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ABSTRACT
The exact distribution of a classification function is often compli-
cated to allow for easy numerical calculations of misclassification
errors. The use of expansions is one way of dealing with this dif-
ficulty. In this paper, approximate probabilities of misclassification
of the maximum likelihood-based discriminant function are estab-
lished via an Edgeworth-type expansion based on the standard nor-
mal distribution for discriminating between twomultivariate normal
populations.
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1. Introduction

The concept of classification has interested several researchers already long time ago, such
as [1–5]. It consists of developing a classification rule by examining the characteristics of
individuals that best distinguish between the populations. There exists several approaches
of deriving such a rule. For example a plug-in approach [6], a likelihood approach [7,8], as
well as others.

Let yi ∼ Np(μ1,�), i ∈ {1, . . . , n1}, be a sample from population π1 collected in Y =
(y1, . . . , yn1) and zj ∼ Np(μ2,�), j ∈ {1, . . . , n2}, be a sample from population π2 col-
lected inZ = (z1, . . . , zn2). Let y = 1

n1

∑n1
i=1 yi, and z = 1

n2

∑n2
j=1 zj. Assume that an obser-

vation x is to be classified. Anderson’s [6] classification rule that he labelled as theW-rule
is based on the statistic

W = x′S−1(y − z) − 1
2
(y + z)′S−1(y − z), (1)

which is a linear function in x with the rule that the new observation x is classified to π1 if
W ≥ 0 and to π2 ifW<0. The maximum likelihood-based classification rule; the Z-rule
proposed by Kudo [7,9], as an alternative to theW-rule

Z = 1
2

[
n2

n2 + 1
(x − z)′S−1(x − z) − n1

n1 + 1
(x − y)′S−1(x − y)

]
, (2)
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which is a quadratic function in x. The rule is to classify x as coming from π1 if Z is positive
and π2 if Z is negative. Alternatively, Gasana et al. [10] proposed two likelihood-based
discriminant functions. If � is known

D̃ = 1
2

n2
n2 + 1

(z − x)ᵀ�−1(z − x) − 1
2

n1
n1 + 1

(y − x)ᵀ�−1(y − x). (3)

If D̃ ≥ 0, x is classified into π1 and if D̃ < 0 then x is classified into π2. If � is unknown

D̂ = n2m
n2 + 1

1
2
(z − x)ᵀS−1

yz (z − x) − n1m
n1 + 1

1
2
(y − x)ᵀS−1

yz (y − x), (4)

where m = n1 + n2 − p − 3 > 0. The observation x is classified into π1 if D̂ ≥ 0 and if
D̂ < 0 then x is classified into π2.

Whenever classifying an object, there is a chance that it might be wrongly classified.
Therefore, in statistics, we are interested in the probability of such an error. Fujikoshi
et al. [11] defines the probability of misclassification as a measure of the goodness of a clas-
sification rule. Generally, misclassification errors involve unknown parameters, thus they
need to be estimated. Anderson [12], Sitgreaves [13,14] andWald [15] mentioned that the
distribution of the classification function is too complicated to be used numerically. Sev-
eral authors, such as Anderson [6,12] and Okamoto [16] have investigated the distribution
of the linear discriminant function. One way of handling this problem is to approximate
the discriminant distribution function using expansions. Okamoto [16] and Memon and
Okamoto [17] investigated asymptotic expansions for the discriminant function distribu-
tion up to terms of order n−2, n = n1 + n2 − 2, [12,18,19] extended the expansions to
terms of O(n−3) the asymptotic expansions of misclassification errors for the distribu-
tion of the discriminant functions when n1 and n2 grow to infinity and the ratio n1/n2
approaches a positive limit.

At early nineteenth century there was a general idea of approximating a frequency func-
tion using a series containing an uncomplicated density function, for instance Laplace [20]
used normal density,Hermite polynomials and their expectations. On the basis of Laplace’s
results, several other researchers came up with ideas of density approximations in terms of
other quantities such as moments [21] and cumulants [22–26]. For details, see [27–29].
Popular density approximations are the Gram-Charlier expansion introduced but Thiele,
Edgeworth expansion, the saddle point approximation and the Cornish-Fisher expansion.
The Gram-Charlier and Edgeworth expansions are comparably similar but differ on how
terms are organized. In addition, both expansions are disadvantaged by the fact that the
approximationsmay not be densities. Gupta and Panchapakesan [30], reviewed Edgeworth
expansions in statistics. This concept attracted several applications in many areas of statis-
tics such as Ranga Rao [31] who obtained Edgeworth expansions and Davis [32] who
introduced a multivariate Edgeworth expansion. In addition, Fujikoshi et al. [11] inves-
tigated the Edgeworth expansion and its validity. Furthermore, Kollo and von Rosen [33]
described Edgeworth-type expansions where a complicated density function is described
through a simpler one. In this paper, we will use an Edgeworth-type expansion to approx-
imate the distribution of the likelihood-based discriminant function through a standard
normal distribution and derive approximate probabilities of misclassification.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 3187

2. Proof preparation

Several researchers such as Anderson [6,12] and Okamoto [16], to mention a few, have
investigated the distribution of the linear discriminant function. The exact distributions
of the discriminant functions D̃ and D̂, given in (3) and (4), respectively, are very difficult
to use for numerical calculations, as mentioned earlier. Therefore, it is practical to pro-
vide reasonable approximations of the distribution of these discriminant functions to get
around the problem. With the help of the expansions misclassification probabilities can
be obtained. However, it is important to note that an approximate density based on an
Edgeworth expansion does not have to be a density.

Definition 2.1: The jth-degree Hermite polynomial,Hj(x,m, σ 2), for the meanm and the
variance σ 2 > 0 is given by

Hj(x,m, σ 2) = (−1)j

fx(x)
djfx(x)
dxj

, j ∈ N0, (5)

where fx(x) is the density function of the normal distributionN (m, σ 2), i.e.

fx(x) = (2π)−
1
2 (σ 2)−

1
2 e−

1
2

(x−m)2

σ2 . (6)

Theorem2.2: Consider the case of a standard normal distribution,N (0, 1). The jth univari-
ate Hermite polynomials Hj(x, 1), j ∈ {0, 1, 2, 3}, equal

H0(x, 1) = 1; H1(x, 1) = x; H2(x, 1) = x2 − 1; H3(x, 1) = x3 − 3x. (7)

The Egdeworth-type expansion of a density presented by Kollo and von Rosen [33] is
shown in the following theorem.

Theorem 2.3: Let d be a random variable with finite first three cumulants, then its density
fd(x) can be approximated through the density fN(x) of the standard normal distribution,
N (0, 1), by the Edgeworth-type expansion

fd(x) ≈ fN(x)
{
1 + E[d]H1(x, 1) + 1

2
(
Var[d] − 1 + (E[d])2

)
H2(x, 1)

+1
6
(
c3[d] + 3(Var[d] − 1)E[d] + (E[d])3

)
H3(x, 1)

}
, (8)

where c3[·] is the third cumulant, Hi(x, 1), i ∈ {1, 2, 3}, are obtained from Theorem 2.2 and
fN(x)= (2π)−12e−12x2 .

Theorem 2.4: Suppose the third cumulant is omitted and let d be a random variable with
finite first three cumulants, then its density fd(x) can be approximated through the density
fN(x) of the standard normal distribution,N (0, 1), by the Edgeworth-type expansion

fd(x) ≈ 1√
2π

e−
1
2 x

2 1
2
{
a0 − a1x + a2x2 + a3x3

}
, (9)

where

a0 = 3 − Var[d] − (E[d])2, a1 = 3Var[d]E[d] − 5E[d] + (E[d])3,
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a2 = Var[d] − 1 + (E[d])2, a3 = (Var[d] − 1)E[d] + 1
3
(E[d])3. (10)

Proof: Inserting the Hermite polynomialsHi(x, 1), i ∈ {1, 2, 3}, and the density ofN (0, 1)
by their values, (8) can be rewritten as

fd(x) ≈ fN(x)
{
1 − 1

2
(Var[d] − 1 + (E[d])2)

+
(
E[d] − 1

2
(3(Var[d] − 1)E[d] + (E[d])3)

)
x

+1
2
(Var[d] − 1 + (E[d])2)x2 + 1

6
(3(Var[d] − 1)E[d] + (E[d])3)x3

}
= 1√

2π
e−

1
2 x

2 1
2
{
3 − Var[d] − (E[d])2 − (3Var[d]E[d] − 5E[d] + (E[d])3)x

+(Var[d] − 1 + (E[d])2)x2 +
(

(Var[d] − 1)E[d] + 1
3
(E[d])3

)
x3
}
. (11)

�

Therefore, fd(x) is approximated with a polynomial function in x and the coefficients
are in terms of the first and second cumulants of d. Gasana et al. [10] found expressions of
the first two cumulants of the discriminant function. An Edgeworth-type expansion, based
on Theorem 2.4, of the discriminant function can be expressed up to three terms when the
term including c3[·] is excluded.
Theorem 2.5: Let D̃ be defined in (3). Then if x ∈ π1, the first two cumulants of D̃ are given
by ⎧⎪⎨⎪⎩

E[D̃] = 1
2

n2
n2 + 1

�2,

Var[D̃] = p(1 − q2) + n2
n2 + 1

�2,

where

q =
√

n1
n1 + 1

√
n2

n2 + 1
, (12)

and

�2 = (μ1 − μ2)
ᵀ�−1(μ1 − μ2) (13)

is the Mahalanobis squared distance; if x ∈ π2,

⎧⎪⎨⎪⎩
E[D̃] = −1

2
n1

n1 + 1
�2,

Var[D̃] = p(1 − q2) + n1
n1 + 1

�2.

Theorem2.6: Consider the discriminant function D̂ in (4). If x ∈ π1, the expected value and
variance of the discriminant function are given by⎧⎪⎪⎨⎪⎪⎩

E[D̂] = 1
2

n2
n2 + 1

�2,

Var[D̂] = (1 − q2)m2c0p + m2 n2
n2 + 1

c0�2 +
(

n2
n2 + 1

)2 1
2(m − 2)

(�2)2,
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where m = n1 + n2 − p − 3 > 2, c0 = m+p
m(m−2)(m+1) and �2 is the Mahalanobis squared

distance given in (13); and if x ∈ π2⎧⎪⎪⎨⎪⎪⎩
E[D̂] = 1

2
n2

n2 + 1
�2,

Var[D̂] = (1 − q2)m2c0p + m2 n2
n2 + 1

c0�2 +
(

n2
n2 + 1

)2 1
2(m − 2)

(�2)2.

Proofs of Theorems 2.5 and 2.6 are given by Gasana et al. [10].
Since the discriminant function is one-dimensional, the Edgeworth-type expansions of

the densities of D̂ and D̃ through the density of N (0, 1) in the next sections will take the
form of (9), where ai, i ∈ {0, 1, 2, 3}, will be in terms of the expectation and variance of the
corresponding discriminant function, as in (10).

Theorem 2.7: Let D̃ be defined in (3), and �2 in (13). For large n1 and n2, D̃ is normally
distributed: ⎧⎪⎪⎨⎪⎪⎩

D̃ ∼ N
(
1
2
�2,�2

)
, if x ∈ π1,

D̃ ∼ N
(

−1
2
�2,�2

)
, if x ∈ π2,

(14)

where �2 = (μ1 − μ2)
ᵀ�−1(μ1 − μ2).

Proof: As ni → ∞, i ∈ {1, 2}, we have
n1

n1 + 1
→ 1,

n2
n2 + 1

→ 1, y
p−→ μ1, z

p−→ μ2, p(1 − q2) → 0. (15)

Therefore, as ni → ∞, i ∈ {1, 2},

D̃ −→ 1
2
(μ2 − x)ᵀ�−1(μ2 − x) − 1

2
(μ1 − x)ᵀ�−1(μ1 − x)

= xᵀ�−1(μ1 − μ2) − 1
2
(μ1 + μ2)

ᵀ�−1(μ1 − μ2). (16)

Then, for x ∈ π1,

E[D̃] = E
[
(μ1 − μ2)

ᵀ�−1(x − 1
2
(μ1 − μ2))

]
= 1

2
(μ1 − μ2)

ᵀ�−1(μ1 − μ2) = 1
2
�2,

Var[D̃] = (μ1 − μ2)
ᵀ�−1(μ1 − μ2) = �2.

Similarly, for x ∈ π2,

E[D̃] = −1
2
(μ1 − μ2)

ᵀ�−1(μ1 − μ2),

with the same variance as when x ∈ π1. �
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Theorem 2.8: Let D̂ be given by (4) and D̃ by (3), with y the mean of a sample of size n1
fromNp(μ1,�), z the mean of a sample of size n2 fromNp(μ2,�). The limiting distribution
of both D̂ and D̃ as n1 → ∞ and n2 → ∞ isN ( 12�

2,�2) if x is distributed asNp(μ1,�)

andN (− 1
2�

2,�2) if x is distributed asNp(μ2,�).

Proof: The limiting distribution of D̃ is already proven in Theorem 2.7.Moreover, as ni →
∞, i ∈ {1, 2},mS−1 → �−1. Thus the proof for D̂ follows from the proof of Theorem 2.7.

�

Hence it follows that the limiting distribution of both classification functions D̃ and D̂
follow the distribution of a linear discriminant function. This result will be used for the
standardization of the two classification rules in the next section.

3. Edgeworth-type expansion of the discriminant function

3.1. Edgeworth-type expansion of D̃

The basic properties of the discriminant function D̃, defined in (3), such as its expecta-
tion and variance are given in Theorem 2.5. In the theorem below, an Edgeworth-type
expansion of D̃ is presented in terms of its mean and variance via the standard normal
distribution density.

Theorem 3.1: Let D̃ be the discriminant function defined in (3) and �2 be as in (13). Let q
be given by (12). Then the Edgeworth-type expansion, fD̃(x), if x is classified into π1, equals

fD̃(x) ≈ 1√
2π

e−
1
2 x

2 1
2
{
b0 + b1x + b2x2 + a3x3

}
, (17)

where,

b0 = 3 − p(1 − q2) − n2
n2 + 1

�2 − 1
4

(
n2

n2 + 1

)2
(�2)2,

b1 = 1
2

(
(3p(1 − q2) − 5)

n2
n2 + 1

�2 + 3
(

n2
n2 + 1

)2
(�2)2 + 1

4

(
n2

n2 + 1

)3
(�2)3

)
,

b2 = −1 + p(1 − q2) + n2
n2 + 1

�2 + 1
4

(
n2

n2 + 1

)2
(�2)2,

b3 = 1
2

(
(p(1 − q2) − 1)

n2
n2 + 1

�2 +
(

n2
n2 + 1

)2
(�2)2 + 1

12

(
n2

n2 + 1

)3
(�2)3

)
.

(18)

If x ∈ π2, fD̃(x) is the same as when x ∈ π1, except that n1 and n2 are interchanged and we
have opposite signs on coefficients of x and x3.

Proof: Consider the Edgeworth-type expansion of the form (9). For D̃ in (3) with the first
moments defined fromTheorem2.5, suppose ai, i ∈ {0, 1, 2, 3}, are given by equations (10).
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Then, if x ∈ π1 then bi, i ∈ {0, 1, 2, 3}, are obtained by replacing the moments of D̃ into ai,
i ∈ {0, 1, 2, 3}, which concludes the proof. �

According to the results from Theorem 2.7, the background is that the limiting dis-
tribution of D̃ is N ( 12�

2,�2) if x is from π1 and is N (− 1
2�

2,�2) if x is from π2. In the
following theoremwe evaluate the Edgeworth-type expansion of the standardized discrim-
inant function with respect to its limiting distribution. This means that we are going to

consider either y = D̃− 1
2�2

�
or y = D̃+ 1

2�2

�
.

Corollary 3.2: Let D̃ be the discriminant function defined in (3) and �2 is as in (13). Let

y = D̃− 1
2�2

�
and q be given by (12), then the Edgeworth-type expansion, fy(x), if x is classified

into π1, equals

fy(x) ≈ 1√
2π

e−
1
2 x

2 1
2
{
u0 + u1x + u2x2 + u3x3

}
, (19)

where

u0 = 1
�2 p(1 − q2) + 3 − n2

n2 + 1
− 1

2
�2

((
1
2

n2
n2 + 1

)2
− n2

n2 + 1
+ 1

2

)

u1 = 3
2
1
�
p(1 − q2)

(
n2

n2 + 1
− 1

)
+ �

(
3
2

(
n2

n2 + 1

)2
− 4

n2
n2 + 1

+ 5
2

)

+ 1
8
�3

((
n2

n2 + 1

)3
+ 3

(
n2

n2 + 1

)2
+ 3

n2
n2 + 1

− 1

)
,

u2 = 1
�2 p(1 − q2) + 1 − n2

n2 + 1
− 1

2
�2

(
1
2

(
n2

n2 + 1

)2
− n2

n2 + 1
+ 1

2

)
,

u3 = 1
2
1
�
p(1 − q2)

(
n2

n2 + 1
− 1

)
+ �

(
1
2

(
n2

n2 + 1

)3
− n2

n2 + 1
+ 1

2

)

+ 1
24

�3

((
n2

n2 + 1

)3
− 3

(
n2

n2 + 1

)2
+ 3

n2
n2 + 1

− 1

)
. (20)

When x ∈ π2, we have the same values as when x ∈ π1, except that n1 and n2 are inter-
changed and we have opposite signs on coefficients of x and x3.

Proof: Given the standardized y = D̃− 1
2�2

�
then, if x ∈ π1, its expectation and variance are

E(y)= 1_�E[D̃]− 1_ 2�=1 2�( n2 __ n2+1−1) and V ar[y]= 1_�2 V ar[D̃]= 1_�2

p(1−q2)+ n2 __ n2+1, where E[D̃] and Var[D̃] are given by Theorem 2.5. Now consider
the Edgeworth-type expansion of the form (9). Therefore, substituting the mean and vari-
ance of y into ai, i ∈ {0, 1, 2, 3}, given by (10) yields ui, i ∈ {0, 1, 2, 3}, which establishes the
proof. �
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3.2. Edgeworth-type expansion of D̂

The classification function D̂ given in (4) follows a complicated distribution since it is a
difference between two non-independent non-central F-distributions. In this section, an
Edgeworth-type expansion of the density of D̂ is provided in terms of its expected value
and variance via a standard normal distribution density. Let fD̂(x) be such an expansion.
Then since D̂ is one-dimensional, fD̂ will be a polynomial function of the form (9). In the
following theorem the expansion is presented.

Theorem 3.3: Let D̂ be the discriminant function defined in (4) and �2 is as in (13). Then,
for m = n1 + n2 − p − 3, q in (12) and c0 = m+p

m(m−2)(m+1) , the Edgeworth-type expansion,
fD̂(x) when the observation x is classified in population π1 equals

fD̂(x) ≈ 1√
2π

e−
1
2 x

2 1
2
{v0 + v1x + v2x2 + v3x3}, (21)

where

v0 = 3 − (1 − q2)m2c0p − m2 n2
n2 + 1

c0�2 +
(

n2
n2 + 1

)2 m
4(m − 2)

(�2)2,

v1 = 1
2

{
(3(1 − q2)m2c0p − 5)

n2
n2 + 1

�2 + 3m2
(

n2
n2 + 1

)2
c0(�2)2

+
(

n2
n2 + 1

)3 m + 4
4(m − 2)

(�2)3

}
,

v2 = (1 − q2)m2c0p − 1 + m2 n2
n2 + 1

c0�2 −
(

n2
n2 + 1

)2 m
4(m − 2)

(�2)2,

v3 = 1
2

[
((1 − q2)m2c0p − 1)

n2
n2 + 1

�2 + m2
(

n2
n2 + 1

)2
c0(�2)2

+
(

n2
n2 + 1

)3 m + 4
12(m − 2)

(�2)3

]
. (22)

Moreover, when x ∈ π2, the coefficients vi, i ∈ {0, 1, 2, 3} in fD̂(x) are similar to the above
except that we have opposite signs on v1 and v3 and that n1 and n2 are interchanged.

Proof: If x ∈ π1, for m = n1 + n2 − p − 3, consider the form (9) of the Edgeworth-type
expansion, where D̂ is defined as (4) with expectation and variance given by Theorem 2.6.
Substituting the cumulants into ai, i ∈ {0, 1, 2, 3}, given by (10), we get the results. �

Moreover, from Theorem 2.8, the limiting distribution of D̂ isN ( 12�
2,�2) if x is said

to come from π1 and isN (− 1
2�

2,�2) if x is said to come from π2. The following theorem
depicts the standardized Edgeworth-type expansion of D̂.

Theorem 3.4: Let D̂ be the discriminant function defined in (4) and �2 is as in (13)

and let z = D̂− 1
2�2

�
. Then, for m = n1 + n2 − p − 3, q in (12) and c0 = m+p

m(m−2)(m+1) , the
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Edgeworth-type expansion, fz(x) when the observation x is classified in population π1 equals

fD̂(x) ≈ 1√
2π

e−
1
2 x

2 1
2
{w0 + w1x + w2x2 + w3x3}, (23)

where

w0 =− 1
�2 (1−q2)m2c0p+ 3− m2c0

n2
n2+ 1

− 1
2
�2

((
n2

n2+1

)2 m
2(m− 2)

− n2
n2+1

+ 1
2

)
,

w1 = 1
�

3
2
(1 − q2)m2c0p

(
n2

n2 + 1
− 1

)
+ 1

2
�

(
3m2c0

n2
n2 + 1

− 5
)(

n2
n2 + 1

− 1
)

+ 1
4
�3

(
3
(

n2
n2+ 1

)3 1
m−2

− 3
(

n2
n2+ 1

)2 1
m−2

+ n2
n2+ 1

−1

)
,

w2 = 1
�2 (1− q2)m2c0p− 1+ m2c0

n2
n2+ 1

+ 1
2
�2

((
n2

n2+ 1

)2 m
2(m− 2)

− n2
n2+ 1

+ 1
2

)
,

w3 = 1
�

1
2
(1 − q2)m2c0p

(
n2

n2 + 1
− 1

)
+ �

1
2

(
m2c0

n2
n2 + 1

− 4
3

)(
n2

n2 + 1
− 1

)

+ 1
4
�3

((
n2

n2+ 1

)2 1
m − 2)

(
n2

n2+ 1
− 1
)

+ 1
3

n2
n2+ 1

− 1
3

)
. (24)

Proof: Consider E[D̂] and Var[D̂] given by Theorem 2.6. If x ∈ π1 then,

E[z] = 1
�
E[D̂] − 1

2
� = 1

2
�

(
n2

n2 + 1
− 1

)
and

Var[z] = 1
�2Var[D̂]

= 1
�2 (1 − q2)m2c0p + m2c0

n2
n2 + 1

+
(

n2
n2 + 1

)2 1
2(m − 2)

�2.

Now consider the Edgeworth-type expansion of the form (9). Hence, if x ∈ π1, replacing
the expected value and variance of z in ai, i ∈ {0, 1, 2, 3} given by (10) by their values yields
w0 = 3 − Var[z] − (E[z]))2

=− 1
�2 (1−q2)m2c0p+ 3− m2c0

n2
n2+ 1

− 1
2
�2

((
n2

n2+1

)2 m
2(m−2)

− n2
n2+1

+ 1
2

)
,

w1 = 3Var[z]E[z] − 5E[z] + (E[z]))2

= 1
�

3
2
(1 − q2)m2c0p

(
n2

n2 + 1
− 1

)
+ 1

2
�

(
3m2c0

n2
n2 + 1

− 5
)(

n2
n2 + 1

− 1
)

+ 1
4
�3

(
3
(

n2
n2+ 1

)3 1
m−2

− 3
(

n2
n2+ 1

)2 1
m−2

+ n2
n2+ 1

−1

)
,
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w2 = 2 − a0

= 1
�2 (1− q2)m2c0p− 1+ m2c0

n2
n2+ 1

+ 1
2
�2

((
n2

n2+ 1

)2 m
2(m− 2)

− n2
n2+ 1

+ 1
2

)
,

w3 = 2
3
E[z] + 1

3
a1

= 1
�

1
2
(1 − q2)m2c0p

(
n2

n2 + 1
− 1

)
+ �

1
2

(
m2c0

n2
n2 + 1

− 4
3

)(
n2

n2 + 1
− 1

)

+ 1
4
�3

((
n2

n2+ 1

)2 1
m − 2)

(
n2

n2+ 1
− 1
)

+ 1
3

n2
n2+ 1

− 1
3

)
. (25)

Similar calculations if x ∈ π2 concludes the proof. �

4. Misclassification errors

It is not enough to make a decision based on a classification rule. In addition to a classifi-
cation rule, it is important to study probabilities of misclassifications in order to know if a
classification approach is reliable. The probability of misclassification is a measure of the
goodness of the proposed classification rule as stated by Fujikoshi et al. [11]. The classifi-
cation of the new observation x depends on whether the discriminant function is greater
than zero or not. Denote by P(x → πi) the probability that an observation x is classified
into population πi. Let i, j ∈ {1, 2}, then P(x → πi|x ∈ πi) is the probability of correctly
classifying the observation x into population πi and P(x → πj|x ∈ πi) is the probability
that the observation x comes from population πi but is classified as coming from πj. In this
section, we investigate misclassification errors of the quadratic classifiers D̃ in (3) and D̂
given in (4). The probabilities of misclassifications for the classification functions D̃ and D̂
can be estimated by integrating the Edgeworth-type expansions of the discriminant func-
tions through the density of the standard normal distribution. As we observed before, the
exact distributions of D̃ and D̂ are complicated to calculate. Therefore, one would like to
approximate the misclassification errors to know how good these classification rules are.

According to Theorem 2.8 we assume the asymptotic distribution of D̂ and D̃ to be
N ( 12�

2,�2) if x comes from π2 and to beN (− 1
2�

2,�2) if x comes from π2.

Lemma 4.1: Let ai, i ∈ {0, 1, 2, 3} be given by (10) and � in (13). Let �(·) and φ(·) be the
cumulative distribution function and density of N (0, 1), respectively. For the discriminant
function D,

P

{
D − 1

2�
2

�
≤ −1

2
�|x ∈ π1

}

≈ �

(
−1
2
�

)
+ φ

(
1
2
�

)(
1
2
a1 + 1

4
�a2 −

(
1 + 1

8
�2
)
a3
)
, (26)

and P{−D+ 1
2�2

�
≤ − 1

2�|x ∈ π2} is the same but with opposite signs on coefficients of a1 and
a3, where D can either be D̃ defined in (3) or D̂ defined in (4).
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Remark 4.1: Note that the values of a1, a2 and a3 depend on whether it is D̂ or D̃ that is
approximated.

Proof: Consider the Edgeworth-type expansion of the form (9) and put t = D− 1
2�2

�
. Then,

using integration by parts

P(x → π2|x ∈ π1)

≈ P

{
D − 1

2�
2

�
≤ −1

2
�|x ∈ π1

}
=
∫ − 1

2�

−∞
ft(x) dx

= 1√
2π

∫ − 1
2�

−∞
e−

1
2 x

2 1
2
{
a0 − a1x + a2x2 + a3x3

}
dx

= �

(
−1
2
�

)
1
2
(a0 + a2) + φ

(
−1
2
�

)(
1
2
a1 + 1

4
�a2 −

(
1 + 1

8
�2
)
a3
)

and the proof follows since

1
2
(a0 + a2) = 1

2
(
3 − Var(t) − (E(t))2 + Var(t) − 1 + (E(t))2

) = 1.

�

The classification rule using D̃ is to assign x to π1 if D̃ ≥ 0 and to π2 if D̃ < 0. The
probabilities of misclassification are given by Theorem 4.2 below.

Theorem 4.2: Consider the classification function, D̃, given by (3). Let �2 be given by (13)
and let �(·) and φ(·) be the cumulative distribution function and density of N (0, 1),
respectively. Then, with q given by (12),

P(x → π2|x ∈ π1)

≈ �

(
−1
2
�

)
+ 1

2
φ

(
1
2
�

){
1
2
1
�

n2
n2 + 1

p(1− q2)+ 3
2

(
n2

n2 + 1

)2
− 4

n2
n2 + 1

+ 5
2

− �

((
n2

n2 + 1

)3
− 3

2
n2

n2 + 1
− 1

16
p(1 − q2)

(
n2

n2 + 1
− 1

)
+ 1

2

)

+ 1
2
�3

(
1
3

(
n2

n2 + 1

)3
+
(

n2
n2 + 1

)2
− 1

2
n2

n2 + 1
− 3

4

)

+ 1
64

�5

((
n2

n2 + 1

)3
− 3

(
n2

n2 + 1

)2
+ 3

n2
n2 + 1

− 1

)}
, (27)

P(x → π1|x ∈ π2)

≈ �

(
−1
2
�

)
+ 1

4
φ

(
1
2
�

){
1
2
1
�

n1
n1 + 1

p(1− q2)+ 3
2

(
n1

n1 + 1

)2
− 4

n1
n1 + 1

+ 5
2
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− �

((
n1

n1 + 1

)3
− 3

2
n1

n1 + 1
− 1

16
p(1 − q2)

(
n1

n1 + 1
− 1

)
+ 1

2

)

+ 1
2
�3

(
1
3

(
n1

n1 + 1

)3
+
(

n1
n1 + 1

)2
− 1

2
n1

n1 + 1
− 3

4

)

+ 1
64

�5

((
n1

n2 + 1

)3
− 3

(
n1

n1 + 1

)2
+ 3

n1
n1 + 1

− 1

)}
, (28)

The difference between the two expressions in (27) and (28) is that n1 and n2 are
interchanged.

Proof: Consider the misclassification probability in Lemma 4.1 with the constants ai, i∈
{1, 2, 3}, in (20) and the cumulants of D̃ from Theorem 2.5. If x ∈ π1

1
2
a1+ 1

4
�a2−(1+ 1

8
�2)a3 = 3

4
1
�
p(1−q2)

(
n2

n2+ 1
− 1
)

+ 1
2

(
3
2

(
n2

n2+ 1

)2
− 4

n2
n2+ 1

+ 5
2

)

+ 1
16

�3

((
n2

n2+ 1

)3
+ 3

(
n2

n2+ 1

)2
− 1

)
+ 1
4
1
�
p(1− q2)

−
(

n2
n2+ 1

− 1
)
1
4
�− 1

8
�3

(
1
2

(
n2

n2+ 1

)2
− n2

n2+ 1
+ 1

2

)

− 1
2
1
�
p(1− q2)

(
n2

n2+ 1
− 1
)

−�

(
1
2

(
n2

n2+ 1

)3
− n2
n2+ 1

+ 1
2

)

− 1
24

�3

((
n2

n2+ 1

)3
− 3

(
n2

n2+ 1

)2
+ 3

n2
n2+ 1

− 1

)

+ 1
16

�p(1−q2)
(

n2
n2+1

−1
)

+ 1
8
�3

((
n2

n2+1

)3
+3

n2
n2+ 1

− 1

)

+ 1
128

�5

((
n2

n2+ 1

)3
− 3

(
n2

n2+ 1

)2
+ 3

n2
n2+ 1

− 1

)

= (p(1 − q2) − 1)� + (p(1 − q2) − 3)
n2

n2 + 1
�2 + n2

n2 + 1
�3

+
(

n2
n2 + 1

− 1
2
p(1 − q2)

)
n2

n2 + 1
�4 + 1

4

(
n2

n2 + 1

)2
�5

− 1
2

(
1
6

n2
n2 + 1

+ 1
)(

n2
n2 + 1

)2
�6 − 1

24

(
n2

n2 + 1

)3
�8.

Hence the expression in (27) follows. Furthermore, similar calculations when x ∈ π2
conclude the proof. �
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The classification rule using D̂ is to classify x to π1 if D̂ ≥ 0 and to π2 if D̂ < 0. The
theorem below expresses the misclassification errors for this rule.

Theorem 4.3: Consider the classification function, D̂, given by (4) and �2 given by (13).
Then, for m = n1 + n2 − p − 3, q in (12) and c0 = m+p

m(m−2)(m+1) , let �(·) and φ(·) be the
cumulative distribution function and density ofN (0, 1), respectively. Then,

P(x → π2|x ∈ π1) ≈ �

(
−1
2
�

)
+ 1

2
φ

(
1
2
�

){
1
�

1
4
(1 − q2)m2c0p

n2
n2 + 1

+ 1
2
�

[
1
2
m2c0

(
n2

n2 + 1

)2
− 1
8
(1− q2)m2c0p

(
n2

n2+ 1
− 1
)

−3
4

n2
n2+ 1

+ 1
2

]
+ 1
2
�3

[
1
24

(
n2

n2+ 1

)3 12+ m2(m− 2)
m2(m− 2)

− 1
16

(
n2

n2+ 1

)2 4+ m2(m− 2)
m2(m− 2)

− 1
8
m2c0

n2
n2+ 1

(
n2

n2+1
− 1
)

− 1
24

]

− 1
192

�5

[(
n2

n2 + 1

)3 12 + m2(m − 2)
m2(m − 2)

−3
(

n2
n2 + 1

)2 4 + m2(m − 2)
m2(m − 2)

+ 3
n2

n2 + 1
− 1

]}
,

P(x → π1|x ∈ π2) ≈ �

(
−1
2
�

)
+ 1

2
φ

(
1
2
�

){
1
�

1
4
(1 − q2)m2c0p

n1
n1 + 1

+ 1
2
�

[
1
2
m2c0

(
n1

n1 + 1

)2
− 1
8
(1− q2)m2c0p

(
n1

n1+ 1
− 1
)

−3
4

n1
n1+ 1

+ 1
2

]
+ 1
2
�3

[
1
24

(
n1

n1+ 1

)3 12+ m2(m− 2)
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− 1
16

(
n1
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m2(m− 2)
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8
m2c0

n1
n1+1

(
n1
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− 1
24

]

− 1
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[(
n1

n1 + 1

)3 12 + m2(m − 2)
m2(m − 2)

−3
(

n1
n1 + 1

)2 4 + m2(m − 2)
m2(m − 2)

+ 3
n1

n1 + 1
− 1

]}
. (29)

Proof: Consider ai, i ∈ {1, 2, 3}, given by (24). If x ∈ π2, then from Lemma 4.1 we get

1
2
a1+ 1

4
�a2−(1+ 1

8
�2)a3= 3

4
1
�

(1−q2)m2c0p
(

n2
n2+1

−1
)

+ 1
4
�

(
n2

n2+1
−1
)(

3m2c0
n2

n2+1
−5
)

+ 1
16

�3

((
n2

n2+1

)312+m2(m−2)
m2(m− 2)

−3�3
(

n2
n2+1

)34+m2(m−2)
m2(m− 2)
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+3 n2
n2+1

− 1
)

+ 1
4
1
�

(1−q2)m2c0p− 1
4
�

(
1−m2c0

n2
n2+ 1

)

+ 1
8
�3
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n2
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n2

n2+1
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)

− 1
8
�3

(
1
3

(
n2
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(
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3

)
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16
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)
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(
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1
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+ 1

2
�
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2
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(
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)2

−1
8
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(
n2
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)
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4
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24

(
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(
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m2(m− 2)

− 1
8
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n2
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(
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24
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− 1
192
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[(
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−3
(

n2
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)2 4 + m2(m − 2)
m2(m − 2)

+ 3
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]
.

Therefore, substituting the above expression into (26) the proof follows. To prove a sim-
ilar result when x ∈ π2 we can use the same approach as when x ∈ π1 and the result is
established. �

5. Conclusion

We have observed that it is difficult to evaluate the exact distributions of D̃ and D̂. There-
fore, we handled this problem by performing Edgeworth-type expansions in order to
further obtainmisclassification probabilities. Note that an Edgeworth-type expansion does
not have to be a density. In our case, the integration of both Edgeworth-type expansions of
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the discriminant functions over the entire space equals one, that is,∫ +∞

−∞
fD̃(x) dx =

∫ +∞

−∞
fD̂(x) dx = 1.

However, we have not shown nonnegativity of the expansions. The Edgeworth-type expan-
sion was performed in terms of cumulants of the discriminant functions D̂ and D̃ through
a standard normal distribution up to three terms. The expansion is a polynomial function
in x.

In addition, in order to estimate misclassification probabilities for the classification
rules whether D̃ > 0 or D̃ < 0 and whether D̂ > 0 or D̂ < 0, we used the Edgeworth-
type expansions fD̃(x) and fD̂(x) of standardized variables with their limiting distribu-
tion given in Theorem 2.8. Misclassification errors from Theorem 4.2 and Theorem 4.3
are functions of the Mahalanobis distance. Figure 1 shows the change in misclassifica-
tion probabilities using D̃ and D̂ with respect to the Mahalanobis distance (�), where
P(x → π2|x ∈ π1) is the probability that an observation x is wrongly classified into pop-
ulation π2. The curves for the discrimination rules with D̃ and D̂ are more or less
similar.

Now, let us discuss our results in comparison to well-known results. Consider the dis-
criminant functions W given by (1) and Z in (2). Like the discriminant function D̂, they
both involve a known covariance matrix. However, theW-rule is a linear function whereas
the Z-rule is a quadratic function, similarly to D̃ and D̂ discriminant functions. Note
that when n1 = n2 ≡ n, D̂ = − mn

n+1W = mZ, where m = 2n−p−3. The following two
theorems by Anderson [12] illustrate misclassification errors with respect to W and Z
classification functions, respectively.

Figure 1. Misclassification errors for D̃ in (3) and D̂ in (4) rules when n1 = n2 = 100 and p = 10.



3200 E. U. GASANA ET AL.

Theorem 5.1: For large n1 and n2, and n = n1+ n2− 2 and u =− 1
2�, where � is the

Mahalanobis distance,

P

{
W− 1

2�
2

�
≤ u|x ∈ π1

}
= �(u)−φ(u)

{
1

2n1�2 [u
3+(p− 3)u− p�]

+ 1
2n2�2 [u

3+ 2�u2+ (p− 3+ �2)u+ (p− 2)�]

+ 1
4n

[4u3+4�u2+(6p−6+�2)u+2(p−1)�]
}

+O(n−2)

(30)

and P{−(
W+ 1

2�2

�
) ≤ u|x ∈ π2} is similar to (30) (only n1 and n2 have to be interchanged).

Theorem 5.2: For large n1 and n2, n1/n2 and n = n1+ n2− 2 and u =− 1
2�,

P

{
Z− 1

2�
2

�
≤ u|x ∈ π1

}
= �(u)−φ(u)

{
1

2n1�2 [u
3+ �u2+(p − 3)u − �]

+ 1
2n2�2 [u

3+ �u2+ (p− 3+ �2)u− �3 − �]

+ 1
4n

[4u3+4�u2+(6p−6+�2)u+2(p−1)�]
}

+O(n−2),

(31)

and P{−(
Z+ 1

2�2

�
) ≤ u|x ∈ π2} equals (31) with n1 and n2 interchanged.

Proofs of Theorem 5.1 and Theorem 5.2 are provided by Anderson [12].
Figure 2(a,b) display the change inmisclassification probabilities using the rules D̃, D̂,W

andZwith respect to�.We can see fromboth figures that the rules D̂ and D̃ are comparably

Figure 2. Misclassification errors for D̃, D̂,W and Z rules. (a) n1 = n2 = 100 and p = 10 and (b) n1 = 5,
= n2 = 4 and p = 3.
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similar to W and Z rules. However, Figure 1 also shows that the rule with D̂ may have
negative misclassification error. Moreover, for small n, (n<10), see Figure 2(b), misclas-
sification errors using D̃ can be negative. This is due to the fact that the Egdeworth-type
expansion is not always a density. Hence, misclassification errors are not really probabili-
ties andmight yield irrelevant values. However, a negative value can be interpreted that the
misclassification error is small.

We consider classification only if the misclassification error is less than 50%. There-
fore, it is not meaningful to classify with D̃ when � < 0.4. On the other hand, the
misclassification error using D̂ is always less than 50%.
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