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Abstract: The global prevalence of type 2 diabetes mellitus (T2DM) has surged in recent decades, and
the identification of differential glycemic responders can aid tailored treatment for the prevention
of prediabetes and T2DM. A mixed meal tolerance test (MMTT) based on regular foods offers the
potential to uncover differential responders in dynamical postprandial events. We aimed to fit a
simple mathematical model on dynamic postprandial glucose data from repeated MMTTs among
participants with elevated T2DM risk to identify response clusters and investigate their association
with T2DM risk factors and gut microbiota. Data were used from a 12-week multi-center dietary
intervention trial involving high-risk T2DM adults, comparing high- versus low-glycemic index
foods within a Mediterranean diet context (MEDGICarb). Model-based analysis of MMTTs from
155 participants (81 females and 74 males) revealed two distinct plasma glucose response clusters
that were associated with baseline gut microbiota. Cluster A, inversely associated with HbA1c and
waist circumference and directly with insulin sensitivity, exhibited a contrasting profile to cluster B.
Findings imply that a standardized breakfast MMTT using regular foods could effectively distinguish
non-diabetic individuals at varying risk levels for T2DM using a simple mechanistic model.

Keywords: differential responders; clustering; personalized nutrition

1. Introduction

The global prevalence of type 2 diabetes mellitus (T2DM) is expected to reach 783.2 mil-
lion (12.2%) in 2045 [1]. T2DM is strongly associated with the risk of developing cardiovas-
cular disease (CVD), which is the leading cause of mortality and morbidity globally [2,3].
Major risk factors for the development of T2DM include heredity, increased waist cir-
cumference, and elevated glycated hemoglobin (HbA1c). Furthermore, elevated glycemic
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variability and postprandial glucose and insulin responses may affect the risk of developing
T2DM and CVD among non-diabetic individuals [4,5].

Recent studies have revealed large inter-individual variations in plasma glucose after
corresponding meals and found that gut microbiota and food structure are important deter-
minants of the differential response [6,7]. Hallmark studies have developed models to pre-
dict plasma glucose concentrations based on gut microbiota data, health information, and
basic subject characteristics [6,8]. Personalized guidelines based on such predictions were
shown to be more efficient than healthy dietary patterns, such as a common Mediterranean
diet in lowering HbA1c levels among prediabetic patients [9], although large differences
in total carbohydrate intake between the groups may in part have confounded the results.
Thus, tailored guidelines based on the glucose variability in postprandial dynamic response
may be an effective way to lower the risk of T2DM.

Clustering of dynamic features of the postprandial response could aid in identifying
differences in glucose variability to the same dietary intake and provide a simple way of
categorizing individuals according to diabetes risk. Such clusters may be targets for tailored
diet and lifestyle interventions to prevent prediabetes or T2DM. Differential responders
were identified after consuming an oral glucose tolerance test (OGTT) [10], but mixed
meal tolerance tests (MMTT) based on regular foods are underexplored for this purpose
when measuring only glucose [11]. Strong correlations between the response to OGTT and
MMTT have been reported, showing that mixed meals with more complex composition
that also affect lipid and protein metabolism are effective in reflecting glucose metabolism
and perturbation thereof [11]. Furthermore, although gut microbiota was shown to be a
key determinant of the inter-individual variation in postprandial glucose response, it has,
to the best of our knowledge, not been associated with differential postprandial glucose
response clusters [4,6,8].

Therefore, we aimed to investigate if a simple mechanistic model of glucose regulation
could be applied to describe postprandial glucose concentrations after a standardized
MMTT based on regular foods and whether clusters of differential responders could be
identified from such a model. Furthermore, we investigated if differential response clusters
are associated differently with risk factors of T2DM. We further investigated if baseline gut
microbiota was associated with the response clusters and if clusters remained after dietary
intervention with low or high glycemic index. The methodology was applied to data
from non-diabetic men and women from Sweden, Italy, and the USA with overweight or
obesity participating in interventions with high or low glycemic index (GI) Mediterranean
diets [12,13].

2. Materials and Methods
2.1. Clinical Trial and Dietary Intervention

Data from the MEDGI-Carb trial were used in the present study because participants
were at risk of developing T2DM, and the intervention tested the effect of a high vs. low GI
diet within the context of a healthy eating pattern, i.e., a Mediterranean diet. By including
individuals with elevated risk of T2D and using data from a dietary intervention with
large contrasts in GI, we had the chance to evaluate the possibility of identifying glycemic
response clusters across a wide range of likely postprandial glucose responses and to assess
their stability during the intervention.

The MEDGI-Carb trial was an international multi-center randomized, controlled,
parallel-group, 15-week dietary trial, including a 3-week baseline period followed by a
12-week controlled dietary intervention in adults at elevated risk of developing type 2
diabetes (give their age range, BMI range, OR provide a small table with their features
(also, the other risk factors, up to you)). During the 12-week intervention period, partic-
ipants consumed a Mediterranean-style, controlled, isocaloric, weight-maintenance diet.
Furthermore, the participants were instructed to consume either a low-GI or high-GI diet
with intervention-specific foods. All participants were instructed to consume the same
amount of digestible carbohydrates (270 g/d) and dietary fiber (35 g/d). Modulation of
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daily energy intake was achieved by adjusting intakes of proteins and fat. Half of the daily
carbohydrate intake was identical in the two groups, including vegetables and fruit. The
other half consisted of carbohydrates with GI < 55 and >70 in the low and high GI groups,
respectively. The intervention-specific carbohydrates were distributed throughout the day,
with 26% at breakfast, 30% at lunch, and 44% at dinner. Markers of glucose homeostasis
were obtained during standardized testing days by completion of an eight-hour MMTT, an
OGTT, and 6 days of 24 h CGM at baseline and post-testing. Furthermore, blood samples
were drawn to measure HbA1c, insulin, glucose, high-density lipoprotein, triglycerides,
blood pressure, and anthropometrics. Insulin sensitivity indices such as the quantitative
insulin sensitivity check index (QUICKI), Stumvoll, and Matsuda were calculated using
data from the OGTTs [14]. The study was conducted at three centers: (i) Federico II Uni-
versity, Naples, Italy, (ii) Chalmers University of Technology, Gothenburg, Sweden, and
(iii) Purdue University, West Lafayette, IN, USA. The study was initiated in January 2018,
and the last participant finished the trial in December 2019. The trial was registered in
the public trial registry clinicaltrials.gov as NCT03410719 prior to initiating participant
recruitment. The study protocol was approved by the intuitional review boards at Purdue
University and Federico II University and by the Swedish Ethical Review Authority. The
study protocol with detailed descriptions of the trial, such as randomization, blood sam-
pling, anthropometric measurements, and intervention diet, was previously published [12],
as well as the results of the primary analysis [13].

2.2. Mixed Meal Tolerance Tests

Breakfast and lunch MMTT were performed at baseline, mid-testing (USA only), and
post-intervention. Prior to all testing days, participants were instructed not to eat or drink
anything (except a small amount of water) from 10:00 p.m., the evening before the visit.
Fasting blood samples were collected at the time point (TP) −15 min and TP −5 following
15 min of rest. The test meal was consumed at TP 0 in two parts; the participants had
7.5 min to consume the first part of the meal and 7.5 min to consume the last part to control
the pace of the meal consumption. The participants were allowed to drink 8 ounces of water
(approx. 2.4 dL) during the meal. The test meals were strictly standardized across all three
centers. All participants were served the same portion size, i.e., kilocalories, regardless
of energy requirement for practical reasons. The food composition and nutrients of the
standardized meals are provided in Table 1.

Blood samples were collected at TP 15 after the test meal and then at TP 30, TP 45,
TP 60, TP 90, TP 120, TP 180, and TP 240. A standardized lunch meal was served at TP
240, again with 7.5 min to consume the first half of the meal and 7.5 min to consume the
second part. The blood sampling continued by the same pattern as after the breakfast
meal (Supplementary Figure S1). For the present analysis, only glucose data from testing
minutes TP −15 to TP 240 (i.e., the breakfast meal) were included to accommodate the fit
of a simple kinetic model of the postprandial glucose response.

2.3. Oral Glucose Tolerance Test

Participants completed OGTT at baseline, mid-testing (USA only), and post-intervention.
Fasting blood samples were collected at TP −15 after 15 min of rest and at TP −5. At TP 0,
participants were instructed to consume a test beverage containing 75 g glucose dissolved
in water within 5 min. No additional fluids were permitted during the test. Blood samples
were collected at TP 60 and TP 120 (Supplementary Figure S1).
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Table 1. Food composition and nutrients of standardized meals.

High GI Meal

Foods Name Serving
Size (g)

Energy
(Kilocalories)

Proteins
(g)

Fat
(g)

Total
Carbohydrates (g)

Soluble
Carbohydrates (g)

Total Dietary
Fiber (g)

Breakfast

Cornflakes 30 140.4 2.5 0.3 26.4 4.0 1.5

Bread wholegrain, Pan Bauletto (Barilla) 24 64.0 2.0 0.9 11.4 1.7 1.1

Eggs, whole * 50 77.5 6.3 5.3 0.6 0.0 0.0

Extra virgin oil, olive 18 162.0 0.0 18.0 0.0 0.0 0.0

Ham, dry cured (country style), no visible
fat eaten 85 52.2 7.5 2.0 0.5 0.0 0.0

Apple, fresh, without skin (Golden Delicious) * 150 * 78.0 0.4 0.3 20.7 20.7 3.6

Milk, 1% fat or low-fat, lactose-free 244 102.5 8.2 2.4 12.2 12.2 0.0

TOTAL 676.6 27.0 29.1 71.8 38.6 6.2

Low GI Meal

Foods Name Serving
Size (g)

Energy
(Kilocalories)

Proteins
(g)

Fat
(g)

Total
Carbohydrates (g)

Soluble
Carbohydrates (g)

Total Dietary
Fiber (g)

Breakfast

Piadella (Mulino Bianco—Barilla) 75 255.0 5.6 8.4 38.3 2.3 2.0

Extra virgin oil, olive 10 90.0 0.0 10.0 0.0 0.0 0.0

Eggs, whole * 50 77.5 6.3 5.3 0.6 0.0 0.0

Ham, dry cured (country style), no visible
fat eaten 38 60.9 7.7 3.1 0.0 0.0 0.0

Apple, fresh, without skin (Golden Delicious) * 150 * 78.0 0.4 0.3 20.7 20.7 3.6

Milk, 1% fat or low-fat, lactose-free 244 102.5 8.2 2.4 12.2 12.2 0.0

TOTAL 663.9 28.2 29.4 71.7 35.2 5.6

* Edible amount.

2.4. Fecal Microbiota

During pre- and post-intervention study days, participants were asked to collect fecal
samples using a stool sampling collection kit. Samples were taken using an EasySampler
Stool Collector and a sample tube with a spoon lid. The sample was protected by being
placed in yet another tube and stored immediately in the freezer (−20 ◦C). The samples
were transported in a cooling box with an ice pack to the clinic within 72 h after the sample
was collected. At the clinic, the sample is transferred to −80 ◦C within 24 h. The samples
were analyzed with the 16S rRNA gene amplicon sequencing method, where DNA was
extracted and purified from fecal samples using the QIAamp FAST DNA Stool mini kit
from Qiagen, Venlo, The Netherlands. The DNA extraction followed the protocol from the
manufacturer with one exception, where lysis of the bacterial cell walls used a mechanical
lysis step (bead beating 2 × 1 min in a Precellys Evolution using 0.1 mm zirconium/silica
beads). Once the DNA was extracted and purified from the sample, polymerase chain
reaction (PCR) was used to amplify the V3-V4 region of the gene encoding 16S rRNA.
This gene exists in all bacteria and is normally used for the taxonomic classification of
bacteria since parts of the 16S gene vary in sequence composition between different bacteria.
Sample-specific barcodes and Illumina adapters were then attached to the PCR amplicons
to enable the pooling of samples. The library of PCR amplicons was then sequenced on the
Illumina NovaSeq 6000 platform at Novogene, Singapore. The bioinformatics analysis to
handle the generated sequence data used QIIME2 via the dada2 pipeline. The sequences
were first demultiplexed, i.e., separated according to the sample-specific barcode in the
specific sample. Then, quality control and filtration of the sequence data was performed to
remove sequences with poor quality. Finally, a taxonomic classification of the sequences
was performed. The gut microbiota analysis and subsequent data processing and analysis
were described in detail by Iversen and Dicksved [15]. The gut microbiota was analyzed to
investigate if it could explain inter-individual differences in glycemic postprandial response
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and provide some mechanistic insights into potential differential response profiles between
subjects. The microbiota was aggregated to the genus level prior to downstream analysis.

Species that were known from the literature to associate with glucose regulation
were selected to assess association with response clusters. The selected species were
“Bifidobacterium”, “Bacteroides”, “Faecalibacterium”, “Akkermansia”, “Roseburia”, “Fusobacterium”,
“Blautia”, “Haemophilus”, “Ruminococcus”, “Clostridium”, and “Dorea” [16–22].

2.5. Mechanistic Model of Glucose Regulation

A modified version of the minimal glucose model [23] proposed by Bolie [24] was
used to describe the glucose response to the MMTT from breakfast at baseline and after
12 wk in order to identify interpretable parameters that could be used as the basis for
grouping individuals according to plasma glucose–time profiles [25]. The model was
initially developed for plasma glucose data following an OGTT and consists of two coupled
differential equations describing the feedback loop of glucose and insulin blood concen-
trations in response to glucose intake [25]. In the present study, the MMTT consisted of
a carbohydrate-rich meal, which was hypothesized to give a similar response to that of
an OGTT when consumed at a fasted state, although it is acknowledged that the model is
oversimplifying the complex glucose–insulin system in response to foods that also contain
other nutrients and non-nutrients. The idea was not to provide a model that explains
all biological processes related to the postprandial response to a mixed meal but rather
to provide a simple model that fits the data and could be used to group responders into
clusters that are differently related to T2D risk factors.

The dynamics of the model are described using compartments that represent mecha-
nisms in the glucose–insulin system, and the exchange rates between compartments are
described using rate constants. The model assumes that the ingested glucose is delayed by
the digestive system and transferred to the bloodstream, where insulin acts to let the glu-
cose be absorbed by the muscle tissue or the liver and converted to glycogen. Furthermore,
the model assumes that the glucose can be discarded through the urine via the kidneys
and that the pancreas produces insulin at a given rate in response to the current glucose
concentration. Notably, the model assumes a linear relationship between insulin secretion
and glucose, which is often not the case due to the effects of incretin hormones, for example,
but the rationale is to obtain a more parsimonious model with easily grouped parameters.
A particularly simple solution for the model glucose concentration can be formulated if the
gastrointestinal absorption is assumed to rise very quickly and fall slowly and the ingested
breakfast meal is modeled as a momentary impulse at the first measurement in time [25].
This solution takes the shape of a damped sinusoidal wave (Equation (1)), which is used
widely in mechanics [26]. Thus, the parameters governing the glucose dynamics were
reduced to a glucose baseline level (Gb), sinusoidal amplitude (A) involved in the resulting
amplitude of the glucose concentration, sinusoidal frequency (ω) relating to the velocity of
glucose oscillations, and damping coefficient (α) determining the rate of glucose decay.

G(t) = Gb + A sin(ωt) e−αt (1)

Although the parameters of the reduced model have no one-to-one correspondence to
specific mechanisms in the body, they convey the general quality of the glucose control.

The sinusoidal frequency (ω) relates to the rates of removal of glucose and insulin,
where a high frequency describes a fast response of the regulatory system, meaning that the
first glucose peak appears early, as seen in the blue and red lines in Figure 1. The amplitude
(A) of the undamped sinusoidal depends on the body’s tolerance of the ingested glucose
and relates to the height of the glucose peak together with the damping coefficient (α). The
yellow dynamic has a larger amplitude than the blue and red ones, and the larger damping
coefficient in the red dynamics avoids the under- and overshoots seen in the blue dynamic
Figure 1. It should be noted that insulin is not part of the solution in Equation (1) since
it was eliminated in the derivation and described in terms of glucose and the estimated
parameters. This makes the model very attractive to use in a setting when insulin cannot
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be measured, and CGM could be used to measure glucose, such as when performing
measurements at home. Since no parameter directly describes the maximum postprandial
glucose concentration, an expression of this was derived in Equation (2).

Gmax = Gb +
e−κ cos−1 (κ/

√
1+κ2)

√
1 + κ2

A where κ =
α

ω
(2)
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Figure 1. Example dynamics generated from the model in Equation (1). The blue curve is character-
ized by a fast biphasic response to the MMTT, thus having high frequency (ω) and low amplitude
(A). The red curve has a larger damping coefficient (α) which yields a faster monophasic return to
baseline. The yellow curve is characterized by a slow response to the MMTT, meaning poor glucose
regulation, and is described by the inverse parameter relationship as the blue line but shares the same
damping coefficient.

The model was originally shown to fit OGTT data well, despite mechanisms such as
the role of adrenal cortical and medullary function in glucose economy were not accounted
for [27]. In the present study, the model was used to describe the postprandial glucose
concentration for an MMTT where the subjects were fasted prior to ingesting the meal.

2.6. Statistical Analyses

The parameters of the model were estimated within the nonlinear mixed effects model
framework [28]. Here, we refer to our nonlinear regression model Equation (1) as G, which
depends on the individual model parameters ϕi =

{
Gb,(i), Ai, ωi, αi

}
and regresses to the

glucose measurements yi with some measurement or process error ε ∼ N
(
0, σ2) with an

assumed constant variance across observations (Equations (3) and (4)). Here, i represents
the subject index.

yi = G(ϕi, t) + ε (3)

ϕi = β eηi+A xi (4)

The individual parameters ϕi are described by the fixed effects (shared among all
individuals) β, and the random effects ηi ∼ ∑n−1

j=1 µjI{i∈Mj} + N (0, Ω). Additionally,
they are affected by covariates xi via the covariate matrix A. Here, ηi is a vector with
four elements, representing the random effects (modeling the variation within the test
population) on each of the four parameters in ϕi. The mean vector (µj) of the multivariate
normal distribution is dictated by what group Mj the individual i is most likely to belong
to via the indicator function I{i∈Mj}, effectively making ηi a mixture of n multivariate
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normal distributions and allowing the identification of subgroups (clusters) within the
data. The covariance matrix is denoted by Ω, which we assume to be diagonal, i.e., no
correlation between parameters. Associations between clusters and clinical parameters
were investigated using one-way analysis of variance (ANOVA) and Chi-squared tests for
continuous and categorical data, respectively.

The association between response clusters and gut microbiota was investigated using
ANOVA on selected genera (explained in the fecal microbiota section) that were reported
to associate with glycemic regulation. Additionally, we measured the Pearson correlation
between estimated model parameters that separate response clusters and t-tests to assess
the significance of the correlation. The intervention effect on gut microbiota composition
was investigated using log fold change in the baseline and 12 wk. on all species using
random forest analysis within a repeated double cross-validation framework [29].

The parameter estimation software Monolix was used to simultaneously estimate
the random and fixed effects (Monolix 2021R2, Lixoft SAS, a Simulations Plus company,
Lancaster, CA, USA). Covariates were imposed to reduce the variance not reflecting blood
glucose control. Age and site were imposed as covariates on the baseline (Gb). Since the
breakfast meals given to the two treatment groups had similar nutritional composition
(Table 1), treatment (high or low GI) was imposed as a covariate on the amplitude (A), thus
accounting for differences in MMTTs between treatments. Parameters were estimated per
individual and occasion (pre- and post-trial). The relative standard error (RSE) was used as
an estimate of the uncertainty in the estimated parameters as follows:

RSE = 100 · estd
ŷ

. (5)

Here, estd describe the standard error and ŷ is the estimate. We consider an RSE value
below 50% percent a valid estimate using the Monolix software.

3. Results

In total, 155 individuals completed the two MMTTs and OGTTs (baseline and wk. 12)
and were included in the analyses. Calculations on fecal microbiota were based on 130 in-
dividuals who provided two fecal samples within the participants that performed the two
MMTT and OGTTs (baseline and wk. 12) (Table 2).

Table 2. Baseline characteristics of the subpopulations analyzed in MMTT, OGTT, and fecal microbiota.
There was no significant difference between treatment groups.

High GI
(MMTT and OGTT)

Low GI
(MMTT and OGTT)

High GI
(Fecal Microbiota)

Low GI
(Fecal Microbiota)

Number of participants 72 (50% women) 83 (54% women) 57 (51% women) 73 (53% women)
Age (years) 55.8 ± 9.9 56.0 ± 10.5 57.0 ± 9.7 55.8 ± 10.7

BMI (kg/m2) 30.8 ± 3.0 31.1 ± 3.2 30.4 ± 3.1 30.9 ± 3.2
Waist circumference (cm) 107.3 ± 9.2 105.1 ± 8.6 106.5 ± 9.2 105.1 ± 8.4

Glucose (mg/dL) 105.5 ± 10.2 103.4 ± 10.3 106.4 ± 10.5 102.9 ± 10.2
Total cholesterol (mg/dL) 187.8 ± 30.8 192.2 ± 33.0 189.7 ± 30.5 192.7 ± 32.7

Triglycerides (mg/dL) 114.8 ± 44.6 122.2 ± 68.8 113.9 ± 45.5 117.6 ± 60.0
HDL (mg/dL) 48.4 ± 11.6 47.7 ± 11.8 50.2 ± 11.8 47.9 ± 11.8
LDL (mg/dL) 116.1 ± 27.6 119.8 ± 26.6 116.8 ± 27.4 120.6 ± 27.3

Systolic blood pressure (mm Hg) 124.6 ± 12.4 128.5 ± 13.7 124.1 ± 12.5 128.1 ± 13.8
Diastolic blood pressure (mm Hg) 80.9 ± 8.9 81.9 ± 8.5 81.1 ± 9.0 82.1 ± 8.6

Postprandial MMTT Glucose Responses

Individual parameters of the kinetic model (baseline, amplitude, damping, and fre-
quency) from Equation (1) were estimated using the postprandial MMTT glucose response
at baseline and wk. 12. The parameters were successfully estimated with RSE < 43% in all
cases, which indicated certainty in the estimates. Variation among individuals resulted only
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in the parameters amplitude Ai, frequency ωi, and baseline Gb,(i) since random effects on
the damping parameter were not estimated with enough certainty. Clusters were therefore
not based on the damping parameter αi. The covariate group membership (high-GI or
low-GI) could also not be estimated with enough precision, meaning that there was no
effective difference in the response of the two meals. The model fitted well to the response
of the breakfast MMTT, as given by the low RSE, although some systematic phenomena
could not be captured, e.g., the slow undershoot in subject 104 (Figure 2).
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resentative subjects. Here, points represent measurements, and lines represent the fitted model values.

Two plasma glucose concentration profile clusters (A and B) were successfully identi-
fied (RSE < 33%), which were well separated in the amplitude and frequency parameters
but not in the baseline parameter, although the cluster membership was estimated in the
baseline parameter as well (Figure 3). Estimating more than two clusters rendered the
cluster membership parameter unidentifiable, and a clear separation of individuals was
visible when using a single lognormal distribution instead of a mixture of lognormal distri-
butions. This led to the choice of estimating the likelihood of cluster membership using two
lognormal distribution modes (clusters). The distribution of the clusters in the covariates is
shown in Supplementary Figure S2.
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The individuals in cluster A had, in general, a higher frequency ωi and a lower
amplitude Ai (Figure 3). This is also visible in the postprandial glucose profiles of the MMTT
data when participants were color-coded by cluster membership (Figure 4). Individuals in
cluster A had, in general, a lower peak in plasma glucose response. The peak also appeared
later for cluster B (which equates to a lower frequency ωi of the sinusoidal function in
Equation (1)). The clusters consisted of approximately 46% of cluster A and 54% of cluster B.
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The clusters at baseline were associated with known diabetic risk markers such as
HbA1c (p = 2.8× 10−5), insulin sensitivity indices (QUICKI (p = 1.4× 10−6), Stumvoll
(p = 1.7× 10−3), Matsuda (p = 1.8× 10−8), and waist circumference (p = 1.1× 10−6) us-
ing one-way ANOVA (Figure 5). Although the clusters mostly involved amplitude and
frequency, all the parameters correlated with the risk factors (Supplementary Figure S2).
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Importantly, the clusters also associated differently with conditions reflecting clini-
cal cut-offs for differential glucose control, i.e., prediabetes (fasting HbA1c ≥ 5.7% and
fasting blood glucose > 100 mg/dL, p = 0.01 [30], insulin resistance (p = 6.5 × 10−7),
(Matsuda index ≤ 2.5), and glucose control (p = 6.6× 10−5) (normal, impaired, or dia-
betic [30,31]) using a Chi-squared test.

Most of the subjects classified as normoglycemic also belonged to cluster A, and most
of the subjects classified as “impaired” or “diabetic” belonged to cluster B (Figure 6). The
frequencies of glycemic control classes in each cluster are indicated in Supplementary
Figure S4.

The same analysis as described using the breakfast MMTT response before the in-
tervention (at baseline) was made using the breakfast MMTT response post-intervention,
where similar cluster memberships were identified (Figure 7). However, the average Eu-
clidean silhouette measure decreased from 0.58 to 0.36, indicating that the clusters were
more distinct using baseline data. Moreover, it was observed that 60% of the subjects in
cluster B improved in their glucose regulation by a decreased amplitude and increased
frequency parameter value when comparing baseline values with those after 12 weeks of
intervention. Additionally, in the low GI group, 58% decreased their baseline parameter,
61% decreased their amplitude parameter, and 59% increased their frequency parameter
after the intervention compared to baseline, which all relate to improved glycemic control.
In comparison, in the high GI group, 49% decreased their baseline parameter, 46% de-
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creased their amplitude parameter, and 57% increased their frequency parameter compared
to baseline. However, there was only a statistically significant change between the two
time points in the low GI group in the amplitude parameter (Wilcoxon signed-rank test
p = 0.001). Furthermore, within cluster A, there was a minor enrichment of women (63 and
64% pre- and post-intervention, respectively) compared to the entire study population (53%
women). Hence, sex differences were associated with the cluster membership (p = 0.001,
using Chi-squared test), QUICKI (p = 9 · 10−4, ANOVA), and Matsuda (p = 8.9 · 10−6). Fur-
thermore, we found a weak association (p = 0.046, Chi-squared test) between improvement
(lowering) of the baseline parameter Gb and sex differences, where women improved their
baseline parameter more than men independently of the treatment group.
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Figure 6. Baseline joint parameter distribution obtained by fitting the model in Equation (1) to the
postprandial MMTT data. The different markers (dots, triangles, and asterisk) represent subjects
classified as “normoglycemic”, “impaired” glucose control, or “diabetic”, respectively. Here, we
used the OGTT measurement after 2 h and classified normal glycemic regulation as <7.7 mmol/L,
impaired glucose tolerance in the range of 7.8–11.0 mmol/L, and diabetic ≥ 11.1 mmol/L. The
diagonal represents histograms of the parameter distribution (color-coded by transparent cluster
color), and the off-diagonal represents pairwise joint distributions. Note that overlapping colors
appear brown.

Some of the individuals changed cluster from pre- to post-trial (~26% change in each
cluster), but there was no significant difference between clusters (Cohen’s kappa = 0.42,
moderate stability between clusters (95%CI 0.27–0.56)). The change in parameters from
baseline to wk. 12 (change = baseline − wk. 12) did not correlate significantly with the
change in risk markers.

Interestingly, the identified plasma glucose response clusters at baseline were asso-
ciated with the gut microbiota genera Clostridium sensu stricto 1 (ANOVA p = 0.007) and
Blautia (ANOVA p = 0.024). However, these genera correlated weakly with the estimated
amplitude (ρ = −0.2, p = 0.02 and ρ = 0.2, p = 0.02, respectively) and frequency (ρ = 0.14,
p = 0.08, and ρ = −0.19, p = 0.02, respectively) parameters that separated the clusters. Here,
ρ denotes the Pearson correlation coefficient, and p denotes the probability that the cor-
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relation is zero, using a t-test. As expected, we found no differences in gut microbiota
composition between the two intervention groups (log fold change to predict low vs. high
GI, balanced error rate 0.5). However, there was a clear difference attributed to the site (bal-
anced error rate 0.09), and a difference in the Shannon diversity index (ANOVA p = 0.0134)
between study centers was also noted (Supplementary Figure S5).
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Figure 7. Week 12 joint parameter distribution obtained by fitting the model in Equation (1) to the
postprandial breakfast MMTT data. The blue and red colors represent clusters A and B, respectively.
The diagonal represents histograms of the parameter distribution (color-coded by transparent cluster
color), and the off-diagonal represents pairwise joint distributions. Note that overlapping colors
appear brown.

4. Discussion

To dissect glucose data into features representing postprandial events, we used a
model with only four parameters to identify clusters from standardized breakfast meal
tolerance test responses that strongly related to T2DM risk factors. Although the model
did not capture all systematic variation in the data, it was flexible enough to allow the
identification of differential glycemic response clusters after mixed meal tests that were
differentially associated with risk factors of T2D and gut microbiota. The results suggest
that a standardized breakfast meal could provide meaningful data to predict risk factors of
T2DM from dynamic glucose response measurements.

Plasma glucose response clusters were mostly separated in the amplitude and fre-
quency parameters and not in the baseline glucose parameter (Figures 3 and 7), which
confirms that a dynamical model captures more information than a fasting plasma mea-
surement and can more effectively be used for prediction of glycemic regulatory status.
Individuals in cluster A were deemed to have better glucose control since they were charac-
terized by a more favorable T2DM risk marker profile: a lower glycemic response, lower
amplitude, and higher frequency parameters, whereas cluster B had the opposite traits
and was therefore more likely to develop health issues related to their glycemic control
such as T2DM. However, the individuals classified as “diabetic” (Figure 6) may be on the
borderline to be classified as diabetics since this classification was using data from one
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OGTT when all participants were classified as non-diabetics at screening. Predictive tests
of glycemic control classifications from estimated parameters were not analyzed due to the
imbalance among classes, i.e., a lack of diabetic patients in the data. Furthermore, some
patients in the healthier cluster A had impaired glycemic regulation, indicating that the
estimated parameters give more information about the patient’s glycemic regulation than
solely a classification based on OGTTs.

The breakfast MMTT clusters did not associate with the study site nor with treatment,
which suggests that using these as covariates successfully captured their variance in the
data. However, the low GI group improved more than the high GI group in their estimated
parameters (decreased average baseline, decreased average amplitude, and increased
average frequency) after a 12-week intervention, which suggests that the low GI diet
aided in improving the glycemic control of the participants [13]. This could also explain
why the cluster separation reduced from an average silhouette value of 0.58 to 0.36 from
baseline to post-intervention, although there was no statistical difference overall between
the two time points (Wilcoxon signed-rank test). Sex differences could not be estimated
as a covariate to the dynamic model with enough precision, but response clusters were
associated with gender, where cluster A consisted of more women, both at baseline and
after 12 wks. This lack of change in gender distribution across the intervention and the fact
that women improved their glucose baseline independently of treatment (high or low GI)
indicates that the fasting glucose was not lowered in women due to treatment but merely
due to their participation in the study. Interestingly, a study investigating the 8 h average
plasma glucose concentration on data from the same MEDGI-Carb trial revealed that the
high GI diet induced a higher glucose concentration (23%, p < 0.05) than the low GI diet in
women [32]. However, they also concluded that the response to the breakfast meal alone
did not show this difference; hence, their findings are in line with our results.

Our data suggest that a standardized breakfast MMTT based on regular foods may
be an alternative to an OGTT, especially among patients with a high risk of nausea, such
as pregnant women or bariatric surgery patients [33,34]. In contrast, an MMTT does not
cause these side effects and is therefore an alternative to OGTT. Furthermore, our results
based on a standardized breakfast meal including commonly consumed foods are in line
with conclusions from a recent review that compared an OGTT to an MMTT and found
a strong or very strong correlation (r = 0.9–0.97) between an OGTT and MMTT, which
further supports that it may be used as an alternative to the OGTT [11]. Additionally, the
metabolic feedback from an MMTT that includes all macronutrients (carbohydrates, fat, and
proteins) provides more comprehensive information on glucose homeostasis compared to a
single macronutrient [35,36]. However, the MMTT should be standardized and preferably
provided as a breakfast to avoid complications of the glucose dynamics with lingering
metabolic effects of other meals. If standardized, cluster membership could potentially be
estimated at home using the MMTT and a CGM connected to a cellular device, as CGM
data were shown to capture clusters of individuals based on glucose variability [7].

Previous studies have shown that gut microbiota is associated with postprandial
glucose response [4,16,37], but no studies have investigated associations with response
clusters. In our study, we found that glucose response clusters were associated with the
bacterial genera Clostridium sensu stricto 1 and Blautia. Cluster A had a higher proportion
of Clostridium sensu stricto 1 than cluster B and vice versa for Blautia, which is consistent
with previously reported associations of these genera with glucose control [16–18]. Future
studies should test how dietary interventions may affect these genera and reveal their
mechanistic links with postprandial glucose response. As expected, there were no differ-
ences in microbiota composition between groups after intervention since the diets were
similar except for low/high GI. In accordance with other studies, large differences between
study centers were found, probably due to differences in dietary and lifestyle patterns as
observed [13].

Our study has several strengths, including the large sample size with participants
from three countries (Italy, USA, and Sweden), which reduces the chances that treatment
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effects or found clusters would be confounded by the cohort. In addition, the MMTT
was robustly designed with participants carefully monitored during the test days and
strictly standardized meal composition across the three centers to reduce the risk that the
differences in response would be due to differences in intake. Furthermore, the mechanistic
model gave interpretable clusters using only four identifiable parameters, which were
estimated using a mixture of lognormal distributions. Although a mixture of distribu-
tions is rarely used, it proved useful in estimating the likelihood of cluster membership.
However, although the method enabled investigating glucose control from the dynamical
response, it should be noted that all descriptive variance was not captured using the model
(e.g., slow undershoot).

Limitations included the fact that all participants were at risk of developing T2DM.
Hence, although OGTT and MMTT responses were described using the same model to
estimate insulin sensitivity [38], our method remains to be validated in a broader population,
including patients with manifested T2DM and gestational diabetes. Also, the response
to the lunch was not applied using this model since a more complex dynamic would be
needed to account for the lingering response of the breakfast.

The MMTT used in the present trial was based on a Mediterranean diet. However,
different diets and foods may have different effects on gastric emptying time and blood
glucose response, which should be taken into consideration when designing future stud-
ies [39,40]. Validating our method in a cohort with a balanced set of individuals with
normoglycemic, impaired glucose control, and diabetics may allow for the development of
an algorithm to classify these states from the estimated parameters using our model on the
response of MMTTs. Furthermore, this algorithm could potentially be used with a cellular
device and a CGM in a home setting and be carried out periodically to facilitate tailored
preventative treatment of prediabetes and T2DM.

5. Conclusions

We used a simple model to successfully describe glucose response to a standardized
breakfast MMTT based on common foods and identified two response clusters that were
associated differently with T2DM risk markers and gut microbiota. Future studies should
investigate if such clusters can be identified by an algorithmic self-sampling tool for the
classification of differential T2D risk profiles based on standardized breakfast MMTT in a
home setting using continuous glucose monitoring and whether tailored diet and lifestyle
advice may lower T2D risk.
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outliers are plotted with red plus signs in box plots; Figure S3. Spearman correlation between T2DM
risk markers and estimated parameters from the model using baseline data; Figure S4. Distribution
of glycemic control classification in the two identified response clusters; Figure S5. Shannon diversity
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