sam-
plingBigData (Lisic and Grafström, 2018) R packages, providing
users the ability to choose between the local pivotal method
(lpm2_kdtree), lcube, and lcubestratified sampling algorithms
described in Grafström and Lisic (2018). These algorithms were
included within sgsR given their fast implementation and ability
to balance sample unit selection in physical and predictor space
(Grafström et al., 2014; Melville and Stone, 2016). Balanced
sampling approaches are especially valuable when there are
spatial trends in input variables (Grafström et al., 2012).

Conditioned Latin hypercube sampling (clhs; (Minasny and
McBratney, 2006) has been implemented via sample_clhs, lever-
aging functionality from the clhs: Conditional Latin Hypercube
Sampling R package (Minasny and McBratney, 2006; Roudier,
2011). clhs is a stratified random sampling approach that has
been used in soil science and environmental research as an
efficient method to representatively sample within multivari-
ate distributions and assess uncertainty in model predictions
(Minasny and McBratney, 2002). Proposed benefits of this sam-
pling approach are numerous, though the principal reason for its
inclusion in sgsR is that the distribution and multivariate correla-
tion of input metrics can be preserved to ensure a representative
sample (Yang et al., 2020). Unique to the sample_clhs algorithm
is the cost parameter. The user can provide either an index or
name of an input metric to be used to constrain clhs sampling.
Common examples of these constraints could be distance from
roads, inaccessible areas, land tenure or terrain elevation.

Augmenting an existing sample

Select functions (e.g. sample_strat and sample_clhs) allow the
user to augment an existing sample. This functionality is imple-
mented to acknowledge that the acquisition of an entirely new
sample is likely to be uncommon in areas with existing manage-
ment histories, or in locations where historical data exist (e.g.
permanent sample networks).

The sample_ahels algorithm within sgsR has been adapted
from that described in Malone et al. (2019) to perform the
adapted hypercube evaluation of a legacy sample (ahels). The
algorithm takes an existing sample and auxiliary metrics to allo-
cate new sample units where the ratio between metric density
and existing sampling intensity indicates under-representation.
Simply put, sample_ahels divides auxiliary metrics into a user-
determined number of quantiles and generates a density matrix
of auxiliary metric data falling into each. Quantile and density
matrices can be supplied to the sample_ahels algorithm to
improve sampling processing speeds using the calculate_pop
function. Quantiles that do not cover at least 1 per cent of the
study area are omitted from the analysis by default, making
inclusion probabilities for respective raster cells zero. Existing
sample units are then co-located with metric values and
allotted into corresponding metric quantiles to evaluate sampling
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intensity. Over- or under-representation within quantiles is
determined according to the ratio of metric and sample densities
(<1 being under-represented and >1 being over-represented).

Once preliminary sampling ratios have been computed, the
user can elect to add a discrete number of sample units (nSamp)
or specify a sampling ratio threshold (threshold) where sample
units will not be added beyond a specified level. Once a method is
defined, an iterative sampling approach is applied where sample
units are randomly allocated to prioritize the quantile with the
smallest sampling ratio, which is recomputed each time a sample
unit is added. Sample units are allocated until the given nSamp
or threshold is reached.

Examples of stratification and sampling using
sgsR
We present two fully reproducible simulations to illustrate the
stratification and sampling functionality of sgsR. R code used for
all examples can be found in Appendix A. Using a test site in
Ontario, Canada, we provide example workflows where:

1. The population of the 90th percentile of height metric is strat-
ified using defined break points to generate a stratified raster,
which is then sampled (sample_strat) to allocate a total of
100 sample units. A road access layer is provided to constrain
the allocation of samples to be a maximum of 400 m and a
minimum of 50 m away from access.

2. An existing sample network of 50 sample units is provided,
with the goal of allocating an additional 100 (sample_ahels)
sample units based on the distribution of the 90th percentile
of height.

Inputs
ALS data were acquired in June 2018 over the Romeo Malette For-
est near Kapuskasing, Ontario. A subset of ∼4000 ha was chosen
and the 90th percentile of height (zq90) and standard deviation
of height (zsd) were calculated at a 20-m spatial resolution using

the lidR package (Roussel et al., 2020; Roussel and Auty, 2022).
Metrics were then masked to remove non-forested areas and
parks. A road access layer with 167 road segments totaling 66 km
was used during stratified sampling in Example 1 to constrain
the location of sample units to be a maximum and minimum
distance from the road centerline. These data are internal to the
sgsR package.

Example 1: stratified sampling
In the first example, a stratified sampling approach was used to
generate a network of 100 sample units no greater than 400 m
and no less than 50 m from road access.

ALS metrics are first loaded into R using the rast function
from the terra package (Hijmans, 2022). Using the strat_quantiles
function, the zq90 metric is set as the mraster parameter. sgsR
parameters for raster inputs are mrasters (metrics rasters) and
srasters (stratified raster outputs from strat_ functions). The
desired number of strata (nStrata) is set to 5. The output sraster,
which will be used as the input in the subsequent sampling
algorithm, is a five-class stratification based on the division of
the zq90 metric population into five equally sized strata.

Prior to sampling, the road access network of the study site
is loaded into R using the st_read function from the sf package
(Pebesma, 2018) and is set as the access parameter within sam-
ple_strat. In order to confine sample allocation to be within a par-
ticular distance from the road network, the maximum distance
(buff_outer) and minimum distance (buff_inner) are specified as
400 and 50 m for example data, respectively. The unit of measure
for buffering distances will always be the same as the unit of
measure for access data (e.g. meters, feet, kilometers, degrees
etc.). access buffering is handled internally within sample_strat.
We compared cumulative frequency distributions for zq90 and
zsd to ensure that the access constrained sampling frame had
minimal differences to the ALS metric population (Figure 4).
Differences between both cumulative frequency distributions
were assessed visually and were found to be negligible.

The output of sample_strat is a simple features collection
(Pebesma, 2018) of 100 point objects (sample units) with strata,
type, rule and geometry attributes. strata refers to the strata each

Figure 4 Cumulative frequency distributions for zq90 (A) and zsd (B) that compare the access constrained region (green) with populations (yellow).

418

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/96/4/411/7026211 by Sw

edish U
niversity of Agricultural Sciences user on 09 N

ovem
ber 2023

https://academic.oup.com/forestry/article-lookup/doi/10.1093/forestry/cpac055#supplementary-data


sgsR: a structurally guided sampling toolbox

Figure 5 Graphical result of sampling from Example 1 with mapped sample units and road access buffers (A), and scatter plot showing distribution of
sample units (black) in relation to the overall population (colored by strata; B). Stratification was performed on zq90 only. The scatter plot with zsd on
the y-axis is purely to enable visualization.

sample unit belongs to, type refers to whether the samples are
newly created (new) or provided during sampling (existing), rule
refers to sampling rules outlined in the sample_strat section of
this manuscript and geometry contains spatial information for
each sample. Following allocation, co-located ALS metrics are
then extracted for each sample unit using the extract_metrics
function, appending co-located ALS metrics with each sample
unit. The output from sample_strat and the visualization of the
allocated sample based on their distribution within strata are
shown in Figure 5.

Example 2: augmenting an existing sample network
In the second example, 100 sample units were added to an exist-
ing sample to improve the structural representation of sample
units within the 90th percentile of height. For this example, we
first generated a set of 50 sample units to simulate an existing
sample. For the purposes of this example, we assumed these
sample units were already being used for forest management.
To do this, we performed simple random sampling using the sam-
ple_srs function, setting the zq90 metric as the raster parameter.
sample_srs allows both mrasters and srasters as inputs, given
that the algorithm does not use metric content, only extent, into
account during sampling.

Once the existing sample network was created, we aug-
mented it to improve representation based on zq90. For this,
we use the sample_ahels algorithm. The zq90 metric was set as
mraster in the sample_ahels algorithm and we set the random
sample generated above as existing. In this example, we specified
that we wanted to add 100 new sample units (nSamp). We
used the default nQuant parameter. The optional parameter
to display details related to the algorithm output is specified
(details = TRUE).

sample_ahels outputs a list where samples is a simple fea-
tures collection (Pebesma, 2018) of 150 point objects (50 exist-
ing and 100 new sample units) with co-located ALS metrics,
and details is a sub-list with three sampling ratio matrices. The

existingRatio matrix contains the sampling ratios of the existing
random sample, the sampledRatio matrix contains the sampling
ratios of the combination of existing and new sample units added
by sample_ahels and the diffRatio is the difference between
sampledRatio and existingRatio. With the understanding that an
optimal ratio for each quantile is 1, we compared existingRatio
and sampledRatio matrices and noted that sampling ratios using
sample_ahels became closer to the ideal of 1 within metric quan-
tiles (Figure 6).

The proportional representation of sample units within quan-
tiles is presented in Figure 7. By default, sample_ahels divides
the zq90 metric distribution into 10 quantiles (nQuant), drop-
ping quantiles (inclusion probabilities for included sample units
become zero) containing less than 1 per cent of the population
from sampling. In this example, quantile 10 was dropped, leav-
ing 9 remaining quantiles for sampling to occur (Figure 7). The
proportional frequency of stratum coverage and the sampling
frequency within quantiles are shown to be unequal prior to
sampling using sample_ahels (Figure 7A). Notably, quantiles 1
and 9 have no sampling representation, while quantile 7 shows
oversampling. This indicates that sampling intensity within quan-
tiles is not representative of the proportional coverage of the 90th

percentile of height metric. We found that after the addition of
100 samples using sample_ahels, the proportional frequency of
sample plots and quantile coverage became close to equal for all
quantiles (Figure 7A). This is corroborated by the sampling ratio
values from the sampledRatio matrix presented in Figure 6B. This
indicates that additional sampling using sample_ahels resulted in
sample units that were more representative of the 90th percentile
of height across the study area.

Discussion
sgsR has been designed to provide users with a robust, free and
open-source toolbox that enables implementation, testing and
comparison of varying sampling approaches for management-
level inventories. The processing workflows presented highlight
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Figure 6 Example 2 processing outputs. Map of quantile strata (A) with existing (black) and new (red) sample units. Scatter plot (B) with quantile
delineations by color and black boundaries. Existing and new sample units are presented to indicate their location within the distribution of the 90th

percentile of height and standard deviation of height. Text above quantile boundaries denotes the initial existingRatio of sample units (black) and
sampledRatio following addition of new sample units (red). The number of sample units added to each quantile is listed for each quantile (e.g. n = 2).

the customizable nature of the software. The goal of this package
is to provide a collection of stratification and sampling algorithms
to help users effectively represent structural variation across a
forest management area (Maltamo et al., 2011; White et al.,
2013). Algorithms have been developed to improve sample rep-
resentation in rare or under-represented forest types. Sampling is
a time-, labour- and cost-intensive task, and methods that help
managers balance sample size and intended precision of model
predictions to enable accurate forest inventories are therefore
critical for effective management (Papa et al., 2020; Queinnec
et al., 2021a).

The objective of the examples provided in this manuscript was
to outline some of the capabilities of sgsR. The toolbox provides
users with a variety of options and flexibility in parameterization
to allocate sample units. The operational feasibility and/or opti-
mization of these sample units in an applied field measurement
context however will always require objective scrutiny from end
users. Particular stratification and/or sampling approaches may
not be suited to certain sampling schemes or consequent mod-
elling strategies (Queinnec et al., 2021a). Critical thinking and
scientific rigor for justifying methods used are fundamental to the
SGS process. Additionally, extraneous factors related to logistics,
safety and field optimization must also be considered. Within rea-
son, a potential strategy of including redundancy (i.e. allocating
more sample units than necessary) in a generated sample has no
additional cost to the user; however, it provides flexibility to make
on-the-ground decisions about which sample units to visit while
in the field, given conditions encountered. This strategy is likely
to help maintain representation within forest structures, while
providing field crews with the flexibility to implement efficient
sampling programs. It is important to note, however, that such
decisions could affect inference given that sample units may not
be chosen at random.

sgsR is intended to provide methods for optimizing the
allocation of sample units to derive comprehensive data about
the state of forest structure. Many stratification and sampling
approaches presented in sgsR have been created to implement
methodologies found in published literature (e.g. Gobakken et al.,
2013; Melville and Stone, 2016; Malone et al., 2019; Queinnec
et al., 2021a). A challenge to fully evaluating the degree to which
alternative sampling schema improve model estimates is the
need to conduct field measurements for validation purposes;
hence there is often a need to rely on simulations to assess the
relative merits of different sampling strategies. Not having field
measured attributes (e.g. timber volume or biomass) in these
allocated sample units makes it challenging to immediately
demonstrate their value for improving model-based inference.
It is therefore fundamental that ALS metrics being used to drive
SGS approaches are correlated to the attributes of modelling
interest (Maltamo et al., 2011; Gobakken et al., 2013; Grafström
et al., 2014; Melville et al., 2015).

The primary intended use case for sgsR is to enable SGS
approaches using ALS data; however, the inclusion of alternate
remotely sensed covariates is entirely possible and encouraged.
Spectral data, climate variables, or species information could be
essential to a given sampling strategy or desired inventory out-
come. Incorporation of these auxiliary data into sampling strate-
gies can also be implemented in sgsR if overall requirements
for the data such as matching of the spatial extent and spatial
resolution are met. The ability to combine additional covariates
with structural data, or use them in isolation, provides users with
an avenue to test, analyze and improve their justification for
sampling approaches. Research into the effectiveness of using
additional remote sensing covariates for improving forest inven-
tory or other resources management sampling frameworks are
welcome and encouraged.
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Figure 7 The sampling frequency (green) and stratum coverage frequency (yellow) for existing sample units only (A) and existing and new sample
units (B) for the 90th percentile of height. Bars with an unequal value for a given quantile indicate that the number of sample units and the coverage
of the strata are not proportional.

Conclusion
Increasing investments in ALS acquisitions by public and private
stakeholders in the forest sector is influencing forest inventory
approaches and has created a need for comprehensive tools for
generating representative sample networks for the improvement
of forest inventory attribute models. sgsR was created to provide
a toolbox the forest management community could use that
integrates multiple stratification and sampling approaches,
existing sample networks and forest management data to
improve the representative allocation of sample units. Building
on the existing scientific literature as described herein, we have
established the case for objective and transparent methods to
improve and implement SGS routines that take full advantage of
the synoptic characterization of forest structure that is afforded
by wall-to-wall ALS acquisitions. We have described key algo-
rithms and workflows to enable SGS approaches and presented

reproducible examples of how sgsR can be implemented and
adapted to develop SGS protocols according to the end user’s
specific information needs.

Supplementary data
Supplementary data are available at Forestry online.

Data Availability
Data internal to the sgsR package used in this article are included
within the CRAN package release (https://cran.r-project.org/packa
ge=sgsR) and Github repository– (https://github.com/tgoodbody/
sgsR), and can be downloaded without the need for an access
code.
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