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Introduction: In gynecologic oncology, ovarian cancer is a great clinical challenge.
Because of the lack of typical symptoms and effective biomarkers for noninvasive
screening, most patients develop advanced-stage ovarian cancer by the time of
diagnosis. MicroRNAs (miRNAs) are a type of non-coding RNA molecule that has
been linked to human cancers. Specifying diagnostic biomarkers to determine
non-cancer and cancer samples is difficult.
Methods: By using Boruta, a novel random forest-based feature selection in the
machine-learning techniques, we aimed to identify biomarkers associated with
ovarian cancer using cancerous and non-cancer samples from the Gene Expression
Omnibus (GEO) database: GSE106817. In this study, we used two independent GEO
data sets as external validation, including GSE113486 and GSE113740. We utilized
five state-of-the-art machine-learning algorithms for classification: logistic
regression, random forest, decision trees, artificial neural networks, and XGBoost.
Results: Four models discovered in GSE113486 had an AUC of 100%, three in
GSE113740 with AUC of over 94%, and four in GSE113486 with AUC of over 94%.
We identified 10 miRNAs to distinguish ovarian cancer cases from normal
controls: hsa-miR-1290, hsa-miR-1233-5p, hsa-miR-1914-5p, hsa-miR-1469, hsa-
miR-4675, hsa-miR-1228-5p, hsa-miR-3184-5p, hsa-miR-6784-5p, hsa-miR-6800-
5p, and hsa-miR-5100. Our findings suggest that miRNAs could be used as possible
biomarkers for ovarian cancer screening, for possible intervention.
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1. Introduction

Ovarian cancer is most often found in granulosa cells or germ cells, with epithelial

histology accounting for more than 90% of all ovarian cancer. Epithelial ovarian cancer

(EOC) (1) is a widespread gynecologic malignancy in industrialized and developing

countries (2), with approximately 230,000 new cases and nearly 140,000 deaths per year
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(3). In 2020, the United States was expected to see 21,750 new cases

and 13,940 deaths (4), while Europe experienced 29,000 deaths (5).

According to the International Federation of Gynecology and

Obstetrics (FIGO), only 30% of advanced-stage cancer patients

live for nearly 5 years after receiving a primary-stage prognosis

(6, 7). Only 19% of ovarian cancer patients are diagnosed at its

early stage due to the absence of robust and minimally invasive

methods at its early detection (8). Hence, advanced approaches

for the early screening of ovarian cancer are necessary for proper

medication and timely treatment. Regarding the genetic basis of

cancer malignancy, microarray technology (9) has recently been

one of the most widely used tools to evaluate the functions of

genes in related patients. MicroRNAs (miRNAs) are short (18–25

nucleotides in length) non-coding RNAs that have emerged as

important translational gene regulators in cancer cells (6). The

screening models currently available are insufficient, and accurate

non-invasive molecular biomarkers are urgently needed. Many

studies have looked at the expression profiles of miRNAs in

tissue and serum samples from ovarian cancer patients to

identify appropriate biomarkers (10). Even though in many

studies miRNAs are still insufficient for clinical applications that

are due to large-scale non-validation and inconsistencies in the

diagnosis of devices (11–13), it could expand a new screening

strategy that can differentiate cancerous from non-cancerous

women. In addition, the comprehensive characteristics of

circulating miRNAs enable us to produce optimal diagnostic

models for ovarian cancer (11–14).
1.1. Related works

MicroRNA molecules can act as an important tool for the

detection of ovarian cancer. Chung et al. (15) reported let-7b,

miR-26a, miR-132, and miR-145 as potential biomarkers in

ovarian cancer patients. Among the results of Yuan et al.’s (16)

study, has-miR-6784-5p, has-miR-6800-5p, and has-miR-5100 are

indicating ovarian-associated cancer signature. Jeon et al. (17)

reported that the serum and tissue miR-1290 was significantly

elevated in patients with epithelial ovarian cancer compared with

patients with benign ovarian neoplasm. Chen et al. (18) reported a

total of 19 miRNAs, which were identified by random forest

models, that were important in cancer diagnosis. In this study, the

top five miRNAs with the highest frequency were chosen to be the

biomarker candidates for cancer screening, which has-miR-3184-

5p achieved a high rank. Yaghoobi et al. (19) proposed a method

called EBST that has identified 11 serum miRNAs as potential

biomarkers associated with ovarian cancer; among the miRNAs

set, has-miR-1228-5p and has-miR-6784-5p were also reported.

Zhang et al. (20) reported the four miRNA models that showed

very strong performances with AUCs > 0.95 in the biliary tract,

bladder, colorectal, esophageal, gastric, glioma, liver, ovarian,

pancreatic, and prostate cancers. This study provides proof-of-

concept data in demonstrating that the four miRNA (hsa-miR-

5100, hsa-miR-1343-3p, hsa-miR-1290, and hsa-miR-4787-3p)

model has the potential to be developed into a simple,

inexpensive, and non-invasive blood test for the early detection of
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multiple cancers with high accuracy. Using statistical approaches,

Hamidi et al. (21) identified 10 miRNAs regulated in ovarian

serum cancer samples compared with non-cancer samples in

the publicly available data set GSE106817: hsa-miR-5100,

hsa-miR-6800-5p, hsa-miR-1233-5p, hsa-miR-4532, hsa-miR-4783-

3p, hsa-miR-4787-3p, hsa-miR-1228-5p, hsa-miR-1290, hsa-miR-

3184-5p, and hsa-miR-320b. However, the approach of the

previous study (21) failed to take into account the non-linearity

structure in big data; therefore, in this paper, we are implementing

a new machine-learning variable selection approach called Boruta

to address this problem. We will observe that the new miRNAs

will be explored by the new method that has not been recognized

in the traditional methods.
1.2. Novel contributions

It is important to note that the choice of feature selection (FS)

method should be tailored to the specific characteristics of the data

set and research question at hand. Gene expression data are the

representation of non-linear interactions among genes (22). By

computing analysis of these data, it is expected to gain

knowledge of gene functions and disease mechanisms. Statistical

methods can only identify linear patterns, while non-linear

patterns of relationships remain hidden. As mentioned in many

research (23–29), Boruta has superior advantages in terms of

feature selection accuracy, stability, and classification

performance across different domains such as protein subcellular

localization and credit risk assessment, however, especially in

microarray data sets of ovarian cancer that have been rarely used

before. This is based on some studies on the stability of Boruta

(30–32) as a machine-learning method that can more accurately

discover new miRNAs that were hidden in statistical methods.

Therefore, this work attempts an innovation in two important

issues: the identification of new miRNAs based on complex non-

linear structures and the comparison of new results with the

previous ones, which will be described in the results and

discussion section.
2. Materials and methods

To identify a robust circulating miRNA biomarker, we searched

the Gene Expression Omnibus (GEO) database with specific

keywords, namely, (“ovarian neoplasms” [MeSH Terms] OR

ovarian cancer [All Fields]) AND “Homo sapiens” [porgn] AND

“MicroRNAs” [MeSH Terms] OR miRNA [All Fields]. Then,

three data sets using the same platform (3D-Gene Human

miRNA V21_1.0.0) with a larger sample size GSE106817,

GSE113486, and GSE113740 were included (385 ovarian cancer

patients and 3,026 non-cancer controls in total) for further

analysis. The GSE106817 has 320 ovarian cancer patients with an

average age of 52 years and 2,759 non-cancer controls that were

used as the internal discovery data set, and the GSE113486 has

40 ovarian cancer patients and 52 non-cancer controls. The

GSE113740 has 25 ovarian cancer patients, and 215 non-cancer
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controls were used for independent validation data sets. This study

was approved by the ethics committee of Tabriz University of

Medical Sciences (no.: IR.TBZMED.REC.1400.006).
2.1. Study design and data set

We have used the GSE106817, GSE113486, and GSE113740

data sets from the GEO database, which is available at https://

www.ncbi.nlm.nih.gov/geo/. The GSE106817 data set started on

13 November 2017 in Kanagawa, Japan, which is serum miRNA

profiles of 4,046 women specimens, and which consists of 333

ovarian cancer and 2,759 non-cancer controls and 976 other

types of cancer. The GSE106817 data set consists of ovarian

cancer patients who were of mean age 57(±12) years, 25%

stage I, 10% stage II, 55% serous, 19% clear cell, and 13%

endometrioid histology (33). Three microarray data sets totaling

to 6,835 unique participants including 728 ovarian cancer

patients and 3,892 non-cancer controls were included in the

current analysis, all derived from studies originating from a

Japanese nationwide research project “Development and

Diagnostic Technology for Detection of miRNA in Body Fluids”

that is designed to characterize serum miRNAs in over 5,000

participants across several types of cancer using a standardized

microarray platform. Supplementary Figure S1 clearly shows the

stages of data pre-processing, identification of significant features

or predictors, the model building of classifier algorithms, and

performance evaluation, which are the four main phases of this

analysis.

2.1.1. Participants and serum samples
The serum sample collection has been previously described in

the original publications (33–35). Briefly, serum samples were

collected from cancer patients who were referred or admitted to

the National Cancer Center Hospital (NCCH) and stored at 4°C

for 1 week before being stored at −20°C until further use. Cancer

patients who were treated with preoperative chemotherapy and

radiotherapy before serum collection were excluded. The serum

samples for non-cancer controls who had no history of cancer

and no hospitalization during the previous 3 months were

collected along with routine blood tests from outpatient

departments of three sources: NCCH, National Center for

Geriatrics and Gerontology (NCGG) Biobank, and Yokohama

Minoru Clinic (YMC). Serums collected from NCCH were stored

in the same way as the serum from cancer patients, while those

from NCGG and YMC were stored at −80°C until use. The

original studies were approved by the NCCH Institutional Review

Board, the Ethics and Conflict of Interest Committee of the

NCGG, and the Research Ethics Committee of Medical

Corporation Shintokai YMC. Written informed consent was

obtained from each participant.

2.1.2. MiRNA microarray expression analysis
The details about microarray analysis were described in the

original publications (33–35). Briefly, total RNA was extracted

from a 300 µl serum, labeled by 3D-Gene® miRNA labeling kit
Frontiers in Digital Health 03
and hybridized to 3D-Gene® Human miRNA Oligo Chip (Toray

Industries, Kanagawa, Japan) that is designed to investigate 2,588

miRNA sequences registered in miRBase release 21 (http://www.

mirbase.org/, accessed on 10 January 2022). The following low-

quality samples were excluded: coefficient of variation of negative

control probes of >0.15 and number of flagged probes identified

by 3D-Gene® Scanner as “uneven spot images” of >10. The

presence of a miRNA was determined when signal intensity was

greater than the mean plus two times the standard deviation of

the negative control signals, and in using the negative control

signals, the top and bottom 5% of the ranked signal intensities

were removed. Background subtraction was performed by

subtracting the mean signal of negative control signals (after

removing the top and bottom 5% as ranked by signal intensities)

from the miRNA signal.
2.2. Machine learning

In cancer prediction models, statistical and machine-learning

algorithms have been widely used, providing more accurate

prognoses and lower per-patient costs. The high dimensionality

of the gene expression profiles is a crucial issue when building

cancer-predictive models (36). As a result, we used a machine-

learning algorithm based on the random forest classifier, which is

easily implemented in the Boruta package in R (37). In many

studies involving miRNAs expression data, Boruta has been used

to identify important features (38); this could help in the

development of biomarkers for cancer diagnosis and prognosis.

On the other hand, we used these techniques to characterize

miRNAs with biomarker potential that may be useful in the

diagnosis and/or prognosis of this disease, potentially assisting

public health (39).
2.3. Data cleaning and feature selection

We cleaned and normalized the data using the min-max

normalization method (40). Since gene expression data sets had

too many irrelevant features for classification, feature selection

was inevitable. Feature selection techniques can be used in data

pre-processing to perform successful data reduction, which is

beneficial for finding accurate data models (41). As noted, feature

selection techniques have the benefits of reducing over-fitting

and reducing model complexity with ease of understanding, as

well as training models more quickly.
2.3.1. Boruta
Boruta is a wrapper-based feature selection algorithm that

implements a random forest algorithm to iteratively delete the

statistically irrelevant features. Boruta searches for all features that

are either strongly or weakly relevant to the output variable (27).

Boruta algorithm selects features as follows:

(a) It assigns randomness to the data set by making shuffled

copies of all features (termed as shadow features).
frontiersin.org
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(b) Next, Boruta uses the data set for training a random forest

classifier and uses a feature ranking measure (mean decrease

accuracy, MDA) to estimate the relationship with each

feature (higher mean value).

(c) It determines whether a real feature has higher rank than the

best of its shadow features on each iteration (in our analysis,

100) and excludes features that are considered extremely

insignificant.

(d) Boruta algorithm comes to a halt when all features have been

confirmed.

This would ultimately result in at least a subset of features that is

ideal. Since this approach reduces the error of the random forest

model, it identifies all features that are either highly significant or

unrelated (32, 42, 43). Boruta is used in such a way that the

features selected are mostly correlated with the prediction variable.

In the process of identifying if a feature is important or not,

some features may be signed by Boruta as “Tentative.” Tentative

attributes are decided as confirmed or rejected by using the

median Z score of the attributes with the median Z score of the

best shadow attribute.
2.4. Model building and potential miRNAs
signature identification

We split the data using the CARET package into two parts:

two-thirds of the data were used for model development or

training, while the remaining one-third of the data were used to

evaluate or validate the model.
2.4.1. Handling of imbalanced classes
In most cases, prediction algorithms train to predict the

majority class (i.e., non-cancer), resulting in incorrect sensitivities

and specificities (44). Instead, fixing the imbalance in the

outcomes (i.e., lower cancer rates) in the training data usually

leads to the creation of a better prediction model and a better

trade-off between sensitivity and specificity (45). Oversampling

the minority class and under-sampling the majority class are the

most effective strategy for overcoming imbalanced outcomes (46).

To balance the training sample in this article, we used SMOTE

random oversampling (47).
2.4.2. Find optimal hyperparameters and proposed
models

We used a five-fold cross-validation (CV) in the training data

set to reduce training errors and obtained the optimal

hyperparameters in machine-learning algorithms (48). We

performed cancer classification using logistic regression, artificial

neural network, decision trees, random forest, and XGBoost (49)

algorithms, and to build our models, we applied the varImp()

function for finding the most important feature (in our study

>80% importance) from each of the proposed models. A brief

description of classifiers and their settings are given below or in

references therein.
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2.4.2.1. Logistic regression
Logistic regression (LR) is used when the answer of a feature is

computed as numerical (quantitative) data. The relationship

between multiple independent variables and a single binary

dependent variable, which is a two-category variable, is

investigated using logistic regression. In cancer microarray data,

which is a form of the data set in which the outcome (cancer) is

determined by the combined outcome of many features (genes),

logistic regression has a variety of uses. Logistic regression rejects

a linear relationship between the dependent and independent

variables in favor of the binomial probability principle, which

states that there are only two possible outcomes (50). The fit of a

logistic regression model will be evaluated using the area under

the curve (AUC) (51).

2.4.2.2. Decision trees
Decision trees (DTs) are a type of supervised machine learning that

can be used to find attributes and extract patterns in big databases

that are important for predictive modeling (46). The

interoperability of the rendered model is a feature of decision

tree modeling that distinguishes it from other techniques of

pattern recognition. The most straightforward algorithm for

processing a visual representation of the relationship between

independent and dependent variables is decision trees (52). DTs

are easy to build, train, interpret, and explain. However, the

variation in the decision trees, in some instances, can be

improved using random forests as the outcomes of randomly

generated decision trees to produce a more impressive model.

2.4.2.3. Random forest
Random forest (RF) is a supervised ensemble learning algorithm

that provides a single combination of prediction accuracy and

model interoperability among general machine-learning

technique (39). RFs are an instance of ensemble learning, in

which a complex model was developed by combining numerous

simple decision tree algorithms, due to lower variance than single

decision trees. Random forest is a meta-classification approach

that fits a number of sub-classifiers (DTs) on various subsets of a

data set, and the averages from each decision tree are used to

ameliorate the accuracy of classification, the superiorities of RF

that they decrease the over-fitting, thus improving accuracy.

Random forests can be used to rate the importance of variables

in a regression or classification problem (53).

2.4.2.4. Artificial neural networks
In medical research, artificial neural networks (ANNs) have been

widely employed (54, 55). When there are complex and non-

linear relationships between variables, such algorithms work well.

In a word, ANN takes predictors as inputs and connects them to

multiple hidden layer combinations with appropriate weights to

predict the outcome. The analyst must intelligently choose the

hidden layers and weights (56).

2.4.2.5. XGBoosting
Extreme gradient boosting is abbreviated as XGBoost (XGB). XGB

is a decision-tree-based ensemble machine-learning algorithm that

employs a scalable gradient boosting technique (57). XGB is a
frontiersin.org
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scalable machine-learning system for tree boosting. The most

significant component of the success of XGBoost is its scalability

across all scenarios. XGB scalability is due to a number of major

systems and algorithmic enhancements, parallel and distributed

computing speed up learning, allowing for more rapid model

exploration. XGB also allows data scientists to process by

utilizing out-of-core processing (53).
2.5. Evaluation criteria

The validation technique is widely used to avoid over-fitting

and to check the validity of the models. We evaluated our

outcomes employing two external data sets, as shown in the

Supplementary Figure S1. The metrics utilized to assess the

results of the classification models are expressed below:

Accuracy: ACC ¼ TPþ TN
TPþ FPþ TNþ FN

,

Sensitivity: SEN ¼ TP
TPþ FN

,

Specificity: SPC ¼ TN
TNþ FP

,

Kappa: k ¼ Pr (a)� Pr (e)
1� Pr (e)

where:

1. TP (true positive) is the number of people who suffer from

“cancer” among those who were diagnosed with “cancer.”

2. FP (false positive) depicts the number of persons who are

“cancerous” but were diagnosed as “non-cancerous.”

3. FN (false negative) is the number of people wrongly found to

be “non-cancerous.”

4. TN (true negative) states the number of “non-cancerous”

correctly.

5. Pr(a) represents the observed agreement, and Pr(e) represents

the chance agreement.

We tested classifier reliability for multi-class data sets using

Kappa values, which reflect the compromise among real and

expected values (58); positive predictive value (PPV) and

negative predictive value (NPV) were also obtained (59). The

one-sided DeLong’s test was used to calculate the power

for the ROC curves, which was done using the R package

“pROC” (60).
3. Result

The data have 2,568 variables. In this initial variable section

stage by Boruta, 199 variables were selected in 29 min. The

training set included 2,156 samples, while the testing set

included 923 samples. The training set consisted of 1,932 non-

cancerous samples and 224 cancerous samples. After balancing

the training data, the non-cancerous and cancerous samples

became 1,121 and 1,035, respectively. The data set with reduced
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features is classified using LR (statistical), DT and RF (tree-

based), ANN, and XGB (machine learning) classifiers. After

finding the more important features (in our study over 80%) as

shown in Supplementary Table S1, we identified 10 potential

miRNAs, has-miR-1290, has-miR-1233-5p, has-miR-1914-5p,

has-miR-1469, has-miR-4675, has-miR-1228-5p, has-miR-3184-

5p, has-miR-6784-5p, has-miR-6800-5p, and has-miR-5100,

from the GSE106817 data sets and were defined as the

candidate miRNAs for ovarian cancer diagnosis. In

Supplementary Table S2, we reported the t-test table to

compare cancer and non-cancerous samples, and all of these

miRNAs had significant P-value. Using the 10 selected

miRNAs, the final machine-learning models with optimal

hyperparameters are presented in Table 1.
3.1. Internal validation data set

As noted in the previous section, we find 10 miRNAs that are

has-miR-1290, has-miR-1233-5p, has-miR-1914-5p, has-miR-

1469, has-miR-4675, has-miR-1228-5p, has-miR-3184-5p, has-

miR-6784-5p, has-miR-6800-5p, and has-miR-5100. We

implemented each miRNA separately in models to get their

power of prediction individually in classification between cancer

and non-cancerous samples. The AUC of each of these miRNAs

is listed in Supplementary Table S1A. We observe that in the

internal validation, all miRNAs have high AUC (minimum AUC:

86.0%; maximum AUC is 96.8%). The performance measures for

LR, DT, RF, ANN, and XGB models are shown in

Supplementary Table S3A. We observe that the AUC of LR, RF,

ANN, and XGB is 99.9%. Supplementary Table S3A shows the

accuracy, sensitivity, specificity, NPV, PPV, and Kappa for LR,

DT, RF, ANN, and XGB models in the classification and

prediction of ovarian cancer. Four models obtained an AUC of

99.9%; however, DT obtained 98% AUC. In detail, RF has the

highest value of accuracy (99.13), specificity (99.51), PPV (95.83),

and Kappa (95.35), and LR have high sensitivity (98.96) and

NPV (99.88). Figure 1A illustrates the ROC curve for the

proposed models of 10 candidate miRNAs that are shown in

Supplementary Table S1A. All models except DT have over

99.9% of AUC. Figure 1B shows the individual AUCs of 10

miRNAs in internal data set: has-mir-5100 (93.7%), has-mir-

6800-5p (97%), has-mir-6784-5p (94.2%), has-mir-3184-5p

(94.2%), has-mir-1228-5p (95.6%), has-mir-4675 (95.4%), has-

mir-1469 (96.7%), has-mir-1914-5p (96%), has-mir-1233-5p

(97.7%), and has-mir-1290(95.4%). In Supplementary Figure S2,

we used a boxplot to display the expression levels of these 10

candidate miRNAs in the cancer and non-cancer groups. In the

boxplots, it is clear that four of the miRNAs has-miR-1233-5p,

has-miR-1914-5p, has-miR-4675, and has-miR-5100 have higher

expression level with various cut-off for cancerous samples, and

on average, four of them (has-miR-1228-5p, has-miR-3184-5p,

has-miR-6784-5p, and has-miR-6800-5p) have lower expression

level for cancerous samples. We used heatmap plots by

implementing the “heatmaply” package to underpin the potential

relationships between features and the hierarchical clustering
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TABLE 1 Hyperparameters and predictive power of models for ovarian cancer classification.

Classifier Hyperparameters AUCa

(%)
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)
Negative predictive

value (NPV) %
Positive predictive
value (PPV) %

Logistic
regression

Parametersb 99.77 100.0 100 100.0 100.0 100.0

Decision trees Cp = 0.01014493c 98.30 91.30 97.41 97.10 88.10 94.0

Random forest Mtry = 2d 100.0 96.74 99.55 100.0 94.55 100.0

Artificial neural
network

Size = 3e and decay =
0.1f

99.93 100.0 98.84 98.74 100.0 100.0

XGBoosting nrounds = 50,
max_depth = 2,
eta = 0.4g

gamma = 0h

colsample_bytreei = 0.6
min_child_weightj = 1
and
subsample = 0.75k

99.99 98.91 99.28 100.0 100.0 98.11

aThe area under the receiver operating characteristic curve (maximum) was used to select the optimal model.
bThe formula for logistic regression for the prediction of ovarian cancer is

p ¼ 1þ e

�(10:463� 18:25(has:miR:5100)� 29:63(has:miR:6800:5p)� 9:30(has:miR:6784:5p)� 7:38(has:miR:3184:5p)þ 2:702(has:miR:1228:5p)
þ11:33(has:miR:4675)� 8:19(has:miR:1469)þ 0(has:miR:1914:5p)þ 5:70(has:miR:1233:5p)þ 9:08(has:miR:1290))

0
B@

1
CA

�1

cThe complexity parameter (cp) is used to control the size of the decision tree and to select the optimal tree size. If the cost of adding an additional variable to the decision

tree from the current node is above the value of the cp, then tree building does not continue.
dmtry is the number of variables available for splitting at each tree node. In the random forests literature, this is referred to as the mtry parameter.
eSize is the number of units in a hidden layer.
fDecay is the regularization parameter used to avoid over-fitting.
gmax-depth is used to control over-fitting as higher depth will allow the model to learn relations very specific to a particular sample.
hgamma A node is split only when the resulting split gives a positive reduction in the loss function. Gamma specifies the minimum loss reduction required to make a split,

which makes the algorithm conservative. The values can vary depending on the loss function and should be tuned.
iDenotes the fraction of columns to be randomly sampled for each tree.
jmin_child_weight is used to control over-fitting. Higher values prevent a model from learning relations that might be highly specific to the particular sample selected for a

tree. Too high values can lead to under-fitting; hence, it should be tuned using CV.
ksubsample lower values make the algorithm more conservative and prevent over-fitting but too small values might lead to under-fitting.
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analysis using the selected features to recognize different samples in

the internal discovery data sets. Supplementary Figure S3 shows a

promising result of the hierarchical clustering analysis (heatmap)

using the 10 identified miRNAs to differentiate between
FIGURE 1

(A) ROC curve for the proposed models in GSE106817. (B) ROC curve of each
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cancerous and non-cancerous samples in GSE106817. The

selected microRNAs are differently expressed in the non-cancer

and cancerous classes. This is well illustrated by drawing the

heatmap (Supplementary Figure S3).
selected miRNA in GSE106817.
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FIGURE 2

Targeted pathway clusters/heatmap presenting the top 10 Kyoto Encyclopedia of Genes and Genomes pathways regulated by the miRNAs (P < 0.005;
DIANA/miRPath v.4).

FIGURE 3

Network of interactions between selected miRNAs with coding genes and long non-coding RNAs. Yellow colored genes represent LNC-RNAs and green
colored genes represent transcription factors.

Hamidi et al. 10.3389/fdgth.2023.1187578
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TABLE 2 Summary of the role of selected miRNAs in cancer.

miRNA Cancer type Reference
hsa-miR-1290 Lung Zhang et al. (64)

hsa-miR-1290 Colorectal Imaoka et al. (65)
Ye et al. (66)

hsa-miR-1290 Hepatocellular Wang et al. (67)

hsa-miR-1290 Advanced oral squamous cell
carcinoma

Nakashima et al. (68)

hsa-miR-1290 Pancreatic Wei et al. (69)

hsa-miR-1290 Ovarian Kobayashi et al. (70)
Li et al. (71)

hsa-miR-1233-5p Renal cell carcinoma Dias et al. (72)

hsa-miR-1914-5p Colorectal Liu et al. (73)

hsa-miR-1914-5p Epithelial ovarian Chong et al. (74)

hsa-miR-1469 Pancreatic Shams et al. (75)

hsa-miR-1469 Laryngeal Ma et al. (76)

hsa-miR-1469 Colon Gungormez et al. (77)

hsa-miR-4675 Breast Lai et al. (78)

hsa-miR-4675 Various types Chen and Dhahbi (18)

hsa-miR-3184-5p Breast Rajarajan et al. (79)

hsa-miR-3184-5p Ovarian Alshamrani (80)

hsa-miR-3184-5p Various types Chen and Dhahbi (18)

hsa-miR-6800-5p Epithelial ovarian Tuncer et al. (81)

hsa-miR-5100 Various types Chen and Dhahbi (18)

hsa-miR-5100 Epithelial ovarian Tuncer et al. (81)

hsa-miR-5100 Pancreatic Chijiiwa et al. (82)
Shams et al. (75)

hsa-miR-5100 Esophageal Song et al. (83)

hsa-miR-1228-5p Breast Peña-Chilet et al. (84)

hsa-miR-1228-5p Various types Hu et al. (85)

hsa-miR-1228-5p Breast Cilek et al. (86)

hsa-miR-1228-5p Hepatocellular Morishita et al. (87)

hsa-miR-1228-5p Epithelial ovarian Chen et al. (88)

hsa-miR-1228-5p Pancreatic Wang et al. (89)

hsa-miR-6784-5p Hepatocellular Morishita et al. (87)

hsa-miR-6784-5p Various types Alshamrani (80)

hsa-miR-6784-5p Esophageal Song et al. (83)
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3.2. External validation data sets

Supplementary Table S1B,C demonstrate the performance of

miRNAs individually in proposed classification models in external

validation data sets, as seen by the fact that almost all miRNAs

have higher AUC in GSE113486 than in GSE113740. But in detail

of each data set, Supplementary Table S3 shows the results of the

external data set models based on the Boruta feature selection

algorithm. As seen in Supplementary Table S3B LR and ANN

have a value of 100 in all seven criteria and XGB has an AUC,

specificity, and PPV of 100. Supplementary Figure S4A shows

that all models for GSE113486 yielded 100% AUC except DT and

RF. Supplementary Figure S4B illustrates how biomarkers

perform individually has-mir-5100 (95.8%), has-mir-6800-5p

(99.7%), has-mir-6784-5p (97.5%), has-mir-3184-5p (93.9%), has-

mir-1228-5p (99.8%), has-mir-4675 (99.1%), has-mir-1469 (100%),

has-mir-1914-5p (99.8%), has-mir-1233-5p (99.4%), and has-mir-

1290 (96.4%) in GSE113486. Boxplots show us that six of miRNAs

(has-mir-1290, has-mir-1233-5p, has-mir-1914-5p, has-mir-1469,

has-mir-4675, and has-mir-5100) have upregulated to ovarian

cancer samples in GSE113486 (Supplementary Figure S5). In

GSE113740, as the second external validation data set, we can see

the result of AUC of LR, RF, ANN, and XGB over 94% in

Supplementary Figure S6A. We also found AUC for these 10

miRNAs (individually) in external data sets that included

individually has-mir-5100 (90.6%), has-mir-6800-5p (89.7%), has-

mir-6784-5p (74.4%), has-mir-3184-5p (74.4%), has-mir-1228-5p

(85.2%), has-mir-4675 (79.7%), has-mir-1469 (84.4%), has-mir-

1914-5p (81.5%), has-mir-1233-5p (86.5%), and has-mir-1290

(91%) as shown in Supplementary Figure S6B. Supplementary

Table S3C shows us that RF and XGB have the highest value in

Kappa (72.96 and 71.96) in AUC and accuracy (97.2, 93.75), as

seen ANN has 100 of sensitivity and NPV. Boxplots

(Supplementary Figure S7) show us that six of miRNAs (has-mir-

1290, has-mir-1233-5p, has-mir-1914-5p, has-mir-1469, has-mir-

4675, and has-mir-5100) have high expression level in ovarian

cancer samples. Supplementary Figures S8, S9 show a promising

result of the hierarchical clustering analysis (heatmap) using the 10

identified miRNAs to differentiate between the cancerous and non-

cancerous samples in GSE113486 and GSE113740, respectively.
4. Discussion

It is critical to find and develop non-invasive, sensitive, and

specific biomarkers to identify ovarian cancer in its early stages

to effectively manage ovarian cancer patients. Fortunately, despite

these limitations, newly discovered small RNAs called

microRNAs have the potential to serve as effective non-invasive

biomarkers for ovarian cancer (61, 62). Therefore, in this study,

we used effective strategies and identified 10 miRNAs, hsa-miR-

5100, hsa-miR-6800-5p, hsa-miR-6784-5p, hsa-miR-3184-5p,

hsa-miR-1228-5p, hsa-miR-4675, hsa-miR-1469, hsa-miR-1914-

5p, hsa-miR-1233-5p, and hsa-miR-1290, as strong potential

biomarkers for ovarian cancer.
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4.1. Biological insight

The results of the biological insight section tell us about cell

analysis for miRNAs that were found in this study based on the

findings of the previous studies. The DIANA tool miRPath v.4 was

used to perform the pathway enrichment analysis, based on the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The

target genes of miRNA were identified using TargetScan v8.0

databases. The settings of the software were P-value threshold =

0.005 and the FDR correction filter were ticked. It should be

mentioned that we used two methods to find the target genes: the

first one is the genes union and the second is the pathway union.

To investigate the efficiency of the set of biomarkers selected by

Boruta and their superiority over the previous similar work done by

Hamidi et al. (21), three groups of miRNAs were analyzed by

miRPath v.4: (A) common biomarkers of the current study and the

previous study by Hamidi et al. (21); (B) biomarkers selected by

Boruta in the present study and not identified in the previous work;

and (C) biomarkers that were selected in the previous study and

were not identified in the current study. The list of genes of these
frontiersin.org
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FIGURE 4

Predicted pathways of the effect of selected miRNAs in ovarian cancer.
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three groups and their analysis results by miRPath v.4 tool are shown

in Figure 2. As shown in Figure 2A, among the six common genes

between the present and previous work, four genes are involved in

at least one known cancer pathway (axon guidance). Among those

four genes, hsa-miR-5100 and hsa-miR-1290 are involved in several

well-known and important pathways in cancer. Figure 2B shows

that among the four specific genes identified by the Boruta

technique, three genes are involved in at least two well-known

pathways in cancer, among which hsa-miR-4675 is involved in

several pathways. However, in Figure 2C, among the four specific

genes identified in the previous work of Hamidi et al. (21), only the

hsa-miR-320b gene is involved in several important cancer

pathways. It should be noted that there are six common paths

between Groups A and B, while there are four common paths

between A and C. This means that there are more correlation

between genes of Group A and B than of Group A and C. This

interpretation shows the biological superiority of Boruta’s technique

over the previous work. A comparison between routes of Group B

and C also provides interesting results. Eight pathways are common

between the two groups, which are proteoglycans in cancer, ErbB
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signaling, colorectal cancer, hepatocellular cancer, pathways in

cancer, pancreatic cancer, axon guidance, and Hippo signaling.

Axon guidance pathway is common among all the three groups.

Many axon guidance molecules regulate cell migration and

apoptosis in normal and tumorigenic tissues (63). Supplementary

Table S4 shows the target genes of the selected microRNAs and the

associated KEGG pathways from the genes union method, which

indicates the significance of the relationship between the

microRNAs and the corresponding pathways under the specified

threshold values. Figure 3 shows the network of miRNAs and

identified target genes. In this figure, transcription factors and LNC-

RNAs have also been added through some studies. References for

these interactions are described in Supplementary Table S4.

In Supplementary Table S5, we only selected seven pathways

because only the pathways that had very high correlation with

miRNAs were selected (including a P-value of < 0.002). Among the

top seven pathways identified, based on P-value, were pathways

associated with fatty acid biosynthesis, prion diseases, axon guidance,

glioma, ErbB signaling pathway, proteoglycans in cancer, and

endometrial cancer. All signaling pathways related to miRNAs were
frontiersin.org
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FIGURE 5

Venn diagram of common miRNAs among three different studies.
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used fromknownpathways, and in general, they play an important role

in all types of cancer. According to the KEGG database, some of the

published articles confirm the role of some of the selected miRNAs

in cancer directly. A number of these documents are summarized in

Table 2. Figure 4 shows the predicted pathways of the effect of some

of the selected microRNAs that have been taken from the https://

targetexplorer.ingenuity.com/index.htm.

Figure 5 presents the common miRNAs between two related

studies (18, 21) and miRNAs that were obtained in our study.

There is some evidence in the literature for the biomarkers

included in our study. Hamidi et al. (21) showed that hsa-miR-

5100, hsa-miR-1233-5p, hsa-miR-4532, hsa-miR-1290, has-miR-

3184-5p, and hsa-miR-320b could potentially be employed as

important biomarkers in ovarian cancer. Jeon et al. (17)
Frontiers in Digital Health 10
investigated that miRNA-1290 in the epithelial ovarian cancer

group was significantly overexpressed in serum exosomes and

tissues as compared with the benign ovarian neoplasm group. Ying

et al. (90) expressed that microarray data analysis showed that

hsa-miR-1290 was differentially expressed between COC1 (DDP-

sensitive) and COC1/DDP (DDP-resistant) tumor cell lines. Chen

et al. (18) showed that only five balanced miRNAs were

determined to be important in cancer diagnosis: hsa-miR-663a,

hsa-miR-6802-5p, hsa-miR-6784-5p, hsa-miR-3184-5p, and hsa-

miR-8073. Furthermore, Chen et al. (18) found that hsa-miR-3184-

5p can act as an early biomarker of bladder cancer and as a key

regulator of breast cancer. Also, hsa-miR-6784-5p has been

reported to be a sensitive serum biomarker for ovarian cancer

diagnosis and a key regulator for breast cancer.
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In the end,we note that although there are fundamental differences

between microarray and RNA-Seq methods for obtaining gene

expression data, the data matrix obtained from both methods is

completely similar after performing the necessary pre-processing.

Therefore, our method is also applicable to RNA-Seq data.
5. Strengths and limitations

This study provides several advantages. Firstly, to identify the

relevant and important miRNAs, we utilized a robust variable

selection method and a novel random forest-based feature selection

of a machine-learning approach to identify and select the relevant

and important miRNAs for ovarian cancer diagnosis, using Boruta

as a novel random forest-based feature selection in the machine-

learning techniques that has known roles in dimension reduction

and select properties variables. Secondly, we used logistic regression

and four of the most used machine-learning methods to predict

and classify ovarian cancer. Thirdly, we selected three GEO data

sets and ensured that they were from a similar platform, and used

them in the evaluation stages. The first limitation of this study is

that the biomarkers obtained in this study for ovarian cancer were

not compared with the other common types of cancer in females.

Secondly, the result of this study is possibly appropriate for a

specific race or area because of the main data set.
6. Conclusion

Our study aimed to investigate reliable classification biomarkers

in ovarian cancer. After utilizing Boruta for identifying the

important biomarkers, we found 10 miRNAs that have high

reliability in evaluating output from each classification model. The

Hsa-miR-5100, hsa-miR-6800-5p, hsa-miR-6784-5p, hsa-miR-3184-

5p, hsa-miR-1228-5p, hsa-miR-4675, hsa-miR-1469, hsa-miR-1914-

5p, hsa-miR-1233-5p, and hsa-miR-1290 had significant differential

expression in all models, especially in the two data sets studied

(GSE106817, GSE113486). Except for decision trees, all the

proposed models have performed fairly well in terms of the

detection accuracy for ovarian cancer in the validation data sets.

The LR, RF, ANN, and XGB in GSE106817 and GSE113486 data

sets had over 99% AUC, and in GSE113740 over 94%. Even

though this study presented some additional biomarkers for

possible consideration in future research, the analyses in these data

sets do not support the immediate clinical use of these biomarkers

without more rigorous testing in large case-control and cohort studies.
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