
1. Introduction
Hydrological models aim to represent the flow and storage of water in catchments to answer questions related to 
water management (e.g., Qin et al., 2013; Seibert & Bergström, 2022), or to predict the impacts of climate change 
(Driessen et al., 2010; Sorribas et al., 2016) or land use change (Montenegro & Ragab, 2010) on streamflow. They 
can also be used to fill gaps in hydrological monitoring in space and time, or to estimate water fluxes in unmon-
itored regions (Bergström, 2006; Hrachowitz et al., 2013). The parameters used to calculate the  fluxes in hydro-
logical models usually need to be calibrated. This is typically done by maximizing the agreement between the 
observed and simulated streamflow (i.e., optimizing model fit). However, streamflow data are available for only 
a few locations, and many regions are poorly gauged (Hrachowitz et al., 2013; Ruhi et al., 2018). However, alter-
native data sets (e.g., stream level) can be valuable for hydrological model calibration as well (Etter et al., 2020; 
Seibert & Vis, 2016; van Meerveld et al., 2017).

Abstract For many catchments, there is insufficient field data to calibrate the hydrological models that 
are needed to answer water resources management questions. One way to overcome this lack of data is to use 
remotely sensed data. In this study, we assess whether Landsat-based surface water extent observations can 
inform the calibration of a lumped bucket-type model for Brazilian catchments. We first performed synthetic 
experiments with daily, monthly, and limited monthly data (April–October), assuming a perfect monotonic 
relation between streamflow and stream width. The median relative performance was 0.35 for daily data 
and 0.17 for monthly data, where values above 0 imply an improvement in model performance compared 
to the lower benchmark. This indicates that the limited temporal resolution of remotely sensed data is not 
an impediment for model calibration. In a second step, we used real remotely sensed water extent data for 
calibration. For only 76 of the 671 sites the remotely sensed water extent was large and variable enough to be 
used for model calibration. For 30% of these sites, calibration with the actual remotely sensed water extent data 
led to a model fit that was better than the lower benchmark (i.e., relative performance >0). Model performance 
increased with river width and variation therein. This indicates that the coarse spatial resolution of the 
freely-available, long time series of water extent used in this study hampered model calibration. We, therefore, 
expect that newer higher-resolution imagery will be helpful for model calibration for more sites, especially 
when time series length increases.

Plain Language Summary Hydrological models are important for water resources management. 
The parameters for these models are estimated in a calibration process. Usually, calibration is based on 
streamflow data from gauging stations. However, for many catchments there are no streamflow data and 
therefore the calibration of hydrological models is difficult. In this study, we tested whether satellite data 
that shows the area that is covered by water can be used to calibrate the parameters of a hydrological model 
for Brazilian catchments. First, we tested if satellite data would be useful if the water extent was perfectly 
correlated to streamflow and available for every day, month, or month for half of the year due to cloud cover. 
For two thirds of the catchments, daily observations would be helpful for model calibration, but both monthly 
data sets were also informative. When we used actual satellite images to calibrate the model for a subset of 
76 large rivers, only 30% of them benefitted from these data. This is probably due to inaccuracies in the water 
extent from satellite images and its coarse spatial resolution. We expect that newer higher-resolution satellite 
data will be more useful for model calibration, especially when they become available for longer time periods.

MEYER OLIVEIRA ET AL.

© 2023. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Assessment of the Value of Remotely Sensed Surface Water 
Extent Data for the Calibration of a Lumped Hydrological 
Model
Aline Meyer Oliveira1  , H. J. (Ilja) van Meerveld1  , Marc Vis1  , and Jan Seibert1,2 

1Department of Geography, University of Zurich, Zurich, Switzerland, 2Department of Aquatic Sciences and Assessment, 
Swedish University of Agricultural Sciences, Uppsala, Sweden

Key Points:
•  Synthetic (i.e., perfect) daily water 

extent time series were informative for 
model calibration for two thirds of the 
Brazilian study catchments

•  Reduction of the temporal resolution 
to monthly time series did not limit 
the value of the synthetic water extent 
data for model calibration

•  Actual remotely sensed water extent 
data was helpful for calibration for 
only one third of the subset of 76 
catchments with large rivers

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
A. Meyer Oliveira,
aline.meyer@geo.uzh.ch

Citation:
Meyer Oliveira, A., van Meerveld, 
H. J., Vis, M., & Seibert, J. (2023). 
Assessment of the value of remotely 
sensed surface water extent data for the 
calibration of a lumped hydrological 
model. Water Resources Research, 
59, e2023WR034875. https://doi.
org/10.1029/2023WR034875

Received 15 MAR 2023
Accepted 13 OCT 2023

Author Contributions:
Conceptualization: Aline Meyer 
Oliveira, H. J. (Ilja) van Meerveld, Jan 
Seibert
Formal analysis: Aline Meyer Oliveira, 
H. J. (Ilja) van Meerveld, Marc Vis, Jan 
Seibert
Funding acquisition: H. J. (Ilja) van 
Meerveld
Investigation: Aline Meyer Oliveira, H. 
J. (Ilja) van Meerveld
Methodology: Aline Meyer Oliveira
Resources: H. J. (Ilja) van Meerveld
Software: Marc Vis

10.1029/2023WR034875
RESEARCH ARTICLE

1 of 19

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7076-4570
https://orcid.org/0000-0002-7547-3270
https://orcid.org/0000-0002-5589-2611
https://orcid.org/0000-0002-6314-2124
https://doi.org/10.1029/2023WR034875
https://doi.org/10.1029/2023WR034875
https://doi.org/10.1029/2023WR034875
https://doi.org/10.1029/2023WR034875
https://doi.org/10.1029/2023WR034875
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023WR034875&domain=pdf&date_stamp=2023-11-06


Water Resources Research

MEYER OLIVEIRA ET AL.

10.1029/2023WR034875

2 of 19

Remote sensing is one way to overcome limitations in hydrological field data, as large rivers can be observed 
from space (Lettenmaier et al., 2015). The Landsat mission, whose first satellite was launched in 1972, now has 
acquired 50 years of data, with locations typically being observed every 16–18 days. This temporal resolution is 
sufficient to capture the changing flow conditions in large rivers (with drainage area larger than 1,000 km 2) (Allen 
et al., 2020). Indeed, remotely sensed water extent imagery has been used to retrieve streamflow, by applying 
a hydraulic geometry framework that relates streamflow to river width via a power-law relation (e.g., w = aQ b, 
where w is width, Q is streamflow, and a and b are parameters) (Frasson et al., 2019; Junqueira et al., 2021; 
Pavelsky, 2014; Pôssa et al., 2020). For example, W. C. Sun et al. (2010) and W. Sun et al. (2015) extracted river 
width from Synthetic Aperture Radar (SAR) images (12.5 m resolution) to calibrate a hydrological model for two 
large (545,000 km 2 and 411,000 km 2) catchments in Asia. They concluded that river width is a helpful proxy for 
streamflow in basins without gauging stations. Meyer Oliveira et al. (2021) similarly used SAR images to calibrate 
a hydrologic-hydraulic model for the 236,000 km 2 Purus river in the Amazon. They found that the use of SAR 
data led to a significant improvement in the simulation of the flood extent for the validation period, even though 
the improvement in the simulation of the streamflow was relatively small. W. Sun et al. (2018) used commercial 
high-resolution remotely sensed river width data for the simulation of a 33,000 km 2 catchment in China and also 
concluded that the proposed framework was suitable for ungauged basins. Revilla-Romero et al.  (2015) used 
remotely sensed water extent data from the Global Flood Detection System to calibrate the LISFLOOD model 
and found that for 21 out of 30 sites (with catchment areas ranging from 27,650 to 4.7 million km 2), these data 
were useful to estimate streamflow.

The conversion of the remotely sensed water extent data to an estimated streamflow requires additional parame-
ters (a and b in case of the power law relation mentioned above) (Bjerklie et al., 2003; Gleason & Durand, 2020; 
Lin et al., 2023), which can negatively affect parameter (and thus model simulation) uncertainty. The retrieval 
of streamflow from remotely sensed water extent observations, furthermore, depends on the adopted method. So 
far, it is unclear to what extent the temporal and spatial resolution of the remotely sensed data contributes to the 
final model performance (Allen et al., 2020; Liu et al., 2015). In addition, the previous studies only simulated 
streamflow for one or a handful of very large rivers. As a result, it is not yet clear for which catchments remotely 
sensed water extent data is informative for model calibration.

Therefore, in this study, we applied a different approach and used Landsat-based remotely sensed water extent 
data directly in model calibration to investigate if and to what degree, water extent observations can inform 
the calibration of a lumped bucket-type hydrological model for catchments in Brazil. The Global Surface 
Water (GSW) data set (Pekel et al., 2016) provides monthly water extent data derived from Landsat imagery. 
It is thus readily available for hydrologic modelers and practitioners. Although the resolution of Landsat data 
is much coarser than for some of the newer satellite products (e.g., CubeSat, QuickBird, RapidEye), we used 
it here because it is freely available. Furthermore, the long time series of the Landsat data means that it is 
more likely to include extreme flood and drought events than the shorter time series from newer satellites. 
We assessed the potential of the monthly water extent data derived from Landsat imagery for 671 catchments 
in the CAMELS-BR data set (Chagas et al., 2020). We used a systematic approach with both synthetic (i.e., 
perfect) data and actual remotely sensed water extent data to assess the influence of the temporal resolution 
and the uncertainty in the water extent data (e.g., due to spatial resolution) on model performance separately. 
The synthetic data was used to determine whether monthly stream width data would be useful for model 
calibration if it were perfectly related to streamflow, and if the effect of cloud cover (and thus a reduction 
of the amount of data available) would affect model performance. Afterward, we assessed the true value of 
Landsat-derived water extent data for model calibration to determine the effect of uncertainty in the relation 
between water extent and streamflow on model calibration, and for which catchments these actual remotely 
sensed data are informative for model calibration. More specifically, we addressed the following research 
questions:

1.  Is the temporal resolution of Landsat imagery sufficient for model calibration if it is perfectly correlated to 
streamflow?

2.  How informative are (actual) remotely sensed water extent data for model calibration for catchments in 
Brazil?

3.  For which types of rivers and catchments are remotely sensed water extent data most informative for model 
calibration?
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2. Methods
2.1. Study Design

In this study, we used a systematic approach to determine the value of remotely sensed stream width data for 
model calibration. We first used the streamflow data from the CAMELS-BR data set (Chagas et al., 2020) in a 
synthetic experiment approach to determine the influence of the temporal resolution of stream width data if it 
was available for every catchment and perfectly correlated with streamflow. We calibrated the HBV (Hydrol-
ogiska Byrans Vattenavdelning) model (Bergström, 1976; Seibert & Bergström, 2022) on different subsets of 
the data (daily, monthly, or monthly for the dry season months only) using the Spearman rank correlation (rs) 
as the objective function and validated the model on the observed daily streamflow (II–IV in Figure  1; see 
Section 2.3.2. Model calibration and data sets). These synthetic experiments allowed us to assess the effect of a 
lack of information on the streamflow volume and the effects of lower temporal resolution data on model calibra-
tion performance. Afterward, we determined the actual remotely sensed water extent for all the gauging stations 
in the CAMELS-BR data set (see Section 2.4 Water extent extraction in Google Earth Engine). For the gauging 
station sites for which there was enough variation in the water extent, we used these data in model calibration (V 
in Figure 1) and validated the model again using the observed streamflow data. This step allowed us to determine 
the effect of uncertainties in the remotely sensed water extent data on model calibration. For each catchment, we 
compared the model performance to an upper benchmark, that is, calibration based on daily streamflow data (I 
in Figure 1) and a lower benchmark, that is, the ensemble mean streamflow for 1,000 random parameter sets (VI 
in Figure 1) (cf. Seibert et al., 2018).

2.2. Streamflow Data Set

The CAMELS-BR data set (Chagas et al., 2020) contains the input data (precipitation, temperature, and monthly 
potential evapotranspiration [PET]) and streamflow data for 897 catchments across Brazil for the 1980–2018 time 
period. We restricted the analyses to the 807 catchments for which the consumptive water use and the regulation 
degree were both less than 50%. This 50% threshold is an arbitrary value and reflects a trade-off between exclud-
ing catchments with a large human influence on streamflow, while still having enough catchments for the analy-
ses. For 20 of these 807 catchments, none of the 100,000 model runs with random parameters resulted in a volume 
error smaller than 30%. Therefore, these catchments were excluded from the analyses as well (see Section 2.3.2). 
This 30% threshold is also arbitrary but based on the assumption that we can estimate the annual streamflow for 
a catchment based on the hydro-climatological setting, streamflow data from nearby gauges, or satellite data on 
the evapotranspiration with a 30% error (see also Section 2.3.2). The 787 remaining catchments cover a range 
of sizes (11–4.7 million km 2; median: 2,097 km 2), climate (annual precipitation: 584–3,584 mm/year; median: 
1,492 mm/year; annual PET/annual P: 0.3–2.0; median: 0.7), and mean annual streamflow (19–2,547 mm/year; 
median: 546 mm/year).

Figure 1. Overview of the approach used in this study, with the different data sets used for model calibration (I–VI in the yellow boxes), the different objective 
functions (E, non-parametric Kling Gupta efficiency; rs, Spearman rank correlation; in the green boxes), and the input to the model and the outputs (blue boxes). The 
different data sets and their temporal resolution are described in Section 2.3.2. PET: potential evapotranspiration.

 19447973, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034875 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [04/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

MEYER OLIVEIRA ET AL.

10.1029/2023WR034875

4 of 19

2.3. Model Application

2.3.1. HBV Model

For the model simulations, we used the HBV model (Bergström, 1976; Lindström et al., 1997) in the software imple-
mentation HBV-light (Seibert & Vis, 2012), version 4.0.0.23. The HBV model is a lumped conceptual (bucket-type) 
model with low data requirements, a short running time, and a relatively small number of parameters (eight, when 
snowmelt processes are not considered; Table S1 in Supporting Information  S1). This allows the model to be 
calibrated multiple times to assess parameter uncertainty. The HBV model has previously been used to evaluate 
the value of data (e.g., Etter et al., 2020; Pool et al., 2017; Seibert & Beven, 2009; van Meerveld et al., 2017) and 
has been applied to a range of catchments, including large catchments (e.g., Graham, 1999; Seibert & Vis, 2016).

The HBV model has four main routines representing snow, soil moisture (SM), groundwater, and routing. The 
snow routine was not used in this study because of the absence of snow in the study catchments. The SM routine 
calculates the water balance in the soil, groundwater recharge, and evaporation. Evaporation is equal to the PET 
as long as SM divided by the maximum soil storage (FC) is higher than a certain threshold (LP) and decreases 
linearly with SM below this value. Groundwater recharge is calculated based on a relation between SM and the 
maximum soil storage (FC). The response (or groundwater) routine consists of two connected reservoirs (repre-
senting the shallow and deep groundwater). Flow out of these reservoirs depends non-linearly on the storage (via 
parameters alpha, K1 and K2). The routing routine simulates streamflow at the catchment outlet with a triangular 
weighting function (Bergström, 1976; Lindström et al., 1997).

2.3.2. Model Calibration and Data Sets

We used the period from 1 January 1997 to 31 August 1999 as a warm-up period and the period from 1 September 
1999 to 31 August 2009 for calibration (hydrologic year consistent with CAMELS-BR). The model parameters 
for the different calibration experiments were optimized using the Genetic Algorithm and Powell optimization 
(Seibert,  2000) using 5,000 model runs for the genetic algorithm and 1,000 runs for local optimization. To 
account for parameter equifinality, the optimization was repeated 10 times. The model parameters and the bound-
aries used for the calibration are given in Table S1 in Supporting Information S1.

For each catchment, we calibrated the model using the different data sets (yellow boxes in Figure 1). For all data 
sets, the model was ran at a daily time step. For the synthetic experiments used to determine the effect of the lower 
temporal resolution of remotely sensed data, we pretended that stream width data were available and perfectly 
correlated to either the daily or the monthly mean streamflow for all the catchments in the CAMELS-BR data 
set. We calculated the monthly mean, median and maximum streamflow for each catchment from the daily 
streamflow data and compared these values to the maximum water extent (see Section 2.4 Water extent extraction 
via Google Earth Engine). The monthly mean and median streamflow data were better correlated to the water 
extent than the monthly maximum streamflow (Figure S1 in Supporting Information S1). Because there were no 
systematic differences between the mean and median values, we used monthly mean streamflow for the model 
calibration.

The CAMELS-BR data set does not contain stream width data and the HBV model does not simulate stream 
width. Streamflow was instead used as an indicator of stream width with the Spearman rank correlation (rs) as the 
objective function in model calibration (green boxes in Figure 1). This assumes that streamflow and stream width 
are correlated, that is, that the stream is widest when the flow is highest. This approach assumes a strictly mono-
tonic relationship between streamflow and stream width and does not work when the relation between streamflow 
and width is non-monotonic (i.e., there is considerable hysteresis). It has been successfully used to assess the 
value of water level data for 671 catchments in the US by Seibert and Vis (2016) and the value of water level class 
data for 21 catchments in Switzerland and Austria by Etter et al. (2020). The advantage of this approach is that no 
information on the (shape of the) rating curve is required, and that it does not require any additional parameters 
to relate streamflow to stream width or vice-versa. A disadvantage is that there is no information regarding the 
streamflow volume. Therefore, we incorporated a maximum 30% volume error constraint into the calibration, 
that is, the optimization process only considers simulations for which the volume error was less than 30%. This 
assumes that we can estimate the water balance of a catchment with a maximum error of 30% based on either 
knowledge of the hydroclimatic setting, remotely sensed evapotranspiration data, regionalization from gauged 
catchments in the region, or a few measurements in time covering the full range of streamflow magnitudes (Pool 
et al., 2017; Seibert & Beven, 2009).

 19447973, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034875 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [04/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

MEYER OLIVEIRA ET AL.

10.1029/2023WR034875

5 of 19

More specifically, we calibrated the model for each catchment using six different data sets (Figure 1).
 I.  Upper benchmark: model calibration with daily streamflow data based on the non-parametric variant of the 

Kling Gupta efficiency (KGE) (Eu) as objective function. The non-parametric KGE metric (E) consists of 
three error terms: volume (β), variability (αNP) and dynamics (rs) (Pool et al., 2018).

 II.  Synthetic daily stream width data: model calibration with daily streamflow data using the Spearman rank correla-
tion (rs) as the objective function and the <30% volume error constraint. This approach pretends that daily stream 
width data are available and perfectly correlated with streamflow. The Spearman rank correlation (rs) only consid-
ers the relative ranking between the values, regardless of the absolute values. The Spearman rank correlation (rs) 
is the same as the dynamics term (rs) in the non-parametric KGE metric (E) used for the upper benchmark.

 III.  Synthetic monthly stream width data: model calibration with monthly mean streamflow data using the Spear-
man rank correlation (rs) as the objective function and the <30% volume error constraint. The temporal 
resolution of satellite imagery varies and daily stream width data is unlikely to be available. This approach 
pretends that stream width data are available only monthly but are perfectly correlated with streamflow.

 IV.  Synthetic cloud-free monthly stream width data: model calibration with monthly mean streamflow data from 
April–October using the Spearman rank correlation (rs) as the objective function and the <30% volume error 
constraint. Some remote sensing approaches (e.g., optical remote sensing) cannot obtain data during wet 
periods due to frequent cloud cover (Allen et al., 2020). Therefore, we tested if a lack of data due to frequent 
cloud cover during the wet season affects model calibration. The exact period with frequent cloud cover 
varies across the country but generally falls between November and March (Figure S2 in Supporting Informa-
tion S1). Therefore, for this data set we assumed that monthly stream width data are only available from April 
to Octobe.

 V.  Actual remotely sensed water extent data: Model calibration with actual remotely sensed water extent data 
based on the Global Surface Water data set (GSW, Pekel et  al.,  2016), which is based on Landsat data, 
using the Spearman rank correlation (rs) as objective function and the <30% volume error constraint. See 
Section 2.4 for the details about the extraction of the GSW data.

 VI.  Lower benchmark: For the lower benchmark, we assumed that no streamflow or other data would be availa-
ble (cf., Seibert et al., 2018). Instead, we ran the model with random parameter sets until the <30% volume 
error was fulfilled for 1,000 times. We then computed the ensemble mean streamflow, and calculated the 
non-parametric KGE for this ensemble mean streamflow (EL; Pool et al., 2018).

The comparison of the model performance for the daily streamflow and synthetic daily stream width data sets (I 
vs. II) allowed us to assess the effect of a lack of information on the streamflow volume (β) on model calibration 
performance. The comparison of the model performance for the synthetic stream width data sets with a different 
temporal resolution (II, III, and IV) allowed us to assess the effects of the lower temporal resolution of remotely 
sensed data on model calibration performance. The comparison of monthly synthetic stream width and actual 
remotely sensed water extent data sets (III or IV vs. V) allowed us to assess the effects of uncertainties in the 
remotely sensed water extent data (e.g., due to the coarse spatial resolution of the data) and a non-uniform relation 
between streamflow and water extent on model calibration. Finally, the comparisons with the lower benchmark 
(VI) provide information about the value of the data set for model calibration, if no data would be available.

2.3.3. Model Evaluation

For data sets I–V, we obtained 10 calibrated parameter sets for each catchment. We used these parameter sets to 
simulate daily streamflow for the calibration period (1 September 1999 to 31 August 2009) and the validation 
period (1 September 1989 to 31 August 1999). For each catchment, we computed the mean of the simulated 
streamflow for each day for the 10 calibrated parameter sets to obtain the ensemble mean streamflow for each data 
scenario. We compared the ensemble mean streamflow for the calibration and validation periods to the observed 
daily streamflow. The agreement between the observed and the simulated (i.e., ensemble mean) streamflow was 
evaluated with the non-parametric KGE metric (E; Pool et al., 2018). Note that these non-parametric KGE values 
(E) are not directly comparable with the KGE values (Pool et al., 2018). The results for the calibration period 
are described in the text of the manuscript. Those for the validation period are similar and given in Supporting 
Information S1 (Figures S4 and S6 in Supporting Information S1).

To be able to compare the results for the different catchments for which the model efficiency values can vary 
greatly, and thus to obtain a clearer understanding of the value of the different data sets for model calibration, the 
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model efficiency (E) for the different calibration strategies was compared to that of the upper (EU) and lower (EL) 
benchmark for each catchment (Seibert et al., 2018), to obtain the relative model efficiency (ERel):

𝐸𝐸Rel =

𝐸𝐸 − 𝐸𝐸𝐿𝐿

𝐸𝐸𝑈𝑈 − 𝐸𝐸𝐿𝐿

 (1)

where E refers to the non-parametric KGE for a specific data set (II–V), EL to the non-parametric KGE for the 
lower benchmark (i.e., the Monte Carlo simulations; data set VI) and EU to the non-parametric KGE of the upper 
benchmark (i.e., the model calibrated with the daily streamflow data; data set I). A relative efficiency value ERel 
greater than 0 indicates that the data set is informative for model calibration, while a negative value indicates that 
the data are not informative because the simulated streamflow is not better than that of the lower benchmark. A 
value of ERel equal to 1 indicates that the data set leads to a streamflow simulation that is as good as the calibration 
with daily streamflow data. To indicate the effect of the data set on the optimized model parameters, we compared 
the median value (from the 10 parameter sets) to that for the upper benchmark. To do this, we first scaled all 
parameter values to a range of 0–1, where 0 is the lowest value of the parameter range and 1 is the highest value 
(Table S1 in Supporting Information S1).

2.4. Water Extent Extraction in Google Earth Engine

Monthly water extent data were extracted from the GSW data set (Pekel et al., 2016) for every month between 
1984 and 2020 using Google Earth Engine and its application programming interface, with a code written in 
JavaScript (Gorelick et al., 2017). The GSW data set is based on Landsat data: Landsat 5 Thematic Mapper 
(TM), Landsat 7 Enhanced Thematic Mapper-plus (ETM+) and Landsat 8 Operational Land Imager. The data 
set consists of monthly data for 30-m resolution pixels that are classified as water, not water, or no data. This 
classification required sophisticated techniques to merge different Landsat missions and was performed with 
big data techniques (expert systems, visual analytics and evidential reasoning) (Pekel et al., 2016). Note that the 
monthly water extent data set is limited by the 16–18 days Landsat revisit time. This means that the monthly 
image is representative of 1–2 day(s) per month, and not the mean nor the maximum water extent for that 
month.

We extracted the water extent for a circular area around each gauging station. We tested three buffer sizes (radius 
R of 2, 5, and 10 km around the gauging station) and converted the number of pixels classified as water to an 
“Equivalent Width” (W), which represents the width of the river if it was a line through the center of the circle 
(Equation 2):

𝑊𝑊 =
𝑛𝑛water

𝑛𝑛valid

⋅ 𝑛𝑛total ⋅

𝑠𝑠

2𝑅𝑅
 (2)

where nwater is the number of pixels classified as water, nvalid is the total number of valid pixels (i.e., the difference 
between the total number of pixels [ntotal] and the number of pixels with no data [nnoData]), R is the buffer radius 
(in meters) and s is the pixel size (30 m, for Landsat). There was no significant difference in the median Spearman 
rank correlation (rs) between the Equivalent Width W and monthly mean streamflow for the three buffer sizes 
(Kruskall wallis, p-value: 0.932) (Figure S3 in Supporting Information S1). Therefore, the results are presented 
for the 5-km radius buffer only. Images for which the percentage of NoData pixels exceeded 10% were excluded 
from the analyses. Images for which the Equivalent Width W was less than the mean minus three times the stand-
ard deviation were also excluded as they represented images with very few water pixels.

We constrained the analyses of the value of remotely sensed water extent data for model calibration to rivers for 
which the minimum water extent (Wmin) was larger than one (i.e., an equivalent straight line of pixels that is one 
pixel wide through the buffer area) because images with too few water pixels resulted in noisy data. For the 787 
catchments in the database, 144 fulfilled this minimum water extent criteria. To ensure that the Equivalent Width 
W changed sufficiently throughout the study period, the ratio between the maximum and median water extent 
also had to be larger than 1.2. For the 787 catchments in the database, 689 fulfilled this variability criteria. Only 
89 catchments fulfilled this criteria and the minimum water extent (Wmin) criteria. The selected value for the 
minimum variation in water extent was arbitrary. A smaller value would have resulted in a lower signal-to-noise 
ratio. A larger value would have excluded even more catchments (e.g., for a value of 1.5, only 29 catchments 
remained in the database).
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3. Results
3.1. Upper and Lower Benchmarks

The median model efficiency E for the calibration with daily streamflow data (i.e., the upper benchmark) for the 
787 selected catchments was 0.84 (mean: 0.81; range: −0.35 to 0.98; Figures 2a and 2c). The model performance 
was generally better for the wetter catchments (i.e., high mean precipitation, mean streamflow, and runoff ratio) 
than the drier catchments (e.g., high mean evapotranspiration, aridity index, and frequency of dry days). It was 
also better for more responsive catchments (e.g., steeper slope of the flow duration curve, higher 95th percentile 
of specific discharge) and larger catchments (Table S2 in Supporting Information S1). For 37 of the catchments 

Figure 2. (a) Map showing the model performance (non-parametric Kling Gupta efficiency) for the 787 selected catchments from the CAMELS-BR data set for 
the calibration period when the HBV model was calibrated with daily streamflow data (upper benchmark; EU); (b) observed (black line) and simulated hydrographs 
(colored line) for four catchments with different model performances for hydrologic year 2005/2006; (c) histogram of the upper benchmark values; (d) and the 
histogram of the difference between the upper and lower benchmark (EU-EL). The 116 catchments for which the upper benchmark was less than 0.60 (shown in dark 
gray in (a) and (c)) or the difference between the upper and lower benchmark was smaller than 0.05 (shown in light gray in (a) and (d)) were excluded from further 
analyses. Note that the three catchments for which the upper benchmark (EU) was less than zero are not shown in (c). ID (in b) refers to gauging station ID.
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the upper benchmark was poor (EU < 0.60). A poor model performance can indicate an inadequate model struc-
ture or poor data quality (Beven, 2018). Because the focus of this study was on the value of different data sets 
for model calibration, not model performance itself, we excluded these catchments from further analyses. The 
excluded catchments are mainly located in the Northeast of Brazil, but also included some catchments in the 
Amazon, and catchments close to the Atlantic coast (Figure 2a).

For 79 of the remaining 750 catchments, the model performance of the lower benchmark was very similar to 
that of the upper benchmark (EU-EL < 0.05; Figure 2d), suggesting that model calibration is not needed for these 
catchments. These catchments were also excluded from further analysis because the value of alternative data for 
calibration cannot be assessed for catchments for which calibration does not improve model performance. They 
did not have any particular characteristics in common and were also not located in a specific region (Figure 2a).

For the remaining 671 catchments for which the influence of the data used for model calibration was tested, 
the median model performance for the calibration with daily streamflow data was 0.85 (mean: 0.83, range: 
0.60–0.98) for the calibration period (Figure 2c) and 0.81 (mean: 0.78; range: −0.63–0.97) for the validation 
period (Figure S4 in Supporting Information S1).

3.2. Synthetic Experiments: Daily Stream Width Data

Calibration with synthetic daily stream width data (data set II; Figure 1) resulted in a median model performance 
E of 0.75 (mean: 0.75; range 0.35–0.95) for the calibration period (Figure S5 in Supporting Information S1). 
For the validation period, the median model performance was also 0.75 (mean: 0.72; range −1.66 to 0.97). 
The median decline in model performance for calibration with daily streamflow compared to the calibration 
with synthetic daily stream width data (EU−E) was 0.08 (mean: 0.09; range: −0.02 to 0.36) for the calibration 
period and 0.05 (mean: 0.06; range: −0.22 to 1.04) for the validation period. The decline in model performance 
was larger for drier catchments (with a lower mean streamflow and runoff ratio) than for the wetter catchments 
(Table 1).

The median relative model performance (ERel) for the calibration with synthetic stream width data was 0.35 
(mean: 0.21; range −3.34 to 1.14) for the calibration period (Figure 3) and 0.46 (mean: −5.34; range −2,218 to 
357) for the validation period (Figure S6 in Supporting Information S1). The wide range in ERel for the validation 
period is caused by the 144 catchments for which the model performance (E) was very close to the lower bench-
mark (E−Elower < 0.05). For 452 out of the 671 (67%) catchments, the model performance was better than the 
lower benchmark (ERel > 0) for the calibration period, suggesting that stream width data would be informative 
for the majority of the catchments if it were perfectly correlated with streamflow and available at a high temporal 
resolution. For the validation period, this was the case for 467 (70%) of the catchments.

For the 33% of the catchments for which the performance of the model was not better than the lower benchmark 
(ERel < 0), the median difference between the model performance and the lower benchmark (E−EL) was only 
−0.04 (mean: −0.05; range: −0.18 to −0.0005) for the calibration period and −0.03 (mean: −0.04; range: −0.68 
to 0.14) for the validation period. Even though the overall model performance varied little from the lower bench-
mark for these catchments, the parameter range was still constrained by the calibration with the synthetic daily 
stream width data. In particular, parameters FC, BETA, Alpha, K2 and MAXBAS were better constrained, but 
parameters LP, K1, and PERC were not (Figure 4).

3.3. Synthetic Experiments: Monthly Stream Width Data

The median change in model performance when using synthetic monthly stream width data instead of synthetic 
daily stream width data was −0.02 (mean: −0.02; range: −0.25 to 0.16) for the calibration period, and also −0.02 
(mean: −0.02; range: −0.24 to 0.46) for the validation period. For only 9% of the catchments the decline in model 
performance was >0.10. For around a quarter of the catchments (23%) the calibration with monthly synthetic 
stream width data resulted in a better model performance than calibration with daily synthetic stream width data. 
The change in model performance due to the decrease in the temporal resolution of the synthetic stream width 
data was larger for catchments with a more seasonal precipitation pattern and for wetter catchments with a lower 
frequency of low-flow days (Tables S2 and S3 in Supporting Information S1).

The median relative model performance ERel for calibration with the synthetic monthly stream width data was 
0.17 (mean: −0.01; range −4.11 to 1.38) for the calibration period and 0.22 (mean: −2.56; range −1,605 to 
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178) for the validation period. When considering only the cloud-free months, the median ERel was 0.19 (mean: 
0.00; range −4.67 to 1.49) for the calibration period (Figure 3) and 0.22 (mean: −21; range −10,158 to 337) 
for the validation period (Figure S6 in Supporting Information S1). The performance of the model calibrated 
with synthetic monthly mean river width data was better than the lower benchmark for 388 out of the 671 (58%) 
catchments (59% for the validation period). This number increased slightly when using data for only the “cloud-
free months” (April–October): 394 and 400 catchments for the calibration and validation periods, respectively 
(Figure 3).

Difference in non-parametric Kling Gupta efficiency

Upper benchmark (I) Daily stream width (II) Monthly stream width (III)
Stream width-cloud 

free (IV)
Water extent 

(V)

Versus Versus Versus Versus Versus

Daily stream width 
(II)

Monthly stream width 
(III) Stream width-cloud free (IV) Water extent (V)

Lower 
benchmark (VI)

Mean precipitation −0.22 −0.14 0.05 −0.12 0.35

Mean potential evapotranspiration 0.28 0.05 −0.14 0.18 −0.08

Mean evapotranspiration −0.34 0.09 0.04 −0.05 0.30

Aridity index a 0.29 0.13 −0.09 0.16 −0.30

Seasonality of precipitation −0.06 0.19 0.00 0.17 −0.35

Asynchronicity b 0.34 −0.08 −0.14 0.03 0.07

Frequency of high precipitation days −0.05 0.02 0.05 0.02 −0.19

Duration of high precipitation events 0.19 0.07 0.00 0.17 −0.44

Frequency of dry days 0.02 0.04 0.06 0.08 −0.27

Percentage of consumptive use 0.25 0.02 −0.04 −0.01 −0.24

Percentage of reservoir storage −0.01 −0.08 0.02 −0.11 0.02

Mean streamflow −0.26 −0.12 0.11 −0.11 0.25

Runoff ratio −0.26 −0.09 0.13 −0.11 0.19

Stream elasticity 0.05 −0.15 0.05 −0.09 0.17

Slope of flow duration curve 0.13 −0.19 0.03 −0.16 0.28

Baseflow index −0.07 0.12 −0.08 0.05 0.04

Mean half-flow date 0.13 −0.15 −0.06 −0.15 0.42

Q5 (low flow) −0.29 0.10 0.02 0.08 0.02

Q95 (high flow) −0.22 −0.12 0.11 −0.08 0.20

Frequency of high streamflow days 0.12 −0.13 0.06 0.07 −0.20

Duration of high streamflow events 0.12 −0.10 0.13 0.13 −0.29

Frequency of low-flow days 0.13 −0.24 0.07 −0.12 0.26

Frequency of zero-flow days 0.18 −0.13 0.03 −0.03 0.13

Gauge elevation −0.06 0.12 0.07 0.33 −0.46

Catchment mean elevation −0.17 0.13 0.09 0.15 −0.33

Catchment mean slope −0.27 0.13 0.10 0.00 −0.21

Catchment area 0.09 −0.07 −0.08 −0.23 0.30

Note. Correlations reported in bold are statistically significant (p < 0.05). A darker color shading indicates a stronger negative (red) or positive (blue) correlation. All 
catchments characteristics were obtained from the CAMELS-BR data set (Chagas et al., 2020).
 aAridity index, computed as the ratio of the mean annual potential evapotranspiration and mean annual precipitation.  bAsynchronicity between the annual precipitation 
and potential evapotranspiration.

Table 1 
Spearman Rank Correlation (rs) Between the Difference in Model Performances for the Calibration With Different Data Sets (as Specified in the Header of the Table) 
and Catchment Characteristics

 19447973, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034875 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [04/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

MEYER OLIVEIRA ET AL.

10.1029/2023WR034875

10 of 19

3.4. Correlation Between Streamflow and Remotely Sensed Water Extent

Of the 89 gauging stations that satisfied the criteria for the minimum water extent and variability in water extent, 76 
were included in the data set of the 671 catchments that fulfilled the requirements for the upper and lower benchmark 
(see Section 3.1). The median Spearman rank correlation (rs) between the remotely sensed water extent (Equivalent 
Width W) and monthly mean streamflow for these 76 gauging stations was 0.52 (mean: 0.50; range: −0.18–0.94; 
Figures 5c and 5f, Figures S7 and S8 in Supporting Information S1). For 6 of these 76 gauging stations, there was 
no significant correlation between the remotely sensed water extent and monthly mean streamflow (p > 0.05). The 
correlation was better for larger catchments with a larger minimum water extent Wmin (Figure 6). There was no clear 
sign of hysteresis in the relation between streamflow and water extent or difference in water extent for the rising and 
falling limbs for the 76 gauging station locations (Figures 5c and 5f and Figure S8 in Supporting Information S1).

Figure 3. Boxplots of the relative model performance ERel for the calibration period when the model was calibrated with 
synthetic daily stream width data, synthetic monthly stream width data, synthetic monthly stream width data for the cloud-
free months (April–October), and the actual remotely sensed water extent data. Results are shown for all 671 catchments 
included in the synthetic study (orange) and all 76 catchments that fulfilled the water extent criteria (blue). The box represents 
the 25th and 75th percentiles, the line the median, and the whiskers extend to 1.5 times the inter-quartile range. The dots are 
outliers. The y axis is limited between −2 and 1 for better visualization. Groups that share a similar capital letter (plotted 
above the boxplot) are not significantly different (Kruskal-Wallis, α > 0.05). Values of ERel > 0 indicate an improvement 
in model performance compared to the lower benchmark, and thus that the data are informative for model calibration. The 
number of catchments with ERel > 0 (i.e., better than the lower benchmark; above the dotted line) is: 452, 388, 394 (out of 
671) and 50, 47, 54 (out of 76) for calibration with the synthetic daily, monthly, and cloud-free monthly stream width data, 
and 24 (out of 76) for the calibration with actual remotely sensed water extent data. Boxplots of absolute values of E are 
presented in Figure S5 in Supporting Information S1.

Figure 4. Boxplots of the difference between the median value of the calibrated model parameters for the different scenarios and those for the upper benchmark for 
all 671 catchments included in this study: II, synthetic daily stream width data; III, synthetic monthly stream width data; IV, synthetic monthly cloud-free stream 
width data; VI, lower benchmark. The parameter values were re-scaled to values between 0 and 1. See Table S1 in Supporting Information S1 for a description of the 
parameters and the actual ranges of parameter values used in model calibration. For the results for data set V (remotely sensed water extent), see Figure 9.
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Figure 5. (a, d) Images showing the remotely sensed water extent within a 5 km radius from the gauging station (red 
triangle) for the day with the minimum, median, and maximum water extent; (b, e) time series of the remotely sensed water 
extent and monthly mean streamflow; and (c, f) the correlation between the remotely sensed water extent and monthly 
streamflow for two different catchments: (a–c) gauge ID: 64453000, catchment area 1,040 km 2; (d–f) gauge ID: 26350000, 
catchment area 194,000 km 2. In (a) and (d), W is the remotely sensed water extent, expressed in terms of Equivalent Width 
and NaN is the percentage of invalid pixels (NoData). In (c) and (f), the circles in light gray represent data points on the 
rising limb and the dark gray triangles data points on the falling limb. The blue symbols in (b), (c) and (e), (f) represent the 
streamflow and water extent for the three images shown in (a) and (d), respectively.
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3.5. Calibration With Remotely Sensed Water Extent Data

For the calibration with the actual remotely sensed water extent data, the 
median model performance E for the calibration period was 0.69 (mean: 
0.64, range: 0.16–0.96). The median relative model performance ERel for the 
calibration period was −0.55 (mean: −1.13; range: −10.4 to 0.95; Figure 3). 
For 24 out of the 76 (31%) catchments ERel was larger than zero and the 
calibration was thus better than the lower benchmark. For 37 catchments 
(49%), ERel was larger than −0.5. For the synthetic experiments with monthly 
data and monthly data for the cloud free period, ERel was larger than zero for 
47–54 out of the same group of 76 catchments (62%–71%) (Figure 3). The 
results for the validation period were similar, with ERel being larger than zero 
for 38% of the catchments, compared to 67% for the synthetic monthly data 
(Figure S6 in Supporting Information S1).

The performance of the model calibrated with the actual remotely sensed 
water extent data was better for bigger, lower elevation, or more responsive 
catchments (e.g., a steeper slope of the flow duration curve) than for smaller, 
higher elevation, or less responsive catchments (Figure 7; Table 1 and Table 

S2 in Supporting Information S1). The minimum remotely sensed water extent was also an essential factor for 
model performance (Figure 8b and Figure S9 in Supporting Information S1): the Spearman rank correlation 
coefficient for the relation between the difference in model performance for the model calibrated with the actual 
remotely sensed water extent data (E) and the lower benchmark (EL) and minimum water extent W was 0.38. The 
variability in water extent alone affected model performance less (Figure 8c).

The model parameters were overall better constrained when they were calibrated with the remotely sensed water 
extent data than for the lower benchmark (Figure 9, Figure S10 in Supporting Information S1). In particular, 
parameters FC, Alpha, K1 and K2 were better constrained. However, other parameters were less sensitive to 
calibration (BETA, LP, MAXBAS) and for one parameter (PERC) the calibration with water extent data was 
disinformative (i.e., the median calibrated parameter value was further away from the calibrated value for the 
upper benchmark than the uncalibrated median parameter value for the lower benchmark).

4. Discussion
4.1. HBV Model Performance for Brazilian Catchments

The HBV model was able to represent the streamflow dynamics for 75% of the study catchments in Brazil well (i.e., 
E > 0.60) when it was calibrated with daily streamflow data (Figure 2). This is a relevant finding because the HBV 
model had not yet been widely applied to Brazilian catchments (Seibert & Bergström, 2022). The HBV is a lumped 
model and, therefore, the spatial variation in the hydrological processes is not represented in the model. This can 
be a problem for large catchments, but the results for the upper benchmark show that streamflow can be simulated 
adequately for many of the largest catchments in Brazil as well (e.g., EU = 0.85 for the 61,950 km 2 watershed within 

Figure 6. Relation between the catchment area and the minimum remotely 
sensed water extent, color-coded by the Spearman rank correlation (rs) between 
the water extent and monthly mean streamflow. The Spearman rank correlation 
between the minimum water extent Wmin and catchment area is 0.74.
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Figure 7. Correlation between the difference in model performance for the model calibrated with actual remotely sensed water extent data (E) and the lower benchmark 
(EL) and (a) catchment area, (b) gauge elevation, (c) slope of the flow duration curve, (d) mean streamflow. Each dot represents one catchment; the gray lines show the 
Lowess regression. The value printed in the upper corner of each subplot is the Spearman rank correlation coefficient.
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Figure 8. Correlation between the difference in model performance for the model calibrated with the actual remotely sensed 
water extent data (E) and the lower benchmark (EL) and (a) catchment area, (b) minimum water extent (Wmin), (c) variability 
in water extent, expressed as the ratio between the maximum water extent (Wmax) and median water extent (Wmed), and (d) 
the Spearman rank correlation between the surface water extent and monthly mean streamflow (rs) for the 76 catchments for 
which the water extent was large and variable enough to be used in this study. Each dot represents one catchment and is color 
coded by the minimum remotely sensed water extent Wmin. The gray line shows the Lowess regression. The value printed 
inside the graph shows the Spearman rank correlation for the shown relation.

Figure 9. Boxplots of the differences between the median model parameter value obtained by calibration for the different scenarios (data sets II–V) and the median 
parameter value for the upper benchmark (data set I) for the 76 catchments for which the water extent data was used in model calibration (data set V). Parameter 
values were re-scaled between 0 and 1 before calculating the difference. For comparison, the results of the lower benchmark (VI) are shown as well, even though these 
parameters were not calibrated, but still had to result in a volume error <30%. Scenario II, synthetic daily stream width data; III, Synthetic monthly stream width data; 
IV, Synthetic monthly cloud-free stream width data; V, Actual remotely sensed water extent; VI, Lower benchmark. For the results for all 671 catchments for data sets 
II–IV and VI, see Figure 4. For the description of the parameters and parameter ranges used in calibration, see Table S1 in Supporting Information S1.
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the Uruguai river and EU = 0.93 for the 4.7 million km 2 Amazon river watershed). The performance was generally 
better for wetter and larger catchments than for drier and smaller catchments (Table S2 in Supporting Informa-
tion S1). The influence of aridity and catchment size on model performance has been reported by other studies as 
well (McMillan et al., 2016; Newman et al., 2015; Pechlivanidis & Arheimer, 2015). The catchments for which the 
model performance was poor were mainly located in Northeastern Brazil, which is a semi-arid region, where chan-
nel transmission losses are considerable (Costa et al., 2013). This process is not represented in most hydrological 
models, leading to a poor performance for most models when they are applied to this region (Siqueira et al., 2018).

For around 9% of the catchments, the upper and the lower benchmark were similar implying that the mean stream-
flow for the 1,000 uncalibrated runs that satisfied the <30% error in the mean annual streamflow criterium, was 
very similar to that of the model calibrated with daily streamflow data. This is probably because the volume error 
constraint of 30% is already highly informative for these catchments. We could not find any clear commonal ities 
between these catchments, but they are overall more responsive, arid catchments. Although the performance of 
the uncalibrated model is good for these catchments, the values of the parameters that yield the ensemble mean 
streamflow are unknown and vary widely (e.g., data set VI in Figure S10 in Supporting Information S1). The cali-
brated models have the advantage of having a set of optimized parameters (e.g., data set I in Figure 4 and Figure 
S10 in Supporting Information S1) that can be used to simulate streamflow for different scenarios.

4.2. Usefulness of Stream Width Data for Model Calibration

The synthetic daily stream width data successfully informed model calibration for 452 out of 671 catchments. 
This indicates that stream width data that is perfectly correlated with streamflow are informative for 67% of 
the catchments in Brazil (Figure 3). It also means that for 33% of the catchments, the use of the Spearman rank 
correlation instead of the non-parametric efficiency E in the calibration leads to such a deterioration of the 
model performance that it is no longer better than the lower benchmark (ERel < 0). However, for 97% of these 
catchments, the decline in E was less than 0.1, so that the large drop in ERel can largely be attributed to the good 
performance of the lower benchmark. As mentioned before, the good performance of the lower benchmark for 
some catchments is probably due to the 30% volume error constraint. Nonetheless, the calibration with perfect 
daily stream width data constrained the model parameters considerably (Figure 4).

The wetter catchments were less impacted by the lack of information on stream volume in model calibration (i.e., 
the use of synthetic stream width data instead of streamflow data) than the drier catchments. This was also found by 
Seibert and Vis (2016) for catchments in the US. They suggested that additional information on the water balance 
may be needed for the drier catchments. We included the 30% volume error constraint for all our model calibrations. 
Although this constrained most model parameters (Figure 4), it was not sufficient to avoid the reduction in model 
performance when using the synthetic stream width data set instead of the daily streamflow for the dry catchments.

The decrease in the temporal resolution of the synthetic stream width data (from daily to monthly values) mainly 
impacted the wetter catchments with a lower frequency of low-flow days (Table  1). The reduction in model 
performance can be related to short floods (time scales less than a month) that may not have been captured well 
by the monthly average streamflow. In contrast, for 23% of the catchments the model performance was higher 
when the model was calibrated with less data (synthetic monthly mean stream width vs. synthetic daily stream 
width). This may be related to overfitting to the objective function (in this case, the Spearman rank correlation) 
leading to a decrease of the overall model performance.

The median performance for the model calibrated with the synthetic monthly-cloud free stream width data was not 
very different from the synthetic monthly stream width data (Figure 3). The number of catchments for which ERel > 0 
was even higher when the model was calibrated only with the synthetic data from the cloud-free months. This suggests 
that the cloud-free data set was more informative for the representation of mainly the dry periods. Several other studies 
have shown that streamflow (e.g., Pool et al., 2017; Seibert & Beven, 2009) and stream level (Etter et al., 2020) data are 
highly redundant and that a limited number of measurements can be almost as informative as a large number of meas-
urements. Overall, these results show that the lower temporal resolution of remotely sensed stream observations does 
not considerably hamper their value for hydrological model calibration. Even if 5 months of data need to be excluded 
per year due to cloud cover, this does not limit its value for the calibration of hydrological models for most catchments.

4.3. Usefulness of Landsat-Based Water Extent Data for Model Calibration

For 24 out of the 76 (31%) catchments, Landsat-based water extent data were informative for model calibration, 
that is, it resulted in a better streamflow simulation than the lower benchmark. The experiments with the synthetic 
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data show that the temporal resolution of stream width or water extent did not impair model calibration consider-
ably. This allows us to attribute the poor performance for the model calibration with actual remotely sensed water 
extent data to the poor correlation with the monthly streamflow (Figure 8), for example, due to the noise in the 
water extent data, rather than the low temporal resolution of the data. The main assumption for our approach is 
that there is a strict monotonic relation between water extent and streamflow. This was indeed the case for many 
catchments, particularly the larger ones (Figure 8), but not for all catchments (Figure S8 in Supporting Informa-
tion S1). For other catchments it may have been the already good performance of the lower benchmark with the 
30% volume error constrained that caused the additional information on the water extent to not be informative. 
Note that we also tested the use of a 20% or 40% volume error constraint, but these results were similar (Figure 
S11 in Supporting Information S1). Even though only one-third of the catchments (24 out of 76) benefitted from 
the remotely sensed water extent data in terms of model performance, calibration with water extent led to param-
eter values that were more similar to those of the upper benchmark (Figure 9). However, in some cases, remotely 
sensed water extent data were disinformative for model calibration (Kauffeldt et  al.,  2013) due to inaccurate 
estimates of water extent (see Section 4.4).

The value of the remotely sensed water extent data for model calibration depended on the correlation between 
the remotely sensed water extent and streamflow (rs = 0.55; Figure 8d). For the 24 catchments for which the 
calibration with water extent data led to a better model performance than the lower benchmark, the Spearman 
rank correlation ranged from 0.13 to 0.94 (median = 0.63). These catchments are large (>1,500 km 2, median: 
53,770 km 2; median streamflow 685 m 3/s) and the rivers are wide (median Wmin = 8; Figure 8). This indicates 
that the coarse spatial resolution of Landsat imagery was a main factor that impaired model calibration (see also 
Section 4.4). However, the limited revisit time of Landsat (16–18 days) may result in a less accurate estimate of 
the mean monthly surface water extent for quickly responding (small) rivers as well, and thus a lower correlation 
between the remotely sensed water extent and mean monthly streamflow for these rivers.

The coarse resolution of the water extent data has a particularly large effect on the temporal dynamics of the 
water extent when there are only few pixels with water (i.e., low signal-to-noise ratio). Even though the spatial 
resolution of the water extent data set is 30 m, Allen and Pavelsky (2018) reported that river width data are only 
sufficiently accurate for rivers wider than 90 m (i.e., Wmin = 3). If only the catchments for which Wmin > 3 are 
considered, there would be 49 catchments left for the analysis. For 18 of these 49 catchments (37%), ERel was 
larger than zero. For the nine catchments with Wmin > 20, seven had ERel larger than zero (78%).

4.4. Remotely Sensed Water Extent as a Proxy for Streamflow

The correlation between the remotely sensed water extent and monthly streamflow was the main factor affecting 
the value of remotely sensed water extent data for model calibration (Figure 8d). The Spearman rank correlation 
between the remotely sensed water extent and streamflow for the 76 catchments ranged from −0.18 to 0.94 
(median = 0.52; Figure 6 and Figure S7 in Supporting Information S1), and depended on the catchment size 
(Figure 6; rs = 0.74). Previous studies that used remote sensing data with a higher spatial resolution reported 
better correlations between water extent and streamflow, but were usually restricted to one or a few catchments. 
For example, Pavelsky  (2014) found that the coefficient of determination between streamflow and RapidEye 
water extent imagery with a 5-m spatial resolution ranged from r 2 = 0.19–0.94 for a river in Alaska. Junqueira 
et al. (2021) used Planet CubeSat data with a near daily revisit time at a 3-m spatial resolution, to estimate stream-
flow at one gauging station (ID = 26350000) in Araguaia river, in Brazil. They reported a coefficient of determi-
nation r 2 of 0.96 for the relation between water extent and water level. The Spearman rank correlation between 
the remotely sensed water extent and streamflow for this gauging station is 0.94 (Figure 5f). Revilla-Romero 
et al. (2014) analyzed 322 sites and reported a correlation r > 0.3 for 169 sites, and a correlation r > 0.5 for 42 
sites. The spatial resolution of their satellite imagery was 10 km. The sites with a higher correlation had a mean 
streamflow larger than 500 m 3/s, a river width wider than 1 km, and were generally located in floodplain areas.

The method for water extent extraction adopted in this study has the advantage of being simple and can easily be 
applied via Google Earth Engine. However, it has the disadvantage that it may capture the extent of a larger river 
if the gauging station is located near the mouth of the tributary. This happened for catchment 87317060 (outlier in 
Figure 6), for which the gauging station is located close to a lagoon, resulting in high values of Wmin, even though 
the river itself is small. For catchment 56992000, the correlation between streamflow and water extent was low 
because dam construction on the main river caused a higher Wmin for the tributary, even though the flow out of 
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this tributary was not or only minimally affected by the reservoir. More robust methods exist for water extent 
extraction (Allen & Pavelsky, 2015; Hou et al., 2022; Pôssa et al., 2020), especially for geomorphological inves-
tigations. Investigating them goes beyond the scope of this study but we can conclude that the method adopted 
here can capture water extent dynamics, particularly for large and wide rivers with seasonally flooded floodplains 
(e.g., Figure 5 and Figure S8 in Supporting Information S1).

For some incised rivers, the river width does not change considerably when the stream level and flow increase or 
decrease (e.g., in canyons and deeply incised rivers) and the water extent data would not be useful as a proxy for 
streamflow. We removed these rivers from the analyses, by not considering sites for which the ratio between the 
maximum and median water extent was smaller than 1.2. Still, gauging stations are preferably located at confined 
cross-sections (Di Baldassarre & Montanari, 2009). Thus, we expect a similar or better correlation between water 
extent and streamflow for ungauged locations, where the stream width may vary more. This implies that our 
results are an underestimation of the performance of remotely sensed water extent data as a proxy of streamflow 
and, thus, the ability of water extent data to inform hydrological models.

Other rivers may flow overbank with extended flooding remaining after the water level in the main river and flow 
have receded. This would lead to a hysteretic relation between water extent and flow. We did not see any clear 
indication of hysteresis in the data for the 89 gauging stations for which the water extent was large and variable 
enough (see example in Figures 5c and 5f and Figure S8 in Supporting Information S1). For many gauges, there 
are, however, far more water extent data points for the falling limb than on the rising limbs because this period is 
longer and there is more cloud cover during the rising stage (Hou et al., 2022).

The correlation between water extent and streamflow was especially low for the smaller catchments (Figure 8 
and Figure S9 in Supporting Information S1), suggesting that the data for these catchments is influenced by the 
extraction of the water extent and especially the resolution of the Landsat data. Newer satellites with a finer 
spatial resolution are likely to provide more accurate water extent estimates for these catchments. One main 
disadvantage is that the data are not freely available (e.g., SPOT, RapidEye). Other missions have been launched 
recently, thus having a limited temporal coverage (e.g., Sentinel-2) and are unlikely to contain many large flood 
events. Our analyses suggest that once these satellite products become more affordable and have longer time 
series, these data could be useful for model calibration. They will be especially informative for the streams in our 
data set for which the Landsat-derived water extent was too small and varied too little to be used in the model 
calibration. However, for the larger rivers, satellites with a spatial resolution of around 1-m may be unsuitable due 
to the small spatial coverage of each image (e.g., IKONOS, QuickBird) (Huang et al., 2018). The SWOT mission 
will provide streamflow estimates based on water extent and water surface heights (Biancamaria et al., 2016). 
This additional variable may be helpful for streamflow retrieval, especially for incised rivers. Still, the spatial 
resolution of the SWOT mission will be limited to rivers wider than 100 m, so that its usefulness for model cali-
bration may also be limited to the largest rivers.

5. Conclusions
We systematically analyzed whether a lumped conceptual hydrological model (HBV model) could be calibrated 
with remotely sensed water extent data for 671 catchments in the CAMELS-BR data set. Overall, model perfor-
mance was better for larger, wetter catchments than for smaller, drier ones. If water extent data were perfectly 
correlated with streamflow and available at a daily resolution, water extent observations would be useful for 
model calibration for around two thirds of the catchments. For most of the other catchments, the river width data 
would not improve the streamflow simulations compared to the lower benchmark (i.e., model runs with randomly 
generated sets of parameters and a water balance constraint) because the lower benchmark already performed 
well. In these cases, the river width data would still help to constrain most of the model parameters. Reducing the 
data to a monthly resolution or using only monthly data from the cloud-free months (here April–October) did not 
considerably change the model results, suggesting that the limited temporal resolution of the remote sensing data 
does not considerably influence its usefulness for model calibration.

For only 12% of the gauging stations in the CAMELS-BR data set the water extent was large and variable enough 
to be observable with Landsat data. The median correlation between streamflow and water extent for these 76 
catchments was 0.52 (range: −0.18–0.94). A poor correlation between remotely sensed water extent and stream-
flow can be due to the low spatial resolution or accuracy of the remote sensing data, or hysteresis in the relation 
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between water extent and streamflow due to backwater effects or overbank flooding. The latter was not observed 
for the 76 gauging station sites for which the water extent was large and variable enough to be used in model cali-
bration. The correlation between the remotely sensed water extent and streamflow was much better for rivers with 
a larger minimum water extent, draining larger catchments than for smaller rivers draining smaller catchments.

Model calibration with the remotely sensed water extent data led to a better model performance than the lower 
benchmark for only 24 of the 76 catchments. These were large catchments (>1,500 km 2) with wide rivers, and a 
large minimum water extent. Even when the calibration with the remotely sensed water extent data did not lead 
to a better streamflow simulation than the lower benchmark, the model parameters were more constrained and 
closer to those obtained from the calibration with daily streamflow data (i.e., the upper benchmark). We expect 
that remotely sensed water extent data will be more valuable than indicated by these results because gauging 
stations are often located in incised channels where river width changes little and extensive overbank flooding is 
limited. In ungauged catchments, less incised river sections where water extent varies more, should be selected 
for water extent extraction. Commercial satellite data with a higher spatial resolution than the Landsat data is 
expected to be useful for model calibration for more locations, especially when these time series have become 
longer and include more flood events.

Data Availability Statement
The CAMELS-BR data set is available from Chagas et al. (2020): https://zenodo.org/record/3964745#.Y-taVHaZO5c.

The global monthly surface water extent is available from Pekel et  al.  (2016): https://global-surface-water.
appspot.com/download. The JavaScript code to extract these data via Google Earth Engine is available at: https://
zenodo.org/record/8200185 (last accessed on 31 July 2023).
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