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Abstract 
Large scale mapping of changes in forest variables is needed for both environmental 
monitoring, planning of climate actions and sustainable forest management. Remote 
sensing can be used in conjunction with field data to produce wall-to-wall estimates 
that are practically impossible to produce using traditional field surveys. 

Synthetic aperture radar (SAR) can observe the forest independent of sunlight, 
clouds, snow, or rain, providing reliable high frequency coverage. Its wavelength 
determines the interaction with the forest, where longer wavelengths interact with 
larger structures of the trees, and shorter wavelengths interact mainly with the top 
part of the canopy, meaning that it can be chosen to fit specific applications. 

This thesis contains five studies conducted on the Remningstorp test site in 
southern Sweden. Studies I – III predicted above ground biomass (AGB) change 
using long wavelength polarimetric P- (in I) and L-band (in I – III) SAR data. The 
differences between the bands were small in terms of prediction quality, and the HV 
polarization, just as for AGB state prediction, was the polarization channel most 
correlated with AGB change. A moisture correction for L-band data was proposed 
and evaluated, and it was found that certain polarimetric measures were better for 
predicting AGB change than all of the polarization channels together. 

Study IV assessed the detectability of silvicultural treatments in short wavelength 
TanDEM-X interferometric phase heights. In line with earlier studies, only clear cuts 
were unambiguously distinguishable. Study V predicted site index and stand age by 
fitting height development curves to time series of TanDEM-X data. Site index and 
age were unbiasedly predicted for untreated plots, and the RMSE would likely 
decrease with longer time series. When stand age was known, SI was predicted with 
an RMSE comparable to that of the field based measurements. 

In conclusion, this thesis underscores SAR data's potential for generalizable 
methods for estimation of forest variable changes. 

Keywords: forest, SAR, biomass, interferometry, polarimetry, change estimation 

Estimation of change in forest variables 
using synthetic aperture radar 



 
  



Sammanfattning 
Kartläggning av förändringar i skogliga variabler kan stödja miljöövervakning, 
rapportering, planering av klimatåtgärder, och ett hållbart skogsbruk. Fjärranalys 
kan i kombination med fältinventering användas för att skapa frekventa heltäckande 
skattningar som är praktiskt omöjliga att åstadkomma med endast fältinventering.  

Syntetisk aperturradar (SAR) avbildar skogen oberoende av solljus, moln, 
snöfall, eller regn, och kan därför ge tillförlitliga och frekventa observationer. 
Eftersom interaktionen med skogen är beroende av våglängden, där långa 
våglängder främst interagerar med de större strukturerna, som stammar och grova 
grenar, och korta våglängder främst reflekteras från den övre delen av trädkronorna, 
kan radarns våglängd väljas för att passa specifika tillämpningar. 

Denna avhandling består av fem studier utförda på Remningstorps 
försöksområde. Studierna I – III predikterade förändringar i biomassa ovan mark 
från polarimetriska SAR-data i P- och L-band. Studierna konstaterade att 
skillnaderna mellan banden i termer av prediktionskvalitet är små och att HV-
polarisationen  är den polarisation som är starkast korrelerad med förändringar i 
biomassa. En metod för fuktkorrigering av bakåtspridningen i L-bandsdata 
presenterades och utvärderades, och det konstaterades att modeller byggda på vissa 
polarmetriska mått predikterade förändringar i biomassa bättre än de olika 
polarisationskanalerna tillsammans. 

Studie IV utvärderade detekterbarheten hos skogliga åtgärder i inteferometriska 
TanDEM-X-fashöjder. I linje med tidigare studier var endast slutavverkningar 
otvetydigt urskiljbara. Studie V predikterade ståndortsindex och ålder hos 
övrehöjdsträd genom att anpassa höjdutvecklingskurvor till tidsserier av TanDEM-
X-data. Ståndortsindex och ålder predikterades obiaserat för orörda provytor, och 
RMSE skulle sannolikt minska med utökade tidsserier. Med känd ålder 
predikterades SI med ett RMSE i liknande storleksordning som hos fältmätta värden.  

Sammanfattningsvis understryker avhandlingen potentialen hos SAR-data för 
generaliserbara metoder för skattning av förändringar i skogliga variabler. 

Skattning av förändring i skogliga variabler 
med syntetisk aperturradar 



Till Jenny, Zappa, och Ärvi 
  

 



List of publications ........................................................................... 9 

1. Introduction .......................................................................... 15 
1.1 Why map changes in forest variables? ....................................... 15 
1.2 Radar remote sensing ................................................................. 16 
1.3 Radar principles .......................................................................... 18 

1.3.1 Electromagnetic waves ................................................... 18 
1.3.2 Radar cross section ........................................................ 21 
1.3.3 Radar equation ............................................................... 21 
1.3.4 Wavelength ..................................................................... 22 

1.4 Synthetic Aperture Radar ............................................................ 24 
1.4.1 Imaging geometry ........................................................... 24 

1.5 Polarization ................................................................................. 27 
1.5.1 The scattering matrix, the covariance matrix, and the 
coherency matrix ......................................................................... 27 
1.5.2 Polarimetric decompositions ........................................... 28 

1.6 Interferometry .............................................................................. 29 
1.6.1 Phase measurement in across-track interferometry ....... 29 
1.6.2 The complex coherence ................................................. 32 
1.6.3 Precision of height measurements ................................. 33 

1.7 SAR in forest remote sensing ..................................................... 34 
1.7.1 Change estimation .......................................................... 35 

2. Objectives ............................................................................ 37 

3. Materials and methods ......................................................... 39 
3.1 Materials ..................................................................................... 39 

3.1.1 Remningstorp ................................................................. 39 
3.1.2 Field data ........................................................................ 40 
3.1.3 ALS data ......................................................................... 41 
3.1.4 SAR data ........................................................................ 41 

3.2 Methods ...................................................................................... 42 
3.2.1 Studies I – III ................................................................... 42 

Contents 



3.2.2 Studies IV and V ............................................................. 43 
3.2.3 Prediction quality ............................................................ 45 

4. Study summaries ................................................................. 47 
4.1 Study I ......................................................................................... 47 
4.2 Study II ........................................................................................ 49 
4.3 Study III ....................................................................................... 50 
4.4 Study IV ...................................................................................... 51 
4.5 Study V ....................................................................................... 52 

5. Conclusions ......................................................................... 55 

6. Outlook ................................................................................ 57 

References .................................................................................... 59 

Popular science summary ............................................................. 65 

Populärvetenskaplig sammanfattning ............................................ 67 
 



9 

This thesis is based on the work contained in the following papers, referred 
to by Roman numerals in the text: 

I. I. Huuva, H. J. Persson, M. J. Soja, J. Wallerman, L. M. H. 
Ulander, and J. E. S. Fransson (2020). Predictions of Biomass 
Change in a Hemi-Boreal Forest Based on Multi-Polarization L- 
and P-Band SAR Backscatter. Canadian Journal of Remote 
Sensing, 46 (6), pp. 661 – 680 

II. I. Huuva, H. J. Persson, J. Wallerman, L. M. H. Ulander, and J. E. 
S. Fransson (2023). Prediction of Hemi-Boreal Forest Biomass 
Change Using ALOS-2 PALSAR-2 L-Band SAR Backscatter. In 
Proceedings of the 2023 IEEE International Geoscience and 
Remote Sensing Symposium, Pasadena, CA, USA, 16 – 21 July 
2023, pp. 3326-3329 

III. H. J. Persson and I. Huuva, (2023). Polarizations and Polarimetric 
Measures in Biomass Change Prediction using ALOS-2 PALSAR-
2 data. (manuscript) 

IV. I. Huuva, H. J. Persson, J. Wallerman, and J. E. S. Fransson 
(2022). Detectability of Silvicultural Treatments in Time Series of 
Penetration Depth Corrected Tandem-X Phase Heights. In 
Proceedings of the 2022 IEEE International Geoscience and 
Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17 – 22 
July 2022, pp. 5909-5912 

List of publications 



10 

V. I. Huuva, J. Wallerman, J. E. S. Fransson, and H. J. Persson 
(2023). Prediction of Site Index and Age Using Time Series of 
TanDEM-X Phase Heights. Remote Sensing, 15 (17), 4195 

Papers I, II, IV and V are reproduced with the permission of the publishers. 
 

  



11 

The contributions of Ivan Huuva to the papers included in this thesis were as 
follows: 

I. Planned the study with the co-authors. Carried out all remote 
sensing data processing. Carried out reference AGB change 
modeling and SAR – AGB modeling, formal analysis, and 
visualization. Wrote the major part of the manuscript. 

II. Planned the study with the co-authors. Carried out all remote 
sensing data processing, modeling, formal analysis and 
visualization. Wrote the major part of the manuscript. 

III. Planned the study with the co-author. Carried out preliminary data 
processing and analysis. Co-authored the manuscript. 

IV. Planned the study with the co-authors. Carried out formal 
analysis, visualization, and some of the remote sensing data 
processing. Wrote the major part of the manuscript. 

V. Planned the study with the co-authors. Carried out formal 
analysis, visualization, and some of the remote sensing data 
processing. Wrote the major part of the manuscript. 

 
  



12 

 
  



13 

 
Related publications 
Apart from the appended studies, the author has contributed to the following 
relevant publications: 
 
I. Huuva et al. (2017). Measurements of Forest Biomass Change Using L- 
and P-band SAR Backscatter, In Proceedings of the 2017 IEEE International 
Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23 – 
28 July 2017, pp. 5818–5821. 
 
I. Huuva, H. J. Persson, J. Wallerman, and J. E. S. Fransson (2021). Impact 
of Plot Size and Extended Extraction Regions of Tandem-X Phase Height in 
Relation to Forest Variables. In Proceedings of the 2021 IEEE International 
Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11 – 16 
July 2021, pp. 6720–6723. 
 
H. J. Persson, R. Mukhopadhyay, I. Huuva, and J. E. S. Fransson (2022). 
Comparison of Boreal Biomass Estimations Using C- and X-Band PolSAR, 
In Proceeding of the 2022 IEEE International Geoscience and Remote 
Sensing Symposium, Kuala Lumpur, Malaysia, 17 – 21 July 2022, pp. 5555–
5558. 
 
 
  



14 

  



15 

1.1 Why map changes in forest variables? 
The focus of this dissertation is on estimating changes in forest variables 
using Synthetic Aperture Radar (SAR). The use of remote sensing for the 
task of estimating forest variables, or changes in them, is motivated by the 
desire for frequently updated wall-to-wall mapping on a scale that makes 
reliance solely on manual field surveys impractical and prohibitively costly. 
Before delving into the specifics of how, which the thesis provides some 
suggestions to, I will provide some answers to the question of why by 
describing some of the reasons that the mapping of changes in forest 
variables is a worthwhile pursuit. 

Forests are critical components of the ecosystem, and changes in forests 
can be indicative of broader environmental trends. Mapping changes allows 
us to monitor the health of ecosystems, including biodiversity and carbon 
sequestration. Forests are habitats for diverse plant and animal species. 
Mapping changes helps identify areas threatened by habitat loss, aiding in 
conservation planning and protected area management. The biosphere acts 
as a net carbon sink, and changes in its efficiency in storing carbon need to 
be better understood (Canadell et al. 2007). Forests constitute a large part of 
the terrestrial biosphere and their carbon storage is proportional to the 
biomass they contain. Monitoring changes in forest biomass helps assess 
their effectiveness in sequestering carbon. 

In addition, forests provide essential resources such as timber, non-timber 
forest products, and water. Mapping changes helps in sustainable resource 
management, ensuring that these resources are available for future 
generations (Ernst et al. 2004; Hohner et al. 2019).  

1. Introduction 



16 

Accurate data on forest changes are also essential for policymakers to 
formulate effective environmental, conservation, and climate change 
policies, and to monitor the compliance to such policies and international 
agreements. 

In summary, mapping forest changes provides vital information for 
environmental conservation, climate change mitigation, and sustainable 
resource management. It supports decision-making at local, national, and 
global levels to ensure the well-being of forest owners, ecosystems, societies, 
and the planet. These goals are not always necessarily in harmony, but this 
is luckily not a problem that this thesis needs to address. 

1.2 Radar remote sensing 
While manual field surveys remain the source of the most reliable form of 
information about forest variables and changes in them, such inventories are 
costly and time consuming. Because of this, remote sensing methods, which 
can be used to estimate forest variables or changes in them over large areas 
have become widespread. Forest remote sensing generally is the science or 
practice of relating signatures in data collected using some remote sensor, 
carried for example by a satellite, an airplane, or an unmanned aerial vehicle 
(UAV), to physical properties of the remotely probed forest. 

Remote sensing not only makes it possible to monitor forests in a wall-
to-wall manner, which is practically impossible using manual inventory 
methods for any large area, but also allow for frequently updated estimates. 
Assuming that the processing time is negligible in the context, which is 
reasonable for an established algorithm, the update time is limited by the 
revisit time of the sensor in question. 

Radar signals are distinct in remote sensing applications due to their 
ability to penetrate the atmosphere under virtually all conditions. Depending 
on the wavelength, the microwave energy of the signal is able to probe the 
surface of the earth unhindered by clouds, rain, snow and smoke, i.e. 
conditions that greatly challenge for example optical sensors, making it 
impossible for them to image some regions with nearly perpetual cloud cover 
(Ulaby et al. 1981; Lillesand and Kiefer 2000). 

Radar sensors are also active, meaning that they generate the energy used 
for the measurement, making them able to operate independently of sunlight, 
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thereby further increasing their coverage advantage over passive optical 
sensors. 

Further, radar reflections have little similarity with the signals measured 
by optical sensors; a microwave signal can penetrate significantly into a 
canopy and even reflect from the ground where the canopy would be opaque 
in the optical spectrum, and a surface that appears rough to optical radiation 
can be smooth to microwave radiation (Ulaby et al. 1981; Lillesand and 
Kiefer 2000). The distinct character of the radar measurement provides 
unique and complementary information about the objects of study.  

While widespread aerial photography began after World War I, the first 
large scale mapping using airborne radar was a survey of the Darien province 
of Panama in 1967. Due to persistent cloud cover, the whole region had never 
been fully covered due to near perpetual cloud cover in parts of the region. 
The success of the survey led to many more similar campaigns (Lillesand 
and Kiefer 2000). 

Radar remote sensing from space began with the launch of Seasat in 1978, 
followed by the Soviet Cosmos experiments and Shuttle Radar Imaging 
(SIR) in the 1980s, and broad scale availability started in the early 90s with 
a number of radar satellite launches, beginning with the launches of  Almaz-
1, ERS-1 and JERS-1 in 1991 and 1992 (Lillesand and Kiefer 2000). 

Since then, a number of missions have launched, and currently there a 
number of radar satellites continuously providing radar images of the earth 
in a number of wavelengths and modes. These include the current Sentinel-
1 (~6 cm wavelength) and the planned ROSE-L (~24 cm wavelength), from 
the European Space Agency (ESA), the current ALOS-2 and upcoming 
ALOS-4 (24 cm wavelength) satellites from the Japan Aerospace 
Exploration Agency, (JAXA), the TanDEM-X (~3 cm wavelength) mission 
from the German aerospace center (DLR), the Cosmo-Skymed (~3 cm 
wavelength) constellation  from the Italian Space Agency (ASI), the 
RADARSAT constellation mission (RCM, ~6 cm wavelength) from the 
Canadian Space Agency (CSA), the SAOCOM mission (24 cm wavelength) 
by the Argentinian National Space Activities Commission (CONAE), and 
the upcoming NISAR (10 cm and 24 cm wavelength) by NASA and the 
Indian Space Research Organization (ISRO) in collaboration. This list is far 
from exhaustive, and these and other current and planned SAR missions 
provide ample opportunities for efficient monitoring of changes in the 
Earth’s forests. 



18 

1.3 Radar principles 
Radars are devices that transmit radio frequency (RF) electromagnetic (EM) 
signals from an antenna, and measure the distance to objects from the time it 
takes for radiation to reflect off objects and return to the device. While the 
general idea was conceived shortly after the discovery of radio waves in the 
late nineteenth century, the development of radar was greatly accelerated by 
its usefulness in military surveillance applications during the world wars of 
the first half of the twentieth century (Sullivan 2004). This chapter will 
briefly describe the properties of EM waves, before summarizing some 
important properties of radars in general. After this, some key concepts of 
SAR, InSAR and PolSAR are reviewed. The last part of the chapter 
summarizes some previous studies especially relevant to the studies included 
in this thesis. 

1.3.1 Electromagnetic waves 
EM waves are a propagation of oscillations in the electromagnetic field 
emanating from accelerating electrical charges, as predicted by Maxwell’s 
equations. Figure 1 shows an electromagnetic wave in free space propagating 
from left to right. The vectors indicate the instantaneous direction and 
magnitude of the electromagnetic fields at each point in space. Blue vectors 
show the electric field  𝑬𝑬, and red vectors the magnetic field 𝑩𝑩 (bold variable 
names indicate vector quantities). The two fields are always orthogonal 
(perpendicular) to each other and the direction of propagation of the wave. 
The direction of propagation is given by the vector 𝑬𝑬 × 𝑩𝑩 where × denotes 
the cross product.  
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Figure 1. An electromagnetic wave, with the electric field 𝑬𝑬 oscillating in the y direction, 
and the magnetic field 𝑩𝑩 oscillating in the x direction. 

The magnitudes of the two fields are related by 𝐸𝐸 = 𝑐𝑐𝑐𝑐, where the 
proportionality constant 𝑐𝑐 is the wave propagation speed, the speed of light. 
Note that since the magnitude is a scalar, the font is non bold. As the two 
fields are fully determined by each other, a simple EM wave is fully 
described by defining only one of them. A mathematical representation of 
such a wave, with frequency 𝑓𝑓, in three dimensional Cartesian coordinates 
and time 𝑡𝑡 is given by 

𝑬𝑬(𝑧𝑧, 𝑡𝑡) = 𝑬𝑬𝟎𝟎𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑧𝑧 − 2𝜋𝜋𝑓𝑓𝑡𝑡) , ( 1 ) 
which describes a monochromatic plane wave travelling along the 𝑧𝑧 direction 
and oscillating along a line in the transverse 𝑥𝑥 - 𝑦𝑦 plane defined by the 
amplitude vector 𝑬𝑬𝟎𝟎 (Griffiths 2013). In addition to defining the direction of 
oscillation, 𝑬𝑬𝟎𝟎 defines the amplitude of the oscillation via its magnitude 𝐸𝐸0. 
The so called wave number, 𝑘𝑘, is related to the wavelength, 𝜆𝜆, of the wave 
by 

𝑘𝑘 =
2𝜋𝜋
𝜆𝜆

 . ( 2 ) 

The full argument to the cosine function in (1), 𝑘𝑘𝑧𝑧 − 2𝜋𝜋𝑓𝑓𝑡𝑡, is called the 
phase, and is often denoted by 𝜙𝜙. The wave function is periodic and obtains 
the same value for 𝜙𝜙 and 𝜙𝜙 + 𝑛𝑛2𝜋𝜋, where 𝑛𝑛 is an integer, and because of 
this, the phase is ambiguous beyond a range of 0 to 2𝜋𝜋. 

The electric field of the electromagnetic wave can oscillate in any 
direction in the plane transverse to the propagation direction, but any such 
oscillation can be represented as a linear combination of two orthogonal 
component fields in this plane. A common choice of such polarization 
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components (bases) are the vertically (V) and horizontally (H) linearly 
polarized waves. When a V and H wave of equal amplitude are in phase, i.e. 
their maxima occur simultaneously, their combination adds up to another 
linearly polarized state, at 45° to both the H and V directions. If the 
amplitudes of the two in phase waves differ, the orientation angle in the 
transverse plane will deviate from 45°, but the polarization will still be linear. 

If there is a difference in phase, Δ𝜙𝜙 = 𝜙𝜙𝑉𝑉 − 𝜙𝜙𝐻𝐻, between the H and V 
components, the resulting wave will no longer be linear, and the resulting 
electric field will instead of a line, trace out an ellipse in the transverse plane, 
or in the case of Δ𝜙𝜙 = ±𝜋𝜋/2, a circle. Figure 2 illustrates such a 
combination. In this case, the H polarization field  𝑬𝑬𝑯𝑯 lags the V polarization 
field 𝑬𝑬𝑽𝑽 (Δ𝜙𝜙 = −𝜋𝜋/2). The sign of the phase difference determines the so 
called handedness of the polarization. 
 

 
Figure 2. Circularly polarized electromagnetic wave. 

The EM-wave carries energy in the direction of propagation. The energy flux 
density per unit area and unit time is given by the Poynting vector: 

𝑺𝑺 =
1
𝜇𝜇𝑜𝑜

(𝑬𝑬 × 𝑩𝑩) , ( 3 ) 

which is a vector quantity, pointing in the direction of propagation. The 
average energy over a cycle (or a number of cycles) is given by 

〈𝑺𝑺〉 =
1
2
𝜖𝜖0𝐸𝐸2𝒛𝒛� , ( 4 ) 

Where 𝒛𝒛� is a unit vector in the z direction (Griffiths 2013). 
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1.3.2 Radar cross section 
When EM-radiation is transmitted from an antenna, it scatters from objects 
in the path of its beam. The radiation scattered from an object is in general 
scattered in all directions, but some of the radiation is scattered back toward 
the transmitting radar antenna. The power received at the radar from a 
specific object depends both on the object but also on the distance (and angle, 
due to the gain pattern of the antenna) to the object, since the power emitted 
from the radar will be spread out over a larger area with increasing distance 
from the antenna. 

The radar cross-section (RCS) of an object is a measure of how much of 
this incident energy on an object is scattered in a specific direction, and is 
defined as 

𝜎𝜎 ≡ lim
𝑅𝑅→∞

4𝜋𝜋𝑟𝑟2
𝐸𝐸𝑠𝑠2

𝐸𝐸𝑖𝑖2
 , ( 5 ) 

where 𝑟𝑟 is the distance to the object, and 𝐸𝐸𝑖𝑖 and 𝐸𝐸𝑠𝑠 are the magnitudes of the 
incident and scattered fields, respectively. The radar cross-section 𝜎𝜎 has the 
dimension of an area. The RCS of a general object can vary considerably 
with its orientation, and the scattering direction. When the energy is reflected 
back in the direction of the source, which is (at least approximately) the case 
in the applications in this thesis, the scattering is referred to as backscatter. 

1.3.3 Radar equation 
The signal power received in a radar from scattering off a target with radar 
cross-section 𝜎𝜎 at a distance 𝑟𝑟 is related to the peak transmitted power 𝑃𝑃𝑡𝑡 by 

𝑃𝑃𝑟𝑟 =
𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡𝐺𝐺𝑟𝑟𝜆𝜆2𝜎𝜎

(4𝜋𝜋)3𝑟𝑟4
 , ( 6 ) 

where 𝐺𝐺𝑡𝑡 and 𝐺𝐺𝑟𝑟 are the transmit- and receive gain of the antenna, 
respectively (Richards et al. 2010). This received signal usually has a very 
low amplitude, and a radar system always has a certain background level of 
interfering signal with random amplitude and phase, referred to as noise. The 
sources of the noise are many, such as antenna noise from the sun, cosmic 
radiation, the ground, and thermal noise in receiver circuits. Assuming that 
the noise in the receiver is dominated by thermal noise, it is uniformly 
distributed in frequency, and the noise power can be expressed in terms of 
the receiver bandwidth 𝑐𝑐𝑟𝑟 and a system noise temperature 𝑇𝑇𝑠𝑠 

𝑃𝑃𝑛𝑛 = 𝑘𝑘𝐵𝐵𝑇𝑇𝑠𝑠𝑐𝑐𝑟𝑟 , ( 7 ) 
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where 𝑘𝑘𝐵𝐵 is Boltzmann’s constant (Richards et al. 2010). So far, the 
treatment has been ideal in the sense that we have not accounted for any 
losses in the power transfer processes involved. A system loss term is 
commonly used to characterize the fraction of power lost due to imperfect 
power transfers. The total system loss is separated into constituent losses as 

𝐿𝐿𝑠𝑠 = 𝐿𝐿𝑡𝑡𝐿𝐿𝑎𝑎𝐿𝐿𝑟𝑟𝐿𝐿𝑠𝑠𝑠𝑠 , ( 8 ) 

where 𝐿𝐿𝑡𝑡, 𝐿𝐿𝑎𝑎, 𝐿𝐿𝑟𝑟, and 𝐿𝐿𝑠𝑠𝑠𝑠, are transmit loss, atmospheric loss, receiver loss, 
and signal processing loss, respectively. By dividing (6) by (7) and (8), we 
arrive at an expression for the relative strength of the received signal from a 
target, when compared to the system noise, and taking into account losses. 
This quantity is called the signal-to-noise ratio, and is given by (Richards et 
al. 2010) 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡𝐺𝐺𝑟𝑟𝜆𝜆2𝜎𝜎

(4𝜋𝜋)3𝑟𝑟4𝑘𝑘𝐵𝐵𝑇𝑇𝑠𝑠𝑐𝑐𝑟𝑟𝐿𝐿𝑠𝑠
 . ( 9 ) 

This expression is the general case assuming one pulse is transmitted. In the 
case of SAR imaging, the returns from a target are collected by multiple 
pulses using an average power 𝑃𝑃𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 during an aperture time 𝑡𝑡𝐴𝐴 and summed 
coherently, which makes the following form more appropriate (Sullivan 
2004): 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑃𝑃𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝐺𝐺𝑡𝑡𝐺𝐺𝑟𝑟𝜆𝜆2𝜎𝜎𝑡𝑡𝐴𝐴
(4𝜋𝜋)3𝑟𝑟4𝑘𝑘𝐵𝐵𝑇𝑇𝑠𝑠𝐿𝐿𝑠𝑠

 . ( 10 ) 

1.3.4 Wavelength 
Electromagnetic radiation in a wide range of frequencies from the 
microwave spectrum are used in radar applications. These frequencies can 
be grouped into bands. Table 1 presents the band designations that this 
dissertation adheres to. The studies contained in this thesis made use of P-, 
L- and X-band data. 

Table 1. Radar band designations. 1 

Band Frequency Wavelength 
HF 3 – 30 MHz 10-100 m 

VHF 30 – 300 MHz 1-10 m 
P 216 – 450 MHz 0.7 – 1.4 m 

                                                      
1 Designations follow the IEEE standard letter designations for radar-frequency bands, except for P-band, which 
is however a commonly used designation. 
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Band Frequency Wavelength 
UHF 0.3 – 3 GHz 1 – 10 cm 

L 1 – 2 GHz 15 – 30 cm 
S 2 – 4 GHz 7.5 – 15 cm 
C 4 – 8 MHz 3.7 – 7.5 cm 
X 8 – 12 GHz 2.5 – 3.7 cm 

Ku 12 – 18 GHz 1.7 – 2.5 cm 
Ka 18 – 27 GHz 1.1 – 2.5 cm 
K 20 – 40 GHz 0.75 – 1.5 cm 
V 27 – 40 GHz 0.75 – 1.1 cm 
W 75 – 110 GHz 2.7 – 4 mm 

mm 110 – 300 GHz 1 – 4 mm 

  
The wavelength of radiation greatly affects its interaction with objects. 
Objects much smaller than the wavelength will scatter the radiation much 
more weakly than objects whose dimensions are comparable to the 
wavelength, or larger. This is the reason that microwaves are able to 
penetrate clouds and rain much better than the shorter optical wavelengths 
(Ulaby et al. 1981; Lillesand and Kiefer 2000). The differences within the 
microwave spectrum are also significant in terms of how different band 
interact with natural targets such as forests. Because the forest with its 
ground, tree stems, branches, leaves, and needles is made up of structures 
ranging from mm to meters in size, different parts of the forest match 
different radar bands in size, producing different reflections depending on 
the frequency used. Furthermore, because the radiation interacts weakly with 
objects that are small compared to its wavelength, longer wavelengths, like 
the meter sized P-band radiation, penetrate further into the canopy, 
unhindered by the smaller structures like leaves, needles and thin branches, 
and can produce reflections from the larger structures below, and from the 
ground (Ulaby et al. 1981). This ability of long wavelengths to reflect from 
the larger structures of the trees has proven itself valuable in estimating 
biomass and stem volume. On the other hand, shorter wavelengths like X-
band, around 3 cm, interact mainly with the top part of the canopy, if the 
canopy is closed, therefore allowing the estimation of forest heights using 
interferometry. 
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1.4 Synthetic Aperture Radar 

1.4.1 Imaging geometry 

 
Figure 3. Simplified schematic of SAR acquisition geometry. The moving SAR platform 
captures a SAR image of the ground in a right-looking configuration. 

 
A simplified schematic of SAR acquisition geometry is shown in Figure 3. 
The SAR with an antenna of length 𝐷𝐷 travels to the right in the image and 
captures a SAR image of the ground in a right-looking configuration. The 
figure illustrates the acquisition geometry of a SAR. The distance 𝑟𝑟 is the 
slant range and is the perpendicular (and also shortest) distance of a point to 
the SAR orbit. 𝑟𝑟𝑡𝑡 is the perpendicular direction from the ground track (the 
projection of the sensor path on the ground), and the distance to a point along 
this direction is called ground range. The direction parallel to the flight 
direction, 𝑐𝑐𝑟𝑟, is called cross-range or azimuth. 

At each position 𝑥𝑥 along the track, a pulse 𝑐𝑐𝑡𝑡(𝑡𝑡) is transmitted which 
illuminates the area in the footprint of the beam. Some of the energy is 
backscattered and collected by the radar as 𝑐𝑐𝑟𝑟(𝑥𝑥, 𝑡𝑡). The recorded raw data, 
𝑐𝑐𝑟𝑟(𝑥𝑥, 𝑡𝑡), containing amplitude and phase measurements of returned pulses 
are not in the form of an image, but the raw data from all positions 𝑥𝑥 when 
an area was illuminated can be used to form an image of the area. The 
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position information inherent to the measurements (in addition to precise 
information about the position and velocity of the SAR platform) is found in 
the range as probed from the flight time of the pulses, and the Doppler shift 
caused by the relative speeds between the antenna and different points on the 
ground. The process of SAR image formation is non-trivial, and many 
approaches to it have been developed (Richards et al. 2010).  

Resolution 
Whatever image formation algorithm is used the range resolution of SAR is 
inversely proportional to the bandwidth of its frequency modulated pulse. 
The slant range resolution is thus given by 

δ𝑟𝑟 =
𝑐𝑐

2𝑐𝑐
 , ( 11 ) 

where 𝑐𝑐 is the bandwidth of the pulse (Richards et al. 2010). It is worth 
noting that this denotes the slant range resolution, not ground range. The 
ground range resolution depends on the slant range resolution, but also on 
the incidence angle 𝜃𝜃, and is given by (Sullivan 2004) 

δ𝑡𝑡 =
𝛿𝛿𝑟𝑟
𝑐𝑐𝑠𝑠𝑛𝑛𝜃𝜃

=
𝑐𝑐

2𝑐𝑐𝑐𝑐𝑠𝑠𝑛𝑛𝜃𝜃
 . ( 12 ) 

The cross-range, or azimuth, resolution is given by 

𝛿𝛿𝑐𝑐𝑟𝑟 =
𝜆𝜆

2𝜃𝜃𝑖𝑖𝑛𝑛𝑡𝑡
≈
𝐷𝐷
2

 , ( 13 ) 

where 𝜃𝜃𝑖𝑖𝑛𝑛𝑡𝑡 is the integration angle (the span of angles from which a fixed 
point on the ground is observed), and 𝐷𝐷 is the along-track length of the 
antenna (Richards et al. 2010). The last approximation is valid in strip map 
mode when 𝐷𝐷 ≫ 𝜆𝜆, and the look direction is orthogonal to the satellite track. 
The fact that the cross-range resolution is independent of range is a major 
advantage compared to real aperture radars, attributable to the formation of 
the synthetic aperture and using the movement of the radar to focus the 
measurement in the azimuth direction. 

Different measures of backscatter 
In a radiometrically calibrated SAR image in slant range geometry, the pixel 
value 𝛽𝛽0 (pronounced beta-nought ) reflects the average RCS per slant range 
image area 𝐴𝐴𝑠𝑠𝑟𝑟 (Ulander 1996), 

𝛽𝛽0 =
∑𝜎𝜎
𝐴𝐴𝑠𝑠𝑟𝑟

 . ( 14 ) 
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where the summation is over the values of the radar cross section 
corresponding to ground area 𝐴𝐴𝑠𝑠𝑟𝑟. 𝛽𝛽0 however still contains slope induced 
variations over an image depending on local viewing geometry. If these are 
corrected for, one obtains the backscattering coefficient 𝜎𝜎0 (sigma-nought), 
defined as the average RCS per unit ground area 𝐴𝐴𝑡𝑡 (Ulaby et al. 1986), 

𝜎𝜎0 =
∑𝜎𝜎
𝐴𝐴𝑡𝑡

 . ( 15 ) 

The two areas are related via the angle 𝜓𝜓 between the slant range image plane 
normal, and the ground surface normal by 

𝐴𝐴𝑠𝑠𝑟𝑟
𝐴𝐴𝑡𝑡

= cos𝜓𝜓 , ( 16 )  

and 𝜎𝜎0 is obtained from 𝛽𝛽0 via (Ulander 1996) 

𝜎𝜎0 = 𝛽𝛽0cos𝜓𝜓 . ( 17 )  

When imaging volume scatterers, i.e. when the backscatter is not returned 
from a surface, but from contributions in a layer of distributed scatterers 
above ground the scattering coefficient 𝛾𝛾0 (gamma-nought), which corrects 
for different penetration depths dependent on the local incidence angle 𝜃𝜃𝑖𝑖 
(Attema and Ulaby 1978), 

𝛾𝛾0 =
𝜎𝜎0

cos𝜃𝜃𝑖𝑖
 . ( 18 )  

Speckle 
The phenomenon of speckle is a nuisance inherent to all coherent imaging. 
It arises from interference between wave fronts from separate scatterers in a 
resolution cell. Because of the different range distances to the individual 
scatterers inside a resolution cell, the scattering contributions add up either 
constructively or destructively. Speckle is not stochastic noise, as it is 
determined by the actual positions of scatterers. It is however so sensitive to 
the exact relative position of the individual scatterers as to appear random 
from pixel to pixel, and the process makes the phase measurements in a 
single SAR image appear spatially random, and also adds a noise-like 
component to the intensity (Richards et al. 2010; Goodman 2015). Speckle 
can be suppressed by an averaging across multiple pixels or looks in both 
range and azimuth. This so called multilooking process can be performed in 
either the spatial or the frequency domain. Regardless, the reduction in 
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speckle comes at the cost of a reduced spatial resolution compared to the 
original single look image. 

1.5 Polarization 

1.5.1 The scattering matrix, the covariance matrix, and the coherency 
matrix 

A fully polarimetric SAR system generally transmits in H and V 
polarizations and receives the signal using both polarization modes. The 
measured effect of the backscattering process on the transmitted polarized 
signals is succinctly presented in a scattering matrix [S], sometimes called 
the Sinclair matrix. A fully polarimetric SAR measurement is equivalent to 
the measurement of the Sinclair matrix. When expressed in H and V bases, 
[S] completely describes the backscattering of these components of an 
incident wave 𝑬𝑬𝑖𝑖 into a scattered wave 𝑬𝑬𝑠𝑠 (Cloude 2010): 

�
𝑬𝑬𝐻𝐻𝑠𝑠

𝑬𝑬𝑉𝑉𝑠𝑠
� = �𝑆𝑆𝐻𝐻𝐻𝐻 𝑆𝑆𝐻𝐻𝑉𝑉

𝑆𝑆𝑉𝑉𝐻𝐻 𝑆𝑆𝑉𝑉𝑉𝑉
� �
𝑬𝑬𝐻𝐻𝑖𝑖

𝑬𝑬𝑉𝑉𝑖𝑖
� . ( 19 ) 

The elements of the scattering matrix are complex, so that possible phase 
changes occurring during the scattering are also captured by [S]. 

Via vectorization of the Sinclair matrix, different scattering power 
matrices can be constructed. In the following, we will assume reciprocity, 
i.e. 𝑆𝑆𝐻𝐻𝑉𝑉 = 𝑆𝑆𝑉𝑉𝐻𝐻, in which case the scattering power matrices are 3 by 3 
hermitian matrices. The covariance matrix [𝐶𝐶], is in its construction 
connected to system properties of the SAR (Cloude 2010): 

[𝐶𝐶] = �
|𝑆𝑆𝐻𝐻𝐻𝐻|2 √2𝑆𝑆𝐻𝐻𝐻𝐻𝑆𝑆𝐻𝐻𝑉𝑉∗ 𝑆𝑆𝐻𝐻𝐻𝐻𝑆𝑆𝑉𝑉𝑉𝑉∗

√2𝑆𝑆𝐻𝐻𝐻𝐻∗𝑆𝑆𝐻𝐻𝑉𝑉 2|𝑆𝑆𝐻𝐻𝑉𝑉| √2𝑆𝑆𝑉𝑉𝑉𝑉𝑆𝑆𝐻𝐻𝑉𝑉∗

𝑆𝑆𝐻𝐻𝐻𝐻∗𝑆𝑆𝑉𝑉𝑉𝑉 √2𝑆𝑆𝑉𝑉𝑉𝑉∗𝑆𝑆𝐻𝐻𝑉𝑉 |𝑆𝑆𝑉𝑉𝑉𝑉|2
� . ( 20 ) 

Another commonly used scattering power matrix is the coherency matrix [𝑇𝑇], 
which carries the same information, but where the components are more 
connected to physical scattering processes (Cloude 2010):  
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[𝑇𝑇] =
1
2 �

|𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉|2 (𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉)(𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉)∗ 2(𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉)𝑆𝑆𝐻𝐻𝑉𝑉∗

(𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉)∗(𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉) |𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉|2 2(𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉)𝑆𝑆𝐻𝐻𝑉𝑉∗

2(𝑆𝑆𝐻𝐻𝐻𝐻 + 𝑆𝑆𝑉𝑉𝑉𝑉)∗𝑆𝑆𝐻𝐻𝑉𝑉 2(𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑉𝑉𝑉𝑉)∗𝑆𝑆𝐻𝐻𝑉𝑉 4|𝑆𝑆𝐻𝐻𝑉𝑉|2
� . 

( 21 ) 

Unlike the Sinclair matrix [S], the covariance matrix [C] and the coherency 
matrix [T] are suited for the study of partially polarizing targets, i.e. partially 
incoherent targets. Complex natural targets such as vegetation are not 
perfectly polarizing and lead to partially polarized received signals and both 
[C] and [T] allow averaging of signals to make a statistical description of the 
scattering process.  

1.5.2 Polarimetric decompositions 
Polarimetric decompositions aim to characterize a target by separating 
different scattering mechanisms and their relative intensity. As the scattering 
mechanisms depend on the geometry and composition of the target, it can be 
an effective tool in identifying for example land cover classes or different 
types of vegetation. 

Many types of decompositions have been developed. So called coherent 
decompositions, such as the Pauli decomposition, express the scattering 
matrix [S] as a sum of canonical constituent scatterers. Such a decomposition 
is generally described by 

[𝑆𝑆] = �𝑐𝑐𝑖𝑖[𝑆𝑆]𝑖𝑖

𝑠𝑠

𝑖𝑖=1

, ( 22 ) 

where 𝑝𝑝 is the number of components or scattering types, 𝑐𝑐𝑖𝑖 are the weights 
of the components, and [𝑆𝑆]𝑖𝑖 are the component scattering matrices. 
Incoherent approaches are instead generally decompositions of the 
covariance matrix [C] or the coherency matrix [T]. These decompositions 
are generally given by 

〈[𝑋𝑋]〉 = �𝑐𝑐𝑖𝑖[𝑋𝑋]𝑖𝑖

𝑠𝑠

𝑖𝑖=1

 , ( 23 ) 

where [𝑋𝑋] is either [C] or [T], 𝑝𝑝 is the number of components, 𝑐𝑐𝑖𝑖 are the 
component weights, [𝑋𝑋]𝑖𝑖 are the component covariance or coherency 
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matrices, and the averaging is generally spatial using some fixed window 
size. 

1.6 Interferometry 
Interference is the diffraction pattern arising from addition of waves from 
coherent radiation sources, and interferometry refers to the measurement of 
topography using this diffraction pattern. When applied to SAR, this process 
is referred to as interferometric SAR, or InSAR. In InSAR, two or more SAR 
observations of the same location with the same, or very similar sensors, are 
combined to form interferograms. The sensors involved can be separated in 
space and/or time by a baseline. Temporal baseline interferometry can reveal 
height changes in the imaged area. The precision of differential InSAR from 
multiple time points has led to it being widely used in mapping surface 
displacements due to earthquakes, glacial movements and land subsidence. 
Spatial baselines allow for very precise measurements of height differences 
in the scene, a fact that has been widely utilized for topographic mapping of 
the Earth, such as the shuttle radar topography mission (SRTM), which 
produced a global digital elevation model (DEM) using the first space borne 
single-pass InSAR system (van Zyl 2001). Single-pass (i.e. zero temporal 
baseline) refers to the fact that both acquisitions are made (approximately) 
simultaneously as opposed to constructing the interferogram using images 
from different passes over the same area.  

1.6.1 Phase measurement in across-track interferometry 
As the studies included in this thesis only used single-pass across-track 

interferometry, the geometry of the phase measurements in this case will be 
treated more closely here. Figure 4 illustrates the approximate geometry of 
across-track interferometry. In this exposition it is assumed that the range 
distances are much larger than the baseline 𝑏𝑏, which is true for satellite-based 
SARs. For example, the TanDEM-X system (used in the papers of this thesis) 
orbits the Earth at an altitude of around 514 km, while the baseline is on the 
order of a couple of hundred meters, or less. The acquisitions from the two 
satellite sensors 𝑆𝑆𝐴𝐴𝑆𝑆1 and 𝑆𝑆𝐴𝐴𝑆𝑆2 are separated by a spatial baseline 𝑏𝑏, leading 
to different range distances to a ground point. 
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Figure 4. Illustration of single-pass InSAR geometry, using the fact that the range is much 
greater than the baseline. 

 
The components of the baseline parallel to, and perpendicular to 𝑟𝑟 are 
denoted 𝑏𝑏∥ and 𝑏𝑏⊥, respectively. The incidence angle (the angle between 𝑟𝑟 
and the vertical direction) is denoted 𝜃𝜃. Assuming that one of the satellites 
transmits the signal, and that both satellites receive the scattering from a 
point on the ground, the phase difference due to the difference in range to the 
two sensors is given by the wave number 𝑘𝑘 times the difference in distance, 
which is equal to the parallel baseline 𝑏𝑏∥: 

𝜙𝜙 = 𝑘𝑘𝑏𝑏∥ = 𝑘𝑘𝑏𝑏 sin𝛼𝛼 =  𝑘𝑘𝑏𝑏 sin(𝜃𝜃 − 𝛿𝛿) . ( 24 ) 

Differentiating this expression to form the total differential of 𝜙𝜙 gives 

𝑑𝑑𝜙𝜙 = 𝑘𝑘𝑏𝑏 cos(𝜃𝜃 − 𝛿𝛿)𝑑𝑑𝜃𝜃 = 𝑘𝑘𝑏𝑏⊥𝑑𝑑𝜃𝜃 , ( 25 ) 
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if 𝛿𝛿, the baseline angle, is assumed constant. To get an expression for 𝑑𝑑𝜃𝜃, we 
can express the ground elevation above some reference height as (see figure 
4) 

ℎ = 𝐻𝐻 − 𝑟𝑟 cos𝜃𝜃 , ( 26 ) 

where 𝐻𝐻 is the height to the midpoint of the baseline above the same 
reference height. Differentiating this expression to form the total differential 
of h, 

𝑑𝑑ℎ = 𝑟𝑟 sin𝜃𝜃 𝑑𝑑𝜃𝜃 − 𝑑𝑑𝑟𝑟 cos𝜃𝜃 , ( 27 ) 

and solving for 𝑑𝑑𝜃𝜃 gives 

𝑑𝑑𝜃𝜃 =
𝑑𝑑𝑟𝑟

𝑟𝑟 tan 𝜃𝜃
+

𝑑𝑑ℎ
𝑟𝑟 sin𝜃𝜃

 . ( 28 ) 

Inserting this expression for 𝑑𝑑𝜃𝜃 in and rearranging we arrive at 

𝑑𝑑𝜙𝜙 = 𝑘𝑘𝑏𝑏⊥𝑑𝑑𝜃𝜃 =  
𝑘𝑘𝑏𝑏⊥𝑑𝑑𝑟𝑟
𝑟𝑟 tan𝜃𝜃

+
𝑘𝑘𝑏𝑏⊥𝑑𝑑ℎ
𝑟𝑟 sin𝜃𝜃

 . ( 29 ) 

We can now formulate an expression that describes the dependence of the 
interferometric phase difference Δ𝜙𝜙 observed in the interferogram on 
changes in range Δ𝑟𝑟 and topography Δℎ:  

Δ𝜙𝜙 ==  
𝑘𝑘𝑏𝑏⊥Δ𝑟𝑟
𝑟𝑟 tan𝜃𝜃

+
𝑘𝑘𝑏𝑏⊥Δℎ
𝑟𝑟 sin𝜃𝜃

=
2𝜋𝜋𝑏𝑏⊥Δ𝑟𝑟
𝑟𝑟𝜆𝜆 tan 𝜃𝜃

+
2𝜋𝜋𝑏𝑏⊥Δℎ
𝑟𝑟𝜆𝜆 sin𝜃𝜃

 (𝑚𝑚𝑐𝑐𝑑𝑑 2𝜋𝜋) .  ( 30 ) 

Here, 𝑚𝑚𝑐𝑐𝑑𝑑 2𝜋𝜋 signifies that the measurements of phase differences are 
measured modulo 2𝜋𝜋, i.e. that differences larger than 2𝜋𝜋 are mapped back 
into the [0, 2𝜋𝜋] interval. In the beginning of the derivation, we assumed that 
only one of the sensors transmitted the signal received by both sensors. If we 
had instead assumed that both sensors transmitted and received their own 
signal (a monostatic system), there would be a factor 2 in both terms on the 
right-hand side. 

If we let Δℎ = 0 in (30) only the first term contributes to the phase 
differences. This Δ𝑟𝑟-term is often referred to as the flat-earth phase. It 
describes the interferometric phase variation in a flat (Δℎ = 0) plane, due to 
slant range differences to the interferometer. This component of the 
interferogram is usually removed to reveal the component dependent on local 
height differences. In interferograms over forested terrain, these height 
differences are due to both local topography and canopy height. To reveal 
the interferometric phase due to vegetation, the topographic phase is usually 
removed using a local digital terrain model (DTM), as was the case in the 
studies included in this thesis. 
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Since the measured interferometric phase is in the [0, 2𝜋𝜋] interval it needs 
to be reconstructed to obtain absolute phase differences. This process is 
called unwrapping, and a number of algorithms for doing this have been 
developed, as the process is not a trivial one, especially in the presence of 
noise (low coherence), sudden jumps in topography, or shadow, which can 
make it hard to unambiguously reconstruct the absolute phase differences 
(Yu et al. 2019). Unwrapping errors can lead to height errors that are 
multiples of the height difference that, for the specific geometry and sensors 
corresponds to a  2𝜋𝜋 phase difference. This height difference, given by (31), 
is referred to as the height of ambiguity since height differences larger than 
this cannot be unambiguously measured:  

𝐻𝐻𝑐𝑐𝐴𝐴 =  
𝑟𝑟𝜆𝜆𝑐𝑐𝑠𝑠𝑛𝑛𝜃𝜃
𝑏𝑏⊥

.  ( 31 ) 

The height differences that the unwrapped phase corresponds to are obtained 
by scaling with 𝐻𝐻𝑐𝑐𝐴𝐴/2𝜋𝜋: 

Δℎ =  
𝐻𝐻𝑐𝑐𝐴𝐴
2𝜋𝜋

Δ𝜙𝜙 . ( 32 ) 

1.6.2 The complex coherence 
The interferogram is formed from a product of the two images; the signal 

𝑆𝑆1 from 𝑆𝑆𝐴𝐴𝑆𝑆1, is multiplied with the complex conjugate of the signal 𝑆𝑆2 from 
𝑆𝑆𝐴𝐴𝑆𝑆2, 

𝑆𝑆1𝑆𝑆2∗ = 𝐴𝐴1𝐴𝐴2𝑒𝑒𝑖𝑖(𝜙𝜙1−𝜙𝜙2) . ( 33 ) 

Here, we use the complex representation of the EM-waves, suppress the time 
dependence of the field, and * denotes complex conjugation. For the 
interferogram formation to be meaningful, it requires co-registration of the 
two images, so that pixels represent scattering from the same location on the 
ground. The interferometric phase is given by the argument of the 
interferogram: 

𝜙𝜙 = arg (𝑆𝑆1𝑆𝑆2∗) = 𝜙𝜙1 − 𝜙𝜙2 . ( 34 ) 

The complex coherence is a vector quantity that conveniently carries 
information about both the interferometric phase, and information about the 
correlation between the two measurements called the coherence. The 
complex coherence is defined as 
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γ =
〈𝑆𝑆1𝑆𝑆2∗〉

�〈𝑆𝑆1𝑆𝑆1∗〉〈𝑆𝑆2𝑆𝑆2∗〉
, ( 35 ) 

Where 〈∙〉 denotes an ensemble average, i.e. an average of multiple 
measurements of the same process. This is however not possible in practice, 
so the ensemble average is replaced by a spatial average of values inside a 
window around the pixel of interest. Just like for the interferogram above, 
the argument of the complex coherence is the interferometric phase, 

𝜙𝜙 = arg(𝛾𝛾), ( 36 ) 

but as the magnitude of the complex coherence, |𝛾𝛾|, by its construction is 
normalized to lie in the interval [0,1], it is a generalizable measure of the 
correlation between the two measurements. This correlation is a measure of 
the quality of the corresponding phase measurement, as the measurement of 
interference between uncorrelated signals is not meaningful, and essentially 
just noise. 

The coherence magnitude is typically high for stable targets like bare 
ground and man-made objects. Over forests, the coherence, even with 
simultaneous acquisitions is lower due to the complex nature of the volume 
scattering process in the canopy. In the case of a temporal baseline, such as 
in repeat-pass interferometry, the decorrelation is much more severe even 
over short times if there is movement in the canopy due to wind, or changes 
in moisture that change the dielectric properties of the canopy. Because of 
this, the retrieval of interferometric information over forests is challenging 
with other than single pass-interferometry, especially for short wavelengths, 
where even small movements can cause severe decorrelation. 

1.6.3 Precision of height measurements 
As seen from equation (30), the interferometric phase difference Δ𝜙𝜙 
corresponding to a height difference Δℎ is proportional to the perpendicular 
baseline 𝑏𝑏⊥, and inversely proportional to the wavelength of the InSAR 
system. Since this means that height differences can essentially be magnified 
by increasing 𝑏𝑏⊥ and decreasing the wavelength, the precision of height 
measurements increases with increasing perpendicular baseline and 
decreasing wavelength. While very high precision can be achieved by tuning 
InSAR systems like this, there is a drawback to an increased baseline. As the 
baseline increases, the difference in observation angle to a fixed area on the 
ground from the two sensors increases, and the coherence between 
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measurements from the two viewing directions decreases, and finally at the 
so called critical baseline, the coherence becomes zero. While increasing the 
precision of height measurements, A larger 𝑏𝑏⊥ also decreases the height of 
ambiguity which in turn increases the probability of phase ambiguities. A 
low 𝑏𝑏⊥, on the other hand, decreases the SNR of the interferometric phase so 
that height differences become harder to resolve. 

1.7 SAR in forest remote sensing 
SAR-based methods for forest variable estimation have some distinct 

advantages to existing methods based on optical measurements, which are 
limited by cloud cover as well as a low saturation levels for biomass and 
volume. Spaceborne laser instruments are also limited by cloud cover and 
atmospheric conditions and only provide data from sample areas. Multiple 
satellite systems utilizing various wavelength bands and polarizations, 
including TanDEM-X (X-band ~3 cm, DLR), Sentinel-1 (C-band ~6 cm, 
ESA), and ALOS-2/PALSAR-2 (L-band ~24 cm, JAXA), can be used to 
monitor forests. These systems provide frequent reliable measurements, and 
can complement one another by capturing forest information from different 
parts of the canopy. Because of this, satellite SAR data have significant 
potential to emerge as a crucial resource for semi-automated forest resource 
mapping, potentially revolutionizing forest planning. In this context, time 
series data will play a pivotal role in tracking changes, such as thinnings, 
clear-cuts, and growth, forming the foundation for recommending 
appropriate silvicultural interventions. 

 The relatively long wavelength of L- and P-band SAR is an advantage 
because of the signal penetration into the canopy, which facilitates estimation 
of above-ground biomass (AGB) (Kasischke et al. 1997). Many studies have 
used both L- and P-band SAR data to predict AGB, or stem volume, in both 
boreal and hemi-boreal forests (Rignot et al. 1994; Kurvonen et al. 1999; 
Saatchi and Moghaddam 2000; Rauste 2005; Sandberg et al. 2011; Neumann 
et al. 2012; Santoro et al. 2015; Schlund and Davidson 2018; Cartus et al. 
2019; Santoro et al. 2019). Short wavelength InSAR systems like TanDEM-
X on the other hand, have been used extensively to estimate canopy heights 
and densities, but also biomass (Soja et al. 2015; Chen et al. 2016; Persson 
and Fransson 2017; Persson et al. 2017) . In Santoro et al. (2019), repeated 
backscatter observations from TerraSAR-X, Sentinel-1 and ALOS-2 
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PALSAR-2 were analyzed in boreal and hemi-boreal forest, and used to 
estimate stem volume. The highest estimation accuracy was obtained at L-
band. Stem volume estimates using data at two or three frequencies achieved 
an accuracy that was superior to using single frequency. 

1.7.1 Change estimation 
 L-band data have been used in multiple studies in boreal forest to detect 
clear-cuts and storm damage (Fransson et al. 2007; Santoro et al. 2012). 
Other studies have used TanDEM-X data to detect thinnings and clear-cuts 
(Soja et al. 2017; Soja et al. 2018), but the treatments detected were relatively 
aggressive, with half or more of the forest volume harvested. These studies 
were concerned with detection of changes. Studies estimating changes in 
forest variables using SAR data are not as common, but a few examples are 
Solberg et al. (2014) who used differences in InSAR height models from 
SRTM and TanDEM-X to predict AGB change between 2000 and 2011. 
They reported an RMSE of 65 t/ha, corresponding to 50% of the mean AGB 
in the area. Askne et al. (2018) estimated AGB growth rates from time series 
of TanDEM-X data in boreal forest using the Interferometric Water Cloud 
Model. The maximum growth rate in terms of AGB was 4.0 t/ha/yr with a 
mean rate of 1.9 t/ha/yr for 27 stands. 

Examples of L- or P-band data being used for estimation of changes in 
forest variables are few, but some exist. In Balzter et al. (2003), L-band 
images from Seasat and JERS-1, from 1978 and 1997, respectively, were 
used to estimate height changes, and estimation errors of 3 – 4 m were 
reported. In Rowland et al. (2008), L-band data from AIRSAR and E-SAR 
were used to measure changes in forest height and stem volume between 
1991 and 2000. Estimation errors for stem volume change varied between 
12.5 m3/ha and 18 m3/ha. For forest height changes, the errors were between 
0.2 m and 0.64 m. Sandberg et al. (2014) predicted AGB change from bi-
temporal airborne polarimetric P-band SAR data in hemi-boreal forest with 
an RMSE of 20 t/ha using a backscatter change offset correction based on 
the HH/VV polarization ratio. 

Study I in this thesis took its starting point in the study by Sandberg et al. 
(2014). The study used P-band data from the BioSAR 2007 and BioSAR 
2010 campaigns, but during the campaigns, polarimetric L-band data was 
also collected over the same area, providing an excellent opportunity for a 
comparison between L- and P-band for AGB change prediction. Whether the 
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L-band data would need to be backscatter offset corrected, and whether the 
HH/VV-based correction would work for the L-band data if needed, was 
however not known. 

Three of the five papers included in this thesis focused on biomass change 
estimation using fully polarimetric, relatively long wavelength L- and P-
band SAR data, while two of the papers used interferometric short 
wavelength X-band data to detect silvicultural treatments and estimate stand 
age and site index. 

The remainder of this dissertation is structured as follows: In Chapter 2, 
the objectives of the thesis and the appended papers are listed. Chapter 3 
briefly describes the materials and methods used in the studies. Chapter 4 
summarizes the included papers, chapter 5 presents conclusions and Chapter 
6 gives a brief outlook on future research. 
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The overall objective of the dissertation was to investigate how SAR can 
be used for forest change estimation. The specific objectives of the included 
studies were: 

 
I To develop and evaluate a backscatter offset correction 

method for L-band SAR data, and to validate an existing correction 
method for P-band data. In addition, to compare the potential of 
predicting AGB changes in a hemi-boreal forest using L- and P-band 
backscatter, assuming that a suitable offset correction method can be 
applied to both bands. 

 
II To predict biomass change over seven growth seasons 
between 2015 and 2022 using regression models relating the biomass 
change to L-band SAR data from the spaceborne ALOS-2 PALSAR-2 
sensor, using the HV-VV backscatter ratio developed in study I to correct 
the backscatter intensity. 

 
III To 1) assess if the use of multiple polarizations could improve 
the AGB change estimates compared to a single polarization, 2) compare 
different polarimetric SAR approaches for estimating AGB change, 3) 
identify if saturation effects can be reduced or overcome by using 
multiple polarizations, and 4) investigate the impact of forest structure. 

 
IV To assess the detectability of silvicultural treatments in time 
series of phase heights from TanDEM-X data and to assess the 
usefulness of applying an InSAR elevation bias correction for the 
purpose. 

2. Objectives 
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V  To assess the potential for predicting site index and tree age 
using time series of TanDEM-X data without the need for phase height 
calibration using field data. Furthermore, to evaluate the effects of 
treatments on the predictions. 
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3.1 Materials 
All studies relied on a combination of field observations, SAR data, and to a 
varying extent, ALS data. All studies were conducted on the Remningstorp 
estate, and the chapter starts with a brief description of the site, after which 
the field data used in the studies are briefly described. After this, the ALS 
data, and then the SAR data are briefly described. All descriptions here are 
only intended to give an overview of the studies. The details are described 
more extensively in the papers. 

3.1.1 Remningstorp 
Remningstorp is a forest test site situated in southern Sweden (Latitude 
58◦30′N, Longitude 13◦40′E). The estate spans approximately 1,200 hectares 
and consists primarily of commercially managed hemi-boreal forest. Nearly 
two-thirds of the forest is situated on till, a mixture of glacial debris, and is 
characterized by a ground layer of herbs, blueberries (Vaccinium myrtillus 
L.), and narrow-leaf grasses like Deschampsia flexuosa (L.) Trin. In older 
spruce stands the field layer is absent. The main tree species are Norway 
spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.), and 
various birch species. The remaining forest is located on peatland, dominated 
by Scots pine. The landscape is mostly flat with gentle slopes and is 
positioned at elevations ranging from 120 m to 145 m above sea level. 
  

3. Materials and methods 
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Table 2. Field data sets used in included papers. 

Dataset Year of 
inventory 

Plot area [m2] No. of plots Used in study 

F1 2004-2005 314 763 I 
F2 2010 314 208 I 
F3 2007 6400 10 I 
F4 2010 6400 7 I 
F5 2014-2015 314 263 II 
F6 2021 314 263 II 
F7 2014 5027 48 III 
F8 2021 5027 48 III 
F9 2011 5027 25 IV 

F10 2012-2013 5027 20 IV 
F11 2014 5027 27 IV 
F12 2014 314 51 V 
F13 2021 314 91 V 

 

3.1.2 Field data 
Several field data sets from Remningstorp were used in the included papers 
(Table 2). The data sets consisted of 10 m radius circular plots, 40 m radius 
circular plots, and 80 m × 80 m square plots. The 10 m circular plots were 
systematically distributed across the estate, while the 40 m circular plots and 
the square plots were subjectively placed within homogenous stands. The 
general inventory procedure was similar for all field datasets, although some 
of the surveys differed in some details. Generally, the species, diameter at 
breast height (dbh) and geographic position was recorded for all trees with a 
dbh ≥4 cm. For a subset of trees, selected with an inclusion probability 
proportional to the basal area, the height was measured with a hypsometer. 
In data set F12 and F13, the site index was determined based on the 
properties of two dominant trees per plot. The height of these trees was 
measured using a hypsometer, and the age was determined by extracting 
stem cores and counting growth rings. In addition to field surveys, a forest 
management plan and silvicultural treatment records were used in the studies 
to delineate forest stands, and to identify treatments and treatment dates. 
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3.1.3 ALS data 

Studies I and II 
ALS acquisitions over Remningstorp were made in 2007 and 2010 using 
helicopter-mounted TopEye systems (Mk II in 2007, Mk III in 2010). The 
2007 scanning had pulse densities of 30 – 40 pulses/m2. In 2010, the 
scanning had an average density of 69 pulses/m2. Further details can be 
found in the BioSAR reports (Hajnsek et al. 2008; Ulander et al. 2011). The 
generated point clouds were used in study I to create AGB maps over the test 
site. A digital terrain model (DTMs) from ground classified points of the 
2010 ALS data set was used in studies I and II for radiometric terrain 
correction and geocoding of SAR data.  

Studies III – V  
Studies III, IV and V used national terrain models provided by the Swedish 
National Land Survey, based on ground classified ALS data, for radiometric 
terrain correction, geocoding, and removal of topographic phase. 

3.1.4 SAR data 
Table 3 summarizes information about the SAR data sets used in the included 
papers. The studies I – III used P- and L-band data with relatively long 
wavelengths and polarization-based processing and change estimation 
algorithms, while the studies IV and V used shorter wavelength X-band data, 
with algorithms based on interferometry. The L- and P-band data in study I 
were collected in the airborne campaigns BioSAR 2007 and BioSAR 2010. 
The remaining studies relied on satellite data, studies II and III on L-band 
data from the ALOS-2 PALSAR-2 system operated by JAXA, and studies 
IV and V on X-band single-pass InSAR data from the two-satellite 
constellation TanDEM-X operated by DLR. 
Table 3. SAR data sets used in included studies 

System Acquisition 
years 

Band Resolution 
Range × azimuth 
[m] 

No. of 
Scenes 

Study 

E-SAR 2007 P 2.1 × 0.9 3 I 
E-SAR 2007 L 2.1 × 1.6 3 I 
SETHI 2010 P 0.9 × 0.9 2 I 
SETHI 2010 L 0.8 × 0.8 2 I 
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System Acquisition 
years 

Band Resolution 
Range × azimuth 
[m] 

No. of 
Scenes 

Study 

PALSAR-2 2015, 2020, 2021 L 5.1 × 4.3 5 II, III 
TanDEM-X 2011-2014 X 1.2 – 1.8 × 3.3 24 IV 
TanDEM-X 2013-2018 X 1.2 – 1.8 × 3.3 30 V 

 

3.2 Methods 

3.2.1 Studies I – III 
These studies were all concerned with biomass change estimation using 
relatively long wavelength SAR data. They exploited the correlation between 
long wavelength microwave backscatter and forest biomass. The SAR data 
used in all three studies were fully polarimetric, and the studies assessed the 
benefit of using multiple polarizations in biomass change estimation, 
compared to using only the cross-polarized channel, and the benefit of using 
polarimetric measures compared to the polarization channels. 

In study I, the SAR data were processed to 𝛾𝛾0, and AGB change was 
modeled using L- and P-band data separately using multiple linear 
regression. The explanatory variables were based on the backscatter change 
in each polarization channel separately, and the modeling and analysis 
explored the utility of using more than one polarization channel among the 
explanatory variables. Because of a lack of direct change measurements, 
ALS based AGB maps for each year were created, and the SAR based AGB 
change models were trained on the difference between the AGB maps. An 
existing correction procedure to remove backscatter changes external to 
biomass was applied to the P-band data, and a new correction was proposed 
for L-band data. The predictions of L- and P-band models were compared, 
and the corrections were evaluated using across-pair validation, where model 
parameters were estimated using data from one image pair, and predictions 
were made on another, in all possible permutations. 

In study II, the methods were the same as in study I, except that direct 
measurements of change were available, so no proxy data was needed to 
estimate model parameters for SAR based AGB change models. No P-band 
data was used in this study, which used L-band ALOS-2 PALSAR-2 data. 
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Study III also used ALOS-2 PALSAR-2 data for AGB change estimation 
using multiple linear regression. In this study however, in addition to the 
polarization channels, the Freeman Durden decomposition components, and 
the radar vegetation index (RVI) were included as sets of variables. 
Additionally, AGB state was modeled, on different sets of variables, and the 
impact of structural forest variables on the sensitivity of polarimetric 
backscatter to AGB was assessed by inspection of plots. 

3.2.2 Studies IV and V 
Studies IV and V used relatively short wavelengths X-band data to detect 
silvicultural treatments (study IV), and to estimate forest age and site 
productivity in terms of SI (study V). Studies I – III leveraged the ability of 
long wavelengths to penetrate into the canopy and in a sense probe its 
density, while study IV and especially V, on the contrary utilized on the 
propensity of short wavelengths to reflect mainly from the top part of the 
canopy. Both studies used X-band data from the bistatic TanDEM-X satellite 
constellation. The slightly separated view points of the satellites (on the order 
of hundreds of meters in these studies) enabled interferometry, and the 
simultaneous acquisitions (near zero temporal baseline) ensured relatively 
high coherence even in rapidly fluctuating forest canopies. 

In study IV, the influences of silvicultural treatments on TanDEM-X 
interferometric phase heights were assessed using a time series of TanDEM-
X data, and records of silvicultural treatments during the monitored time 
period. The TanDEM-X data, which were delivered as co-registered image 
pairs (one image per satellite for each acquisition) in SLC format, were 
interferometrically processed to obtain phase heights. In the processing, an 
ALS-based DEM was used to remove the phase due to ground topography, 
so that the remaining phase heights reflected the vertical vegetation structure. 

It is however known that, even at short wavelengths, the radar signal is 
not reflected only from the top surface of the forest, but penetrates into the 
canopy due to its airy structure. In interferometry, the returns are however 
assumed to emanate from a surface, and significant penetration into a volume 
results in both a reduced coherence and a downward elevation bias of the 
interferometric phase height compared to the top of the volume. A  correction 
to this bias was proposed in Dall (2007). The derivation models the target, in 
our case a canopy, as an infinite volume into which the signal penetrates. The 
penetration depth also affects the measured coherence, which therefore can 
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be used to estimate the resulting elevation bias. This correction has 
previously been evaluated in temperate forest (Schlund et al. 2019), and was 
applied to the phase heights in study IV in order to evaluate both its 
performance in hemi-boreal forest, and whether it would augment the 
detectability of silvicultural treatments. The bias correction is given by 

Δℎ =  − |𝐻𝐻𝑜𝑜𝐴𝐴|
2𝜋𝜋

arctan (�|γ|−2 − 1 ), ( 37 ) 

where 𝐻𝐻𝑐𝑐𝐴𝐴 is the height of ambiguity and 𝛾𝛾 is the volume coherence. 
In study V which also used time series of interferometric TanDEM-X 

data, the same elevation bias correction was applied in order to estimate 
canopy heights. The purpose was to evaluate the feasibility of predicting 
stand age and site index (SI) using time series of TanDEM-X heights. This 
was done by fitting established height development curves to top heights 
estimated from the TanDEM-X acquisitions. Previous studies had done this 
but only using a few acquisitions, and additionally, some sort of calibration 
had always been used to model tree heights from InSAR phase heights. These 
calibrations amounted to modeling either field measured tree heights or ALS 
heights on InSAR phase heights, but in this study the estimation of tree 
heights relied solely on the above elevation bias correction and used no 
calibration using auxiliary data. 

The height development curves used to determine SI relate top height 
(height of dominant trees) to their age, and thus describe the expected top 
height as a function of age and SI for a certain species. Applying these 
functions on field measurements of top height and age is generally regarded 
as the most reliable way to determine SI. In this study, the time series of 
TanDEM-X based height estimates on 10 m radius circular field plots were 
fitted to the height development curves. 

The top height on a field plot is not an aggregated measure of all the tree 
heights on it, but rather corresponds to the height of the tallest trees on it. 
Different metrics based on the bias corrected TanDEM-X phase heights were 
explored, and it was seen that high height percentiles constructed from all 
the phase height values covered or intersected by the field plot corresponded 
well to the field measured top heights at the time of inventory, and the 90th 
percentile was chosen as the TanDEM-X based top height measurement. 

The prediction of SI and age was based on using non-linear least squares 
regression to fit the theoretical height development curves to the TanDEM-
X top heights for each field plot. As the uncertainty of phase measurements 
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increases with 𝐻𝐻𝑐𝑐𝐴𝐴, each observation was weighted with 𝐻𝐻𝑐𝑐𝐴𝐴−1. Two 
different cases were explored, one where both age and SI were left as 
regression parameters to be estimated, and one where field measured age was 
used, and only SI was estimated.  

3.2.3 Prediction quality 

Bias estimation 
In the included studies, the systematic prediction error for a sample of 𝑆𝑆 
predictions was generally estimated in the included papers using 

𝑏𝑏𝑠𝑠𝑏𝑏𝑐𝑐 =
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑁𝑁
𝑖𝑖=1

𝑆𝑆
 ,  ( 38 ) 

where 𝑦𝑦�𝑖𝑖 is the ith prediction value and 𝑦𝑦𝑖𝑖 is the corresponding observed 
value. 

Root Mean Square Error 
Further, the quality of a sample of 𝑆𝑆 predictions was generally estimated 
using the root mean square error: 

𝑆𝑆𝑅𝑅𝑆𝑆𝐸𝐸 = �∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑆𝑆
 . ( 39 ) 

The RMSE is essentially the square root of the sample mean squared error 
(MSE), and it contains contributions from both the variance and the bias of 
the predictions (Wackerly et al. 2014; Persson and Ståhl 2020). It is 
nevertheless a convenient and widely used metric for comparing the 
predictions from different models. 

Cross-validation 
If the observation 𝑦𝑦𝑖𝑖 in equations (38) and (39) is included in estimating the 
parameters of the model that maps 𝑦𝑦𝑖𝑖 to 𝑦𝑦�𝑖𝑖, both quality metrics will be 
underestimated and thus optimistically biased if used to quantify the 
uncertainty of new predictions. In fact, when the model is obtained via least 
squares regression, and includes an intercept term, the bias according to (38) 
will be zero by definition for the sample used to estimate the model 
parameters. 

When the goal of a model is prediction, one wants to estimate the 
generalizability of the model, i.e., the performance of the model when 
applied to data independent of the training sample. Methods of estimating 
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this out-of-sample performance are collectively called cross-validation. The 
cross-validation method most used in the included papers is leave-one-out 
cross-validation (LOOCV). It consists of leaving out one observation in a 
sample when estimating model parameters, predicting on the left-out 
observation, iterating the procedure until each observation is left out once. 
Alternatively, any number of observations p can be left out each time, and 
the process iterated over all ways of leaving p observations out. In this 
general formulation, the procedure is called leave-p-out cross-validation. 

A number of variations on cross-validation exist, but regardless of the 
method of producing the predictions, their aggregate statistics are used to 
characterize the out-of-sample performance of the model. Specifically, the 
predictions can be used in equations (38) and (39) to calculate cross-
validated estimates of RMSE and bias. 

Cross-validation was used in the included studies to ensure that prediction 
biases and RMSEs were not underestimated. In some cases, quantities with 
the same mathematical form as RMSE were referred to instead as RMSD 
(root mean square deviation) to emphasize the fact that the observed values 
compared to in these cases were not based on field values of the response 
variable, but modeled from for example ALS data, as in study I. 
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4.1 Study I 
In this study, we assessed the potential of estimating AGB change from fully 
polarimetric L- and P-band SAR backscatter, separately. The study did not 
investigate the bands in combination, but compared the prediction results of 
the two bands. The SAR data at both bands were collected by airborne 
systems in 2007 and 2010 over Remningstorp, and the intention was to model 
AGB change from the change in backscatter using multiple linear regression 
on predictor variables based on all polarizations. 

It was however known that the level of backscatter is strongly correlated 
with the moisture content in both soil and vegetation, and in Sandberg et al. 
(2014), a backscatter offset correction was proposed for P-band data. The 
correction is based on the HH/VV polarization ratio, and mitigated 
backscatter changes in forest due to moisture differences in pairs of P-band 
SAR images. The scenes from 2007 were collected on dates with large 
differences in moisture. Altogether six bi-temporal pairs of SAR images per 
band were constructed, and if uncorrected for, the changes in backscatter 
pertaining to moisture differences between the acquisition in 2007 and 2010 
would likely obfuscate the changes in backscatter related to differences in 
AGB between the dates. 

The correction had previously only been applied to P-band data, and 
during the study we quickly found that it did not perform as well for L-band. 
The rational for using a polarization ratio in for the correction in Sandberg et 
al. (2014) was that the two polarizations would be affected in the same way 
by moisture differences for areas with no change in AGB. Because of this, it 

4. Study summaries 



48 

was hypothesized that there would be a very small change in the ratio, and 
that areas with nearly constant AGB could thus be identified using the ratio. 

The failure of the correction led us to investigate other polarization ratios 
for L-band, and we empirically found that the HV/VV ratio exhibited traits 
similar to those of the HH/VV ratio for P-band data, namely, some 
correlation with AGB change, but very small differences in backscatter for 
areas with no change in AGB, regardless of differences in moisture between 
dates. This prompted us to modify the correction method for L-band data to 
use the HV/VV-ratio instead. 

Ideally, we would have modeled AGB changes on backscatter changes 
using repeated measurements of field plots, thereby having direct 
measurements of AGB change as the response variable (Balzter et al. 2003; 
Fuller et al. 2003; McRoberts et al. 2015). However, very few plot locations 
were shared between the two large field surveys of 10 m radius plots that 
were available for the purpose (F1 and F2 in Table 2). This prompted an 
indirect approach where AGB was first modeled on ALS metrics from 2007 
and 2010, and AGB maps over the whole study area were then created for 
2007 and 2010. The pixel level difference between these maps was then used 
as the AGB change response variable when modeling AGB change on 
backscatter change. 

After model selection, the model predictions were evaluated on ten 
80 m × 80 m field plots, which were surveyed in both 2007 and 2010 (unless 
clear-cut between surveys, in which case the reference AGB was set to zero 
in 2010). 

Because the backscatter offsets (unrelated to AGB differences) are 
different in different image pairs, models with parameters estimated from 
one pair of images are expected to perform worse when applied to another 
image pair. Therefore, the correction methods were evaluated by comparing 
predictions made in-pair and across pairs. In-pair prediction refers to the case 
when model parameter estimation and prediction was done using SAR data 
from the same image pair, while across pair predictions on the contrary refers 
to when model parameters are fit data from one pair of images, and the 
predictions are made on data from another image pair. 

The correction, based on the HV/VV backscatter ratio, facilitated 
predictions across image pairs almost identical to in-pair predictions. For P-
band, previous positive results using an offset correction based on the 
HH/VV ratio were validated. The best L-band model achieved an RMSE of 
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21 t/ha, and the best P-band model achieved an RMSE of 19 t/ha. The 
RMSEs were similar to those of the LiDAR-based biomass change of 18 t/ha. 

4.2 Study II 
In study II, the HV/VV-ratio based backscatter offset correction, developed 
in study II using L-band data from airborne experimental systems, was 
applied to six bi-temporal pairs of fully polarimetric L-band data from the 
PALSAR-2 sensor carried by the ALOS-2 satellite. 

In this study, field data with direct measurements of AGB change were 
available in the form of 263 circular field plots with 10 m radius surveyed 
before, and resurveyed after, the acquisitions in the SAR image pairs. The 
candidate models relating AGB change to backscatter change were the same 
as in study I, with the difference that field measured AGB change, instead of 
AGB change modeled on ALS data, served as the response variable. 

The obtained in-pair and across-pair AGB change predictions were 
almost identical in prediction performance as in study I, but it was not clear 
that this could be attributed to the HV/VV-based offset correction. Since the 
uncorrected pairs showed no clear general offsets in backscatter, there may 
not have been much need for correction. Much clearer offsets were observed 
over the same study area in Sandberg et al. (2014) and study I for both 
airborne L- and P-band data. The lack of clear offsets between the scenes is 
possibly due to similar weather and moisture conditions at the acquisition 
dates. 

The RMSEs and biases achieved in this study were significantly larger 
than those reported for L-band models based on airborne data in study I, but 
this is not only due to differences in quality between satellite and airborne 
SAR, but also due to much smaller evaluation areas. In study I, 80 m × 80 m 
plots, about 20 times larger than the 10 m radius plots in this study were used. 
To facilitate more conclusive comparisons, additional acquisition dates 
should be included if possible, and larger evaluation plots could decrease the 
variance in predictions. 
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4.3 Study III 
While studies I and II assessed the potential of using all polarization channels 
in L-band SAR data to predict biomass change, the predictors used were 
based on single channels. In study III, two of the fully polarimetric 
PALSAR-2 images used in study II were used to predict AGB change, but 
this time, in addition to modeling AGB change on the co- and cross polarized 
channels, models based on different polarimetric measures were also 
investigated.  

Earlier studies have used a number of polarimetric measures for AGB 
estimation, estimation of other forest variables, and classification of forest 
type, but papers relating AGB change to such measures have so far been very 
few.  

The objective was to assess, in boreal forest, if the use of multiple 
polarizations would improve AGB change estimates and/or reduce saturation 
effects, to compare different polarimetric approaches to predicting AGB 
change, and to evaluate the impact of forest structure on the sensitivity of L-
band polarimetric backscatter to AGB and AGB change. 

This paper specifically modeled AGB change between 2015 and 2021 on 
1) the cross-polarized channels, 2) the co- and cross-polarized channels, 3) a 
Freeman-Durden (FD) polarimetric decomposition (Freeman and Durden 
1993; Freeman and Durden 1998) and 4) the polarimetric radar vegetation 
index (RVI) (Kim and van Zyl 2000). 

As the variability in predictions was very high in study II, which used 
10 m radius field plots in both modeling and evaluation, it was decided to 
use a smaller set of 40 m radius plots instead (F7 and F8 in Table 2). 

There was a slight improvement in AGB change predictions from model 
1), based on only the cross-polarized channels, to model 2) using all channels 
(84.9 tons/ha to 79.4 tons/ha). The predictions improved further when using 
FD-decomposition (69.7 tons/ha) and the RVI-based model (50.4 tons/ha). 

Comparing models based on the same sets of variables as 1 – 4, but for 
estimating AGB state in 2014, it was seen that the improvement from 1 to 2 
was much greater than in the change estimation, and that the differences 
between 3 and 4 were small.  An analysis of structural field variables showed 
that the sensitivity to AGB was reduced for high values of forest height, basal 
area, and stem density, but that the sensitivity to AGB change of the best 
model was unaffected by these variables. 
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4.4 Study IV 
This paper assessed the influence of silvicultural treatments on 
interferometric phase heights obtained from TanDEM-X data. Additionally, 
a canopy penetration depth correction presented in Dall (2007) and 
successfully evaluated in temperate forest in Schlund et al. (2019) was 
applied to the interferometric phase heights. 

Thirty-four circular field plots with a 40 m radius (field data sets F9, F10 
and F11 in Table 2) were divided into 25 untreated, 5 thinned and 4 clear-cut 
plots according to silvicultural treatments recorded in a forest management 
plan for the estate. 

A time series of 24 TanDEM-X scenes acquired in bistatic configuration 
from 9 August 2011 to 4 June 2014 were used. The scenes were collected in 
strip map mode, and in VV polarization. The scenes were processed to obtain 
phase heights at a ground resolution of 10 m × 10 m. In an effort to estimate 
canopy heights the penetration depth correction was then applied to each 
pixel. 
 

 
Figure 5 A comparison of estimated height distributions from field measurements (top 
panel), ALS percentile 99 (blue, bottom panel), TanDEM-X phase heights (red, bottom 
panel), and penetration depth corrected phase heights (green, bottom panel). ALS and 
InSAR values are based on pixel values over the field plot. All data are smoothed using 
kernel density estimates. 

To quantify the effect of treatments on phase heights, the mean phase 
height on each plot was extracted for each date, and the difference in overall 
mean value of the mean phase heights before and after each treatment was 
calculated. The calculations were made with and without penetration depth 
correction, and the results were compared. 
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The average height decrease resulting from a thinning was on the order 
of a meter, while clear-cuts resulted in much greater decreases (15 m without 
correction, 18 m with correction). While there was a mean height decrease 
for the thinned plots, they were not individually distinguishable from 
untreated plots in this study. 

However, it was seen that the height distribution of penetration depth 
corrected TanDEM-X phase heights more closely resembled both the 
distribution of field measured tree heights and ALS percentile 99 (p99) on 
the test site, than uncorrected phase heights. A comparison of the height 
distributions from the different data sources for a field plot is shown in Figure 
5. The correction had previously been applied to temperate forest with good 
results, but the results found during study IV indicated the potential of using 
the procedure to capture top height using TanDEM-X data without the need 
of local and/or momentary calibration via field and/or ALS data. This result 
gave us the motivation for study V, in which we would apply the correction 
in an effort to estimate top height without calibration. 

4.5 Study V 
Study V predicted stand age and site index from time series of bistatic 
TanDEM-X phase heights. To our knowledge, this had previously been 
attempted in two studies (Persson and Fransson 2015; Persson and Fransson 
2016). In both studies, the time series were however quite short, comprised 
of four dates spanning a total of three years. Additionally, to estimate canopy 
heights, TanDEM-X phase heights were calibrated using either field data or 
ALS data. This study used a much larger time series of 30 TanDEM-X scenes 
acquired from 2011 to 2018, and instead of relying on auxiliary data for 
height calibration, the model-based penetration depth correction by Dall 
(2007), also used in study IV (equation (37)), was applied. Additionally, the 
influence of silvicultural treatments on prediction quality was investigated 
by separating the analysis by treatment type using forest management 
records. 

The variables were predicted on 91 field plots with a 10 m radius for 
which field measurements of SI and age were available from a survey in 
2021. For each date, the 90th percentile of penetration depth corrected 
TanDEM-X phase heights on a plot was used as a TanDEM-X based top 
height. 
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The SI and age for each field plot was predicted by fitting the time series 
of these TanDEM-X based top heights for each plot to established height 
development curves. The fitting was done using weighted non-linear least 
squares procedure, and each observation was weighted by the reciprocal of 
HoA, to account for the baseline-related phase height uncertainty. Two cases 
were assessed: case (a), in which both age and SI were left as parameters to 
be estimated in the fit, and case (b) in which the age was assumed known, 
i.e. supplied from field data, and only SI was left as a parameter to be 
estimated from the time series of TanDEM-X based top heights. 

 For untreated plots in case (a), the RMSE of predicted SI and age were 
6.9 m and 38 years, respectively. In case (b) the RMSE of predicted SI was 
4.0 m. No significant bias was observed in either case for untreated plots, nor 
for treated plots in case (b), while in case (a) the underestimation of SI and 
overestimation of age increased with the intensity of treatment (in terms of 
expected biomass reduction). 
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The main aim of this thesis has been to develop methods for the estimation 
of changes in forest variables using SAR data. The use of data from both the 
relatively long wavelength P- and L-bands, and the short wavelength X-band 
in the different studies highlight the differences of the bands in their 
interaction with the forest. 

In studies I – III, the relationship between long wavelength backscatter 
and AGB was exploited to predict changes in AGB between two time points. 
In study I, fully polarimetric airborne P- and L-band data were compared in 
their ability to predict AGB change in a hemi-boreal forest, and the 
differences were found to be small. As is the consensus for AGB prediction, 
the HV-channel was the most important also for AGB change prediction, for 
both P- and L-band. A correction for L-band data based on the HV/VV-ratio 
was developed and found to be effective. 

Study II evaluated this correction on satellite based data using fully 
polarimetric L-band ALOS-2 PALSAR-2 data, but the evaluation did not 
show the same usefulness as in study I, because no clear differences in 
backscatter were observed for plots with constant AGB. This is possibly due 
to similar conditions during the acquisitions, or more consistent calibration 
for the set of images than in study I. 

In study III, also using fully polarimetric ALOS-2 PALSAR-2 data, it was 
found that that the polarimetric measures, and especially the RVI were able 
to capture particularly the largest AGB changes more accurately than the 
polarization channel based models. The analysis of structural forest variables 
found that high values of basal area weighted mean height, basal area, and 
stem density were all correlated with a reduction in sensitivity of polarimetric 
backscatter to AGB. 

5. Conclusions 
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In studies IV and V, it was instead the tendency of short wavelength X-
band SAR to reflect from the top part of the canopy that was exploited. Both 
studies used interferometric TanDEM-X data to estimate tree heights via a 
model based correction to phase heights. 

In study IV, in line with earlier studies, clear-cuts were found to be clearly 
distinguishable from a decrease in mean TanDEM-X phase height after the 
treatment. Thinnings showed a decrease in phase height, but were not 
individually distinguishable, whether penetration depth correction was 
applied to the phase heights or not. 

Study V presented and assessed a method of predicting SI and age using 
only time series of TanDEM-X data and a DTM. It was shown that SI and 
age could be unbiasedly predicted for untreated plots, and the RMSE of the 
predictions was likely to decrease with the length and temporal resolution of 
the available time series. When the stand age was known, the SI was 
predicted with an RMSE comparable to that of field-based measurements. 
The results for treated plots showed that the RMSE and bias of predictions 
increase with the intensity of silvicultural treatments. 

In conclusion, this thesis underscores the potential of SAR data to be used 
in generalizable methods for the estimation of changes in forest variables. 
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The HV/VV-based backscatter offset correction worked well for the L-band 
data introduced in study I (applied to airborne data), and study II (evaluated 
for satellite data). Yet, more studies are needed to see if this generalizes to 
other data sets and regions. Provided that it does, and that present and future 
L-band missions including ALOS-2, ALOS-4, NISAR, ROSE-L, and 
SAOCOM operate in modes that offer simultaneous HV and VV channels, 
the findings suggest a potential for large-area mapping of forest biomass 
change in boreal and hemi-boreal forests despite varying environmental 
conditions and calibration uncertainties. 

In study III, it was found that models using polarimetric measures, 
especially the RVI, produced much better AGB change predictions than 
models based on the polarization channels. The difference was most 
pronounced for predicting large changes, i.e., clear cuts. Polarimetric 
measures should be further investigated for AGB change prediction in boreal 
forests, using high quality SAR- and field data to support the analysis. 

Overall, in studies I – III the variation of predictions was still quite high, 
especially compared to the levels of growth that could be expected in the 
time periods covered. This makes it challenging to predict growth accurately, 
other than at very large scales. Models should perhaps be developed 
separately for forest growth and loss. 

In study IV the detectability of silvicultural treatments from TanDEM-X 
data could be further quantified by investigating the statistical significance 
of a measured height discontinuity, given a sufficient amount of TanDEM-
X measurements both before and after a treatment. 

The results in study V demonstrate viability for large-scale wall-to-wall 
mapping of SI using time series of TanDEM-X data without the need for 

6. Outlook 
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ancillary data for height calibration. Further studies should investigate the 
use of multiple polarizations and both orbit directions to increase the length 
and temporal density of useful time series in an effort to further increase the 
obtained prediction quality. 
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Large scale mapping of changes in forest variables is needed for both environmental 
monitoring, planning of climate actions and sustainable forest management. Remote 
sensing can be used in conjunction with field data to produce frequent wall-to-wall 
estimates that are practically impossible to produce using manual inventory. 

Synthetic aperture radar (SAR) can observe the forest independent of sunlight, 
clouds, snow, or rain, providing reliable high frequency coverage. Its wavelength 
determines the interaction with the forest, where longer wavelengths interact more 
with the larger structures of the trees, and shorter wavelengths interact mainly with 
the top part of the canopy, meaning that the wavelength can be chosen to fit specific 
applications. Information can also be extracted from the oscillation direction of the 
radar signal, called its polarization.  

This thesis contains five studies conducted on the Remningstorp test site in 
southern Sweden. Three of the studies predicted above ground biomass (AGB) 
change using P-band data with a 86 cm wavelength, and L-band data with a 23 cm 
wavelength. The studies assessed the interaction of the different polarization 
directions with the forest structures, and especially how the interactions best could 
be used to predict AGB change. 

Studies IV and V instead used X band data with a 3 cm wavelength. The two 
TanDEM-X satellites that follow parallel orbits side by side use the interference 
between the signals received by the two satellites to measure height differences on 
the ground. The process is called interferometric SAR, or InSAR. Time series of 
such height measurements were used to estimate successive tree heights. In study IV 
the estimated tree heights were used to detect silvicultural treatments, and in study 
V they were used to determine the growth rate and age of trees. 

 
  

Popular science summary 
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Kartläggning av förändringar i skogliga variabler kan utgöra underlag för 
miljöövervakning, rapportering, planering av klimatåtgärder, och ett hållbart 
skogsbruk. Fjärranalys kan i kombination med fältinventering användas för att skapa 
frekventa heltäckande skattningar som är praktiskt omöjliga att åstadkomma med 
endast fältinventering.  

Syntetisk aperturradar (SAR) kan avbilda skogen oberoende av solljus, moln, 
snöfall, eller regn, och kan därför ge tillförlitliga och frekventa obervationer. 
Interaktionen med skogen är beroende av våglängden, där långa våglängder främst 
interagerar med de större strukturerna, som stammar och tjocka grenar, och korta 
våglängder främst reflekteras från den övre delen av trädkronorna. Därför kan 
våglängden väljas för att passa specifika tillämpningar. Information kan dessutom 
extraheras ut radarsignalens oscillationsriktning, vilken kallas polarisation. 

Denna avhandling innefattar fem studier genomförda på Remningstorps 
försöksområde i Västergötland. Tre av studierna predikterade förändringar i 
biomassa ovan jord (B) med hjälp av P-bands-SAR med en våglängd på 86 cm, och 
L-bands-SAR med en våglängd på 23 cm. Studierna utvärderade interaktionen hos 
olika polarisationsriktningarna med skogsstrukturerna, och särskilt hur 
interaktionerna bäst kunde användas för att förutsäga förändringar i B. 

Studie IV och V använde istället X-bandsdata med en våglängd på 3 cm. De två 
TanDEM-X-satelliterna som följer parallella omloppsbanor sida vid sida använder 
interferens mellan reflekterade signaler för att skatta höjdskillnader på marken. 
Processen kallas interferometrisk SAR, eller InSAR. Tidsserier av sådana 
höjdmätningar användes för att skatta trädhöjder under flera år. I studie IV användes 
de skattade trädhöjderna för att detektera skogsvårdsåtgärder, och i studie V 
användes de för att skatta trädens ålder och ståndortsindex, ett mått som beskriver 
tillväxtpotentialen. 

Populärvetenskaplig sammanfattning 
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Predictions of Biomass Change in a Hemi-Boreal Forest Based on
Multi-Polarization L- and P-Band SAR Backscatter
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ABSTRACT
Above-ground biomass change accumulated during four growth seasons in a hemi-boreal
forest was predicted using airborne L- and P-band synthetic aperture radar (SAR) backscat-
ter. The radar data were collected in the BioSAR 2007 and BioSAR 2010 campaigns over the
Remningstorp test site in southern Sweden. Regression models for biomass change were
developed from biomass maps created using airborne LiDAR data and field measurements.
To facilitate training and prediction on image pairs acquired at different dates, a backscatter
offset correction method for L-band data was developed and evaluated. The correction,
based on the HV/VV backscatter ratio, facilitated predictions across image pairs almost iden-
tical to those obtained using data from the same image pair for both training and predic-
tion. For P-band, previous positive results using an offset correction based on the HH/VV
ratio were validated. The best L-band model achieved a root mean square error (RMSE) of
21 t/ha, and the best P-band model achieved an RMSE of 19 t/ha. Those accuracies are simi-
lar to that of the LiDAR-based biomass change of 18 t/ha. The limitation of using LiDAR-
based data for training was considered. The findings demonstrate potential for improved
biomass change predictions from L-band backscatter despite varying environmental condi-
tions and calibration uncertainties.

RÉSUMÉ

Les changements de la biomasse accumul�ee au-dessus du sol dans une forêt semi-bor�eale
ont �et�e pr�edits au cours de quatre saisons de croissance �a l’aide de la r�etrodiffusion d’un
radar �a synth�ese d’ouverture (RSO) a�eroport�ee en bande L et P. Les donn�ees radar ont �et�e
recueillies durant les missions BioSAR 2007 et BioSAR 2010 sur le site test de Remningstorp,
dans le sud de la Su�ede. Des mod�eles de r�egression pour le changement de biomasse ont
�et�e d�evelopp�es �a partir de cartes de biomasse cr�e�ees �a l’aide de donn�ees LiDAR a�eroport�ees
et de mesures sur le terrain. Afin de faciliter l’entrâınement et la pr�ediction �a partir de paires
d’images acquises �a diff�erentes dates, une m�ethode de correction du d�ecalage de la
r�etrodiffusion pour les donn�ees en bande L a �et�e �elabor�ee et �evalu�ee. La correction, bas�ee
sur le rapport de r�etrodiffusion HV/VV, a facilit�e l’obtention pour des paires d’images de
pr�edictions similaires �a celles obtenues pour la même paire d’images et ce tant pour l’en-
trâınement que la pr�ediction. Pour la bande P, des r�esultats ant�erieurs positifs, utilisant une
correction de d�ecalage bas�ee sur le rapport HH/VV, ont �et�e valid�es. Une erreur moyenne de
la carr�ee racine (RMSE) de 21 t/ha et de 19 t/ha a �et�e respectivement obtenue pour le meil-
leur mod�ele en bande L et pour celui en bande P. Ces pr�ecisions du changement de bio-
masse �etaient semblables �a celle des donn�ees LiDAR (18 t/ha). La limitation de l’utilisation
des donn�ees LiDAR pour l’entrâınement a aussi �et�e prise en consid�eration. Les r�esultats
d�emontrent un potentiel d’am�elioration des pr�evisions du changement de la biomasse �a
partir de la r�etrodiffusion de la bande L, malgr�e des conditions environnementales variables
et les incertitudes d’�etalonnage.
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Introduction

Increased concentrations of greenhouse gases in the
atmosphere cause global warming, and the largest
contributor to this process is carbon dioxide (Stocker
et al. 2013). The biosphere acts as a net carbon sink,
and changes in its efficiency in storing carbon need to
be better understood (Canadell et al. 2007). Forests
constitute a large part of the terrestrial biosphere and
their carbon storage is proportional to the biomass
they contain. This calls for large-scale mapping of for-
est biomass. Mapping of forest biomass is also of
interest in assessing fire, storm, insect, and disease
damages, and to support decisions in commercial for-
est management. Synthetic aperture radar (SAR) sys-
tems have the benefit of being able to form images of
the terrestrial landscape regardless of clouds, precipi-
tation, and sun illumination conditions, which can
inhibit LiDAR or optical systems, making it easier to
reliably get full coverage data even over large areas.
The relatively long wavelength of L- and P-band SAR
systems compared to sensors operating with shorter
wavelengths or in the optical domain is an advantage
because of the signal penetration into the canopy,
which facilitates estimation of above-ground biomass
(AGB) (Kasischke et al. 1997).

Advanced SAR methods like InSAR (Solberg et al.
2014; Persson and Fransson 2017) or tomography (Ho
Tong Minh et al. 2016) have been used to predict
AGB or AGB change, but place high demands on the
SAR data in terms of temporal coherence that not all
SAR products can meet. In particular, L-band data
often do not possess the temporal coherence needed
for repeat-pass interferometry over forests (Hamadi
et al. 2017; Monteith and Ulander 2018). While data
from formation flying satellites ought to overcome
this limitation, no such L-band systems are currently
in operation. Backscatter-based algorithms for AGB or
AGB change prediction do not have this inherent
coherency requirement, and can be applied to both L-
and P-band data. In this context, simple backscatter-
based predictions are more feasible for large-scale
mapping of carbon stock dynamics on a national or
continental level. Additionally, backscatter algorithms
are simpler to implement for non SAR experts, since
they can be applied to standard SAR products without
the use of specialized SAR software.

Previous studies have used both L- and P-band
SAR data to predict AGB, or the highly correlated
variable stem volume, in boreal and hemi-boreal for-
ests (Rignot et al. 1994; Kurvonen et al. 1999; Saatchi
and Moghaddam 2000; Rauste 2005; Sandberg et al.
2011; Neumann et al. 2012; Santoro et al. 2015;

Schlund and Davidson 2018; Cartus et al. 2019;
Santoro et al. 2019). L-band data have also been used
to detect clear-cuts and storm damage (Fransson et al.
2007; Santoro et al. 2012), and to estimate AGB
growth from multi-satellite SAR data (Balzter et al.
2003). However, algorithms based on backscatter are
known to be subject to saturation (loss of sensitivity)
when biomass increases beyond a certain level. The
onset of sensitivity loss is dependent on the wave-
length and forest type, and occurs at 40–100 t/ha and
100–200 t/ha for L- and P-band, respectively, in coni-
fer-dominated forests (Dobson et al. 1992; Le Toan
et al. 1992; Rignot et al. 1994; Imhoff 1995; Fransson
1999). While L- and P-band data have previously
been compared in their ability to estimate or predict
AGB, this study evaluated both bands for prediction
of AGB change. The data used in this study are highly
comparable between bands as it was acquired in the
same geometry over the same area, with almost all
acquisitions made on the same days for both bands.

This study extends the work of Sandberg et al.
(2014), who analyzed the P-band data from the
BioSAR 2007 and BioSAR 2010 campaigns, but omit-
ted the L-band data from the analysis. While the com-
ing BIOMASS mission will operate in P-band, in light
of both the scarcity of available P-band data over
Europe, and North and Central America in the pre-
sent and foreseeable future, following the restrictions
imposed by the US Department of Defense (Carreiras
et al. 2017), and the present and planned L-band mis-
sions including ALOS-2, ALOS-4, NISAR, ROSE-L,
and SAOCOM (The CEOS database: Missions, instru-
ments, measurements and datasets 2020), it was of
interest to expand the analysis to include the L-band
data from the same campaigns. Currently, only
ALOS-2 PALSAR-2 can, to a certain extent, provide
continual global L-band backscatter data sets. In
Huuva et al. (2017), single polarization AGB change
models were investigated for the L- and P-band data
from the campaigns, and it was found that using
models based on HV backscatter explained most of
the variation in AGB change for both L- and P-band.

In Sandberg et al. (2014), LiDAR-based AGB maps
were used to train P-band SAR models. These AGB
maps were, however, created using a different method
for the two acquisition years. For 2007, the AGB map
was created in two steps, by first creating a stem vol-
ume map based on field and LiDAR data, which was
then converted to an AGB map using biomass expan-
sion factors. For 2010, the AGB map was instead cre-
ated directly from AGB estimates from field and
LiDAR data. In contrast, this study used LiDAR-based
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AGB maps created according to a unified and consist-
ent method for both acquisition years to support the
analysis and modeling. Unlike Sandberg et al. (2014),
individual tree biomass models were applied to the
field data for both years, eliminating the need to use
biomass expansion factors when creating the AGB
maps. This is expected to result in more accurate
AGB values (Petersson et al. 2012). In contrast to the
analysis in Sandberg et al. (2014), change predictions
were back-transformed to facilitate the comparison of
models based on different AGB change transforma-
tions. Additionally, while in that study the largest field
measured changes used for evaluation were limited in
magnitude to 50 t/ha, the evaluation data in the pre-
sent study were expanded by including additional
evaluation plots which were clear-cut between the
acquisition years, thereby permitting evaluation of the
models on much larger AGB changes, reaching 300 t/
ha in magnitude, which is interesting in light of the
previously discussed saturation effects.

The intensity of SAR backscatter from a certain
location is not only dependent on the amount of bio-
mass and SAR parameters like wavelength, incidence
angle, and polarization, but varies with other variables
such as soil, stem, and canopy moisture, surface
roughness and topography, and forest structure varia-
bles such as tree species, stem density, and spatial dis-
tribution of trees (Lucas et al. 2010; Kasischke et al.
2011). Moisture can vary significantly with not only
seasons but even time of day due to precipitation and
diurnal cycles, making it especially challenging when
predicting AGB change. The non-AGB related change
in backscatter may vary within a given SAR image
pair due to, e.g. local precipitation in a region of one
of the two images, resulting in wetter soils compared
to other areas. Ideally, a non-constant offset correc-
tion across scenes would therefore be required.
However, a first order approximation can be achieved
by estimating the non-AGB related change with a
constant offset for a given image pair. While such an
offset in backscatter can, when modeling AGB
changes from one SAR image pair, be corrected for by
a constant term in the model, the offset will generally
not be the same for another image pair, thus hinder-
ing the applicability of a trained model to other image
pairs. To mitigate this effect of moisture and radio-
metric calibration uncertainty a backscatter change
offset correction method was proposed for P-band
data by Sandberg et al. (2014). The correction is based
on the HH/VV backscatter ratio, found in P-band
data to be relatively insensitive to moisture (Soja et al.
2013), and aims to correct the backscatter so that

areas with small changes in AGB also have small
changes in backscatter. While the correction method
was successful in facilitating AGB change prediction
from P-band backscatter data, no such correction
method has been developed for L-band data.

The objectives of this study are to develop and
evaluate a backscatter offset correction method for L-
band SAR data, and to validate the existing correction
method for P-band data. In addition, we compare the
potential of predicting AGB changes in a hemi-boreal
forest using L- and P-band backscatter, given that a
suitable offset correction method can be applied to
both bands.

Materials and methods

Test site

The remote sensing data consisted of SAR and LiDAR
data collected during the airborne SAR campaigns
BioSAR 2007 and BioSAR 2010 conducted at the
Remningstorp estate (Figure 1), in southern Sweden
(58�300N, 13�400E). In addition, parts of the in situ
data were also collected within the campaigns. Full
descriptions of the campaigns can be found in the
BioSAR reports by Hajnsek et al. (2008) and Ulander
et al. (2011). The test site is located within the hemi-
boreal zone, which covers the transition between the
boreal and temperate zones. This zone is characterized
by mixtures of coniferous and deciduous species. The
test site consists of managed forest dominated by
Norway spruce (Picea abies (L.) H.Karst.) and Scots
pine (Pinus sylvestris L.) with some birch (Betula
spp.). In a Swedish context, the climate and geology
are favorable for forest growth. Two thirds of the for-
est within the estate are located on till (i.e. a mixture
of glacial debris) with a field layer consisting of differ-
ent herbs, blueberry (Vaccinium myrtillus L.), and
narrow-leaf grass (e.g. Deschampsia flexuosa (L.)
Trin.). In denser old spruce stands the field layer is
absent. The remaining forest grows on peatland,
which is dominated by Scots pine. Regardless of tree
cover, the main soil type on till is brown earth.
Extensive ditching of peatlands on the estate over the
years has been conducted to increase the productive
forest area. However, some of the peatlands are fre-
quently saturated (Ahlberg and Kardell 1997). The
above-ground biomass range is 0–400 t/ha, at plot
level (with 10m radius). The ground slopes on the
test site are generally small, with an average slope of
4� and a 95th percentile of 11.5�, as calculated from
the 2m� 2m resolution LiDAR-based digital terrain
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model (DTM). The ground surface topology lies
between 120m and 145m above sea level.

In situ data

Three sets of field plot data were inventoried at the
Remningstorp test site. The first set consisted of a sys-
tematic grid with 849 circular plots with 10m radius
and 40m plot spacing. The inventory was started
before, and completed after the vegetation season in
2005. In order to match the SAR data, the forest vari-
able estimates were forecast to 2007, using established
models in the Heureka forestry decision support sys-
tem (L€amås and Eriksson 2003; Wikstr€om et al. 2011).
The second data set, part of the BioSAR 2010
campaign, was inventoried after the growth season
2010, and consists of 216 circular plots with 10m
radius and 200m spacing (Sandberg et al. 2011;
Ulander et al. 2011). The third data set consisted of
ten 80m� 80m plots, distributed across the
Remningstorp estate, all but one fully contained
within homogeneous stands. All ten large plots were
surveyed just before the growth season of 2007. Three
of the large plots were clear-cut between 2007 and
2010, and the remaining seven large plots were inven-
toried again after the growth season of 2010, thereby
matching the SAR data without forecasting. The AGB
was set to 0 t/ha in 2010 for the three large plots that

were clear-cut between the acquisitions. One third of
plot 9 was not clear-cut, since two of its corners are
located in another, retained, stand. Therefore, only
data from the central part of this plot, contained in
the clear-cut, was used to represent the whole plot, as
if the whole plot were clear-cut. Details of these large
plots are given in Table 1.

For all data sets, all trees with a diameter at breast
height (DBH, measured at 1.3 m above ground) of
more than 4 cm were calipered, species determined,
and positioned using a real time kinematic global posi-
tioning system. For the data sets consisting of circular
plots, the height was measured on about 10% of the
trees, randomly sampled with probability proportional
to the basal area, using a hypsometer. For the
80m� 80m plots, the height of every calipered tree
was measured. AGB was estimated using the Heureka
system (Wikstr€om et al. 2011), which used established
models for height by S€oderberg (1986) and AGB by
Marklund (1988). Only plots found to be completely
contained in a single stand, and with a Lorey’s mean
tree height (i.e. basal area weighted mean tree height)
above 3.7m (corresponding to DBH greater than 4 cm)
were used in the study. This resulted in sample sizes of
763 and 208 plots from 2005 and 2010, respectively. In
addition to the three field data sets, a stand delineation
map over the area was used to allocate training and
validation sets in the evaluation of regression models.

Figure 1. The Remningstorp estate, located in southern Sweden. The field plots for the 2004–2005 and 2007 inventories are pic-
tured using black markers (all plots with a radius of 10m). The 2004–2005 inventory used a plot spacing of 40m, while the 2010
inventory used a spacing of 200m. The ten 80m � 80m plots, inventoried in 2007 and 2010, and used for evaluation in the
study, are outlined in red. Country outlines # Esri, and background map of Remningstorp # Lantm€ateriet.
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Moreover, tree species information from a forest man-
agement plan of the estate was used in creating a
LiDAR-based biomass map of the test site, as explained
below. The average size of a stand in the test site was
2.5 ha, and the area covered by all remote sensing data
sets contained 158 stands.

Since the 10m radius field plot grids for the two
years were not the same, and the number of shared
plots was small, changes in AGB could not be directly
measured in situ with a reasonable amount of field
plots. Instead, AGB maps were created for 2007 and
2010 using the field plots and LiDAR data. The AGB
maps are further described below. The 80m� 80m
plots were set aside for validation of the results, and
were thus not used in model selection or training.

SAR data

The SAR scenes used are fully polarimetric in L- and
P-band. For 2007, the SAR data were collected using
the German E-SAR system by the German Aerospace
Center (DLR), while the 2010 SAR data were collected
using the French SETHI system by ONERA. The two
systems and hence the SAR data for the two years are
not identical. While the acquisitions in 2010 were all
conducted on the same day, the SAR data for 2007
were collected during four dates ranging from early
spring with recently thawed snow cover and wet soil,

to late spring and dry soil. Soil moisture was continu-
ously measured using an Aquaflex sensor installed
15 cm below ground in a forested area within the test
site. In addition, air temperature and precipitation
were recorded at a weather station located in the east-
ern part of the estate (Table 2). At the time of SAR
acquisition, no precipitation was observed (Hajnsek
et al. 2008; Ulander et al. 2011).

To eliminate the influence of different imaging geo-
metries between the bands, only acquisitions with
heading (along-track direction) 200� were chosen for
the analysis. All of the selected acquisitions were
made from the same flight track, i.e. the incidence
angle for a given location on ground is the same in all
images (regardless of sensor). The acquisition dates
are given in Table 2. For both bands, one image per
acquisition date in 2007 was included. The first and
last 2007 acquisition dates are the same for L- and P-
band, with about two months passing between them,
while the intermediate date differs by two days
between the bands. For each band, both scenes in the
chosen heading from 2010 were included in the ana-
lysis to allow both images to be different across image
pairs. However, the differences between the scenes
from the same date are expected to be small. Table 3
lists the image pairs used in the subsequent analysis.
The 2007 data, from E-SAR, were geometrically cali-
brated using corner reflectors deployed at the test site.

Table 2. Volumetric soil moisture and air temperature for each scene acquired from E-SAR and SETHI.
Acquisition date Scene ID Band Volumetric soil moisture [%] Air temperature [�C] (local time)

09/03/2007 104 L 21 2.6 (07:00), 4.8 (19:00)
09/03/2007 109 P 21 2.6 (07:00), 4.8 (19:00)
31/03/2007 205 L 17 4.8 (08:00), 7.1 (20:00)
02/04/2007 306 P 17 6.0 (08:00), 6.5 (20:00)
02/05/2007 405 L 13 7.3 (08:00), 13.8 (20:00)
02/05/2007 411 P 13 7.3 (08:00), 13.8 (20:00)
23/09/2010 bio01L L 11 8.4 (08:00), 14.2 (20:00)
23/09/2010 bio01P P 11 8.4 (08:00), 14.2 (20:00)
23/09/2010 bio02L L 11 8.4 (08:00), 14.2 (20:00)
23/09/2010 bio02P P 11 8.4 (08:00), 14.2 (20:00)

Table 1. Data for ten 80m� 80m plots for which field measurements were made before the growth season of
2007, and after the growth season of 2010.

Plot ID
AGB 2007
[t/ha]

AGB
2010
[t/ha]

AGB
change
[t/ha] Stem density 2007 Stem density 2010 Dominant species

1 195.3 205.8 10.5 267 261 Scots pine
5 150.5 99.7 �50.8 539 174 Scots pine
9 243.3 0 �243.3 287 0 Norway spruce
10 167.3 182.3 15 418 389 Norway spruce
12 298.3 0 �298.3 361 0 Norway spruce
14 50.6 60.4 9.8 337 330 Birch
15 126 135.3 9.3 401 397 Birch
16 303 0 �303 362 0 Norway spruce
17 145.4 173 27.6 374 362 Norway spruce
18 222 245 23 321 303 Norway spruce
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The reflectors were also used to validate the radiomet-
ric calibration of the data. For the 2010 data, from
SETHI, the corner reflectors were used for both geo-
metric and radiometric calibration. The radiometric
calibration uncertainty was estimated to be ±1 dB for
both SAR systems.

The delivered geocoded standard products of the
two SAR systems were used for the analysis. A full
description of the SAR data can be found in the
BioSAR reports (Hajnsek et al. 2008; Ulander et al.
2011). A brief summary of the main characteristics of
the data used is presented here.

The 2007 SAR data, from E-SAR, were acquired
with a center frequency of 1,300MHz and a band-
width of 94MHz for L-band, and a center frequency
of 350MHz and a bandwidth of 70MHz for P-band.
The center frequencies correspond to wavelengths of
23 cm and 86 cm for L- and P-band, respectively. The
single look resolutions of the data were 2.1m� 0.9m
for L-band and 2.1m� 1.6m for P-band (slant
range� azimuth). The L-band data were multilooked
by DLR 8 times, and the P-band data 4 times, both
only in azimuth, with a 50% overlap. The resulting
resolution for both bands was 2.1m� 4.0m.

The 2010 SAR data, from SETHI, were collected
with a center frequency of 1,325MHz and a band-
width of 150MHz for L-band, and a center frequency
of 360MHz and a bandwidth of 166MHz for P-band,
with some notches and gaps in the latter spectrum to
avoid radio frequency interference. The center frequen-
cies correspond to wavelengths of 23 cm and 83 cm for
L- and P-band, respectively. The single look resolutions
of the L- and P-band data were 0.9m� 0.9m and
0.8m� 0.8m (slant range� azimuth), respectively.

The SAR images were radiometrically corrected for
local ground slope and incidence angle induced varia-
tions in the intensity and transformed to c0 using a
2m� 2m resolution DTM. From the DTM, the sur-
face normal for each 2m� 2m pixel was obtained.
The angle w between the surface normal and the

slant range image plane normal was then used to
obtain the average radar cross section per unit ground
area, r0, according to

r0 ¼ b0 � cos wð Þ, (1)

where b0 is the average radar cross section per image
pixel area (Ulander 1996). After this, a first order cor-
rection for variations in incidence angle was applied
to obtain

c0 ¼ r0= cos hð Þ, (2)

where h is the local incidence angle (Ulaby et al.
1982). The radiometrically corrected backscatter c0

will henceforth be referred to as backscatter. The
resulting backscatter images were averaged with a
50m� 50m filter and resampled to backscatter maps
with 50m� 50m pixels following the methodology in
Sandberg et al. (2014). The resampling has the effect
of suppressing most of the speckle in the SAR data, as
a pixel of 50m� 50m contains between 700 and
4,000 resolution cells. This is also expected to make
the differences in original resolution between the sen-
sors negligible. The selected pixel size is on the same
order of magnitude as the 80m� 80m plots used for
evaluation of AGB change predictions, while still per-
mitting the models to capture biomass variations on a
sub-stand scale.

LiDAR data

LiDAR acquisitions for both years were made using
helicopter-mounted TopEye systems (Mk II in 2007,
Mk III in 2010). The 2007 scanning was performed
on April 24 with densities of 30–40 pulses/m2. In
2010, the scanning took place on August 29 with an
average density of 69 pulses/m2. Further details can be
found in the BioSAR reports (Hajnsek et al. 2008;
Ulander et al. 2011). In processing the point clouds,
point densities were locally found to be significantly
lower than the averages, and to avoid artifacts in the

Table 3. Image pairs used in the analysis.
Image pair ID E-SAR scene ID SETHI scene ID E-SAR acquisition date SETHI acquisition date

La 104 bio01L 09/03/2007 23/09/2010
Lb 205 bio01L 31/03/2007 23/09/2010
Lc 405 bio01L 02/05/2007 23/09/2010
Ld 104 bio02L 09/03/2007 23/09/2010
Le 205 bio02L 31/03/2007 23/09/2010
Lf 405 bio02L 02/05/2007 23/09/2010
Pa 109 bio01P 09/03/2007 23/09/2010
Pb 306 bio01P 02/04/2007 23/09/2010
Pc 411 bio01P 02/05/2007 23/09/2010
Pd 109 bio02P 09/03/2007 23/09/2010
Pe 306 bio02P 02/04/2007 23/09/2010
Pf 411 bio02P 02/05/2007 23/09/2010

All images were acquired from the same flight track, in the same imaging geometry.
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AGB modeling from the varying point density, the
point clouds were thinned to 10 points/m2 to obtain
an even point density throughout the test site.

LiDAR-based biomass maps

The field data from the two inventory years were not
from the same set of plots, necessitating an indirect
approach to estimate the AGB change from 2007 to
2010. Therefore, AGB maps were created using data
from the LiDAR measurements.

Multiple linear regression models were developed
to relate in situ AGB values with LiDAR percentiles
and density metrics. The biomass modeling included
investigation of numerous transformations of both the
response and explanatory variables, and inspection of
scatter plots, residual plots, and covariances. As the
AGB state predictions for each year were to be used
to compute the AGB change, the determination of a
common model that could describe both of the data
sets well was prioritized. A log-log model was selected
that fulfilled the requirements of linearity, normality
and homoscedasticity for both LiDAR data sets. The
relationship between AGB and LiDAR metrics was
similar for spruce dominated plots for both years,
while pine and deciduous dominated plots exhibited
relationships that were different both from each other
and from spruce dominated plots, and differed for the
different years. The regression model used indicator
and interaction variables to handle the different rela-
tions due to tree species (pine and deciduous) and
acquisition year. A plot was defined as pine or decidu-
ous dominated if the fraction of biomass from pine or
deciduous trees was 0.7 or higher. Accordingly, a sin-
gle overall model was fit to the LiDAR and field data
for both acquisition years. The model was given by

ln AGBið Þ ¼ b0 þ b0k þ b1 þ b1kð Þ � ln P50%ið Þ
þ b2 þ b2kð Þ � ln P90%i � dnsið Þ þ �i, (3)

where i denotes an observation, �i is an error term, b0
is a common intercept term, bik ¼ 0 for spruce domi-
nated plots for both years, and k¼ 1 for pine domi-
nated plots scanned in 2007, k¼ 2 for deciduous
dominated plots scanned in 2007, k¼ 3 for pine
dominated plots scanned in 2010, and k¼ 4 for
deciduous dominated plots scanned in 2010. P50% and
P90% are the 50th and 90th height percentiles of points
above 1.37m, and dns is the canopy density, com-
puted as the fraction of all points in an observation
that are above this height.

The accuracy of the LiDAR-based AGB model was
estimated by calculating the root mean square error

(RMSE) of predictions by applying leave-one-out
cross-validation on the plots used to create them. The
RMSE of the AGB model was 32.4 t/ha, corresponding
to 23.1% of the mean AGB derived from the field
measurements of both years. The coefficient of deter-
mination, R2, was found to be 0.78.

By applying the model to LiDAR metrics over the
test site, and stand level dominant species information
from the forest management plan, AGB maps for each
year were produced with a 17.5m� 17.5m pixel size
to match the pixel area with that of the field plots
(with a radius of 10m). The maps were subsequently
resampled through spatial averaging to 50m� 50m
pixels coregistered with the backscatter maps. The
resampling has the effect of further reducing the pre-
diction variance, as the resampled pixel value is essen-
tially a mean value of about eight predictions of the
model relating AGB to LiDAR metrics.

The change prediction accuracy of the AGB maps
was evaluated by computing the average pixel differ-
ences between 2007 and 2010 for all pixels inside the
ten 80m� 80m plots, and comparing these values to
the AGB differences derived from the field measure-
ments from these plots. In the calculation, the value
of a pixel partially inside a plot was weighted by the
fraction of its area covered by the plot polygon. The
change prediction RMSE of the LiDAR-based AGB
maps was determined to be 18.1 t/ha (5.5% of the
range of field measured AGB change in the ten evalu-
ation plots) with a bias of 2.0 t/ha. Although the
uncertainties of both AGB maps are combined when
the difference between them is evaluated, the lower
RMSE is not surprising, since the evaluation plots are
much larger than the 10m radius plots used to esti-
mate the uncertainty in the AGB model itself.

Backscatter offset correction

The backscatter intensity varies due to environmental
conditions such as moisture variations. For both L-
and P-band, the SAR data used in this study showed
significant changes in backscatter for areas with little
change in AGB between the acquisition years.
Scatterplots of the differences from all image pairs of
both bands are shown in Figure 2.

Most of the data points are clustered around rela-
tively low positive values of AGB change, indicating
natural growth, while larger AGB changes present in
the data are from clear-cuts in stands with relatively
high AGB, resulting in a tail of large negative changes
in AGB. Aside from a significant spread in backscatter
change for the same AGB change, we can observe that
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many points close to zero AGB change are not cen-
tered around zero in backscatter change, but are offset
by 1–2 dB for both bands. While all image pairs
have a positive offset, its magnitude differs between
different image pairs, as witnessed by the horizontal
striping in the plots. These differences in offset pose a
problem in constructing a linear model of AGB
change that would generalize across different image
pairs. To mitigate these offsets, Sandberg et al. (2014)
proposed a backscatter change offset correction
method for P-band data. The correction was based on
the HH/VV backscatter ratio, found to be correlated
with biomass but relatively insensitive to changes in
moisture (Soja et al. 2013; Sandberg et al. 2014). To
find a suitable method for correcting L-band data, the
correction method was generalized by analyzing dif-
ferent candidate polarization ratios.

The backscatter offset correction procedure is as
follows. For each pair of scenes, find the set of
50m� 50m pixels, X, that have a change in the
chosen polarization ratio DR, on a decibel scale,
within some threshold t. Then, choose a polarization,
calculate the mean backscatter level of the pixels in X

for each year, multiply each full image in the pair by
the mean of the two X-means, and divide it by its
own X-mean. The resulting images have the same
mean backscatter in the low DR pixels for each year.
For an image pair I1 and I2, Equations 4 and 5 give
the corrected images I10 and I20, when applied separ-
ately to each of the polarizations of I1 and I2:

I1
0 ¼ I1 � q1 þ q2ð Þ=2� �

=q1, (4)

I2
0 ¼ I2 � q1 þ q2ð Þ=2� �

=q2, (5)

where q1 and q2 are the mean backscatter of I1 and I2
over areas with DR within t, that is,

q1 ¼ mean I1 Xð Þð Þ, (6)

q2 ¼ mean I2 Xð Þð Þ: (7)

Figure 3 shows the changes in backscatter polariza-
tion ratios HH/VV, HV/VV, and HV/HH for all L-
and P-band pairs. At P-band, the offset for the ratio
HH/VV (Figure 3d) was clearly smaller than the offset
of the single polarization channels themselves
(Figure 2d–f). Despite backscatter offsets due to mois-
ture changes and possible radiometric calibration

Figure 2. Bivariate plots of AGB change and backscatter change between 2007 and 2010 for all L-band image pairs (a–c), and all
P-band image pairs (d–f). A data point corresponds to the change in value for a 50m� 50m pixel between the AGB maps and
between the images in one of the backscatter map pairs. The change scales for AGB and backscatter are defined in Equations 11
and 14, respectively. Points are colored according to the density of points around that location in the plot. The darker the color,
the higher the density.
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errors, the HH/VV ratio could therefore be used to
detect areas with relatively low changes in AGB
between SAR acquisitions, and the images from the
two acquisitions could then be corrected so that the
average backscatter in these areas was equal in each
image. The HV/VV ratio also showed a dependence
on AGB change (Figure 3e), but with a slightly nega-
tive offset, albeit significantly smaller than the offset
in backscatter of the individual polarization channels.
The HV/HH ratio showed no apparent dependence
on AGB change and a slight negative offset.

At L-band, the HH/VV ratio was weakly correlated
with AGB change, and it furthermore showed a posi-
tive change in backscatter irrespective of AGB change
(Figure 3a). As such, it was not suitable for correcting
L-band data in the manner described above. Instead,
the HV/VV ratio of the L-band data showed the
desired characteristics of sensitivity to AGB change
paired with an insensitivity for changes external to
AGB change (Figure 3b). The HV/HH showed a
dependence on AGB change, but also an average
negative offset of about 2 dB for pixels with no change
in AGB. In this study, the L-band data were therefore

offset corrected using the HV/VV ratio, while the P-
band data were corrected using the HH/VV ratio as
in Sandberg et al. (2014).

A suitable threshold t for backscatter correction was
assessed by calculating the change in mean backscatter
for pixels with a small change in the AGB maps, i.e.
pixels with a change in AGB on a natural logarithmic
scale less than 0.1. Figure 4 shows how this remaining
backscatter offset depends on the threshold used for L-
and P-band. The two correction methods reduced the
backscatter offset for areas with small changes in AGB
significantly. Many of the estimated offsets for the dif-
ferent channels were not within the radiometric cali-
bration uncertainty of ±1dB reported by DLR and
ONERA. In the worst case, this could lead to a calibra-
tion offset with a magnitude of ±2dB. For both bands,
the remaining offset was greatly reduced when applying
a correction using even a small threshold. Note that
uncorrected data were plotted as being corrected using
a threshold of zero in Figure 4. Then, after initial fluc-
tuations as the threshold was increased, a minimum
magnitude of the offset was achieved. As the threshold
was further increased, the offset started to grow again

Figure 3. Bivariate plots of AGB change and polarization ratio change between 2007 and 2010 for all L-band image pairs (a–c),
and all P-band image pairs (d–f). A data point corresponds to a change in value for a 50m� 50m pixel between the AGB maps
and between the images in one of the backscatter map pairs. The change scales for AGB and backscatter are defined by
Equations 11 and 14, respectively. Points are colored according to the density of points around that location in the plot. The
darker the color, the higher the density.
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as a larger portion of the images was used for the
correction. Finally, as the full dynamic range of the
images was within the threshold, the remaining offset
became constant.

Backscatter correction using the HV/VV-ratio at a
threshold of 2 dB reduced the offset in L-band back-
scatter from at most 2.85 dB to within 0.12 dB for all
image pairs and polarizations (Figure 4). The differ-
ence in offset between image pairs for a given polar-
ization was also greatly reduced from at most 1.77 dB
to 0.12 dB or less for all polarizations. Backscatter cor-
rection using the HH/VV ratio at a threshold of 3 dB
reduced the offset in P-band data from a maximum of
2.16 dB to within 0.19 dB for all image pairs and
polarizations. For P-band, the largest difference in off-
set between image pairs was also reduced from about
1.13 dB to 0.11 dB or less for all polarizations. This
reduction in offset difference is really the important
metric, since the aim was to train a model on data
from one pair of images, and predict AGB change on
data from another image pair. The difference in offset
should be small so that the constant term in the
model is applicable across image pairs. Based on this
evaluation, backscatter offset correction using thresh-
olds of 2 dB and 3 dB was performed on the L- and

P-band SAR data, respectively, before the model selec-
tion. It was noted that the correction was not sensitive
to the precise value of the threshold, and that values
within ±1 dB gave very similar correction results.

Scatterplots of offset corrected backscatter maps
from all image pairs using the chosen thresholds are
shown in Figure 5. Comparing to the scatterplots of
uncorrected backscatter change in Figure 2, we can
see that the corrections have succeeded in reducing
the offset so that the scatterplots in Figure 5 are cen-
tered at the origin, and that areas of low backscatter
change were roughly centered on zero change in
AGB. The horizontal striping of the plots was also
reduced, as the differences in offset between different
image pairs were reduced.

Modeling of AGB change using backscatter

The LiDAR-based AGB maps were used in the mul-
tiple linear regression analysis to select and train
backscatter change models. The evaluation plots and
non-forest areas were masked out, and only pixels
available in the AGB maps for both 2007 and 2010
were used. The data set then consisted of 1,355
50m� 50m pixels for each image. The incidence

Figure 4. Bivariate plots of estimated remaining backscatter offset versus correction threshold for all polarizations of all image
pairs. Red, green, and blue markers correspond to HH, HV, and VV polarizations, respectively.
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angle for the SAR data used in the analysis ranged
from 28� to 50�. The dependence of backscatter
change on AGB change is not linear, and therefore a
number of transformations of both AGB and back-
scatter were investigated in the model selection pro-
cess. The transformations are an attempt to
empirically find a suitable model that is linearly corre-
lated with the LiDAR-based AGB maps. To mitigate
overfitting, a cross-validation procedure was used in
the model selection. The regression models investi-
gated are generally given by

y ¼ b0 þ b1xHV þ b2x2HV þ b3xHH þ b4x2HH
þ b5xVV þ b6x2VV þ �,

(8)

where the response variable y is the AGB change on
the linear, square root, or logarithmic scales defined
in Equations 9, 10, and 11, respectively:

DAGB≝AGBafter � AGBbefore (9)

D
ffiffiffiffiffiffiffiffiffiffi
AGB

p
≝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AGBafter

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AGBbefore

p
(10)

Dln AGBð Þ≝ lnAGBafter � lnAGBbefore (11)

The bk are the regression coefficients and � is an
error term. The xij in Equation 8 are backscatter
change in amplitude, power or decibel (dB) units
defined according to Equations 12, 13, and 14,
respectively, for a given polarization.

Dc0A ≝
ffiffiffiffiffiffiffiffiffi
c0after

q
�

ffiffiffiffiffiffiffiffiffiffiffi
c0before

q
(12)

Dc0 ≝ c0after � c0before (13)

Dc0dB ≝ 10log10 c0after
� �

� 10log10 c0before
� �

(14)

Different backscatter change measures were not
mixed in the same model, meaning the same trans-
formation was applied to all explanatory variables for
a certain model. The described response and explana-
tory variable transformations result in nine different
transformation combinations for the left and right
hand side of Equation 8. All submodels of these with
two to five non-zero regression coefficients bk were
included as candidate models. Since the intercept b0 is
always included, this means all models with one to

Figure 5. Bivariate plots of AGB change versus backscatter change between 2007 and 2010 for all L-band image pairs (a–c), and
all P-band image pairs (d–f) after backscatter offset correction. A data point corresponds to the change in value for a 50m by
50m pixel between the AGB maps and between the images in one of the backscatter map pairs. The change scales for AGB and
backscatter are defined in Equations 11 and 14, respectively. Points are colored according to the density of points around that
location in the plot. The darker the color, the higher the density.
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four explanatory variables were investigated. The dif-
ferent combinations of response variable and explana-
tory variable transformations, and the different
possible choices of explanatory variables give a total
of 504 possible models.

As a first step of two in the model selection, the
models with the highest adjusted R2 out of all models
with the same number of explanatory variables and
the same response variable transformation were
chosen. This was done separately for each response
variable transformation, since adjusted R2 values can-
not be compared across different response variable
transformations. Additionally, a model was not chosen
if its adjusted R2 was not increased compared to a
model with fewer variables with the same response
variable transformation.

As the same model was to be used for all image
pairs, we were interested in models that simultan-
eously fit data from all pairs. Because of this, the first
step of model selection was done on the backscatter
offset corrected data, with data from all image pairs
concatenated into one combined data set on which
the model parameters were estimated. The backscatter
offset correction adjusts the relation between backscat-
ter change and AGB change to be similar across
image pairs.

Cross-validation of backscatter-based AGB
change models

In the second step of model selection, an approach
that was denoted leave-one-stand-out (LOSO) cross-
validation was used to validate the AGB change pre-
dictions. Using the stand delineation map, each model
was trained on data from all stands but one, and then
evaluated on the left-out stand. This was repeated
until each stand had been used once for evaluation.
The LOSO cross-validation reduced the computational
cost compared to leave-one-out cross-validation at the
pixel level, and aggregated alternatives such as spatial
leave-one-out cross-validation, as proposed by Le Rest
et al. (2014). The latter has been used to overcome
spatial autocorrelation and was demonstrated in the
modeling of ecological processes.

Since the models should be applicable between
image pairs, the cross-validation was simultaneously
conducted not only across stands, but also across
image pairs. This showed the potential of using a
model trained in one area on one image pair to pre-
dict AGB changes in another area from another
image pair.

The procedure was repeated for all image pairs and
the average performance of each model over all image
pair combinations was estimated to produce an overall
pixel level root-mean-square deviation (RMSD), and a
stand level RMSD for each model. RMSD was used to
denote comparisons with LiDAR-generated references,
while RMSE was used to denote comparisons with
field-based references. RMSD is calculated in the same
manner as RMSE, the only difference being the used
reference data set.

RMSD values were also calculated by applying
LOSO cross-validation, but without switching image
pairs between training and validation. The difference
between these in-pair RMSDs (best-case conditions)
and the across-pair RMSDs (showing temporal stabil-
ity) was the accuracy loss (in terms of RMSD) when
training a model on one pair of images, and predict-
ing on another pair of images. Additionally, in-pair
and across-pair biases were estimated through
calculating the mean residuals for all image pair com-
binations. The biases were estimated through com-
parisons with both the LiDAR-based AGB change
and the field measured AGB change in the evalu-
ation plots.

To be able to compare models with different trans-
formations of the response variable, the predictions
on logarithmic and square root form were back-trans-
formed and corrected for back-transformation bias
prior to computing RMSDs. The predictions on loga-
rithmic form were bias corrected using a ratio estima-
tor according to Snowdon (1991), while the
predictions on the square root scale were bias cor-
rected following the method described in Gregoire
et al. (2008).

Results

Comparisons with LiDAR estimated AGB change

Summaries of the validation results are presented in
Tables 4 and 5 (L- and P-band, respectively). These
accuracies were used as criteria for the model selec-
tion. For both bands, for a given number of variables,
the best performance when compared on the pixel
level to the LiDAR-based AGB maps was achieved for
the AGB change modeled on the square root scale
and backscatter change modeled on the logarithmic
(dB) scale. For these models, at L-band, the standard
deviations of RMSDs from different image pair com-
binations were within 1 t/ha. At P-band, the corre-
sponding values were within 0.5 t/ha. At L-band,
there was a decrease in RMSD of about 4 t/ha and 6
t/ha for the pixel and stand level, respectively, when
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adding a second explanatory variable, but further
increasing the number of variables reduced the pre-
dictive performance, indicating overfitting. At P-band,
each added explanatory variable decreased the RMSDs
of these backscatter models (with AGB change mod-
eled on the square root scale and backscatter change
modeled on the logarithmic scale). However, RMSDs
did not decrease more than 0.1 t/ha and 0.3 t/ha for
the pixel and stand level, respectively, when more
than two explanatory variables were added. Based on
these results, the models highlighted in Tables 4 and 5
were selected to be evaluated through comparison

with the field measured AGB change in the ten
80m� 80m field plots.

In Table 6 (upper half), the mean biases as com-
pared to the LiDAR-based AGB maps, standard devi-
ation of biases, and p values for the selected models are
shown. The p value indicates whether the variance in
bias across pairs (i.e. when training a model on one
image pair, and using the model to make predictions on
another image pair) is significantly larger than in pairs.
The models are identified by a letter indicating the band
and a figure indicating the number of explanatory varia-
bles. In Table 6, it can be seen that the mean biases for

Table 5. Validation accuracy of cross-validated P-band models trained and evaluated on different image pairs.

AGB change measure
c0 change
measure

Number of
variables

Pixel-RMSD
[t/ha]

Pixel-RMSD min
[t/ha]

Pixel-RMSD max
[t/ha]

Pixel-RMSD SD
[t/ha]

Stand-RMSD
[t/ha]

D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB 4 25.6 25.2 26.1 0.3 19.1

D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB 3 25.7 25.1 26.3 0.4 19.2

D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB 2 25.7 25.1 26.4 0.5 19.4

DAGB Dc0dB 4 29.0 28.7 29.6 0.3 19.8

DAGB Dc0dB 2 29.3 28.9 29.8 0.3 20.0

DAGB Dc0dB 3 29.6 29.2 30.0 0.2 19.9

D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB 1 30.0 29.6 30.5 0.3 27.0

D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0A 1 31.0 29.6 34.2 1.5 22.3

DAGB Dc0 4 31.8 28.2 38.1 2.9 22.7

DAGB Dc0 3 32.4 28.3 39.7 3.3 22.9

DAGB Dc0A 1 35.0 34.1 35.8 0.5 23.5

DAGB Dc0dB 1 35.3 35.1 35.6 0.1 26.5

Dln AGBð Þ Dc0dB 2 93.4 86.9 99.7 3.5 60.2

Dln AGBð Þ Dc0dB 4 110.2 106.2 112.8 1.8 70.7

Dln AGBð Þ Dc0dB 3 110.4 103.6 116.2 3.5 70.7

Dln AGBð Þ Dc0dB 1 146.3 118.9 183.2 18.2 224.8

Pixel-RMSD and Stand-RMSD are averages over all combinations of training and evaluation pairs. Columns 5–7 give the minimum, maximum, and standard
deviation of the pixel level RMSDs from all combinations. The models which are highlighted were also evaluated by comparison to field measured AGB
change. Definitions of the AGB and c0 change measures are given in Equations 9–14.

Table 4. Validation accuracy of cross-validated L-band models trained and evaluated on different image pairs.

AGB change measure
c0 change
measure

Number of
variables

Pixel-RMSD
[t/ha]

Pixel-RMSD min
[t/ha]

Pixel-RMSD max
[t/ha]

Pixel-RMSD SD
[t/ha]

Stand-RMSD
[t/ha]

D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB 2 22.2 21.4 23.3 0.6 18.2

D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB 3 22.3 21.4 23.2 0.5 18.3

D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB 4 22.4 21.5 23.4 0.5 18.4

DAGB Dc0dB 2 26.1 25.4 27.1 0.5 19.1

DAGB Dc0dB 3 26.2 25.4 27.2 0.5 19.1

DAGB Dc0dB 4 26.3 25.5 27.5 0.6 19.3

D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB 1 26.3 24.6 28.0 1.0 24.1

DAGB Dc0 3 29.2 26.1 36.8 2.3 19.9

DAGB Dc0 4 29.4 26.1 37.8 2.4 19.9

DAGB Dc0dB 1 32.7 31.5 34.3 0.8 24.8

Dln AGBð Þ Dc0dB 4 87.0 38.0 171.0 47.8 73.8

Dln AGBð Þ Dc0dB 3 95.6 38.0 208.0 62.3 65.7

Dln AGBð Þ Dc0dB 1 123.4 55.6 292.1 76.0 235.4

Dln AGBð Þ Dc0dB 2 129.1 53.5 339.1 88.8 260.3

Pixel-RMSD and Stand-RMSD are averages over all combinations of training and evaluation pairs. Columns 5–7 give the minimum, maximum, and standard
deviation of the pixel level RMSDs from all combinations. The models which are highlighted were also evaluated by comparison to field measured AGB
change. Definitions of the AGB and c0 change measures are given in Equations 9–14.
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L- and P-band were positive and less than 3 t/ha.
Furthermore, the mean biases decreased with the num-
ber of explanatory variables. It is also worth noting that
the mean biases were lower for the L-band models com-
pared to P-band. The mean biases across pairs and in
pairs differed by less than 0.1 t/ha for a given model.
For P-band the variances in bias across pairs were sig-
nificantly larger (p<0.05) than in pairs.

Comparisons with field estimated AGB change

Details of the models with the best predictive per-
formance with respect to the LiDAR-based AGB maps
(RMSD) for both bands are given in Table 7, where
in-pair and across-pair accuracies are presented. To
also evaluate the predictive performance of the models
and avoid the uncertainties related to using the
LiDAR-based estimates, the predictions were com-
pared with the field estimates, and listed as RMSE in
Table 7.

The prediction accuracies (across-pair) from SAR
(18.6–25.8 t/ha, Table 7) were similar to those from
LiDAR (18.1 t/ha). The L-band model L2 (highest val-
idation accuracy) had an RMSE of 20.8 t/ha, while the
corresponding P-band model, P4, had an RMSE of
19.0 t/ha. Compared to the range of field measured
AGB change in the ten evaluation plots, the RMSEs
correspond to 6.3% and 5.7%, for L- and P-band,
respectively. The chosen models indicate that HV was
the polarization most sensitive to AGB changes, and
HH- and VV-derived variables contributed only in P-
band models with three or more explanatory variables,
resulting in very small improvements to the RMSEs.
However, the prediction accuracies across image pairs
depend on the offset corrections, which cannot be
performed with access only to the HV polarization.

The mean biases compared to the field measure-
ments in the evaluation plots, standard deviation of
biases and p values for the selected models are shown
in Table 6 (lower half). Overall, the magnitude of
the mean biases for L- and P-band were less than
2.3 t/ha. The lowest mean biases were achieved for
the P-band models with more than one explana-
tory variable.

To compare the model prediction accuracies from
different sensors and bands, the change predictions of
the SAR models L2 and P4 and the LiDAR-based
AGB maps for the large plots are shown in Figure 6
together with field measured AGB changes. There is
no apparent overall band-related difference in the pre-
dictions, and neither a clear bias or a change in vari-
ance for the largest changes, originating from the
clear-cut plots 9, 12, and 16.

Evaluation of the SAR-based predictions by compari-
son to the LiDAR-based AGB maps captures a more
complete set of AGB change values than present in the
field plots, despite the uncertainty of using LiDAR-based
estimates as reference. Figure 7 shows the AGB change
prediction maps of models L2 and P4 together with the
LiDAR-based AGB change map. The SAR maps depict
across-pair LOSO cross-validated predictions.

The training–prediction pairs used for Figure 7 are
La – Lf, and Pa – Pf, for L- and P-band, respectively.
These combinations represent worst cases in terms of
backscatter offset, in that the 2007 acquisitions across
the pairs have the largest time difference out of all
combinations. Change maps based on other combina-
tions are, however, similar. The predictions both with
L- and P-band data overall capture the general trends
in LiDAR predicted AGB change quite well, albeit
with larger variance locally than the LiDAR-based
change map.

Table 6. Validation and prediction biases of selected models for L- and P-band (models with the lowest pixel level RMSD for a
given number of variables).
Model Across-pair mean bias [t/ha] In-pair mean bias [t/ha] Across-pair bias SD [t/ha] In-pair bias SD [t/ha] p

Bias as compared to LiDAR-based AGB maps
L1 2.26 2.25 1.14 0.80 0.219
L2 2.19 2.18 0.81 0.63 0.300
P1 2.99 2.99 0.46 0.18 0.022
P2 2.81 2.81 0.38 0.11 0.006
P3 2.78 2.76 0.26 0.11 0.032
P4 2.61 2.68 0.47 0.16 0.012

Bias as compared to evaluation plots
L1 �2.29 �2.23 4.78 5.49 0.716
L2 �1.75 �2.09 3.38 4.12 0.775
P1 1.90 1.90 0.99 0.60 0.130
P2 �0.15 �0.17 0.83 0.64 0.301
P3 �0.07 �0.13 0.84 0.88 0.622
P4 �0.31 �0.46 1.41 1.40 0.554

Across-pair values were calculated by training and evaluating on different image pairs, as in Tables 4 and 5, while in-pair values were calculated by train-
ing and evaluating on the same image pair.
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Table 7. Attributes and accuracies of selected models for L- and P-band (models with the lowest pixel level RMSD for a given
number of variables).

Model AGB change measure c0 change measure Predictors
Across-pair pixel-RMSD

[t/ha]

In-pair
pixel-RMSD

[t/ha]

Across-pair
plot-RMSE
[t/ha]

In-pair
plot-RMSE
[t/ha]

L1 D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB HV 26.3 26.3 25.8 25.7

L2 D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB HVþHV2 22.2 22.2 20.8 20.7

P1 D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB HV 30.0 30.0 26.4 26.4

P2 D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB HVþHV2 25.7 25.7 19.1 19.0

P3 D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB HH2 þ HVþHV2 25.7 25.7 18.6 18.5

P4 D
ffiffiffiffiffiffiffiffi
AGB

p
Dc0dB HH2 þ HVþHV2 þ VV2 25.6 25.6 19.0 18.8

Across-pair pixel-RMSD and Across-pair plot-RMSE were calculated by training and evaluating on different image pairs, as in Tables 4 and 5, while In-pair
pixel-RMSD and In-pair plot-RMSE were calculated by training and evaluating on the same image pair. All figures are averages over all valid image pair
combinations.

Figure 6. Field measured AGB change and predicted AGB change based on LiDAR, L-, and P-band SAR data. The SAR-based pre-
dictions are obtained using the models with the lowest RMSD on the pixel level, L2 and P4 in Table 7. For these models, one pre-
diction per image pair is shown. The dominant tree species for each plot is reported above the plot ID.
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The predictions were temporally robust, with differ-
ences in RMSD between in-pair and across-pair predic-
tions within 0.1 t/ha (Table 7). Correspondingly, a
similar robustness was apparent for the RMSEs, which
were calculated from the predictions on the field evalu-
ation plots (Table 7). The differences in RMSE were
within 0.1 t/ha for L-band, and within 0.2 t/ha for P-
band. Moreover, the mean biases (Table 6) across pairs
and in pairs differed by less than 0.4 t/ha for a given
model. The variances in bias across pairs were not sig-
nificantly larger (p> 0.05) than in pairs.

Discussion

The relatively long wavelength of the radar systems
used in this study is a strength when estimating forest
biomass via SAR backscatter, due to long wavelengths
penetrating deeper into the forest canopy and being
sensitive to forest elements down to the order of a
wavelength. Consequently, because the wavelength is
on the order of decimeters for L-band, compared to
meters for P-band, we may further expect L-band
backscatter to be less sensitive to biomass than P-
band backscatter. However, the results of this study
did not show a large difference in performance
between the two bands for predicting hemi-boreal for-
est AGB change. Instead, the predictions with L-band

data achieved RMSD and mean bias values slightly
lower, but close to those with P-band data, when
compared to the LiDAR-based AGB maps. Yet, when
compared to direct change measurements on field
plots, the roles were reversed, and the predictions at
L-band were slightly worse than at P-band, but still
achieving RMSEs close to those of the LiDAR-based
AGB maps used for estimating the parameters of
the models.

The discrepancies between model predictions on
the LiDAR-based AGB maps and the evaluation plots
illustrate a limitation of the study in comparing the
performance of the bands. As the parameters of the
SAR models were estimated on LiDAR-based AGB
maps, and the models achieve accuracies close to the
accuracy of the training data, it may be that their per-
formance is limited by the quality of the LiDAR-based
AGB maps. The prediction accuracy achieved using
SAR data is generally not better than when using
LiDAR data for AGB or AGB change modeling, but
as the SAR data used in the study are high resolution
airborne acquisitions, the two data sources might be
close to each other in information content. Higher
accuracies for the SAR models would possibly have
been achieved if field measurements of AGB change
could have been used to train the models. However,
one must often rely on LiDAR-based predictions due

Figure 7. Biomass change maps, from left to right, based on LiDAR, L-, and P-band SAR data. The SAR-based predictions were
obtained using the models with the lowest RMSD on the pixel level, L2 and P4 in Table 7. The black squares show the locations
of the evaluation plots. The axes are labeled in meters, in UTM zone 33N, datum WGS84 projection.
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to the lack of field plot inventory for large-
area mapping.

The change prediction results presented in Figure 6
show no decrease in accuracy even for the largest
changes of around 300 t/ha. This contradicts the sat-
uration effect noted in earlier studies of biomass state
prediction (Dobson et al. 1992; Rignot et al. 1994;
Imhoff 1995; Fransson 1999), which indicates that it
could be difficult to measure changes below about 100
or 200 t/ha. This result should be further evaluated on
other data sets. However, some previous studies have
indicated that the saturation for high biomass was not
caused by the high biomass itself, but from different
structural changes in the forest as the biomass
increases, with some of them increasing the backscat-
ter, and others decreasing it (Smith-Jonforsen et al.
2007; Joshi et al. 2017). Another important reason for
saturation is due to ground topography (Soja et al.
2013), which is relatively modest at the Remningstorp
test site and thus increases the point of saturation. As
almost all pixels with a biomass change below 100 t/
ha in the test site are from a handful of stands, the
fact that the models can capture unexpectedly large
changes may be due to the specific structure of the
stands or area in question.

The offset correction and change prediction results
were obtained in a hemi-boreal forest that is relatively
flat in topography, and while the results are promis-
ing, they may not generalize to forests growing on
more undulating terrain in the boreal region. This
type of forest is relatively sparse, and a non-negligible
ground contribution is expected to disturb the signal
more with increasing topography. Insights could also
be gained from comparing the performance of the off-
set correction methods for different tree species.
While the correction methods may not be suitable for
other forest types, studies evaluating the offset correc-
tion methods in temperate and tropical forests could
give further insights about the underlying processes.
In high biomass tropical forests, it is possible that the
HV/VV-based correction could be better suited for
also correcting P-band data, as the SAR signal does
not penetrate as far into the dense canopy, making
the interaction more like that of L-band scattering in
less dense forests. For this test site, the P-band HV/
VV ratio showed a slight offset in backscatter, but has
some dependence on biomass change (Figure 3), and
could therefore give a reasonable offset correction for
P-band.

The most important contribution of this study was
the development of a backscatter offset method for L-
band data, which facilitated the prediction of biomass

change between images acquired in different moisture
conditions or with radiometric calibration differences
between them. Specifically, the proposed correction
enabled predictions across image pairs with similar
accuracies as those obtained within an image pair. An
important finding was that a correction based on the
HH/VV polarization ratio, as previously developed for
P-band data, was not suitable for L-band in the same
forest and environmental conditions. Instead, it was
found that for the L-band data, the HV/VV ratio had
the qualities needed for detecting low change areas,
and the offset correction method developed was based
on this ratio. The offset corrections made predictions
across image pairs almost as good as those within
each pair. Yet, the remaining variance in predictions
on the evaluation plots from different image pairs
indicate a more complex relationship between mois-
ture and backscatter intensity than that of a simple
offset. Understanding these relationships considering
the underlying backscatter mechanisms might enable
even better correction methods and more precise
SAR-based AGB change predictions. The correction
methods developed and applied in this study remove
an offset due to moisture or calibration error that is
constant over the whole scene, but cannot remove
local variations.

Conclusions

We have evaluated the performance of a method for
predicting AGB change from changes in P- and L-
band SAR backscatter data in hemi-boreal forests. An
important element of the method is a backscatter-off-
set correction, which is based on a polarization ratio
and does not require any reference ground data. By
training regression models for each band on AGB
maps created from field surveys and LiDAR data, we
showed that both L- and P-band backscatter could
predict AGB changes with errors close to those of the
LiDAR-based AGB maps used for training the models.
The prediction accuracies of L- and P-band models
differed only slightly, although this result may have
been due to limitations of the LiDAR-based AGB
maps used to train the models.

The P-band results were in line with earlier studies,
verifying the results of Sandberg et al. (2014). The
method and evaluation for L-band presented in this
paper is new and the results show almost the same
prediction errors as for P-band. Furthermore, it was
empirically found that the HH/VV-based backscatter-
offset correction used for P-band was not suitable for
correcting L-band data, and instead an HV/VV-based
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correction performed better. The reason for this is yet
to be fully understood, but as P-band SAR is known
to interact more strongly with the ground and stems
of the forest, while L-band SAR backscatter is mainly
from the upper parts of the canopy (Tebaldini and
Rocca 2012), it is possible that the HH/VV-based cor-
rection mainly corrects for ground moisture and that
L-band data instead need to be corrected for can-
opy moisture.

The proposed backscatter offset correction method
for L-band data was shown to facilitate prediction
results across different image pairs almost identical to
those obtained when training and predicting on the
same image pair. Finally, while the HV/VV-based offset
correction worked well for the L-band data in this data
set, more studies are needed to see if this generalizes to
other data sets and regions. Provided that it does, and
that future L-band SAR missions provide HV and VV
data, the method can alleviate and improve the map-
ping of AGB change using L-band SAR data. The find-
ings suggest a potential for large-area mapping of forest
biomass change using, e.g. the upcoming satellite SAR
missions ALOS-4 and NISAR (L-band), and BIOMASS
(P-band), despite varying environmental conditions
and calibration uncertainties.
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ABSTRACT 
 
Pairs of fully polarimetric ALOS-2 PALSAR-2 L-band SAR 
images were used to model biomass on backscatter change 
over seven growth seasons in a hemi-boreal forest. The 
biomass change was related to backscatter change via 
consecutive field surveys of 263 field plots with a 10 m 
radius. To correct for differences in backscatter not related to 
biomass abundance, a HV-VV polarization ratio based 
correction, previously used on airborne L-band data, was 
applied to the data. The uncertainty of obtained predictions 
(lowest model mean RMSE 65.1 t/ha, lowest model mean 
bias 7.1 t/ha) was almost identical whether model fitting and 
prediction used data from the same scene pair, or different 
scene pairs. This could possibly attest to the feasibility of the 
backscatter correction for PALSAR-2 data, but no large 
backscatter offsets were observed for uncorrected data, and 
significant variance in predictions, due to the inherent noise 
in the data and the comparatively small area of evaluation 
plots, inhibit the analysis. 
 

Index Terms— SAR, backscatter, biomass change, 
ALOS-2 PALSAR-2, forestry 
 

1. INTRODUCTION 
 
The Synthetic Aperture Radar (SAR) backscatter intensity of 
longer wavelengths is correlated with forest biomass up to a 
wavelength dependent saturation threshold [1]. Previous 
studies have successfully predicted both biomass and 
biomass change by exploiting this correlation [2–13]. 
However, backscatter intensity is not sensitive only to 
biomass abundance, but also environmental factors, a crucial 
one being soil and canopy moisture, which varies 
considerably between not only seasons, but also between 
days. Thus, when relating changes in backscatter to changes 
in biomass, one has to control for these variations. This has 
been done successfully in hemi-boreal forests using both P- 
and L-band SAR backscatter, utilizing polarization ratios to 
correct for non-biomass related variations in backscatter 
intensity [14, 15]. These studies reported root mean square 
 

errors (RMSEs) of 19 t/ha and 21 t/ha for biomass change 
predictions using L- and P-band models, respectively. 
However, these previous studies utilized data from airborne 
SAR systems. In this study, biomass change over seven 
growth seasons between 2015 and 2022 was predicted using 
regression models relating the biomass change to L-band 
SAR data from the spaceborne ALOS-2 PALSAR-2 sensor, 
using the HV-VV backscatter ratio to correct the backscatter 
intensity, as was previously done for airborne BioSAR L-
band data in [14]. 
 

2. MATERIAL AND METHODS 
 
Remningstorp is a hemi-boreal forest test site in southern 
Sweden (Lat. 58°30' N, Long. 13°40' E). The site consists of 
1,200 ha of productive, commercially managed forest. The 
main species in Remningstorp are Norway spruce (Picea 
abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.), and 
birch (Betula spp.). The soil type is mainly till with a field 
layer of different herbs, blueberry (Vaccinium myrtillus L.), 
and narrow leaved grass (e.g. Deschampsia flexuosa (L.) 
Trin.). The field layer is absent in denser old spruce stands. 
The site is relatively flat, with an elevation that varies 
between 120 m and 145 m above sea level. The estate is 
managed by the Forestry Society's Estate Management 
Company (Skogssällskapet). A thorough description of the 
property has been published in [15]. 
 
2.1. Field data 
 
A systematic grid of 263 field plots with a 10 m radius and a 
200 m spacing were surveyed in 2014-2015, and resurveyed 
after the growth period of 2021. All trees with a diameter at 
breast height (DBH, measured at 1.3 m above ground) of 
more than 4 cm were calipered, species determined, and 
positioned using a real time kinematic global positioning 
system. The height was measured on a subsample of trees, 
randomly sampled with probability proportional to the basal 
area, using a hypsometer. Above ground biomass (AGB) was 
estimated using the Heureka system [17], which applied 
established models for AGB by Marklund [18]. 
 



2.2. SAR data and processing 
 
The study used ALOS-2 PALSAR-2 fully polarimetric high-
sensitive mode data in strip map format. The acquisitions 
were chosen to match the field surveys as well as possible, 
while also avoiding winter dates, when negative temperatures 
and potential snow cover can severely affect the backscatter. 

 
In addition, to avoid changes in backscatter due to acquisition 
geometry, the acquisitions were chosen from the same track 
and with the same ascending orbital direction. Three such 
acquisitions before, and two acquisitions after the growth 
periods between the field surveys were chosen as they met 
the requirements (Table 1). 

 
Table 1. ALOS-2 PALSAR-2 scenes used in the study. 

Scene_ID Observation mode Observation direction Processing level Orbit direction Observation time 
ALOS2056751170-150611 HBQ Right-looking 1.1 Ascending 22:37 
ALOS2379671170-210603 HBQ Right-looking 1.1 Ascending 22:37 
ALOS2054681170-150528 HBQ Right-looking 1.1 Ascending 22:37 
ALOS2052611170-150514 HBQ Right-looking 1.1 Ascending 22:37 
ALOS2342411170-200924 HBQ Right-looking 1.1 Ascending 22:37 

The data were delivered in slant range geometry in 
Single Look Complex (SLC) format. Using an airborne laser 
scanning derived digital terrain model (DTM), the scenes 
were radiometrically and geometrically corrected with 
respect to incidence angle and ground slope and projected to 
ground range to produce radiometrically corrected 
backscatter, γ0, henceforth just called backscatter [14,15]. All 
possible pairs of scenes containing one scene from each of 
the years, altogether six pairs, were defined. Following the 
procedure in [15], each of these pairs were backscatter offset 
corrected so that pixels with a change smaller than 2 dB in 
the HV-VV ratio between the two scenes get the same mean 
backscatter. The correction was applied to each polarization 
separately. After the correction, the mean backscatter in each 
field plot (10 m in radius) was extracted by weighing each 
pixel value by the fraction of the pixel area contained in the 
circular plot area. 
 
2.3. Biomass change prediction 
 
Using the difference in mean backscatter for a plot between 
the two scenes in a pair, biomass change was modelled using 
multivariate linear regression models of the general form 

 

 
(1) 

 
where y is the AGB change, xij are backscatter change for a 
given polarization ij, and b denotes the regression coefficient 
to be estimated. The AGB was modelled on either linear 
(untransformed), square root, or logarithmic scale, and γ0 was 
modelled on square root, linear (untransformed, power), or 
dB scale. The decibel scale is simply a logarithmic 
transformation, but was specifically chosen to comply with 
radar conventions. Different transformations of either AGB 
of γ0 were not used in the same model, except as allowed by 
the second power terms in Equation (1). The transformations 
were an attempt to empirically determine a sufficiently 
expressive model to capture the non-linear relationship  

between AGB change and backscatter change, while still 
keeping the models fairly simple. 

In a first model selection step, offset corrected 
backscatter change data from all scene pairs and field plots 
were pooled to select candidate models from all possible ones 
defined by Equation (1). In this process, adjusted R2 was used 
to select candidate models for each number of variable. Since 
these measures cannot be compared for models with different 
dependent variable scales, the R2 were used to compare only 
models with the same AGB-scale. 

The AGB change predictions of the selected models were 
evaluated in a twofold cross-validation procedure, designed 
to also evaluate the effectiveness of the backscatter offset 
correction by fitting and predicting across-pairs, i.e. fitting 
model parameters on data from one pair and predicting using 
data from another pair. These predictions were then 
compared to fitting and predicting in-pair, i.e. fitting model 
parameters and predicting using data from the same pair of 
scenes. In both cases, leave-one-out cross-validation (LOO-
CV) was applied to the field plots, so that predictions on a 
plot were always done using model parameters fitted to data 
from the remaining field plots. The predictions were 
evaluated by calculating RMSE averages over all such 
combinations, and their standard deviations (SD), for each 
evaluated model. Biases were similarly calculated for each 
combination and averaged for each model. 
 

3. RESULTS 
 
The results of the cross-validation procedure for selected 
models are presented in Table 2. Overall, the predictions were 
very similar whether model parameter fitting and prediction 
were performed using data from the same pair of SAR scenes 
or from different ones. 

Based only on RMSE values, models using the change in 
AGB on a square root scale and the change in γ0 on a 
logarithmic (dB) scale performed the best, with a five 
parameter model (four coefficients and an intercept) 
achieving an RMSE of 65.1 t/ha. Compared to the largest 
field measured AGB change, the RMSEs corresponds to 



18 %. On the other hand, models using the AGB change 
modelled linearly, still using change on a dB scale, had very 
similar RMSE, 68.7 t/ha (19 %) at best, while having smaller 

biases around 8 t/ha, about half the biases of the models with 
AGB change on a square root scale.

Table 2. Summary cross-validation statistics of biomass change prediction models. Columns 4, 6, and 8 are the evaluation 
results when model parameter estimation and prediction were done on separate image pairs, while columns 5, 7, and 9 are 
results from fitting and predicting on data from the same image pairs. Each RMSE and bias figure is an average over all such 
combinations of training and evaluation pairs. The SD of RMSEs are also computed over all such combinations. 

AGB change 
measure 

γ0 change 
measure 

Number of 
variables 

Across-pair 
RMSE [t/ha] 

In-pair 
RMSE 
[t/ha] 

Across-pair 
SD of RMSE 

[t/ha] 

In-pair SD 
of RMSE 

[t/ha] 
Across-pair 
bias [t/ha] 

In-pair 
Bias 
[t/ha] 

Δ√𝐴𝐺𝐵 Δ𝛾ௗ஻
଴  4 65.1 65.0 1.6 1.3 16.6 16.6 

Δ√𝐴𝐺𝐵 Δ𝛾ௗ஻
଴  3 65.9 65.7 1.7 1.6 17.0 16.9 

Δ√𝐴𝐺𝐵 Δ𝛾ௗ஻
଴  2 66.1 66.2 1.4 1.5 17.2 17.3 

Δ√𝐴𝐺𝐵 Δ𝛾ௗ஻
଴  1 68.0 68.0 1.7 2.2 18.2 18.3 

Δ𝐴𝐺𝐵 Δ𝛾ௗ஻
଴  4 68.7 68.8 0.9 1.0 6.9 7.1 

Δ𝐴𝐺𝐵 Δ𝛾ௗ஻
଴  3 69.1 69.1 1.0 1.2 7.1 7.2 

Δ𝐴𝐺𝐵 Δ𝛾ௗ஻
଴  2 69.2 69.4 1.0 1.2 7.1 7.2 

Δ𝐴𝐺𝐵 Δ𝛾ௗ஻
଴  1 71.6 71.6 1.0 1.4 8.6 8.7 

Δ ln(𝐴𝐺𝐵) Δඥ𝛾଴ 4 87.2 87.4 0.6 1.1 11.1 11.2 
Δ ln(𝐴𝐺𝐵) Δ𝛾ௗ஻

଴  3 87.2 87.3 0.7 0.5 11.4 11.4 
Δ ln(𝐴𝐺𝐵) Δ𝛾ௗ஻

଴  4 87.2 87.2 0.7 0.4 11.4 11.4 

Δ ln(𝐴𝐺𝐵) Δඥ𝛾଴ 3 87.3 87.5 0.6 0.8 11.2 11.3 

Δ ln(𝐴𝐺𝐵) Δඥ𝛾଴ 1 87.4 87.3 1.4 0.5 11.4 11.3 
Δ ln(𝐴𝐺𝐵) Δ𝛾ௗ஻

଴  2 87.4 87.5 1.0 0.6 11.4 11.4 
Δ ln(𝐴𝐺𝐵) Δ𝛾ௗ஻

଴  1 87.5 87.5 1.0 0.6 11.4 11.4 

Δ ln(𝐴𝐺𝐵) Δඥ𝛾଴ 2 87.5 87.6 0.7 0.9 11.1 11.3 

 

Figure 1. Bivariate plots of AGB change and γ0 change 
between all image pairs. a and b show uncorrected, while c 
and d show corrected data. VV-data were similar, but not 
shown due to page limitations. 
 

Remaining models included in the cross-validation employed 
other combinations of change measures for AGB and γ0 and 
had higher RMSEs than the aforementioned model classes, 
with RMSEs of 87 t/ha and more, but with biases somewhere 
in between the two, around 11 t/ha. The most important 
polarization in best performing models was HV. All measures 
in the best performing one- and two variable models are based 
on HV. The best performing three variable models 
incorporate one variable based on HH, while one VV variable 
is included in both the best performing four variable models. 
Fig. 1 shows the change in AGB between the inventories 
plotted against the change in γ0 between all scene pairs. There 
is no clear overall offset in γ0 in any direction, and no clear 
difference in offset or decrease in variance for the corrected 
data. 
 

4. DISCUSSION AND CONCLUSIONS 
 
While the obtained in-pair and across-pair AGB change 
predictions were almost identical in prediction performance, 
it is not clear that this could be attributed to the offset 
correction applied to the image pairs. Since the uncorrected 
pairs showed no general offsets in backscatter, there may not 
have been much need for correction. Much clearer offsets 
were observed over the same study area in [14,15] for both 
airborne L- and P-band data. The lack of clear offsets 
between the scenes is possibly due to similar weather and 
moisture conditions at the acquisition dates. 



The RMSEs and biases reported in this study are 
significantly larger than those reported for L-band models 
based on airborne data in [15], but this is not only due to 
differences in quality between satellite and airborne SAR, but 
also due to much smaller evaluation areas. In [14], 80 m × 
80 m plots, about 20 times larger than the 10 m radius plots 
in this study were used. Furthermore, the normalization 
procedure used to calculate relative RMSEs here was to relate 
the RMSE to the largest field measured AGB change. This is 
in contrast to relating it to the average, which is often used in 
the context of state predictions. The problem with using the 
average to normalize biomass change, is that the average 
change tends to be very close to zero, thereby inflating and 
making relative RMSEs extremely dependent on the field 
data set used. A solution could be to treat positive and 
negative changes separately in the evaluation process. To 
facilitate more conclusive comparisons, additional 
acquisition dates should be included if possible, and larger 
evaluation areas could decrease the variance in predictions. 
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ABSTRACT 

This study investigated the potential of utilizing time series 
of TanDEM-X phase heights, corrected for penetration depth, 
to detect silvicultural treatments in hemi-boreal forest. In 
total, 34 field plots with 40 m radius were used in conjunction 
with detailed forest management records to construct a 
reliable data set of treatments. The study area is situated in 
Remningstorp, a forest test site in southern Sweden. In the 
analysis, the temporal mean corrected phase heights were 
compared before and after a silvicultural treatment in order to 
quantify the effects of thinnings and clear-cuts on the phase 
height. As expected clear-cuts were highly distinguishable, 
but thinnings, while exhibiting a negative change in phase 
height on average, were not individually distinct from all 
untreated plots. Moreover, the results regarding the utility of 
applying penetration depth correction for the task were 
inconclusive. Overall, the results look very promising for 
using time series of phase height from TanDEM-X to map 
thinnings and clear-cuts, especially when several 
observations are available before and after the silvicultural 
treatment. 

Index Terms— TanDEM-X, forestry, change detection, time 
series, penetration depth, thinnings, clear-cuts 

1. INTRODUCTION

Remote sensing using satellite synthetic aperture radar (SAR) 
enables frequent mapping of forest variables, since the SAR 
works even in darkness and poor visibility conditions with 
clouds, rain and fog. Free-of-charge data from satellite SAR 
with 5-10 m resolution have great possibility to become one 
of the most important data sources for semi- or automatic 
mapping of forest resources with the potential to 
revolutionize forest planning. Here, time series will play an 
important role to be used in order to map changes, i.e. 
thinnings, clear-cuts and growth, and being the basis for 
proposing appropriate silvicultural treatments. In this con-
text, data could be used from several satellite systems using 
different wavelength bands and polarizations, e.g. TanDEM-
X (X-band ~3 cm, DLR), Sentinel-1 (C-band ~6 cm, ESA), 

ALOS-2 (L-band ~24 cm, JAXA), complementing each other 
by capturing information of the forest from the upper part of 
the canopy (short wavelength) and from the trunks and larger 
branches (long wavelength). 

Recent research shows that tree height and density can be 
estimated with high accuracy based on interferometric 
satellite SAR (InSAR) using TanDEM-X data [1, 2]. In [3], 
above-ground biomass (AGB) and tree height were estimated 
with about the same accuracy from TanDEM-X and ALS 
data. Standwise tree height was estimated with root mean 
square errors (RMSEs) of 4.1% and 7.6% and AGB with 
14.6% and 17.2% at the Swedish test sites Remningstorp and 
Krycklan, respectively. In [4], repeated backscatter 
observations from TerraSAR-X, Sentinel-1 and ALOS-2 
from Remningstorp and Krycklan were analyzed, separately 
and in combination, and used to estimate stem volume based 
on the Water Cloud Model [5, 6]. The relationship between 
SAR backscatter and stem volume differed depending on 
forest structure and environmental conditions, in particular at 
X- and C-band. The highest estimation accuracy was
obtained at L-band. The combination of stem volume
estimates from data acquired at two or three frequencies
achieved an accuracy that was superior to values using single
frequency. When combining estimates from X-, C- and L-
band data, the relative RMSE for 0.5 ha field plots at
Remningstorp was ~30%. It was suggested to combine
multiple frequencies to ensure the highest achievable
accuracy. In [4], only stem volume was estimated using
backscatter data from X-, C- and L-band, separately and in
combination, but without any analysis of change. In [7, 8],
biomass change algorithms were developed separately for L- 
and P-band airborne data. The best L- and P-band model
achieved an RMSE of 21 t/ha and 19 t/ha, respectively
(similar to the ALS-based biomass change of 18 t/ha). Earlier
studies have used TanDEM-X data to detect thinnings and
clear-cuts in hemi-boreal forests [9, 10], but the treatments so
far detected have been relatively aggressive, with half or
more of the forest volume harvested.

The objective of the study was to investigate the 
possibilities of detecting changes of tree height using time 
series of phase height from InSAR data, and to assess the 
utility of applying an InSAR elevation bias correction for the 



purpose. The change studies included detection and mapping 
of thinnings and clear-cuts. The research was based on data 
from the advanced SAR mission TanDEM-X and evaluated 
against reference data in the form of inventoried 40 m radius 
field plots and forest management records detailing 
performed treatments at the hemi-boreal test site of 
Remningstorp in southern Sweden. 

2. MATERIAL AND METHODS

2.1. Test site 
The study was conducted at the hemi-boreal test site 
Remningstorp in southern Sweden (Lat. 58°30’ N, Long. 
13°40’ E). The site covers about 1,200 ha of productive 
forest. The dominant tree species are Norway spruce (Picea 
abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.), and 
birch (Betula spp.). The soil type is mainly till (i.e., a mixture 
of glacial debris) with a field layer consisting of different 
herbs, blueberry (Vaccinium myrtillus L.) and narrow leaved 
grass (e.g., Deschampsia flexuosa (L.) Trin.). In denser old 
spruce stands the field layer is absent. The ground elevation 
varies moderately between 120 m and 145 m above sea level. 
The Remningstorp estate is managed by the Forestry 
Society’s Estate Management Company (Skogssällskapet). A 
more exhaustive description of the property are presented in 
[11]. 

2.2. Field data 
Circular field plots with 40 m radius were subjectively 
distributed within the test site. The plots were situated well 
inside homogenous stands, representing a range of tree 
species, stand ages and stem volumes. For most of the plots, 
every tree was calipered and positioned, while some plots, 
containing dense young forest, were instead sampled using 
12 to 16 circular plots of 5 m to 7 m radius allocated in a 
systematic grid inside the 40 m plots. Allometric functions 
valid for the region were then used to estimate stem volume 
and AGB [12]. Plots were inventoried in three different years. 
In the fall of 2011, 25 plots were inventoried, and during the 
fall of 2012 and spring of 2013 a different set of 20 plots were 
inventoried. In the fall of 2014 the plots previously 
inventoried were revisited unless they had been clear-cut 
since the last inventory. Some additional field plots were also 
added in 2014, resulting in 27 inventoried plots in 2014. 

In order to construct a data set of silvicultural treatments, 
a management plan containing detailed records on performed 
treatments on the forest holding was used. The treatment 
record was used to distribute the field plots into treatment 
types, and the field inventories were used to verify that the 
recorded treatments had actually been performed on 
approximately the recorded date. As some inventoried field 
plots were located outside the estate, they were not present in 
the treatment records, and were thus removed from the study. 
After the verification process, 34 plots in total were included 
in the study, 25 untreated, 5 thinned and 4 clear-cut. The stem 
volume decrease in the thinned plots, as determined from the 

field measurements, ranged from 5% to 80%, while about 
90% to 100% was harvested in the clear-cut plots, leaving 
only seed trees in some cases. 

2.3. Remote sensing data 
A time series of 24 TanDEM-X scenes acquired in bi-static 
configuration from 9 August 2011 to 4 June 2014 were used. 
The scenes were collected in strip map mode, all in VV 
polarization, from either single polarization scenes, or as a 
single channel from a dual polarization scene, with 
bandwidths of 100 MHz or 150 MHz, respectively. The 
height of ambiguity, ℎ𝑎𝑎, ranged between 43 m and 100 m, but 
with the bulk of acquisitions obtained with a ℎ𝑎𝑎 between 
50 m and 65 m. The incidence angles ranged from 19° to 40°. 

2.4. InSAR processing 
TanDEM-X data were delivered in the Coregistered Single 
look Slant range Complex (CoSSC) format. A complex 
interferogram was computed with 5×5 spatial averaging in 
range and azimuth. The interferogram was flattened with 
respect to earth curvature, and Goldstein filtered [13]. The 
flattened phase was unwrapped and converted to the phase 
height by scaling with the wavenumber, and the 
interferometric coherence was estimated from the flattened 
interferogram, using a coherence window of 3×3 pixels. 
Finally, the scenes were interpolated to a ground resolution 
of 10 m by 10 m. The estimated coherence was then corrected 
for decreasing signal-to-noise ratio [14-16]. 

The canopy is subject to substantial penetration of the 
radar signal, and for boreal coniferous forests this leads to a 
downward elevation bias of measured canopy heights of 11-
22 m [17]. In [18], a correction of this bias was proposed, 
which was successfully applied to TanDEM-X data over 
temperate forests [19]. The canopy height bias is given by 

Δℎ =  − |ℎ𝑎𝑎|
2𝜋𝜋

arctan (�|γ|−2 − 1 ), (1) 

where γ is the coherence. The InSAR phase heights in the 
time series were corrected for elevation bias by calculating 
Δℎ on the pixel level, and subtracting it from the height 
values. A thorough derivation of (1) is presented in [18]. As 
the bias correction assumes penetration into an infinite 
volume, it is not theoretically valid when the signal has 
significant ground contributions. While this may apply to 
some field plots with low canopy heights, the correction was 
applied to all plots. 

2.5. InSAR height changes from silvicultural treatments 
To measure the effect of silvicultural treatments on the 
InSAR phase heights, the arithmetic mean phase height over 
each plot was extracted from the TanDEM-X time series, and 
the difference in overall mean value of these mean phase 
heights before and after a recorded treatment was calculated. 
In order to use the untreated plots as a baseline, these were 
assigned false treatment dates. To minimize the effect of the 
non-uniform temporal distribution of the InSAR acquisitions, 



Figure 1. Time series of TanDEM-X phase heights (red) and 
height bias corrected TanDEM-X phase heights (cyan) for three 
treatment types. Treatment dates are indicated by vertical lines. 

these were not placed randomly, or in the midpoint of the time 
series, but at the mean value of actual treatment dates for 
treated plots. 

To assess the utility of the phase height bias correction, 
the calculations were made with and without application of 
the correction. 

3. RESULTS, DISCUSSION AND CONCLUSIONS

While the height bias correction resulted in heights more closely 
resembling the actual tree heights in the data set, the results 
relating to detecting a change from silvicultural treatments were 
inconclusive. As the results in Figures 1 and 2, and Table 1 
show, the average changes resulting from thinnings were on the 
order of meter, and clear-cuts expectedly resulted in much larger 
decreases. While there are group differences between the 
changes from untreated and thinned plots, the box-plots in 
Figure 2 reveals that they are hard to distinguish in individual 

cases. However, given a sufficient density of data points both 
before and after a time point, the statistical significance of a 
measured height discontinuity could be used to quantify the 
uncertainty of a detected treatment. For time series spanning 
longer intervals it would be reasonable to account for possible 
growth in the forest by replacing the simple mean heights before 
and after a time-point by linear equations, and comparing the 
difference in the constant term, or if the time series was long 
enough to reflect the actual non-linear character of tree growth, 
tree height development curves could be fitted to the time series, 
and step-like deviations from a fitted model could similarly 
reflect silvicultural treatments or forest damage. 

Table 1. Mean phase height change after treatment (m) with 
‘Untreated’ included for baseline. 

Metric Untreated Thinned Clear-cut 

Phase height 0.404896 -2.53911 -15.2584

Corrected 
phase height 1.233816 -0.8281 -18.0332
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Abstract: Site index and stand age are important variables in forestry. Site index describes the
growing potential at a given location, expressed as the height that trees can attain at a given age
under favorable growing conditions. It is traditionally used to classify forests in terms of future
timber yield potential. Stand age is used for the planning of management activities such as thinning
and harvest. SI has previously been predicted using remote sensing, but usually relying on either
very short time series or repeated ALS acquisitions. In this study, site index and forest stand age
were predicted from time series of interferometric TanDEM-X data spanning seven growth seasons
in a hemi-boreal forest in Remningstorp, a test site located in southern Sweden. The goal of the
study was to see how satellite-based radar time series could be used to estimate site index and stand
age. Compared to previous studies, we used a longer time series and applied a penetration depth
correction to the phase heights, thereby avoiding the need for calibration using ancillary field or ALS
data. The time series consisted of 30 TanDEM-X strip map scenes acquired between 2011 and 2018.
Established height development curves were fitted to the time series of TanDEM-X-based top heights.
This enabled simultaneous estimation of both age and site index on 91 field plots with a 10 m radius.
The RMSE of predicted SI and age were 6.9 m and 38 years for untreated plots when both SI and age
were predicted. When predicting SI and the age was known, the RMSE of the predicted SI was 4.0 m.
No significant prediction bias was observed for untreated plots, while underestimation of SI and
overestimation of age increased with the intensity of treatment.

Keywords: site index; time series; InSAR; height development curves; growth measurement; forestry;
TanDEM-X

1. Introduction

In forests, wood productivity is of interest in commercial forestry to determine eco-
nomic value and to support the planning of silvicultural treatments. Mapping of forest
productivity and age can also be useful in monitoring and modeling forest biomass (carbon
stock) and changes in this over time. Forest productivity can be expressed in terms of site
index (SI), a variable expressing the expected height of dominant trees at a reference age,
given the local conditions. In addition to being a useful tool in economic assessments,
forecasting, and planning in the commercial management of forests, large-scale mapping of
SI can be used to quantify the effects of environmental changes, such as mean temperature
changes or droughts, on the productivity of forests [1]. Such mappings can be used to make
predictions about the geographically distinct consequences of climate change.

SI can be determined based on climatic and field conditions such as precipitation,
temperature, and classification of soil strata, which is useful when no trees are present on
the site. Another way to estimate SI uses age and dominant- or top-height measurements
and is generally favored over the previous method due to its practicality, low cost, and
higher accuracy. It requires the location to have an established even-aged forest and relies
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on a strong correlation between volume growth and height growth [2]. The definitions of
top height vary, where some are based on the mean height of dominant trees, and others
on the maximum tree height, or the mean height of a certain percentage of the highest trees
in an area. In Sweden, the SI estimated from top height describes the site productivity for
the dominant species in terms of the achievable height in meters of the largest diameter
trees at a specific reference age (ASI). The top height is defined as the mean height of the
100 trees with the largest diameter at breast height per hectare. This definition of top height
is sometimes called H100, and is meant to represent the upper height of tree crowns in the
forest. Top height has successfully been estimated using different remote sensors. Examples
include estimating top height with the maximum airborne laser scanning (ALS) canopy
model height in a 10 m × 10 m window, or the maximum height in 500 m2 plots of an aerial
stereo-image-based canopy height model (CHM) [3,4].

While SI is not the most commonly estimated forest variable, it has been success-
fully predicted, often together with the related variable stand age, using a few different
approaches, sensors, and sensor combinations. Commonly stand or tree heights are es-
timated by some remote sensing techniques and compared to known height–age curves
to determine SI and age [5–11]. Véga and Onge [5] used CHMs based on historical aerial
photographs and ALS from four time points spanning a period of 58 years to predict SI
and age. Their models were estimated by minimizing mean absolute residuals to age-
height curves, where the heights were extracted from CHMs calibrated with individual
tree growth reconstruction. This method required counting tree rings on the cross-sections
of felled trees to derive correction equations between tree heights from manual CMH
interpretation and the field reconstructed heights. The procedure resulted in 2.4 m RMSE
for SI and seven years RMSE for age predictions on 400 m2 plots. Kandare et al. [6] used an
individual tree crown (ITC) approach for predicting SI in boreal forests using airborne laser
scanning (ALS) and hyperspectral data. They estimated the age, height, and diameter at
breast height of the dominant trees from ALS and hyperspectral metrics. These were then
used in age-height curves to predict SI. When predicting both SI and age, the method by
Kandare et al. achieved RMSEs of 4.3 m and 34 years, respectively. When the age from
field data was used in the prediction, the RMSE of SI predictions dropped to 1.18 m [6].
Solberg et al. used age-independent equations of top height growth and single tree ALS
data to predict SI by matching single dominant trees in repeated ALS measurements six
years apart [7]. They estimated SI values very close to field-based values for individual
sample trees (bias 0.27 m, RMSE about 2.8 m, as interpreted from a figure). Penner et al. [8]
used two successive ALS collections, acquired 13 years apart, to estimate SI with an RMSE
of 2.5 m and a bias of 0.3 m on 400 m2 field plots.

Many of the reported results are good but require access to long time series, as in
the case of [5], rely on relatively costly ALS data, usually from several years, or on local
calibration of remote sensing data or predicted attributes. Synthetic Aperture Radar (SAR)
provides a cost-efficient alternative to ALS and aerial photography that is independent of
sunlight and relatively unhindered by clouds and precipitation, thereby providing reliable
year-round coverage of large parts of the world from different spaceborne systems. These
operate in different parts of the microwave spectrum, called bands, corresponding to
different wavelengths. Shorter wavelengths, such as the X and C bands, have significant
contributions from the top part of the canopy and are, therefore, well suited for canopy
height estimation using single-pass SAR interferometry (InSAR). Sentinel-1, a C band
SAR system that provides open access data over large parts of the world, does, however,
not have single-pass capability. TanDEM-X (TerraSAR-X add-on for Digital Elevation
Measurement) is a two-satellite constellation that captures single-pass interferometric
InSAR images at X-band (wavelength 3.1 cm). It provides data over a large part of the
world and has proven itself valuable in forest variable retrieval [12,13]. Several studies
have used TanDEM-X for the retrieval of forest variables [3,14–17]. Many of these have
estimated forest heights from TanDEM-X data [3,14,17–21], and a few have investigated
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height development due to deforestation, silvicultural treatments, or growth [22–24], or
used phase height development to estimate biomass and volume changes [25–27].

The use of TanDEM-X data for SI prediction has so far been limited to Persson and
Fransson [9], Wallerman et al. [10], and Persson and Fransson [11]. In these studies, simple
linear models relating TanDEM-X phase heights to ALS percentiles or Lorey’s heights
(i.e., basal area weighted mean heights) from field data were used as calibration. Wallerman
et al. [10] estimated SI when the age was provided, with an RMSE of 18.6% (corresponding
to around 6–7 m, as interpreted from a figure) on 314 m2 plots. They used TanDEM-X image
pairs from three growth seasons calibrated using ALS data. Persson and Fransson [11]
used four TanDEM-X acquisitions covering three growth seasons, calibrated using ALS
data or Lorey’s height from field data. They predicted SI with 4.4 m RMSE and age with
17.8 years RMSE on 0.5 ha plots. The need for calibration, however, hampers the scalability
of the methods, as it relies on local high-resolution ALS data or field data. Furthermore,
the usefulness of calibration data decreases with the time between data collection and the
TanDEM-X acquisition date due to forest growth and other changes. Because of this, longer
time series may often need calibration data from multiple time points.

In this study, we wanted to use a longer and denser time series of TanDEM-X acqui-
sitions than in the previous studies and simultaneously avoid the use of calibration of
the TanDEM-based heights via ancillary remote sensing or field data. Additionally, all
remote sensing studies predicting SI that we are aware of use only plots, which appear
to be unaffected by silvicultural treatments during the observation period. This study
included plots subject to different silvicultural treatments during the study period to assess
the potential effects on the predictions.

The remainder of the paper is structured as follows: Section 2 starts with a description
of the test site and field data, after which the TanDEM-X data and its processing into
TanDEM-X-based top heights are detailed. After this, established height development
curves (HDC) and how they are used to calculate SI from field-measured top height and
age are described. This is followed by a description of the method by which the SI and
age are predicted by fitting an HDC to the time series of TanDEM-X-based top heights and
how the results were evaluated. Section 3 presents the results of SI and age predictions.
Section 4 contains a discussion of the results, and finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Test Site and Field Data

The study was conducted in Remningstorp, a forest test site located in southern Swe-
den (Lat. 58◦30′N, Long. 13◦40′E), consisting of about 1200 ha of commercially managed
hemi-boreal forest. About two-thirds of the forest grows on till, a mixture of glacial debris,
with, except in old spruce stands, a field layer of herbs, blueberry (Vaccinium myrtillus
L.), and narrow-leaf grass (e.g., Deschampsia flexuosa (L.) Trin.). The main tree species are
Norway spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.), and birch (Betula
spp.). The rest of the forest grows on peatland, dominated by Scots pine. The landscape is
mainly flat, with mild slopes, located 120 m to 145 m above sea level.

SI was determined for 91 circular field plots with a 10 m radius in a survey carried out
in the fall of 2021. The age and height of two dominant trees per plot were measured, and
the dominant species recorded. SI was calculated from the mean age and height for each
plot. Using forest treatment records and inspection of biannual aerial orthophotos, the plots
were classified into 2 clear-cut plots, 45 thinned plots, 7 pre-commercially thinned plots, and
26 untreated plots. Among the 91 plots, 11 plots were not covered by the available treatment
records nor determined clear-cut in the inspection of orthophotos and, therefore, referred to
as “undocumented”. While clear-cuts were evident in the available orthophotos, thinnings
were difficult to detect, and it is likely that a significant portion of these undocumented
plots were, in fact, thinned or pre-commercially thinned. Table 1. shows the mean and
range of SI and the field-measured variables for each treatment group.
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Table 1. Summary statistics on the 10 m radius field plots used in the study.

Treatment Top Height [m]
Min/Mean/Max

Age [Years]
Min/Mean/Max

SI
Min/Mean/Max n

Untreated 14/25/32 25/52/140 13/34/45 26
Pre-commercially thinned 14/20/28 15/25/50 27/35/44 7

Thinned 12/21/32 20/35/105 16/38/50 45
Clear-cut 25/26/28 60/70/80 30/30/30 2

Undocumented 15/24/29 25/49/96 16/34/40 11

SI values based on a previous field survey in 2014 were also available for 51 of the
plots. Since the inherent productive potential of a specific site is not expected to change
significantly in seven years, this dataset provided a means to characterize the uncertainty in
the reference data. For these 51 plots, the variation in terms of Root Mean Square Deviation
(RMSD) and bias, calculated according to Equations (1) and (2), between the 2021 and 2014
surveys of SI was 3.3 m and 2.0 m, respectively.

RMSD =

√√√√∑N
i=1

(
SI2021

i − SI2014
i

)2

N
(1)

bias =
∑N

i=1

(
SI2021

i − SI2014
i

)
N

(2)

2.2. SAR Data

Thirty TanDEM-X scenes were acquired in a bi-static configuration over Remningstorp
between 11 August 2013 and 24 September 2018. The scenes were acquired in strip-map
mode and included a vertical transmit/receive (VV) polarization, acquired either as a single
polarization or as a single channel from a dual-polarization scene. The bandwidths were
100 MHz or 150 MHz, respectively. A single polarization was chosen to avoid polarization-
dependent systematic differences in phase heights, and the VV polarization specifically
was chosen because it provided the best temporal coverage of the time period under study.
Furthermore, using meteorological records, only acquisitions from dates preceded by a
three-day average temperature of above 5 ◦C were included since freezing temperatures
severely affect the observed radar phase heights from vegetation. The height of ambiguity,
HoA, ranged between 43 m and 100 m, but most scenes were acquired with a HoA between
50 m and 65 m. The incidence angles ranged from 19◦ to 40◦.

The data were delivered in the Coregistered Single look Slant range Complex (CoSSC)
format. A complex interferogram was computed with 5 × 5 spatial averaging in range and
azimuth. The interferogram was flattened with respect to earth curvature, and Goldstein
filtered [28]. The flattened phase was unwrapped and converted to phase height by
scaling with the wavenumber, and the interferometric coherence was estimated from the
flattened interferogram using a coherence window of 3 × 3 pixels. Finally, the scenes were
interpolated to a ground resolution of 10 m × 10 m. The estimated coherence was corrected
for decreasing signal-to-noise ratio [3,15,17].

The radar signal penetrates significantly into the canopy, and for boreal coniferous
forests, this leads to a negative elevation bias of the canopy heights that can sometimes
be as large as 10–20 m [3]. In [29], a correction of this bias was proposed, which has
successfully been evaluated on TanDEM-X data over temperate and hemi-boreal forests [24,
30]. According to [29], the canopy height bias is given by

∆h =
|HoA|

2π
tan−1

(√
|γ|−2 − 1

)
, (3)



Remote Sens. 2023, 15, 4195 5 of 16

where γ is the volume coherence, and HoA is the height of ambiguity. The InSAR phase
center heights in the time series were corrected for elevation bias by calculating ∆h on pixel
level and correcting the height values to produce InSAR-based canopy heights. A thorough
derivation of (3) is given in [29]. As the bias correction assumes penetration into an infinite
volume, it is not theoretically valid when the signal has significant ground contributions,
and as a rule of thumb, the canopy height should be at least twice the bias correction. The
correction was applied to all plots, although some field plots with low canopy heights
or sparse forests could potentially violate this criterion. The ground contributions to the
pixels with the highest phase heights on each plot are generally assumed to be small, and
as described in Section 2.3, only the highest InSAR canopy heights on each plot influence
the estimated top height in the method applied. However, ground contributions are likely
dominant in clear-cut plots after treatment, but these were nevertheless corrected using
Equation (3).

Each acquisition was assigned an integer representing its growth period based on the
date of acquisition. A growth period was defined to start on 15 June, approximating the
halfway point of the actual growth period, and last for one year. The earliest acquisition
date was assigned to growth period 0, and the latest acquisitions were assigned to growth
period 5.

2.3. Top Height Estimation

For each date, the corrected phase height values of pixels covered or intersected by a
polygon defining the field plot region were extracted. In order to estimate the top height
from these pixels, the 90th height percentile was calculated for each plot and date. Different
percentiles were investigated, and generally, the higher percentiles correlated better with
field-measured top heights. The 90th height percentile will hereafter be referred to simply
as TanDEM-X top height.

2.4. Site Index

Established HDCs for common Swedish tree species, as developed in [31,32] and
summarized in [33], describe the expected top height H2 at stand age A2, given a measured
top height H1 at stand age A1:

H2(H1, A1, A2) =
H1 + d + r(H1, A1)

2 + 4βAb2
2

H1−d+r(H1,A1)

, (4)

r(H1, A1) =

√
(H1 − d)2 + 4βH1 A1

b2 , (5)

d = βAb2
SI , (6)

where β and b2 are previously determined tree species-specific fixed parameters, and ASI is
the reference age. Equation (4) is commonly used to calculate SI given field measurements
of top height and age, as was done with the field data in this study. By setting A2 to the
preferred SI reference age and H1 and A1 to the measured height and age, H2 equals the SI.
The HDCs were developed from multiple measurements on sets of field plots in even-aged
forests, the predominant forest type in Sweden, and are therefore valid in such forests.

If H1 is set to a specific SI value instead of a measured height and A1 is set to the
corresponding reference age, H2 gives the expected top height at any age A2. For illustration,
the resulting HDCs of Norway spruce for a few values of SI are shown in Figure 1.
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Figure 1. HDC describing the top height growth of Norway spruce.

2.5. Site Index Estimation

Setting H1 and A1 in Equation (4) to SI and the corresponding reference age, respec-
tively, and substituting A0 + GP (growth period) for A1, allows us to express TanDEM-X
top height H as a function of SI and GP, explicitly

H(A0 + GP, SI) =
SI + d + r(SI, ASI)

2 + 4β(A0+GP)b2

SI−d+r(SI,ASI)

. (7)

SI and A0 were determined by applying a weighted non-linear least squares regression
of Equation (7) to the time series of TanDEM-X top heights, leaving initial age (age at the
time of the first TanDEM-X measurement, A0) and/or SI as parameters. The function was
fit to each field plot using dominant species information from the field data to select the
correct fixed parameters, and two different prediction cases were applied; (a) estimates of
both SI and A0 for each plot, and (b) estimates of only SI, assuming that the initial age is
known. In case (b), A0 in the fitting was supplied from the field data. Figure 2 illustrates
prediction case (a). In this figure, the process of fitting A0, can be considered as a translation
in time of the time series of TanDEM-X top heights to find the optimal fit, while the fitting
of SI corresponds to the choice of optimal curve out of the family defined by Equation (7).

The least squares regression was performed using the nls function from the stats
package of the open-source R programming language [34]. By using the port algorithm, the
solver utilized an implementation of the nl2sol algorithm [35]. The SI and A0 (in prediction
case (a)) were initialized to 25 and 75 and constrained to the intervals [4, 60] and [4, 200],
respectively. This algorithm was chosen because of the possibility of setting bounds for the
parameters. Otherwise, the algorithm tended to diverge or produce implausible parameter
values for plots where TanDEM-X phase heights decreased over time. In case the fitting
did not converge, it was restarted and initialized using the parameter values obtained in
the non-converging fit.
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The uncertainty of the InSAR phase height is, up to a critical value, roughly inversely
proportional to the interferometric baseline [36] and hence proportional to HoA. Because
of this, scenes with a baseline below, or equally an HoA above, some threshold value
are often omitted in pursuit of high precision. In order to account for the HoA-related
uncertainty without sacrificing temporal resolution, each observation was weighted in the
fitting procedure with the reciprocal of HoA.

The SI and A0 predicted by parameter estimation were visually inspected via plots
of the fitted HDC alongside the TanDEM-X top heights and the HDC expected from
the field-data-based SI and age. The quality of predictions of A0 and SI were evaluated
by comparisons with the corresponding field-data-based values, and prediction results
were further visually evaluated through plots to investigate possible correlations between
prediction errors and SI, stand age, species, or treatment groups. The Root Mean Square
Error (RMSE) and bias were calculated for each treatment group k as

RMSEk =

√
∑i=nk

i=1 (ŷi − yi)
2

nk
, and (8)

biask =
∑i=nk

i=1 (ŷi − yi)

nk
, (9)

where ŷi is the ith prediction, yi the corresponding field data value, and nk is the number of
field plots in group k. Additionally, the coefficient of determination between predictions
and reference values was calculated.

3. Results

In both prediction cases, the HDC fitting resulted in convergent solutions for all
91 field plots. For the vast majority of plots, a convergent solution was computed from the
first initialization, but for a handful of plots, a re-initialization was required, as described
in Section 2.5.
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3.1. Predicting Both SI and Stand Age

In prediction case (a), when predicting both SI and A0, the RMSEs and biases (as
defined in Equations (8) and (9)) tended to increase with the intensity (in terms of expected
relative biomass reduction) of the treatment. Table 2 shows the evaluation results for
this case. For the untreated plots, the predicted SI had an RMSE of 6.9 m. The RMSE of
pre-commercially thinned plots was 9.5 m, increasing to 16.1 m for the thinned group. The
clear-cut group, however, had a slightly lower RMSE of 13.2 m.

Table 2. Treatment-wise summary statistics of SI and age predictions from HDC fitting to time series
of TanDEM-X phase heights. P-c thinned = Pre-commercially thinned.

Treatment SI RMSE
[m] SI R2 SI Bias

[m]
Age RMSE

[Years] Age R2 Age Bias
[Years] n

Untreated 6.9 0.46 −1.6 38 0.406 9.6 26
P-c thinned 9.5 0.24 −7.8 22 0.321 11.9 7

Thinned 16.1 0.06 −12.6 82 0.015 52.5 45
Clear-cut 13.2 - −13.2 137 - 136.8 2

The coefficient of determination between predicted and reference SI was 0.46 for the
untreated plots and decreased to 0.24 for the pre-commercially thinned plots. It was very
low, 0.06, for the thinned plots. R2 of the clear-cut plots is not reported, as it yields no
information with only two observations. A plot of the field measured vs. predicted SI is
shown in Figure 3.

Similarly, the magnitude of the biases of predicted SI increased with the relative
intensity of the treatment, from a bias of −1.6 m for the untreated group to −7.8 m for
the pre-commercially thinned group, −12.6 m for the thinned group, and −13.2 m for the
clear-cut group. However, only the biases for the thinned and pre-commercially thinned
plots were significant at the 95% confidence level (Table 2 and Figure 4).

The predicted initial age A0 had an RMSE of 38 years for the untreated group, 22 years
for the pre-commercially thinned group, and then increased with the intensity of treatment
to 82 for the thinned group and 137 years for the clear-cut plots.

The R2 between predicted and reference age are similar to those for SI, 0.4 for untreated
plots, and decreasing with treatment intensity. The R2 of the clear-cut plots is not reported,
as it yields no information for only two observations.

The bias of predicted initial age increased in magnitude with the intensity of treatment,
with a more intense treatment having a larger positive age prediction bias, going from
9.6 years for the untreated group to 137 years for the clear-cut plots. However, only the age
prediction biases for thinned and clear-cut plots were significant at a 95% confidence level
(Table 2 and Figure 5).

3.2. Predicting SI Assuming Known Age

In prediction case (b), when predicting only SI, using the field-measured age in the
HDC fitting, the precision was better than for case (a), with RMSEs between 2.2 m and
5.3 m for all treatment groups. The biases were also smaller for every treatment, all between
−2 m and 0.5 m (Table 3 and Figure 6. Moreover, none of the biases were statistically
significant at a 95% confidence level. The coefficients of determination, R2, between true
and predicted SI were relatively high, with R2 values between 0.6 and 0.8. A plot of the
field measured vs. predicted SI is shown in Figure 7.

An example of a time series of TanDEM-X top heights for an untreated plot superim-
posed with the fitted HDC and the reference-data-based HDC is shown in Figure 8. The
size of a point representing TanDEM-X top height observation is proportional to its weight
(reciprocal of HoA) in the regression. In this example, the slope is slightly overestimated,
leading to an overestimation of SI and an underestimation of stand age.
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Figure 3. Plot of Predicted vs. field measured SI, obtained via simultaneous prediction of age.
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Table 3. Treatment-wise summary statistics of SI predictions assuming known age.

Treatment SI RMSE
[m] SI R2 SI Bias

[m] n

Untreated 4.0 0.80 −0.8 26
P-c thinned 5.3 0.63 −1.21 7

Thinned 3.3 0.73 0.47 45
Clear-cut 2.2 — −1.99 2

3.3. Error Characteristics

A clear correlation between severe underestimations of SI and overestimations of age
was observed, as can be deduced from Table 2, and is perhaps even more clear in Figure 9,
which shows predicted vs. reference SI, colored by the age prediction error. For both
prediction cases, plots of prediction errors against reference age (in case (a)), reference top
height and averaged height residuals from HDC fits were inspected to identify additional
correlations, but none were found.
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Figure 7. Predicted vs. field measured SI, using field measured ages in the fitting. Colored by
treatment. In the bottom left panel, thinned plots are shown in blue, while clear-cut plots are shown
in red.
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4. Discussion

The TanDEM-X top height, i.e., the 90th height percentile of bias-corrected phase
heights, captured the canopy top height reasonably well. This was evidenced by (1) the
relatively small and statistically insignificant prediction biases on untreated plots in case
(a), when predicting both SI and age, and (2) the very low RMSE and bias of the predictions
of SI in case (b), when age was provided from field data.

The RMSE of 4.0 m for prediction case (b) is significantly lower than the RMSE of
6–7 m in [10], which used ALS-calibrated TanDEM-X heights and similarly predicted only
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SI on 10 m radius plots. In [10], the prediction of both SI and age using TanDEM-X data
(corresponding to case (a) in this paper) was unsuccessful due to divergent solutions.

The RMSE for untreated plots in prediction case (a), 6.9 m, is larger than some previous
studies [5,7–9,11], but they cannot be directly compared, as they differ in SI reference ages
and/or the area of evaluation units. For example, this study used 10 m radius plots, while
in [11], reporting 4.4 m and 17.8-year RMSEs, the plots were 16 times larger. In other
studies, such as [5] (2.4 m RMSE) and [7] (about 2.8 m RMSE), the reported SI predictions
differed in species and the reference age (50 years in [5], 40 years in [7]) at which the SI
height is defined, due to local functions and practices.

Silvicultural treatments, from pre-commercial thinning to clear-cutting, lead to un-
derestimation of the slope of the HDC, which in turn leads to underestimation of SI and
overestimation of age. This tendency increased with the intensity of treatment.

We did not observe systematically larger prediction errors for mature stands, as
observed in, for example, [5], where predictions based on measurement periods capturing
later stand development stages with lower height growth rates produced more uncertain
estimates of both SI and age. As the growth rate decreases with age, the importance
of absolute height estimates increases (Figure 2). The absence of increased prediction
uncertainty for older untreated plots further indicates that the absolute top height is
estimated well by the TanDEM-X top height.

Some of the uncertainty in predictions is explained by edge effects. From inspection of
orthophotos, we found that plots with large deviations between predictions and reference
values were often located close to, or even across, stand boundaries or roads since the plot
locations in the field surveys were distributed in a systematic grid. During the analyses, it
was found that for such plots, the measured phase heights could be drastically different
depending on look direction, which caused us to use only acquisitions from a descending
orbit. This maximized the duration and resolution of the time series. Removal of such edge
plots would likely have led to lower RMSEs in the predictions, but they were nevertheless
kept in order to better reflect realistic results with a minimum amount of manual interven-
tion. Because of this, it is also reasonable to expect higher precision for larger prediction
units, where boundary effects have a smaller impact on the prediction or can be dealt with,
for example, by using buffer zones.

Given the small prediction biases observed for untreated plots in case (a) and the
apparent overall precision of top height estimates, we expect even longer time series to
increase the quality of predictions of both SI and age significantly from the results for
prediction case (a) in untreated plots. Longer time series may also mitigate the underestima-
tion of slope resulting from treatments if the influence of such treatments on the TanDEM-X
top height is transient in nature. Future studies should investigate the inclusion of multiple
polarizations as a way to further increase usable observations.

Further, the prediction of SI and age via weighted non-linear regression readily accom-
modates the inclusion of other height data sources since top heights based on any source
could simply be added to the time series and weighted according to the uncertainty of the
source. Alternatively, since the SI prediction quality was shown to be much better assuming
known age, the method could also be combined with other data sources by supplying
age from field data or predictions from photogrammetric time series, as in [37]. In this
study, the dominant species was assumed to be known, but in a practical application, the
dominant species could also be predicted based on other data sources.

It should be noted that although the method proposed does not use any ancillary field
data or remote sensing data such as ALS for calibration of the TanDEM-X data, it does
require an accurate DTM in order to obtain reliable canopy heights from phase heights.
This requirement is fulfilled in a rapidly increasing part of the world. Additionally, the
HDCs used are developed using data from even-aged stands, and their applicability in
other types of forest should be further investigated.

As the method presented does not rely on local calibration and easily accommodates
and benefits from additional TanDEM-X scenes that extend or increase the temporal resolu-
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tion of the prediction period, it is suited for producing wall-to-wall estimates over large
areas of forest.

5. Conclusions

SI, the expected top height at some reference age, and stand age are important variables
in forest management and forecasting. This study presented and evaluated a method of
predicting SI and age using only time series of TanDEM-X data and a DTM.

The method consists of fitting established HDC to the time series, using the 90th
height percentile of canopy penetration corrected phase heights as a surrogate for forest top
heights. Predicted SI and age were retrieved as parameter values minimizing the squared
top height residuals.

SI and age could be unbiasedly predicted for untreated plots, and the RMSE of
predictions is likely to decrease with the length and temporal resolution of the time series
available. When the stand age was known, the SI was predicted with an RMSE comparable
to that of field-based measurements.

The results for treated plots indicate that the RMSE and bias of predictions increase
with the intensity of silvicultural treatments, with a larger relative decrease in stem volume
on average leading to a larger underestimation of SI and an overestimation of stand age
and a higher RMSE for both variables.

In general, the results demonstrate viability for large-scale wall-to-wall mapping of
SI using time series of TanDEM-X data without the need for ancillary data for height
calibration. Further studies should investigate the use of multiple polarizations and both
orbit directions to increase the length and temporal density of useful time series in an effort
to further increase the obtained prediction quality.
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