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Abstract
1. Analyses of sedimentary DNA (sedDNA) have increased exponentially over 

the last decade and hold great potential to study the effects of anthropogenic 
stressors on lake biota over time.

2. Herein, we synthesise the literature that has applied a sedDNA approach to 
track historical changes in lake biodiversity in response to anthropogenic im-
pacts, with an emphasis on the past c. 200 years.

3. We identified the following research themes that are of particular relevance: (1) 
eutrophication and climate change as key drivers of limnetic communities; (2) 
increasing homogenisation of limnetic communities across large spatial scales; 
and (3) the dynamics and effects of invasive species as traced in lake sediment 
archives.

4. Altogether, this review highlights the potential of sedDNA to draw a more com-
prehensive picture of the response of lake biota to anthropogenic stressors, 
opening up new avenues in the field of paleoecology by unrevealing a hidden 
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1  |  INTRODUC TION

Over the past c. 200 years, coupled lake– catchment ecosystems around 
the world have been exposed to multiple stressors, which include pol-
lution (e.g., nutrient enrichment), water flow modification (e.g., dams, 
drought, and storms), overexploitation of natural resources (e.g., defor-
estation, overfishing), and invasions by non- native species (Stendera 
et al., 2012). These stressors, which are caused or at least exacerbated 
by human activities, modify lake functioning and biodiversity with 
important consequences for ecosystem services (Walsh et al., 2016; 
WWF, 2020). Ongoing climate change as a consequence of human ac-
tivities also impact lakes (Jane et al., 2021; O'Reilly et al., 2015), caus-
ing dramatic shifts in lake biota (Barbarossa et al., 2021; De Senerpont 
Domis et al., 2013). Environmental stressors can act over short or long- 
term scales (i.e., decades to centuries). Understanding the cumulative 
as well as relative impact of stressors requires time series studies that 
match the question of interest. Similarly, time series data are useful 
to assess the extent to which a lake maintains its reference ecological 
state when exposed to pressure (i.e., resilience) and shed light on tran-
sitions between ecosystem states.

Studies exploring long- term patterns in limnetic biological com-
munities are essential to aid in understanding reference conditions 
and historical ranges of variability, and to assist in determining po-
tential drivers of ecological change. However, the general lack of 
long- term monitoring data that span both pre-  and post- disturbance 
periods makes it difficult to determine the nature and the timing of 
ecosystem changes. The paleolimnological approach circumvents 
these challenges by providing a long- term perspective and informa-
tion about historical reference states (Smol, 2010). Studies based on 
classical paleolimnological indicators such as diatom frustules, sub-
fossil chironomids, and cladoceran remains have provided important 
insights into the response of lake ecosystems to multiple stressors 
(Jenny et al., 2016; Perga et al., 2010). However, traditional paleolim-
nological proxies are limited to the few biological taxa that leave di-
agnostic morphological features, thereby impeding the assessment 
of long- term changes in overall biodiversity, tropho- dynamics, and 
ecosystem functioning.

The emergence of sedimentary DNA (sedDNA) analyses has 
allowed researchers to expand the paleolimnological toolbox and 
generate a holistic view of past freshwater ecosystems and their tra-
jectories (Capo et al., 2021). SedDNA represents DNA from both liv-
ing and deceased organisms found in the sediments. Mixed with the 

DNA of sediment- living organisms, sedDNA from past organisms can 
reveal key information about the long- term trends in freshwater bio-
diversity and open new avenues to reconstruct biological time series 
more broadly (Capo et al., 2022; Gillings & Paulsen, 2014). In 2017, 
Domaizon et al. showed how the emerging field of sedDNA research 
offered new opportunities for researchers to: (1) track the introduc-
tion and spread of invasive species; (2) assess changes in the compo-
sition of biological communities; (3) infer long- term dynamics within 
ecological networks; and (4) aid in the development of tools to deter-
mine past changes in environmental conditions (e.g., transfer func-
tions). A range of molecular methods have been applied to sedDNA, 
including quantitative polymerase chain reaction methods (qPCR, 
digital droplet PCR) and amplicon sequencing (or metabarcoding) to 
study the past abundance and diversity of aquatic organisms (Capo 
et al., 2021). Sequencing of all DNA fragments (metagenomics) and 
of taxa- specific DNA fragments (hybridisation capture) are now in-
creasingly used to study the past genomic diversity of aquatic or-
ganisms using sedDNA with extended resolution (e.g., Armbrecht 
et al., 2021; Garner et al., 2020; Lammers et al., 2021).

Our review synthesises knowledge from studies that have in-
corporated sedDNA to advance our understanding on the effects 
of anthropogenic stressors on lake biota over the last c. 200 years, 
a period of enhanced global human activities (Figure 1). We provide 
a comprehensive inventory of studies that have used sedDNA ap-
proaches to explore the influence of eutrophication, climate, and 
non- native species introduction on in- lake biological processes 
(Figure 2). Table 1 presents a synthesis of the biological changes 
detected using a sedDNA approach as a response to environmen-
tal stressors that occurred during the Anthropocene. As illustrated 
in Figure 1, these environmental perturbations are affecting lakes 
across multiple trophic levels through bottom- up and top- down ef-
fects; as such, the review is structured by trophic levels and aims to 
evaluate the knowledge acquired using the sedDNA approach over 
the last 2 decades of research.

2  |  PHOTOTROPHIC ORGANISMS

2.1  |  Cyanobacteria

The biomass of cyanobacteria has increased over the last cen-
turies in many lakes worldwide as a consequence of increased 

historical biodiversity, building new paleo- indicators, and reflecting either taxo-
nomic or functional attributes.

5. Broadly, sedDNA analyses provide new perspectives that can inform ecosystem 
management, conservation, and restoration by offering an approach to measure 
ecological integrity and vulnerability, as well as ecosystem functioning.

K E Y W O R D S
anthropogenic stressors, climate change, eutrophication, invasive species, sedimentary DNA
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anthropogenic impact (Erratt et al., 2022; Huisman et al., 2018; 
Taranu et al., 2015; Yan et al., 2020). A shift in dominant phy-
toplankton towards cyanobacteria is of particular concern in 
lakes and reservoirs because some strains have the potential to 
synthesise toxic compounds (cyanotoxins), with deleterious ef-
fects on wildlife, domesticated animals, and humans (Chorus & 
Welker, 2021). Large cyanobacterial blooms impair ecosystem 
services (e.g., drinking water provisioning, recreational activities) 
and ecosystem functioning via the degradation of water qual-
ity (e.g., fish death due to oxygen depletion after cyanobacte-
ria bloom events, reduction of biodiversity via the disruption of 
the food chain). Decades of laboratory experiments and empiri-
cal studies have helped identify external drivers that contribute 
to regulating cyanobacteria metabolism (including their toxin 
synthesis pathways) and favour their dominance in freshwaters 
(e.g., Chorus et al., 2021). Major environmental drivers include 
enhanced nutrient concentration (i.e., eutrophication) and high 
water temperatures (exacerbated by climate change) that can act 
synergistically to promote cyanobacteria dominance in aquatic 
environments (Chorus et al., 2021; Chorus & Welker, 2021; Paerl 
& Otten, 2013; Paerl & Paul, 2012). However, due to the pau-
city of long- term data the factors explaining diversity and inter- 
annual variability in cyanobacterial natural assemblages are not 
fully known.

Paleolimnological studies based on sedDNA have contributed 
to greatly improve our knowledge of timing and magnitude of 
shifts in cyanobacterial community composition, dominance, and 

toxin synthesis potential over time periods that span both pre-  and 
post-  anthropogenic disturbance. These studies complement works 
based on other paleo- indicators such as photosynthetic pigments, 
biomarkers, and subfossils, and are useful to infer historical trends 
in cyanobacterial communities throughout the Anthropocene and 
beyond (e.g., Erratt et al., 2022; Monchamp et al., 2018; Picard 
et al., 2022; Tse et al., 2018).

2.1.1  |  Long- term temporal changes 
in cyanobacterial communities driven by 
anthropogenic stressors

Following established methods from pioneer studies (Fernandez- 
Carazo et al., 2013; Savichtcheva et al., 2011), some of the earli-
est sedDNA studies on cyanobacteria population dynamics over 
the last c. 200 years focused on reconstructing the populations of 
single genera using cloning- sequencing or qPCR methods. The dy-
namics in populations of Synechococcus (order Synechococcales) 
and Planktothrix (order Oscillatoriales) changed over c. 100 years 
as a consequence of shifts in the lake's trophic status and cli-
mate warming (Domaizon et al., 2017; Savichtcheva et al., 2015). 
Another study based on qPCR analysis used cyanobacteria- specific 
primers targeting a region of the 16S rRNA gene to quantify tem-
poral changes in cyanobacterial communities in five Canadian 
lakes within and outside a protected area (Quebec, Canada) (Pal 
et al., 2015). This study reports an increase in cyanobacteria 

F I G U R E  1  Illustration of lake trophic interactions and the direct and indirect (via modification of water chemistry and thermal structure) 
influence of anthropogenic and climate pressures on lake biota.
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abundance over the past 30 years in comparison with the histori-
cal average (past 150 years).

The development of high- throughput sequencing technologies 
(e.g., amplicon- based sequencing) has opened new possibilities for 
sequencing multiple taxa at the same time (metabarcoding) to re-
construct whole cyanobacterial communities from sedDNA. In some 
lakes, it was found that the cumulative impact of anthropogenic- 
driven nutrient input and reduction of lake- water level probably 
promoted the increase of cyanobacteria abundance since the 1980's 
(Yan et al., 2019; Zhang et al., 2021). In other lakes, climate change 
causing warming of surface waters and increasing stability of the 
water column (Monchamp et al., 2019), as well as a combination 
of warmer and wetter conditions (Erratt et al., 2022) were identi-
fied as important drivers of changes in cyanobacteria taxonomic 
composition.

Over the last 2 decades, a growing body of research based on 
sedDNA metabarcoding analyses has reported on the regional homo-
genisation of cyanobacterial communities across broad geographi-
cal scales, which is generally attributable to both recent changes in 
local conditions (mainly eutrophication) and global changes (climate 

warming). A study by Monchamp et al. (2018) reported that the 
composition of cyanobacterial communities across 10 peri- alpine 
lakes had become more similar over the recent decades due to the 
combined influence of enhanced nutrient pollution (nitrogen and 
phosphorus) and increased water temperature (leading to increased 
duration and strength of lake thermal stratification). Other authors 
have also observed similar trends in the recent homogenisation of 
cyanobacterial communities (Cao et al., 2020) and in both cyanobac-
teria and eukaryotic phytoplankton communities (Huo et al., 2022; 
Zhang et al., 2021).

Aside from photosynthetic cyanobacteria, the temporal dynam-
ics of recently described clades of non- photosynthetic cyanobac-
teria (Soo et al., 2015) have been investigated using sedDNA from 
temperate lake cores (Ibrahim et al., 2021; Salmaso et al., 2018). It 
was recently suggested that these ancestral cyanobacteria respond 
to different factors than the photosynthetic lineages (Monchamp 
et al., 2019), probably due to the fact that they have alternative 
metabolic pathways. Nwosu et al. (2021) further found that stron-
ger lake circulation, as indicated by non- laminated sediments, fa-
voured the deposition of the non- photosynthetic cyanobacteria 

F I G U R E  2  Schematics summarising commonly observed trends in: (a) biological endpoints and insights gained from the sedDNA analysis 
of north temperate lake sediment cores; and (b) the biological response to eutrophication and/or climate recorded in lake sediment cores 
through sedDNA analysis. The width of the bands for the biological response illustrates a period of major changes for each biological group 
represented, either expressed as an increase in abundance, changes in community structure or in diversity.
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clade Sericytochromatia, whereas lake bottom anoxia, as indicated 
by subrecent and recent laminated sediments, favoured the recov-
ery of Melainabacteria DNA from sediments. The ecological role and 
significance of these ancestral clades of cyanobacteria remains to be 
investigated thoroughly in their environmental context.

2.1.2  |  Long- term temporal changes in the toxic 
potential of cyanobacteria

Several sedDNA analyses have detected and quantified temporal 
changes in genes responsible for toxin synthesis by cyanobacteria 
from freshwater environments. In lakes, such studies have led to the 
identification of important patterns in potentially toxic cyanobacte-
ria in relation to past changes in lake conditions, as summarised in 
Table 1. An increased abundance of cyanotoxin synthetase genes 
detected in lake sediments over recent decades has been attributed 
to major changes in lake trophic states. Saxitoxin- producing genes 
were found in sediment samples from the 21st century whereas they 
were absent in samples dated to the 19th century from a record col-
lected in the subtropical freshwater Laguna Blanca (Martínez de la 
Escalera et al., 2014). Other studies revealed that legacy nutrient 
inputs into temperate lakes promoted an increase in the abundance 
of Dolichospermum sp. (i.e., a genus capable of producing anatoxins; 
Hobbs et al., 2021; Pilon et al., 2019). Disproportionate increases 
in toxin- synthetase gene concentration detected in sedDNA core 
samples dated to within the last century are consistent with findings 
obtained via classical paleolimnological tools (e.g., Tse et al., 2018) 
and surveys of water columns showing evidence for an increased 
occurrence of toxigenic species of cyanobacteria in many regions of 
the world (e.g., Rinta- Kanto et al., 2009).

2.2  |  Eukaryotic phytoplankton

Lake eukaryotic microalgae are distributed in several lineages within 
the eukaryotic tree of life including the following dominant groups: 
chlorophytes, diatoms, chrysophytes, cryptophytes, and dinoflag-
ellates (Adl et al., 2012; Burki et al., 2020). Eukaryotic microalgae 
are phylogenetically diverse and have different requirements for 
light intensity and nutrient levels (Wetzel, 2001). As illustrated by 
the functional classification of freshwater phytoplankton (Padisák 
et al., 2009; Reynolds et al., 2002), phytoplankton community com-
position provides a wealth of information on ecosystem dynam-
ics. One general trend that emerged from the sedDNA analyses of 
48 European lakes using a paired contemporary and pre- industrial 
sampling design (i.e., top- bottom study) is the relative increase in 
phototrophic and mixotrophic protists associated with recent anthro-
pogenic changes (Keck et al., 2020). While the increasing abundance 
of cyanobacteria is often in the headlines (cf. previous section), other 
phytoplankton groups also appear to have been affected by human- 
induced changes over the past c. 200 years. Notably, the interplay 
between cyanobacterial and eukaryotic phytoplankton communities 
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is complex and strongly regulated by thermal stratification, mixing 
regime, and the biogeochemical balance of lakes (Posch et al., 2012). 
For instance, reducing phosphorus inputs can successfully reduce 
the occurrence of eukaryotic phytoplankton blooms; however, sub-
sequent increase in nitrogen- to- phosphorus ratio may provide an 
advantage to the non- nitrogen- fixing cyanobacterium Planktothrix 
rubescens (Posch et al., 2012). Moreover, the introduction of new 
species may lead to imbalances in food webs and affect phytoplank-
ton assemblages through top- down pressures (Leuven et al., 2017). 
As such, understanding the response of eukaryotic unicellular pho-
totrophs to anthropogenic and other stressors in the global context 
of climate change is becoming increasingly important.

2.2.1  |  Diatoms & chrysophytes

Diatoms and chrysophytes are highly sensitive to environmental 
change. As such, they serve as indicators to investigate the effects 
of changes in water chemistry, habitat, and thermal structure on lake 
ecosystem dynamics (Sandgren et al., 1995; Smol & Stoermer, 2010). 
For decades, most of the reconstructions of environmental changes 
derived from lake sediment cores were conducted using diatom 
frustules and chrysophytes scales and cysts. However, only a small 
proportion of the eukaryotic microalgae species bear silicious scales. 
Furthermore, the morphospecies identification of cysts has been 
linked to organisms in only a handful of taxa, which limits one's abil-
ity to draw ecological inferences (Smol, 2008). Despite these ca-
veats, data based on diatom and chrysophyte subfossils have been 
used to reconstruct the long- term temporal variations of lake nutri-
ents, metals concentrations and pH (e.g., Charles, 1990; Cumming 
et al., 2015).

Although chrysophyte DNA has been recovered from numerous 
sedimentary archives (e.g., Capo et al., 2016, 2017, 2019; Ibrahim 
et al., 2021; Keck et al., 2020), specific studies of chrysophyte popu-
lation dynamics through sedDNA analysis are still sparse. In the peri- 
alpine lakes Bourget and Annecy, chrysophytes have been found 
to be favoured by low phosphorus concentrations and increasing 
temperatures (Capo et al., 2017); a trend that has been previously 
observed in limnological studies (e.g., Sandgren et al., 1995). More 
recently, analysis of DNA extracted from water column and sedi-
ment trap samples across a 3- year monthly time series showed 
that changes in chrysophytes were associated with several other 
physico- chemical and biological variables, including fluctuations in 
ammonia concentration (Gauthier et al., 2021).

Several studies combined the genetic approach with microscopic 
analysis to assess the long- term dynamic of diatom communities, 
while also exploring the similarities, differences and complemen-
tarity of the two methods (Anslan et al., 2022; Dulias et al., 2017; 
Epp et al., 2011; Gauthier et al., 2022; Huang et al., 2020; Kang 
et al., 2021; Stoof- Leichsenring et al., 2012; Stoof- Leichsenring, 
Dulias, et al., 2020; Stoof- Leichsenring, Pestryakova, et al., 2020). 
Beyond the methodological advancements, insights into the re-
sponse of the diatom communities to environmental changes were 

also gained from these analyses, including shifts in diatom commu-
nity structure, diversity, and the occurrence of particular genetic 
lineages. Using a metabarcoding approach, Ibrahim et al. (2021) high-
lighted a decline in diatom diversity in Lake Constance (Germany) 
as a response to an increase in phosphorus concentrations, with a 
noticeable rebound when phosphorus concentrations later declined. 
However, this rebound in diversity also coincided with a change in 
the diatom assemblage and may be related to the presence of an-
other stressor or biotic process. Interestingly, the early shift in the 
diatom assemblage detected in the paleo- records was not previously 
observed in the long- term water column phytoplankton time series.

SedDNA approaches reveal new information on the ge-
netic plasticity of diatoms in response to environmental changes 
(Stoof- Leichsenring et al., 2014, 2015; Stoof- Leichsenring, Dulias, 
et al., 2020; Stoof- Leichsenring, Pestryakova, et al., 2020). The ge-
netic structure of bloom- forming diatom Skeletonema marinoi was in-
vestigated using microsatellite markers applied on resurrected strains 
preserved in sediment for over c. 100 years (Härnström et al., 2011). 
This study showed that the dispersal potential and generation time 
do not have a large impact on the genetic structure of the popula-
tions, but rather the environmental conditions, such as the extreme 
eutrophication of the Mariager Fjord, were deemed more import-
ant. Supporting these results, analysis of the relatedness of diatom 
lineages in Siberian lakes along environmental gradients (i.e., across 
treeline transects) and across a large geographical and time (i.e., last 
7,000 years) scales demonstrated that diatom- relatedness reflected 
patterns of environmental conditions through space and time rather 
than geographic distance (Stoof- Leichsenring et al., 2015).

2.2.2  |  Chlorophytes

Chlorophytes, also known as green algae, do not leave many mor-
phological diagnostic features in the sediments (with a few excep-
tions such as Pediastrum cell nets), and thus long- term reconstruction 
of this phytoplanktonic group largely depends on the availability 
of monitoring data, which are limited. To our knowledge, sedDNA 
studies specifically targeting chlorophytes are still rare (Fonseca 
et al., 2022). However, the reconstruction of the long- term dynamic 
of microbial eukaryotic communities was successful at recovering 
archived DNA of chlorophytes (Capo et al., 2016, 2017; Gauthier 
et al., 2022; Ibrahim et al., 2021), providing insight into the response 
of this specific group of algae to environmental change. In Lake 
Bourget (France), relative abundance of Chlamydomonas sp. was 
found to increase when phosphorus concentrations were greater 
than 80 μg/L (Capo et al., 2017). Interestingly, a complementary 
study combining sedDNA records from Lake Bourget (France) and 
Igaliku (Greenland) showed that chlorophytes were one of the phy-
toplankton groups with the highest relative abundance and highest 
OTU richness of the overall micro- eukaryotic communities, thus 
providing a new insight into their dominance in the phytoplankton 
over the last 100 years (Capo et al., 2016). Importantly, the data 
also highlighted a potential unknown diversity (or unreferenced 

 13652427, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/fw

b.14027 by Sw
edish U

niversity O
f A

gricultural Sciences, W
iley O

nline L
ibrary on [13/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1806  |    BAROUILLET et al.

biodiversity), which underscores the need for further characterisa-
tion of micro- eukaryotes using both limnological and paleolimno-
logical DNA approaches.

2.2.3  |  Dinoflagellates and haptophytes

Dinoflagellates display various trophic ecologies as autotrophs, 
mixotrophs, and some heterotrophic species. Dinoflagellate blooms 
are most often observed in marine ecosystems, where they can 
cause important damage to the ecosystem (i.e., fish kill, release 
taste and odour compounds, reduce water treatment efficiency). 
Dinoflagellate blooms may also occur in tropical and subtropi-
cal freshwater reservoirs where they are becoming more frequent 
(Amorim & Moura, 2021). Although freshwater dinoflagellates are 
still understudied when compared to their marine counterparts, sev-
eral sedDNA studies have highlighted their sensitivity to eutrophi-
cation. A 100- fold increase in dinoflagellates was observed in the 
eutrophic Lake Chao (China), concurrent with the establishment of a 
dam and an increase in nutrients inputs following industrial and ag-
ricultural development of the catchment (Li et al., 2019). Similarly, in 
the deep peri- alpine Lake Bourget (France), the cumulative increase 
in temperature and phosphorus concentration were associated 
with an increase in dominance of dinoflagellates (Capo et al., 2017). 
In contrast, the relative abundance of dinoflagellates from Lake 
Constance (Germany) did not increase during the eutrophication 
period but was favoured during lake re- oligotrophication (Ibrahim 
et al., 2021). Microscopic analyses and germination techniques cou-
pled with single- cell large subunit ribosomal rDNA analysis of dino-
flagellates cysts extracted from sediments revealed an increase in 
dinoflagellates concurrent with recent cultural eutrophication and 
land- use changes in Lake Huron (Great Lakes of North America) 
(McCarthy et al., 2011). Furthermore, the DNA analysis of the cysts 
from this study allowed for the identification of dominant cyst mor-
photypes (i.e., Peridinium wisconsinense Eddy, 1930 and Peridinium 
willei; Huitfeldt- Kaas, 1900) and demonstrated that an earlier in-
crease in P. willei occurred at the expense of P. wisconsinense follow-
ing anthropogenic disturbances of the catchment.

Other eukaryotic phytoplanktonic groups have been specifically 
investigated using sedDNA methods. Holocene records of Isochrysis 
(haptophytes) population dynamics of Kusai Lake (China) highlighted 
the sensitivity of these assemblages to climate- driven changes in nu-
trients, temperature, salinity, and light- intensity (Hou et al., 2015). 
The study demonstrated the strong influence of the Asian summer 
monsoon season and paleo- precipitations on the dominance of hap-
tophytes populations relative to cyanobacteria populations, two 
algal groups commonly found in Tibetan lakes.

2.3  |  Macrophytes

In shallow lakes, macrophytes play an important role in the dynamics 
of food webs and lake biogeochemistry. Macrophytes act as traps 

that effectively sequester carbon and other elements (Brothers 
et al., 2013; Rooney et al., 2003). The loss of native submersed mac-
rophytes is often a critical turning point in the eutrophication of a 
lake. For instance, the loss of macrophyte habitat can increase fish 
predation on zooplankton, with subsequent top- down effects, in-
cluding the release of grazing pressure on the phytoplankton (Phillips 
et al., 2016). Increased oxygen- deficient conditions from yet- higher 
phytoplankton production exacerbate this phenomenon and reduce 
benthic invertebrate species.

Long- term time series of aquatic vegetation based on sedDNA 
can be used to track their responses to anthropogenic stressors 
with the potential to become indicators of environmental changes, 
although this work is still rare (Alsos et al., 2018, 2021; Heinecke 
et al., 2017; Stoof- Leichsenring et al., 2022). The reconstruction 
of the past terrestrial and aquatic vegetation over the Holocene 
period showed an increase in macrophyte dominance during pe-
riods when the water column was clearer in several lakes across 
Norway (Alsos et al., 2021). Additional sedDNA record specifically 
targeting submerged vegetation demonstrated the ability of using 
macrophytes as indicators of lake- water level changes (Heinecke 
et al., 2017). Changes in macrophyte diversity and community com-
position were also found to be sensitive to lake- hydrochemistry 
and climate variability (Stoof- Leichsenring et al., 2022), whereby 
submergent- dominated type of vegetation became more abundant 
when temperature and water conductivity increasing (following 
glacial runoff and evaporation in lakes from the Tibetan alpine 
zone).

3  |  BE YOND OX YGENIC PHOTOTROPHS

3.1  |  Bacteria and archaea

Bacteria and archaea thrive in both water column and sediments 
of most aquatic ecosystems. The more highly resolved taxonomic 
distribution and metabolism of bacteria and archaea are tightly 
related to environmental conditions (e.g., light, oxygen, nutrients, 
organic matter). Contributing as both primary producers and re-
cycling of organic matter in trophic networks, these taxa maintain 
ecosystem productivity while being sensitive to natural and anthro-
pogenic perturbations (Brasell et al., 2021; Cavicchioli et al., 2019; 
Qin et al., 2013). For instance, eutrophication can exacerbate the 
effect of climate warming on microbial methane emission in lakes 
(Davidson et al., 2018; Sepulveda- Jauregui et al., 2018). Likewise, 
lake trophic status and sediment redox conditions influence the 
denitrification potential of the microbial community, thus affecting 
the ability of a microbial community to mitigate increases in nitrogen 
loading (Small et al., 2016). Long sedDNA time series could help to 
understand the responses of lake heterotrophic prokaryotes to en-
vironmental stressors. One difficulty with such an approach is that 
the microbial DNA in sediments is a mix from sediment- living mi-
croorganisms and externally contributed microorganisms that have 
historically been deposited (Capo et al., 2022; Pearman et al., 2021).
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3.1.1  |  Composition of bacterial communities 
in sediments

Numerous studies have characterised the vertical distribution of 
microbial assemblages in lake sediments (Borrel et al., 2012; Han 
et al., 2020; Kadnikov et al., 2012; Ruuskanen et al., 2018; Vuillemin 
et al., 2018) but only a few used adequate sampling resolutions to 
relate microbial taxonomic composition to sediment biogeochemi-
cal properties (e.g., Wurzbacher et al., 2017). In general terms, 
surface sediments are dominated by members of the α- , β- , and γ- 
Proteobacteria, Bacteroidota, Verrucomicrobiota, Planctomycetota, 
Acidobacteriota, and Marine Group I Archaea while anoxic (subsur-
face) sediments are dominated by Chloroflexota, δ- Proteobacteria, 
Acetothermia, Aminicenantes, Bathyarchaeota, Lokiarchaeota, 
and Altiarchaeales (Borrel et al., 2012; Han et al., 2020; Kadnikov 
et al., 2012; Ruuskanen et al., 2018; Vuillemin et al., 2018). Typical 
depth profiles of sediment exhibited an electron acceptor sequence 
(O2 > NO3− > NO2− > Mn4+ > Fe3+ > SO4

2− > CO2) with a thin layer 
of oxygen, nitrate, and nitrite depletion at the sediment surface, 
sulfate depletion after few cm, and with phosphorus, ammonium, 
and methane at deeper depths (Wurzbacher et al., 2017). This highly 
biologically active successional organic matter degradation zone in up-
permost sediments receive large inputs of freshly produced bioavail-
able organic matter associated with high activity from members of 
Ignavibacteria, Sphingobacteria, and Flavobacterium (Bacteroidota). 
In deeper sediments, microbes such as Dehalococcoidales 
(Chloroflexota) and the Miscellaneous Crenarchaeotic Group seem 
to enter a stationary growth state due to a shortage of thermody-
namically feasible electron acceptors. As a consequence, such taxa 
can stay viable and remain in relatively stable proportions for a very 
long time.

3.1.2  |  Bacterial signal to assess past environmental 
perturbations

Li et al. (2019) investigated bacterial community change in a 150- 
year record from Lake Chao and revealed a 100- fold increase of taxa 
associated with nitrification (e.g., Nitrospira) since the 1960s, corre-
sponding to the period of increased concentration of nitrogen and 
documented eutrophication (Li et al., 2019; Shang & Shang, 2005). 
Although increases in Nitrospira sp. have been associated with ni-
trification in Lake Chao (Li et al., 2019), higher contributions from 
Nitrospira sp. and lower contributions from Bacteroidota were evi-
dent in the oligotrophic Lake Lucerne, as well as shallow and medium 
lake depths of mesotrophic Lake Zurich compared to eutrophic lakes 
(Han et al., 2020). These results thus depict a more complex picture 
of the response of Nitrospira to nutrient levels. Liu et al. (2021) de-
tected an increase of Thiocapsa, a group of purple sulfur bacteria, 
in sediment layers corresponding to the time of the accelerated eu-
trophication; however, the underlying mechanisms was unclear. A 
recent work by Han et al. (2020) have shown that the composition 
of the bacterial community, irrespective of sediment depth and age, 

is separated by lake trophic state; however, the archaeal commu-
nity became more similar regardless of trophic state in deeper and 
older sediment layers. The authors suggested that the trophic state 
at the time of sediment deposition affects the quality of the organic 
matter buried, and that this subsequently controlled the taxonomy 
and metabolic capacities of associated organotrophs. As such, the 
composition of bacterial communities from pre- eutrophication era 
of currently eutrophic lakes tend to be more similar to oligotrophic 
lakes than after the onset of eutrophication (Han et al., 2020). 
Supporting these results, links between lake trophic states and the 
taxonomic composition of bacterial communities from surface sedi-
ments have been reported in a nationwide study in New Zealand 
(Pearman et al., 2022). Methodological advances based on the com-
parison of water and sediment metagenomes (Garner et al., 2020) 
are expected to provide new insights into our understanding of the 
past versus active sedDNA signal from prokaryotes. Combined, all 
these pioneering studies provide compelling evidence that bacte-
rial composition can be a useful proxy to infer ecosystem change in 
lakes, but also caution against uncritical interpretation of records of 
sediment sequence data.

3.2  |  Heterotrophic protists

Heterotrophic protists, which include ciliates, amoeba, perkinsozoa, 
cercozoan, and oomycetes, are key components of aquatic systems 
(Sanders, 2009). They represent a diverse and abundant fraction of 
planktonic assemblages in both freshwater and marine environments 
(Debroas et al., 2017; Garner et al., 2022; Grossmann et al., 2016) 
where they play various ecological roles as predators, phagotrophs, 
saprotrophs, parasites, and mixotrophs (Lefranc et al., 2005; Mitra 
et al., 2016; Oikonomou et al., 2015; Singer et al., 2021). As part 
of the microbial loop, they participate in the remobilisation and re-
cycling of carbon and nutrients in aquatic ecosystems (Pernthaler 
& Posch, 2009). Certain heterotrophic protists exert a strong graz-
ing pressure with potential cascading effects on the planktonic 
and benthic food webs (Caron & Hutchins, 2013). In freshwaters, 
heterotrophic protists are the primary consumers of bacteria 
(Sanders, 2009; Sherr & Sherr, 2002) and shape the structure of mi-
crobial communities (Boenigk & Arndt, 2002; Lischke et al., 2016). 
As such, through their various ecological functions, they act as a hid-
den backbone of aquatic assemblages and provide resistance and 
resilience against disturbances (Sagova- Mareckova et al., 2021).

Despite their recognised importance in aquatic ecosystems, 
heterotrophic protists are often overlooked when studying the re-
sponse of aquatic organisms to environmental changes, their pho-
tosynthetic counterparts being often in focus. Found in both pelagic 
and benthic zones, they are particularly interesting indicators, as the 
biological response to environmental perturbations such as deoxy-
genation (Jane et al., 2021; Jenny et al., 2016) is not limited to the 
photic zone of lakes. SedDNA analyses revealed that past environ-
mental and anthropogenic changes strongly influence the composi-
tion of heterotrophic eukaryotic groups.
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A general decline has been detected in the relative abundance 
of several groups of phagotrophic micropredators and saprotrophs, 
including amoebozoa, rhizaria, and stramenopiles from 48 lakes as 
a response to enhanced human activities in recent decades (Keck 
et al., 2020). SedDNA analyses also highlighted changes in ciliates 
and perkinsea groups as a response to eutrophication and changes 
in air temperature. As such, higher relative abundances of ciliates 
were recorded during periods of moderate increases in phosphorus 
concentrations in temperate Lake Bourget (Capo et al., 2016, 2017). 
Investigation in Lake Constance showed a similar increase in ciliate 
abundance in response to eutrophication (Ibrahim et al., 2021). In con-
trast, no clear changes have been observed in the relative abundance 
of heterotrophic protist groups of the eutrophic Lake Chao over the 
last 150 years (Li et al., 2019). Importantly, Lake Chao is shallow and 
has much higher phosphorus concentrations (>280 μg/L) than the 
deep peri- alpine lakes Bourget and Constance. Although more anal-
yses are needed, these sedDNA records suggest that heterotrophic 
protist communities are sensitive to variation in phosphorus concen-
trations up until a certain threshold, at which assemblages might stabi-
lise (in terms of diversity and relative abundance). A recent top– bottom 
sedDNA study comparing pre- industrial and modern periods revealed 
an increase in mixotrophic ciliates and facultative or obligate anaer-
obic ciliates related to increased anthropogenic pressures (Barouillet 
et al., 2022). Similarly, perkinsea appeared to be favoured by increased 
phosphorus concentrations but decreased with rising temperatures 
(Capo et al., 2017).

3.3  |  Fungi

Exhibiting a large morphological diversity, from unicellular eukary-
otes to macro- organisms, fungi are found in most aquatic ecosys-
tems (Hawksworth & Lücking, 2017; Kagami et al., 2007; Wanasinghe 
et al., 2022). Despite their diversity and widespread distribution, 
knowledge about their ecological preferences and functional groups is 
still limited. Nonetheless, several studies have demonstrated that fungi 
are sensitive to environmental changes (e.g., Casadevall et al., 2019; 
Nnadi & Carter, 2021). Long- term changes in fungal communities 
using the sedDNA approach have been recently used to track catch-
ment dynamics related to environmental changes (Talas et al., 2021; 
von Hippel et al., 2021). Using a fungal- specific assay, data on diverse 
fungal assemblages were retrieved from a series of lake sediment cores 
in Siberia (Seeber et al., 2022). In this case, most fungal sequences 
taxonomically annotated were from terrestrial taxa, thereby support-
ing the changes observed in fungi diversity and assemblage composi-
tion recovered from the sediment are closely associated to terrestrial 
vegetation changes. Changes in fungal assemblage composition and 
diversity as a response to eutrophication and climate change have 
also been investigated using a more universal sedDNA assay, targeting 
all eukaryotes (Capo et al., 2017; Ibrahim et al., 2021). While the se-
quences from these European sediment core studies had a lower taxo-
nomic resolution than those generated with fungal- specific specific 
assay, fungi were generally found to increase with rising phosphorus 

concentrations, and showed temperature and phosphorus increases 
could have an antagonistic effect on fungi assemblages. Interestingly, 
sedDNA analysis also revealed important insights into planktonic 
parasitic fungal communities such as relationships between chytrids 
and their Planktothrix hosts over a 35- year record of coexistence 
(Kyle et al., 2015). The seasonality of chytrids was also demonstrated 
when applying DNA analysis on sediment trap samples collected from 
a monomictic oligo- mesotrophic lake (Gauthier et al., 2021). The re-
construction of the fungal biodiversity of Lake Lielais Svetinu (Latavia) 
showed an increased richness of parasites associated with recent in-
creased plankton blooms linked to human development of the catch-
ment and climate shifts over 1,000 years (Talas et al., 2021). Given the 
importance of these fungal parasites in shaping the phytoplankton 
communities (Frenken et al., 2017), sedDNA can provide new innova-
tive ways to advance knowledge on these understudied trophic inter-
actions and their contribution to lake dynamics and their resilience to 
environmental changes.

3.4  |  Zooplankton

Zooplankton occupy a pivotal position in lake food webs, positioned 
between predators (i.e., planktivorous fish) and primary producers 
(i.e., phytoplankton), and are thus impacted by both top- down and 
bottom- up pressures. As such, they can be used as indicators of 
changes in trophic and ecological dynamics of lakes related to an-
thropogenic stressors (e.g., nutrient enrichment and climate change; 
e.g., Jeppesen et al., 2009). Paleolimnological works based on 
counts of cladoceran remains have provided insights into ecosystem 
changes related to planktivorous fish populations, submerged mac-
rophytes and lake production (Jeppesen et al., 2001). SedDNA opens 
new opportunities to study a wider range of zooplankton groups in 
paleolimnological studies, and also allows for long- term investiga-
tions of genetic diversity and variability of this diverse planktonic 
group.

3.4.1  |  Resting egg banks archive ecological and 
evolutionary responses to anthropogenic impact

Many species of cladocerans, rotifers, and copepods are able to 
produce dormant forms as a resistance mechanism to survive harsh 
environmental conditions (Radzikowski, 2013). Among cladocerans, 
Daphnia is one of the most abundant zooplankton in freshwater 
lakes as it is a good source of food for planktivorous fishes (Leavitt 
et al., 1989; Paquette et al., 2022). For decades, past trajectories 
of Daphnia species have been investigated through genetic analysis 
of their resting eggs (Brede et al., 2009; Limburg & Weider, 2002; 
Mergeay et al., 2006; Monchamp et al., 2017; Weider et al., 1997). 
For instance, Mergeay et al. (2006) reconstructed the invasion his-
tory of a single asexual American Daphnia clone (hybrid Daphnia pulex 
× Daphnia pulicaria) following what appears as an accidental intro-
duction of the American D. pulex in Africa c. 1920. The introduction 
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of the new hybrid was rapidly followed by the displacement of its 
native sibling species, probably through the African continent (based 
on surveys from 177 African standing water), reflecting this clone's 
adaptation to broad environmental gradients (Mergeay et al., 2006).

One of the main factors promoting lake invasions by exotic or 
non- native Daphnia around the globe is eutrophication. In Lake 
Constance (Germany), molecular analysis (i.e., ITS- RFLP, mitochon-
drial DNA, and microsatellite analyses) of sedimentary resting eggs 
demonstrated that anthropogenically- induced eutrophication fa-
cilitate changes in Daphnia assemblages through the interspecific 
hybridisation and introgression between the invasive Daphnia gale-
ata and the native Daphnia hyalina (Brede et al., 2009). Molecular 
analysis of the resting egg from the invasive D. pulicaria also uncov-
ered its historical genetic variation during the initial invasion (Möst 
et al., 2015), while Monchamp et al. (2017) revealed the invasion of 
D. galeata in two Swiss lakes during the peak of the eutrophication. 
Following the invasion, a D. galeata × Daphnia longispina hybrid be-
came dominant over D. longispina. A growth experiment based on 
hatched dormant eggs of the invasive species of Daphnia galeata pre-
served in sediments of Lake Constance showed resistance of popu-
lations to dietary cyanobacteria during eutrophication era (Hairston 
et al., 1999). However, during the re- oligotrophication period that 
was accompanied by a decline in cyanobacterial biomass in Lake 
Constance, Daphnia genotypes showed a lower resistance to cyano-
bacteria, probably because of the high cost of maintaining resistance 
to cyanobacteria (Isanta- Navarro et al., 2021).

Additional paleolimnological studies based on genetic analy-
ses of Daphnia resting eggs reported that invasions by non- native 
Daphnia were facilitated by other sources of chemical pollution (e.g., 
Hg, Pb). For example, in Lake Onondaga (New York), sequencing 
of the 12S ribosomal rRNA gene of mitochondrial DNA extracted 
from diapausing eggs revealed a past invasion of a Eurasian species, 
Daphnia curvirostris, at a time when there was increased chemical 
industry activity on the lake shore (Duffy et al., 2000). This exotic 
species eventually disappeared from the water column once the 
chemical pollution stopped. An experimental study also detected 
rapid adaptation in invasive Daphnia species to chemical pollution 
(Turko et al., 2016). In Lake Greifensee (Switzerland), the invasive 
Daphnia galeata acquired resistance to lead pollution, but once the 
lead stress was reduced, they showed a decline in resistance to this 
stress. Similar to paleolimnological studies on Daphnia resting eggs, 
several studies using rotifer resting eggs provide valuable insights 
into their population response to environmental change (Piscia 
et al., 2016) and history of genetic lineages in a geographical and cli-
mate context (Gómez et al., 2000). Molecular analysis targeting the 
mitochondrial gene coding for the cytochrome oxidase subunit 1 in 
resting eggs of the cosmopolitan rotifer Brachionus plicatilis revealed 
phylogenetic structure with distinct geographical distribution in 
lakes within the Iberian Peninsula (Gómez et al., 2000).

Altogether, zooplankton resting eggs (especially Daphnia) in sed-
imentary archives have been widely used as an effective tool to elu-
cidate past population dynamics. However, genetic identification of 
sedimentary eggs is often unsuccessful owing to DNA degradation 

(Faustová et al., 2004; Ishida et al., 2012; Tsugeki et al., 2021). 
Similarly, genetic analysis of rotifer using resting eggs is rarely con-
ducted in paleoecological studies because their resting eggs are gen-
erally not well preserved (Epp et al., 2010; Merkt & Müller, 1999) 
and their identification via morphological characters is limited (Briski 
et al., 2011).

3.4.2  |  Sedimentary DNA approach to reconstruct 
genetic diversity and population dynamics through 
environmental changes

As an alternative to extracting DNA from resting eggs or hatched 
individuals resurrected from the resting eggs, bulk sedDNA extrac-
tions can reveal temporal changes in abundances or genetic diversity 
of rotifers, copepods, and cladocerans. An early example came from 
Bissett et al. (2005) who detected copepod DNA from 9,950 year- 
old sediments in Antarctic lakes based on amplification and cloning 
of a c. 300- base pair variable region of the 18S and 28S rRNA genes. 
They identified several copepod species that matched modern 
populations, including the species Paralabidocera antarctica (family 
Acartiidae) that was detected in sediments c. 3,430 calibrated 14C 
year ago, but that was not found in more recent sediment samples 
or contemporary water samples. Moreover, Epp et al. (2015) de-
tected several marine copepod DNA from sediments around 7,500 
to 10,000 years ago, a period that corresponded to the marine and 
brackish conditions in a North Greenland lake. DNA of rotifers of 
the genus Brachionus extracted directly from bulk sediments of 
Lake Sonachi (Kenya) and analysed using a specific assay for the cy-
tochrome oxidase subunit 1 gene revealed two phylogenetically dis-
tinct species and intraspecific population turnovers in response to 
a volcanic eruption and declining lake- water level (Epp et al., 2010). 
Furthermore, D. galeata and D. pulicaria populations were detected 
by qPCR analysis from Lake Biwa sedimentary archives spanning 
the last 100 years, and these DNA- based results were consistent 
with morphological time series data of their resting eggs (Tsugeki 
et al., 2022). Although zooplankton bulk sedDNA studies are still lim-
ited, these initial findings suggest that further development of such 
approaches will allow us to elucidate the long- term dynamics of a 
wide variety of zooplankton species and their ecological and evolu-
tionary response to anthropogenic processes.

3.5  |  Fish

Fish communities provide us with an integrated response of the 
whole lake ecosystem to environmental stressors given their el-
evated position in the food web and mobility among habitats. 
Traditional paleolimnological approaches have largely excluded 
fish due to a lack of preservation of tissues in sediment archives 
and the very large quantities needed to identify sparse subfossils. 
There are notable exceptions whereby an adequate number of fish 
macrofossils and scales have been obtained (e.g., Cohen et al., 2016; 
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Davidson et al., 2003; Reinthal et al., 2011), or where more indirect 
proxies have been used, such as zooplankton community structure 
or body size (e.g., Jeppesen et al., 2001), or carcass- derived δ15N to 
track the population dynamic of anadromous fish (i.e., fish migrat-
ing from the sea to spawn in lakes and rivers; Finney et al., 2000). 
However, these proxies tend to have low taxonomic resolution, are 
temporally patchy and/or based on inferring changes through indi-
rect approaches.

Studies employing sedDNA analytical techniques have high-
lighted their unique potential to evaluate historical changes in fish 
communities at greater temporal and taxonomic resolution (i.e., 
to species and genus level). To date, most sedDNA studies have 
focused on establishing and validating the identification of fish 
DNA (presence- absence data) in the sediment archive and cor-
relating this to known records of fish presence in or introduction 
to a lake. Among the first studies to amplify fish DNA in sediment, 
Matisoo- Smith et al. (2008) recovered DNA from a sediment core 
that matched closely that of the native common bully (Gobiomorphus 
cotidianus) in a New Zealand lake. Fish sedDNA has since been used 
to track natural colonisations and introductions of fish in several lake 
environments. The sedDNA analysis of an Adirondack lake (USA) re-
vealed that invasive yellow perch actually had been present for at 
least two millennia (Stager et al., 2015). Similarly, Nelson- Chorney 
et al. (2019) detected the presence of native westslope cutthroat 
trout (Oncorhynchus clarkia lewisi) and non- native cutthroat trout 
(Oncorhynchus clarkii bouvieri) in mountain lakes in Canada, corrob-
orating historical reports of non- native trout introduction c. 1930. 
The colonisation history for whitefish (Coregonus lavaretus L.) was 
also inferred from Holocene- scale sedDNA records from Sweden 
where different trajectories were identified between the two study 
lakes (Olajos et al., 2018). Drawing on evidence from the marine en-
vironment, Kuwae et al. (2020) highlighted that DNA concentrations 
could be used to track abundances of three dominant fish species 
in Beppu Bay, Japan (anchovy, Engraulis japonicus, sardine, Sardinops 
melanostictus, and jack mackerel, Tranchurus japonicus), as their data 
were coherent with historical capture time series. Nonetheless, ex-
traction and amplification of fish DNA from lake sediment is often 
challenging (Capo et al., 2021; Eichmiller et al., 2014). Improvements 
in extraction methods and the application of newer sequencing 
technologists (e.g., droplet digital PCR) will probably allow for more 
fish sedDNA time series to be developed and thus investigators will 
be poised to link how environmental stressors affect fish communi-
ties over long- time scales.

4  |  CONCLUSION

Advances in sedDNA studies over the last few decades have 
enabled investigators to tackle pressing ecological and envi-
ronmental questions in aquatic systems. Since the review from 
Domaizon et al. (2017), the sedDNA scientific literature has flour-
ished, bringing new insights into the natural dynamic and sensi-
tivity of several understudied biological groups and the impacts 

of multiple anthropogenic stressors. A few common trends were 
identified from these sedDNA studies, including some similari-
ties in the pelagic community responses to eutrophication and 
climate change across various lakes, and the biotic homogenisa-
tion of limnetic communities. Altogether, these findings provide 
evidence that DNA molecules preserved in natural lake archives 
help draw a comprehensive portrait of the suite of responses of 
lake biota to anthropogenic stressors. Moreover, the sedDNA ap-
proach has been successfully applied to identify the timing and 
effects of the introduction of exotic species on native populations. 
Altogether, sedDNA studies have demonstrated the potential of 
some biological groups as new paleolimnological indicators of bio-
logical and functional changes (e.g., ciliates, macrophytes) as well 
as early warning signals. On a broader perspective, the sedDNA 
is expected to grow in the near future, yielding new perspectives 
for ecosystem management, conservation and restoration (Gillson 
et al., 2022; Watson & Medeiros, 2021). More specifically, sedDNA 
extends the field of paleoecology by offering a new lens of in-
vestigation, providing new information on understudied biological 
groups, historical biodiversity, and genetic variability.
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