'™ forests WP

Article
Fungi Inhabiting Stem Wounds of Quercus robur following
Bark Stripping by Deer Animals

Adas Martiulynas **©, Vaida Sirgedaite-Séziené ' and Audrius Menkis 2

Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu Str. 1, Kaunas District,
53101 Girionys, Lithuania

Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural
Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden

*  Correspondence: adas.marciulynas@lammc.lt; Tel.: +370-60088998

Abstract: We investigated fungal communities in oak wounds to determine how fungal species rich-
ness and community composition changes depending on the age of wounds. The sampling of wood
cores was carried out from 10-, 20-, 30-, 40-, and 50-year-old wounds. The fungal community was
analyzed using high-throughput sequencing of ITS2 rDNA. Sequence analysis showed the presence
of 534 fungal OTUs, which were 83.4% Ascomycota, 16.3% Basidiomycota, and 0.3% Mucoromycota.
The fungal OTU richness changed over time: it increased as compared between 10- and 20-year-old
wounds, remained similar in 20- to 40-year-old wounds, and decreased in 50-year-old wounds. The
fungal community composition also changed over time with the largest differences detected between
10-year-old and older wounds (p < 0.001). The most common representatives of Basidiomycota were
Laetiporus sulphureus (34.7%), Mycena galericulata (17.0%), and Cylindrobasidium evolvens (6.5%), and
the most common of Ascomycota were Aposphaeria corallinolutea (13.6%), Sclerostagonospora cycadis
(7.6%), and Cadophora malorum (5.8%). In conclusion, oak wounds of different ages were colonized
by a high diversity of fungi including oak-associated species. Fungal communities in oak wounds
underwent qualitative and quantitative changes over time, which led to the gradual shift from fungal
generalists in young wounds to oak specialists in older wounds.
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Fungi Inhabiting Stem Wounds of

Quercus robur following Bark 1. Introduction

Stripping by Deer Animals. Forests The common oak (Quercus robur) is a tree species with the highest diversity of associ-
2023, 14,2077. https:/ /doi.org/ ated species in Northern Europe [1,2]. Oaks are long-lived trees, and this longevity leads to
10.3390/14102077 many different micro-habitats being formed on and inside the trees, which promotes the es-

tablishment of vast biodiversity. According to some estimates, oaks in general can provide
habitats to nearly 900 different species [3,4]. Among these, 252 species of phytophagous
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larger organisms such as small mammals (e.g., dormouse, bats) or birds [6]. However, the
decline of oak trees over the last century in Europe has also resulted in the decline of many

oak-associated species [7,8]. Although old oaks still exist in Europe, in many places, their
populations are isolated, resulting in unfavorable conditions for the long-term survival
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and/or occasional colonization of wood by wood-decay fungi [16]. In many areas, there is a
lack of oak trees older than 100 years [17]. In Lithuania for example, the average age of oak
stands is around 80 years. Moreover, trees growing in managed forests are often harvested
at the age of 120 years, i.e., long before the time when valuable habitats appear on and
in these trees. Therefore, the limited availability of old-growth oaks calls for alternative
solutions to maintain associated biodiversity.

Tree veteranization is one means used for conservation and maintenance of tree-
associated biodiversity [18-20]. The purpose of veteranization is to shorten the long
waiting period until habitats suitable for protected and rare species are naturally formed.
To achieve this goal, trees are damaged using tools to mimic natural processes in nature by
creating damages such as a woodpecker hole or a broken branch, thereby creating habitats
with exposed wood suitable for the establishment of new species [18]. Such measures are
usually used where the number of old trees is not sufficient to ensure the preservation
of biodiversity. For this, younger trees are usually used due to both their availability
and the lack of exposed wood habitats needed for the natural establishment of particular
species [21]. However, tree veteranization should be limited in areas with a relatively large
number of large animals causing natural damages to younger oak trees.

Large herbivores, especially several species of deer (red deer or moose), cause sig-
nificant damages to forestry due to browsing and bark stripping [22-24]. These animals
generally prefer deciduous trees, and oaks are particularly frequently browsed [25,26].
Most often, these animals damage the stem of trees at a relatively early age, when oaks
reach the age of 15-30 years, and when the bark is still relatively young and has not begun
to roughen. In Lithuania, damages caused by deer animals encompass up to 1000 hectares
of different forest stands each year. About 10%-15% of these damages are in young oak
stands, while the remaining are in Picea abies and Pinus sylvestris stands [27]. Although
severely damaged oak trees do not recover, the vast majority remain viable and are able to
close wounds over time (Figure 1).

Figure 1. Wounds of different ages made by deer animals on the stems of Quercus robur: (A) a
20-year-old oak with an eight-year-old wound with exposed wood; (B) a 50-year-old oak with a more
than 30-year-old wound, which was closed.



Forests 2023, 14, 2077

30f16

Tree vigor is a phenotypic trait that refers to the ability of a tree to grow and remain
healthy in the prevailing environment [28]. Trees may also have well-functioning defense
mechanisms that allow them to effectively resist attacks by native agents of damage [29].
Living and healthy trees are often colonized by fungal endophytes, which are fungi with
different functional roles that colonize and persist in different tissues asymptomatically until
environmental conditions become favorable for their development [30-32], i.e., when they
can begin to respond to changes in substrate quality [33]. These endophytes can influence
many biotic processes in trees, and under certain conditions, can shift to a pathogenic or
saprophytic lifestyle [34]. They can act as first decomposers, thereby influencing the spatial
and temporal active layer of biodiversity in their hosts [35]. However, wounds caused by
animals and the presence of exposed wood facilitate the establishment of many different
fungi due to new colonization opportunities [36,37]. In young wounds, there are often
appropriate conditions for plant pathogens and/or wood-decay fungi to establish. Most
often, these fungi are divided into three groups: obligate pathogens that interact only with
living tree cells, facultative pathogens that live in both living and dead tree tissue, and
characteristic saprophytes that only affect dead tree tissue [38]. Exposed wood can be
infected by pathogenic or wood-decay fungi through fungal spores that are abundant in the
forest [39]. In a common case, the transition of wood pathogens from the wound surface to
deeper wood layers is limited due to the activity of wood preservatives and the limited
availability of oxygen. Bacterial wet wood or a slow type of rot called “soft-rot” can develop
in such wounds in the presence of low oxygen levels [40]. Although a relatively rapid
wound closure may prevent further infections, closed wounds can eventually open due to
wood decay caused by brown rot fungi, thereby in young oaks creating suitable habitats for
many oak-associated organisms. Fungi such as Cadophora malorum, Panellus stipticus, and
various species of Ophiostoma, Helotiales, or Cystofilabasidiales were often found in newly
produced oak wounds, while Trametes versicolor, Peniophorella pubera, Phlebia radiata, Mollisia
sp., or Stereum sp. were reported from older wounds [24,41,42].

The aim of this study was to investigate fungal communities in oak stem wounds
caused by deer animals using high-throughput sequencing. We also aimed to determine
how fungal species diversity changes depending on the wound age. We hypothesized that
(a) wounds caused by deer animals in young oaks create conditions for the establishment
of oak-associated fungal species, which can persist in colonized wood; and (b) the fungal
species richness increases with the age of wounds.

2. Materials and Methods
2.1. Study Sites and Sampling

The study sites were at Kédainiai (K), Prienai (P), and Telsiai (T), which were in three
different regions of Lithuania (Figure 2). These regions have the highest density of Q. robur
in forest stands. At each site, Q. robur trees, which were damaged by deer animals (Figure 1),
were between 20 and 60 years old. The age of the trees and the age of the wounds were
determined by drilling them with an increment borer (Haglof, Sweden) and counting the
annual tree rings. By comparing the difference between tree rings in the wound and in the
intact wood, the age of the wound was determined. Wounds were often 15-20 cm long and
10 cm wide. Wounds that were 10 and 20 years old were not closed, but older wounds were
either partially or completely closed. All 50-year-old wounds were closed. In each sampling
site (K, P, or T), the distances between the individual oak stands, which were used for
sampling, were up to 20 km. Different oak stands often differed in herbaceous vegetation,
but other woody vegetation was often absent as pure stands of Q. robur prevailed.



Forests 2023, 14, 2077

40f16

Percent of Quercus robur

in stand composition

Figure 2. Map of Lithuania showing the distribution of common oak (Quercus robur) in forest stands
(in green). The intensity of green color shows the percentage of Q. robur in the composition of forest
stands. Sampling sites are denoted by K—Kédainiai, P—Prienai, and T—Tel$iai. The map was
reproduced with permission from FORESTGEN, www.forestgen.mi.lt (accessed on 13 July 2023).

The sampling of oak wood was carried out in 2021. Wood cores were taken from
wounds that were either 10 (1 to 10 y), 20 (11-20 y), 30 (21-30 y), 40 (31-40 y), or 50 (41-50 y)
years old. In each site, wood samples from wounds of the same age were collected from
five trees growing within the same stand. Wood samples were taken ca. 1.2 m from the
ground, i.e., at the height where the deer damage prevails. Prior to sampling, the upper
layer (2—4 cm thick) of the wood, or bark covering the wound, was removed using an axe,
and three replicate samples (ca. 7 cm in depth) were taken from each tree by drilling into the
wound using an increment borer. Wood sampling tools were thoroughly cleaned between
individual trees using 96% ethanol. A total of 75 oak trees were sampled (3 regions x 5 age
classes x 5 trees). The collected wood cores were individually placed in sterile plastic
tubes, labelled, transported the same day to the laboratory, and stored at —20 °C before
further processing.

2.2. DNA Isolation, Amplification, and Sequencing

Before the isolation of DNA, three wood cores from the same tree were put together.
The DNA work was based on the study by Mar¢iulynas et al. [43]. Firstly, wood samples
were grinded in liquid nitrogen and ca. 0.5 g of wood was placed into a 2 mL screw-cap
tube with two (2 mm in diameter) metal beads. Then, samples were homogenized using
a Fast prep shaker (Montigny-le-Bretonneux, France), and the DNA was extracted using
CTAB buffer and incubated at 65 °C for 1 h (vortex every 15 min). The supernatant was
mixed with an equal volume of chloroform and cleaned with 2-propanol. The pellet was
washed in 500 uL 70% ethanol, dried, and dissolved in 30 uL sterile milli-Q water. The
DNA was further purified using a NucleoSpin®Soil kit (Macherey-Nagel GmbH & Co.
Duren, Germany) according to recommendations by the producer. Following the extraction
and purification of the DNA, its concentration was measured using a NanoDrop™ One
spectrophotometer (Thermo Scientific, Rodchester, NY, USA) and adjusted to 10 ng/mL.
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The amplification of the ITS2 rDNA region was achieved using a primer pair gITS7 [44]
and ITS4 [45], both containing sample identification barcodes. The polymerase chain
reaction (PCR) was performed in 50 pL reactions and consisted of the following final
concentrations: 200 pM dNTPs, 750 uM MgCl,, 0.025 uM DreamTaq Green polymerase
(5 U/uL) (Thermo Scientific, Waltham, MA, USA), 0.02 ng/uL template DNA, and 200 nM
of each primer; sterile milli-Q water to a final volume of 50 pL. The amplifications were
carried out using an Applied Biosystems 2720 thermal cycler (Applied Biosystems, Foster
City, CA, USA). The following thermocycling pattern was used: 95 °C for 5 min; 95 °C
for 30 s, 55 °C for 30 s, and 72 °C for 1 min (30 cycles); and 72 °C for 7 min. The PCR
products were examined using gel electrophoresis on 1.5% agarose gels stained with GelRed
(Biotium, Fremont, CA, USA). The PCR products were cleaned using a 96% ethanol and 3 M
sodium acetate (pH 5.2) (Applichem GmbH, Darmstadt, Germany) mixture (20:1). After the
quantification of PCR products using a Qubit fluorometer 4.0 (Life Technologies, Stockholm,
Sweden), an equimolar mix was produced, which was sequenced using a PacBio platform
and one Sequel II SMRT cell at a SciLifeLab facility in Uppsala, Sweden.

2.3. Bioinformatics

Obtained sequence reads were quality filtered in the Sequence Clustering and Analysis
of Tagged Amplicons (SCATA) bioinformatics tool available at http:/ /scata.mykopat.slu.se/
(accessed on 5 July 2023). Short sequences (<200 pb), and those with low read quality
(Q < 20), and primer dimers were removed. Sequences without a tag or primer were also
excluded. High-quality sequences were clustered into different OTUs using single linkage
clustering based on 98.5% similarity. The GenBank (NCBI) database and Blastn algorithm
were used to determine taxonomic identities of different OTUs. Taxon-delimiting ITS
homology was 98%-100% at the species level, 94%-97% at the genus level, and 80%-94%
at the higher level, corresponding to at least 90% of the sequence length [46]. Represen-
tative sequences of fungal OTUs were deposited in GenBank under accession numbers
OR481117-OR481666. Fungal functional groups were assigned using the FUNGuild fungal
database [47].

2.4. Statistical Analysis

Rarefaction analysis was implemented using Analytical Rarefaction v.1.3, (http://
www.uga.edu/strata/software/index.html) (accessed on 9 July 2023). Differences in fungal
OTU richness (the number of different OTUs) in Q. robur wounds of different ages were
compared using the non-parametric chi-square test [43]. The Shannon diversity index
(x-diversity) and Serensen qualitative similarity (3-diversity) index were calculated using
SASv. 9.4 (Cary, NC, USA) [48,49]. The non-parametric Mann-Whitney test in SAS was
used to assess whether the Shannon diversity index differed among wounds of different
ages. The composition of fungal communities in wounds of different ages was analyzed
using nonmetric multidimensional scaling (NMDS) based on the Bray—Curtis similarity
index (pB-diversity). One-way ANOSIM analysis was carried out to assess for significant
differences between different samples. These analyses were carried out using Vegan 2.5.7
and Stats 3.6.2 in R 4.1.1 (https:/ /www.r-project.org, accessed on 19 July 2023) [50,51].

3. Results

PacBio sequencing and quality filtering revealed the presence of 141,671 high-quality
sequences, representing 629 OTUs. Taxonomic identification showed that 534 OTUs were
fungal (Table S1) and 95 were non-fungal, which were removed from further analyses.
The detected fungi were 83.4% Ascomycota, 16.3% Basidiomycota, and 0.3% Mucoromy-
cota. Although 10-year-old wounds had the highest absolute richness of fungal OTUs (all
samples taken together, Table 1), when the number of fungal sequences had been taken
into consideration, the OTU richness was lower as compared to older wounds (e.g., 10 y
wounds had 213 OTUs among 62,406 sequences vs. 20 y wounds had 159 OTUs among
10,427 sequences) (p < 0.05) (Table 1). The OTU richness in 50-year-old wounds was sig-
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nificantly lower than in 20-, 30-, or 40-year-old wounds (p < 0.05), which did not differ
significantly from each other (p < 0.05). Differences in OTU richness were also demonstrated
by species accumulation curves (Figure 3). The species accumulation curve from 10-year-
old wounds was approaching the asymptote, while those from 20-50-year-old wounds did
not reach the asymptote, showing that in these wounds, a higher OTU richness could be
detected with deeper sequencing (Figure 3). The Shannon diversity index («-diversity)
was moderate in wounds of different ages and ranged between 2.51 and 2.93 (Table 1).
Consequently, no significant differences in this respect were found between wounds of

different ages (p > 0.05).

Table 1. Generated high-quality fungal sequences and detected diversity of fungal OTUs in oak

wounds of different ages in three sampling sites in Lithuania.

Site Sequences/fungal OTUs in oak wounds of different ages
10y 20y 30y 40y 50y
118/31 738/31 68/24 4/3 1261/21
564/15 4/4 1714/17 179/20 1092/24
Prienai 1759/25 8/8 208/20 50/18 128/20
1542/27 2633/16 16/11 37/27 5154/18
4731/24 87/26 17/12 26/13 654/18
Prienai total 8714/71 3450/59 2023/57 296/54 8289/73
88/13 1/1 400/10 64/6 1283/31
2/2 621/25 202/14 36/6 4008/60
Telsiai 243/14 2179/10 22/4 477/6 55/9
20/9 1011/40 24/8 352/8 139/6
6832/46 3/3 536/17 3162/9 -/-
Telsiai total 7185/72 3815/65 1184/44 4091/26 5485/92
8565/62 2338/39 3514/8 124/48 3300/8
8527/68 55/24 60/14 372/12 161/8
Keédainiai 10,894/78 16/11 1571/59 7848/26 1067/8
8965/58 662/26 3789/51 5770/74 5105/36
9556/59 91/23 3804/33 488/33 380/16

Keédainiai total

46,507/152 3162/83 12,738/128  14,602/141 10,013/56

All total

62,406/213 10,427/159 15,945/179  18,989/193  23,787/179

Shannon diversity index (H)

2.74 2.89 2.90 2.51 293

No. of taxa

250

200

—20Y —30Y 40Y —=50Y

40,000 60,000 80,000

No. of sequences

Figure 3. Rarefaction curves showing the relationship between the accumulated number of fungal
OTUs and the number of ITS2 rDNA sequences from oak stem wounds of different ages (10y, 20y,
30y, 40y, and 50 y). Data from different sites are combined.
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There were certain variations in OTU richness among different sampling sites and
wounds of different ages (Figure 4). In general, the highest richness of fungal OTUs was in
wounds from Kédainiai, while the lowest was in wounds from Prienai. Regarding the age
of wounds, the highest variation in OTU richness was in 30- and 40-year-old wounds from
Keédainiai and in 10-, 20-, and 50-year-old wounds from Telsiai (Figure 4).

010Y O20Y O30Y ©40Y O50Y

90
80 a .
70 I

x
b b
L |

g 60 A

:':‘ 50 b

=]

g 40 ab be .

Z 4 ab 5

30 b by
20 E%' E =2 ab | X
10 n E;I e T

Prienai Telsiai Kedainiai

Study areas

Figure 4. The richness of fungal OTUs in oak wounds of different ages (10 y, 20 y, 30 y, 40 y, and
50 y) at three different sites (Prienai, Tel$iai, and Kédainiai) in Lithuania. Within each site, columns
followed by the same letter do not differ significantly at p > 0.05.

The most common fungi in 10-year-old wounds were Aposphaeria corallinolutea (23.7%),
Sclerostagonospora cycadis (13.3%), and Diatrype stigma (9.6%); in 20-year-old wounds, these
were Cadophora malorum (22.3%), Diaporthe eres (15.6%), and Unidentified sp. 5631_30
(15.4%); in 30-year-old wounds, these were Laetiporus sulphureus (22.0%), Menispora sp.
5631_29 (12.2%), and Phialemonium inflatum (10.6%); in 40-year-old wounds, these were
Fimetariella rabenhorstii (30.7%), Leptosillia macrospora (18.3%), and Mycena galericulata (16.5%);
and in 50-year-old, these were Phaeostalagmus cyclosporus (20.1%), L. sulphureus (16.6%), and
C. malorum (10.3%) (Table 2).

Table 2. Occurrence and relative abundance of the 30 most common fungal OTUs (shown as a
proportion of all high-quality fungal sequences) in Quercus robur stem wounds of different ages
(10-50 years old). Data from different sites are combined.

Genbank

Phylum * OTU Reference Similarity, (%) Age of Wound Total, %
10 Y, % 20 Y, % 30 Yy % 40 Yy % 50 Yy %
A Aposphaeria corallinolutea MT177916 245/245 (100) 23.74 1.38 - 0.04 - 11.38
A Sclerostagonospora cycadis KR611890 248/248 (100) 13.29 0.33 0.04 0.01 - 6.34
B Laetiporus sulphureus MH321898 296/296 (100) - - 22.04 0.01 16.62 5.68
A Cadophora malorum MT561395 241/241 (100) 0.01 22.28 8.13 1.60 10.25 4.84
A Diatrype stigma KT004563 251/252 (99) 9.57 0.13 0.01 - - 4.55
A Fimetariella rabenhorstii MN547388 248/250 (99) - 0.09 0.47 30.69 - 4.49
A Neosetophoma italica LC206635 249/249 (100) 8.98 0.07 - 0.01 - 4.27
A Phaeostalagmus cyclosporus ON989633 233/238 (98) - - 0.78 0.39 20.98 3.94
A Neocucurbitaria quercina OP896095 249/249 (100) 4.37 4.63 0.03 5.40 0.16 3.25
B Mycena galericulata KJ705178 314/314 (100) - - 2.05 16.54 0.78 2.78
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Table 2. Cont.
Genbank
* L} s o o
Phylum OTU Reference Similarity, (%) Age of Wound Total, %
10 Y, % 20 Y, % 30 Y, % 40 Y, % 50 Y, %
A Leptosillia macrospora NR164064 265/265 (100) 0.14 0.65 - 18.32 0.01 2.76
A Cytospora predappioensis MT595364 260/260 (100) 5.34 0.09 0.03 0.01 - 2.54
A Cladosporium cladosporioides OP963820 243/243 (100) 5.17 0.19 0.09 0.17 0.03 2.51
A Paraphaeosphaeria sporulosa KX664338 244/245 (99) 517 0.47 - - - 249
A Lophiostoma corticola KU712227 244/244 (100) 3.76 0.29 0.03 0.04 - 1.81
A Neoleptosphaeria rubefaciens KT804116 250/250 (100) 3.35 0.01 0.31 - - 1.63
A Sporocadus trimorphus MT223846 248/248 (100) 3.35 0.01 - - - 1.59
A Ascocoryne sarcoides MH857562 240/240 (100) 0.003 0.70 0.24 0.06 8.04 1.55
A Menispora sp. 5631_29 MH859920 222/233 (95) - - 12.20 0.06 - 1.49
A Phialocephala compacta MH862480 234/239 (98) 0.003 7.36 4.95 1.38 0.35 1.45
A Diaporthe eres MT111115 255/255 (100) 0.31 15.63 - - - 1.39
A Phialemonium inflatum MT221573 242 /246 (98) - 0.02 10.57 0.04 0.004 1.29
A Unidentified sp. 5631_30 MNO096587 254/265 (96) - 15.38 0.03 - - 1.22
A Phlyctema vagabunda MK174720 239/239 (100) 2.50 0.03 0.19 - - 1.21
B Cylindrobasidium evolvens MN947592 387/387 (100) 2.24 - - - - 1.06
A Hyaloscypha fuckelii MT231692 238/238 (100) - - - 0.01 5.76 1.04
B Armillaria gallica KY474051 476 /477 (99) - - 0.01 - 5.25 0.95
B Phlebia acerina MN945144 289/289 (100) - - 7.46 - - 0.90
B Pleurotus dryinus MK169240 284/284 (100) - 0.40 - 0.24 3.66 0.73
A Lophiostoma sp. 5631_40 MH178565 240/252 (95) - - - - 3.96 0.72
Total 91.28 70.14 69.64 75.02 75.84 81.84
* A—Ascomycota, B—Basidiomycota.
The most common Basidiomycota fungi were L. sulphureus (34.7%), M. galericulata
(17.0%), and Cylindrobasidium evolvens (6.5%), and the most common Ascomycota fungi
were A. corallinolutea (13.6%), S. cycadis (7.6%), and C. malorum (5.8%) (Figure 5).
Basidiomycota Ascomycota
0.8% .
0.8% \ 0.7% >° "’
18%\ |/ 13.6%
24% 215%
3.1%
3.3%
7.6%
3.6%
34.7% 1.5%
3.90/0 1.70/0 5.80/0
1.7% ‘
. 1.8% |
45% 1.5, S50
1.9%
5.5% 1.9%
2.2% 5.4%
3.0%
3.0% 5.1%

10,
6.5% L

m Laetiporus sulphureus u Mycena galericulata m Cylindrobasidium evolvens

u Armillaria gallica u Phlebia acerina m Pleurotus dryinus

w Stereum hirsutum u Hyphodontia pallidula m Stereum rugosum

u Xylodon spathulatus ® Phleogena sp. 5631_45 Peniophora incarnata

Mycena zephirus Candolleomyces candolleanus = Unidentified sp. 5631_60

Others

. ‘
3.0%33% 590, 4.7%

u Aposphaeria corallinolutea  m Sclerostagonospora cycadis ~ m Cadophora malorum

u Diatrype stigma u Fimetariella rabenhorstii m Neosetophoma italica

m Phaeostalagmus cyclosporus m Neocucurbitaria quercina Leptosillia macrospora

Cytospora predappioensis Cladosporium cladosporioides m Paraphaeosphaeria sporulosa

Lophiostoma corticola Neoleptosphaeria rubefaciens = Sporocadus trimorphus

Ascocoryne sarcoides Menispora sp. 5631_29 Phialocephala compacta

Diaporthe eres Phialemonium inflatum Others

Figure 5. Relative abundance (%) of most common fungal OTUs in Quercus robur wounds of different

ages (10 y-50 y). Others include fungal OTUs with a relative abundance of <0.7% for Basidiomycota

and of <1.5% for Ascomycota.
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The number of unique OTUs (found only in a particular age class) varied substantially
in stem wounds of different ages (Table S1). The most frequent unique OTUs in 10-year-old
wounds were Cylindrobasidium evolvens (2.2%), Peniophora incarnata (0.6%), and Hormodochis
aggregata (0.4%); in 20-year-old wounds, these were Candida norvegica (1.2%), Unidentified
sp. 5631_140 (0.4%), and Hyphodiscus luxurians (0.3%); in 30-year-old wounds, these were
Phlebia acerina (7.5%), Unidentified sp. 5631_39 (5.8%), and Stereum hirsutum (5.3%); in
40-year-old wounds, these were Toniniopsis subincompta (2.6%), Zygosaccharomyces parabailii
(2.1%), and Unidentified sp. 5631_56 (2.0%); and in 50-year-old wounds, these were
Lophiostoma sp. 5631_40 (4.0%), Phleogena sp. 5631_45 (2.2%), and Mortierella hypsicladia
(1.2%) (Table S1). Among all fungi, unique OTUs in wounds of different ages constituted
between 24.0% and 52.3% of all OTUs. The highest number of shared OTUs was between
30- and 40-year-old (86 OTUs) wounds, while the least number was between 10- and
50-year-old (37 OTUs) wounds. Most of the unique OTUs were in 10-year-old (112) and
50-year-old (71) wounds (Figure 6).

20Y

10Y

30Y

50Y

40Y

Figure 6. Venn diagrams showing the diversity and overlap of fungal OTUs in oak wounds of
different ages (10 y—50 y). Data from different sites are combined.

The Serensen similarity index (p-diversity) of fungal communities between wounds
of different ages was moderate to low. The lowest Serensen similarity index of fungal
communities was between 10- and 50-year-old (0.19) wounds, while the highest was
between 30- and 40-year-old (0.46) wounds (Table 3).

Table 3. The Serensen similarity index (B-diversity) of fungal communities among wounds of
different ages (10-50 years old). Data from different sites are combined.

Wound Age 10y 20y 30y 40y 50y
10y - 0.32 0.26 0.35 0.19
20y 0.32 - 043 0.42 0.36
30y 0.26 0.43 - 0.46 0.40
40y 0.35 0.42 0.46 - 0.35
50y 0.19 0.36 0.40 0.35 -

Fungal functional groups were determined for 91.4% of fungal sequences, and their
relative abundance in wounds of different ages is shown in Figure 7. In all samples, the
most abundant fungal functional groups were undefined saprotrophs (37.9%), wood sapro-
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trophs (24.2%), plant pathogens (14.2%), and endophytes (12.7%) (Figure 7). Undefined
saprotrophs showed the highest relative abundance in 50-year-old (55.8%), 10-year-old
(37.8%), and 30-year-old (37.7%) wounds, and their relative abundance differed signif-
icantly from those in 20-year-old wounds (p < 0.05). The highest relative abundance of
wood saprotrophs was in 30-year-old (32.7%), 10-year-old (27.8%), and 50-year-old (23.2%)
wounds, and their relative abundance differed significantly from those in 20-year-old
wounds (p < 0.05) (Figure 7). The relative abundance of plant pathogens was highest in
10-year-old (24.6%) and 20-year-old (22.7%) wounds, which was significantly higher than
in wounds of other ages (p < 0.05) (Figure 7). The relative abundance of endophytes var-
ied substantially in wounds of different ages, with the highest difference being between
10-year-old (4.5%) and 20-year-old (38.3%) wounds (p < 0.05).

10Y 20Y 30Y
29, 11% 3.1% 2.1% 59, 1L1%
45% 2o 7.7% -
37.8% 14.5%
32.7%
38.3%
24.6% 22.7%
21.3%
27.8% 26.1% 26.9%
4.6% 2:6% 4.4%2.51% 23% - 2.4%
8.9% o o,
o 37.7% 11.5% 55.8%  12.7% 37.9%
19.6%
23.2% 14.2%
26.6% 24.2%
40Y 50Y Total

I Unidentified Saprotroph  [ll] Wood Saprotroph [ Plant Pathogen

[ ] Endophyte Il Unidentified [l Others

Figure 7. Relative abundance (%) of fungal functional groups in Q. robur stem wounds of different
ages, estimated based on fungal sequences. Others represent fungi, which are not associated with
plants (e.g., animal pathogens).

The detected wood-decay fungi were L. sulphureus (5.7%) (detected in >30-year-old
wounds), Armillaria gallica (0.9%) (only in 50-year-old wounds), Phlebia acerina (0.9%) (only
in 30-year-old wounds), Stereum hirstum (0.6%) (in >30-year-old wounds), Stereum rugosum
(0.5%) (in >30-year-old wounds), and Tremetes versicolor (0.03%) (in >40-year-old wounds).
Fungi strongly associated with oaks such as Phlebia acerina (1.2%) (only in 30-year-old
wounds) and Pleurotus dryinus (0.7%) (mostly in 50-year-old wounds) were also detected
(Table S1).

NMDS analysis revealed a partial overlap of fungal communities in oak wounds
of different ages (Figure 8). The permutation test showed that fungal communities in
10-year-old wounds differed significantly from those in older wounds (20 y, 30 y, 40 y, and
50 y) (p < 0.001). There was also a significant difference between fungal communities in
20-year-old and 50-year-old wounds (p < 0.01), and in 40-year-old and 50-year-old wounds
(p < 0.05), while in wounds of other ages, fungal communities were similar (p > 0.05)
(Figure 8).
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0.14

Wound age
10y
20y
30y
40y
50y

NMDS2

-0.11

02 ~0.1 0.0 0.1
NMDS1

Figure 8. Non-metric multidimensional scaling (NMDS) of fungal communities associated with
Quercus robur stem wounds of different ages (10, 20, 30, 40, or 50 years old).

4. Discussion

In most cases, living tree tissues beneath the intact bark represent an unfavorable
environment for colonization by many fungi, but these tissues become readily available
for colonization when the tree is injured, or in the case of bark dieback. Post-damage
fungal colonization in angiosperms was extensively studied in North America [43,52],
showing that fungal colonization is often determined by both the nature of the wound and
its location on the stem. If the wound is only superficial, i.e., only the bark is removed in a
small area, then conditions are often limited for fungal colonization. However, if the wound
is relatively large, and especially if it penetrates several or more annual rings, the decay can
spread more rapidly into the inner wood. The primary colonization of wounds starts with
latent fungi that were already in the wood, but it may also include opportunistic pathogens,
or fungi whose spores were on the damaged surface [13]. Following the expansion of these
fungi in wounds of living trees, complex fungal communities are formed. In addition to
latent fungi, wounds are also colonized by those with ruderal characteristics, even though
their abundance is usually not high [42].

Fungal communities colonizing living tree stems were shown to persist in deadwood
for many years after the tree injury, but they are also constantly changing both temporally
and spatially [42,53]. In agreement, the results of the present study showed that the richness
and composition of fungal communities changed over time. Consequently, certain trends in
richness of fungal OTUs in oak wounds of different ages (10 y-50 y) were revealed, showing
that there was an increase in OTU richness between 10- and 20-year-old wounds, the OTU
richness remained similar between 20- and 40-year-old wounds, and the OTU richness
decreased in 50-year-old wounds (Table 1, Figure 3), thereby only partly supporting the
hypothesis that the species richness increases with the age of wounds. Although it was
shown that the diversity of fungal species changes strongly during different stages of
wood decomposition [54], it may be different in wounds. For example, the increase in
richness of fungal OTUs in relatively young wounds can be associated with the availability
of new substrate for colonization, while competition among fungi already established in
oak wood and the ongoing process of wound closure could contribute to minor changes
in the richness of fungal OTUs in mid-age (20- to 40-year-old) wounds. Furthermore, the
complete wound closure in old wounds can drive the decline of fungal OTU richness due to
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both the lack of access to exposed wood and reduced supply of oxygen. However, variation
in richness of fungal OTUs was high at different study sites (Figure 4), showing a strong
impact of local environmental conditions.

Differences in fungal community composition in wounds of different ages were also no-
table (Figure 8), and these differences were further supported by low values of the Serensen
similarity index (Table 3) and a low overall number of shared OTUs (21) (Figure 6). These
changes, which were likely driven by changes in habitat availability and quality, led to
the establishment and persistence of oak-associated fungi, thereby supporting the hypoth-
esis that wounds in young oaks create conditions for the establishment and long-term
survival of such fungi. Among these, there were fungi such as L. sulphureus, which causes a
heart rot in living oak trees [55,56]; a widespread fungus P. dryinus, which causes a white
rot [57]; and the wood-decay fungi S. hirstum, S. rogosum, and Peniophora incarnata [58-60].
A tree pathogen A. gallica was also detected in old (especially in 50-year-old) wounds,
showing that it is a secondary plant parasite that usually causes infections only after the
defense of host trees is weakened, e.g., after the insect defoliation, drought, or infection by
other fungi. Ophiostoma quercus, which was suggested to be associated with the decline of
oaks in Central Europe [61,62], was also detected. All these oak-associated wood-decay
and/or pathogenic fungi were found to be more abundant in older wounds (>30 years
old) (Tables 2 and S1). By contrast, endophytic and/or generalist pathogenic fungi were
more common in 10-year-old wounds (Table 2). For example, in 10-year-old wounds, there
were fungal endophytes such as S. cycadis and Paraphaeosphaeria sporulosa [63—65], and plant
pathogens Neoleptosphaeria rubefaciens [66—68] and Sporocadus trimorphus [69] (Table 2), but
their functional role in colonized oak wood is obscure.

The abundance and composition of fungal functional groups has also changed over
time (Figure 7), as tree wounding enabled latent colonizers of intact wood to switch to
saprophytic or pathogenic lifestyles while at the same time having a competitive advantage
over other later arriving fungi due to readily available wood resources [70,71]. For example,
Lophiostoma corticola, which is a widely distributed saprotroph, showed a high relative
abundance in 10-year-old wounds [72,73]. Although it is not common in oaks, it is well
characterized from leaves, petioles, or branches of Fraxinus excelsior [73-75]. Diatrype stigma
was also found among the most common fungi associated with 10-year-old wounds. It is
a saprotrophic species that is commonly associated with the genus Quercus but can also
grow on various plants within Rosaceae and Betulaceae [76]. Cytospora predappioensis was also
discovered in relatively young wounds. Some Cytospora species are known to cause canker
diseases in woody plants [77,78]. Cylindrobasidium evolvens is a widespread saprotroph that
is common in young wounds of hardwood tree species [79]. Such a composition of fungi
in 10-year-old wounds indicates that newly created wounds provide favorable conditions
for the establishment and expansion of primary colonizers, which are widely distributed
in the environment [32]. As a possible result of expansion of such fungi, the relative
abundance of endophytes has peaked in 20-year-old wounds (Figure 7) with Diaporthe
eres and Unidentified sp. 5631_30 being the most common and unique fungi (Table 2).
Although D. eres can cause stem canker, stem necrosis, dead branch, shoot blight, fruit
rot, leaf spot, leaf necrosis, and crown browning [80-82], in Mediterranean oaks it was
characterized as an endophyte [83]. In 30-year-old and older wounds, there was a notable
change from endophytic to saprotrophic fungi (Figure 7), which can probably be attributed
to the activity of secondary wood decomposers [84,85]. For example, M. galericulata and
Ascocoryne sarcoides were commonly detected in older wounds (Table 2). Mycena galericulata
is a saprotrophic wood-decay fungus, which occurs at later stages of wood decomposition,
as it requires a substrate prepared by other fungi [86,87]. Ascocoryne sarcoides is commonly
found in high humidity temperate forests, which are rich in beech and oak [88,89]. Although
the fungus usually occurs on fallen trees or large pieces of wood, suggesting that it can be a
saprotroph, the precise trophic mode is obscure [90].
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5. Conclusions

Oak wounds of different ages are inhabited by a high diversity of fungi including oak-
associated species such as L. sulphureus, P. dryinus, and P. incarnata, which often persist in old
wounds after their closure, demonstrating that wounds in young oaks create conditions for
the establishment and long-term survival of oak-associated fungi. The fungal OTU richness
changed over time: it increased between 10- and 20-year-old wounds, remained similar
between 20- and 40-year-old wounds, and decreased in 50-year-old wounds. Consequently,
fungal communities in oak wounds undergo qualitative and quantitative changes over time,
leading to the gradual shift from fungal generalists in young wounds to oak specialists in
older wounds.

Supplementary Materials: The following Supporting Information can be downloaded at: https://
www.mdpi.com/article/10.3390/f14102077 /s1, Table S1: Distribution and relative abundance of
fungal OTUs (shown as a proportion of all high-quality fungal sequences) in Quercus robur wounds
of different ages (10-50 years old). The data from different study sites are combined.
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