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A B S T R A C T   

Globally, significant societal resources are devoted to mitigating negative effects of eutrophication from exces-
sive phosphorus (P) and nitrogen (N) loading. Potential effectiveness of mitigation measures and possible con-
founding factors are often assessed using studies conducted in headwater catchments. However, success is often 
evaluated based on trends in river mouth water chemistry. It is not clear how transferrable insights from 
headwater catchments are to larger rivers. Here, relationships between P and suspended solids (SS) identified in 
small agricultural headwater catchments were applied to 30 larger, mixed land use catchments draining into 
Mälaren, a Swedish great lake. Relationships identified in headwater streams between SS concentration, 
catchment agricultural land percentage and arable land clay content were corroborated for the larger catchments 
(R2 = 0.59, p-value<0.001. The same was true for connections between SS and particulate P (R2 = 0.74, p- 
value<0.001). This study highlights the importance of agricultural land, clay content and SS for P transport, on 
both smaller headwater as well as larger catchment scales, supporting the use of headwater findings on larger, 
management relevant scales. Consequently, these relationships should be used to target mitigation measures to 
reduce SS and P losses. To explore the effectiveness of mitigation measures on water quality, we assessed long- 
term (20 year) trends in tributary water quality and compared these trends to the amount of mitigation measures 
implemented in the catchment. Overall improving trends were detected using regional Mann Kendall tests, but 
few decreasing trends in nutrient concentrations were found for individual sites using Generalized Additive 
Models (GAM). The lack of significant trends and identifiable connections to amount of mitigation measures 
implemented could be due to several reasons, e.g. insufficient time for recently implemented measures to have an 
effect, ongoing release of legacy P as well as low areal coverage and poor spatial placement of implemented 
measures. In addition, trend detection requires large amounts of data and the results should be carefully 
interpreted and communicated.   

1. Introduction 

Eutrophication associated with exceedance of the planetary bound-
aries for biogeochemical flows of both phosphorus (P) and nitrogen (N) 
is an urgent global problem (Steffen et al., 2015). To avoid further ac-
celeration of eutrophication, anthropogenic P and N exports need to be 
controlled (Steffen et al., 2015). Consequences of eutrophication 
including, e.g., toxic algal blooms, oxygen deficits and dead bottom 
waters (Smith and Schindler, 2009) have negative impacts on surface 
water quality. Good surface water quality is important for recreational 
values, drinking water quality and the health of aquatic ecosystems. 
Erosion and transport of soil particles can also contribute to impaired 

water quality by e.g. causing decreased light penetration (Bilotta and 
Brazier, 2008) and carrying other pollutants including pesticides 
(Boardman and Poesen, 2006), heavy metals (Kronvang et al., 2003) and 
P (Haygarth et al., 2006). Thus, actors from local to global scales need to 
work towards improving surface water quality. Significant resources 
have been and are devoted to implementing mitigation measures to 
achieve national and international water quality goals. However, local 
monitoring of mitigation measure efficiency is limited and improve-
ments in water quality associated with mitigation efforts can be difficult 
to quantify. 

Processes, trends and mitigation measure effectiveness are often 
studied on small headwater catchments and findings are later up-scaled 
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to larger management-relevant scales (Kronvang et al., 2009; Sharpley 
et al., 2009; Kyllmar et al., 2014) but often without testing applicability. 
Headwaters are usually considered as the first influence on the surface 
water system (Bol et al., 2018) and typically show higher variability in 
nutrient concentrations than larger catchments (Dupas et al., 2023). 
Using more easily studied systems as proxies for other, more complex 
systems can be a way forward for management, but findings from 
headwater catchment studies must be tested in larger, multifaceted 
systems. 

Previous studies have explored relationships between water quality 
and catchment characteristics. For example, Sandström et al. (2020) 
established a linear relationship between suspended solids (SS) losses 
and the product of clay content and the proportion of agricultural land 
based on monitoring data from 11 small (5.7–33.1 km2) agricultural 
headwater catchments. They also showed a power-law relationship be-
tween particulate P (PP) and SS (Sandström et al., 2020). Similarly, 
Djodjic et al. (2021) showed a strong connection between the proportion 
of agricultural land in the catchment and P and N concentrations as well 
as decreased P and N concentrations with increasing forest and wetland 
coverage in 235 small (area< 50 km2) headwater catchments. If specific 
land use and soil type characteristics can be associated with an elevated 
risk for P and N transport, these areas can be targeted for monitoring and 
mitigation measures. 

Mitigation measures to limit nutrient export from Swedish agricul-
tural land include mandatory (e.g., manure and fertilizer management, 
Swedish Board of Agriculture, 2019) and voluntary actions (e.g., 
agro-environmental schemes for wetlands, structural liming, two-stage 
ditches, buffer zones, etc., Bergström et al., 2015). Systematic moni-
toring and reporting on voluntary measures before, during and after 
implementation is rare, leading to limited management-relevant infor-
mation on measure efficiency or effects on receiving waters nutrient 
concentrations. Quantification of measure effectiveness is typically 
made at a local scale (e.g., Weisner et al., 2016; Geranmayeh et al., 

2018; Stutter et al., 2012). These assessments must then be up-scaled to 
the relevant management unit (e.g., headwater or larger catchment). 
However, a recent study by Tomcszyk et al. (2023) found no evidence 
for significant effects of state-level policy implementation on decadal 
trends in nutrient concentrations. 

Firstly, we explore whether headwater water quality relationships 
are applicable to larger rivers and if proportion of agricultural land, soil 
clay content and SS are driving factors for P transport on a larger 
catchment scale. Second, we evaluated long-term monitoring data 
collected from tributary rivers draining the catchment of Mälaren, a 
Central Swedish great lake where diffuse losses from agriculture now 
account for 64% of the total P load to the lake (Mälarens vatten-
vårdsförbund, 2021). Temporal trends in relevant water quality pa-
rameters over the past 20–25 years, three decades after the substantial 
positive effects of the large point source reductions were achieved 
(Persson, 2001), were assessed using the same monitoring data. Third, 
all existing reports on mitigation measures implemented on arable land 
in the Mälaren catchment were collected to explore possible relation-
ships with water quality. The combination of these three approaches 
gives unique insights into transferability between scales and water 
chemistry trends in the area. 

2. Methods 

2.1. Catchment properties 

All catchments are located in the Norrström basin (22,600 km2, 
59◦30′N, 17◦12′E), with 14 main tributaries discharging into Mälaren, a 
lake with great economic and recreational value (Sonesten et al., 2013). 
Tributary catchments have varying land use and soil type distributions, 
from forests with nutrient poor soils and peatland in the northwest to 
intensive agriculture on nutrient rich clay soils in the northeast 
(Table S1, Fig. 1). This study includes all main tributaries, along with 16 

Fig. 1. Map of the Mälaren catchment, sampling stations and connectivity between different rivers and stations. The background map displays land use, and the stars 
identify sampling locations. White boxes represents streams with only one sampling location. Same shade of grey indicates sampling locations in the same river with 
arrows indicating connectivity between streams and sampling locations. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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additional stations, i.e., all sites in the Norrström basin included in the 
Swedish National Monitoring Programme (30 sites, Fig. 1; Tables S1 and 
S2) representing both smaller streams, and larger river mouths dis-
charging directly into Mälaren (Fölster et al., 2014). Water chemistry 
has been monitored in Mälaren tributary mouths since 1965 (Persson, 
2001). 

In the 1970s wastewater treatment was improved and point source 
emissions were considerably reduced, resulting in significant decreasing 
total P (TP) trends in most larger streams discharging into Mälaren 
(Sonesten et al., 2013). Mitigation measures to reduce P and N transport 
from agricultural land are widely used in the catchment. However, 
eutrophication is an ongoing problem in Mälaren, partly due to 
incoming nutrient-rich water from agricultural areas, with many lakes 
and streams in the catchment failing to reach good ecological status 
based on current water chemistry (WISS, 2022). 

2.1.1. Water chemistry, discharge and catchment data 
Water quality parameters with monthly (or every other month) 

measurements between 1997 and 2020 were used. These included SS, 
TP, total N (TN), nitrate/nitrite (NO2/NO3–N hereafter called NO3–N), 
ammonium (NH4–N) and total organic carbon (TOC) (Miljödata-MVM, 
2022). Water samples were analysed at the Swedish University of 
Agricultural Sciences (SLU) ISO/IEC 17025 accredited geochemistry 
laboratory. 

Modelled flow from Swedish Meteorological and Hydrological 
Institute (SMHI) was used for load calculations since discharge was not 
monitored at all stations (SMHI, 2022a). Modelled flows were available 
from 2004, dictating the use of 2004–2020 for analysis of loads and flow 
weighted (fw) concentrations (see chapter 2.2). Measurements from 
1997 to 2020 were used for analysis of raw concentrations. See Sup-
plementary Fig. S1 for flow chart of methodology. 

2.2. Data handling 

Water quality observations below the reporting limit were set to half 
the reporting limit. Flow weighted (fw) mean values (2004–2020) were 
calculated following Linefur et al. (2019), where each raw sampled 
concentration was used to represent daily concentrations backwards to 
the previous sampling occasion, but for a maximum of two months. 
When there was more than two months between sampling, values were 
treated as missing and excluded from subsequent analyses. Estimated 
raw daily concentrations were multiplied with modelled daily flows to 
get daily loads (mg day− 1). Monthly fw concentrations (mg L− 1) were 
derived from monthly loads and flows and an overall mean fw concen-
tration was calculated. 

2.3. Statistical and trend analysis 

Overall mean fw concentrations were used to evaluate applicability 
of headwater scale water quality relationships (Sandström et al., 2020) 
to larger, mixed land use catchments. A Principal Components Analysis 
(PCA) was performed to visualize relationships between water quality 
parameters and catchment characteristics. Multiple regressions for TP 
and SS (forward selection) were performed where parameters identified 
from the PCA were evaluated. Due to differences in analytic methods 
between Sandström et al. (2020) and this study, no further in-
vestigations of PP were possible. A factor of variation (FV) between 
different tributaries was calculated for all parameters as the ratio be-
tween the maximum total fw mean and minimum total fw mean value. 

Trends were analysed in raw concentrations (1997–2020), monthly 
fw concentrations and monthly loads (2004–2020). We used R scripts 
from von Brömssen et al. (2021) to run general additive models (GAM) 
to detect overall increasing or decreasing trends as well as identifying 
periods with increasing or decreasing trends. A Regional Mann-Kendall 
(RMK; Helsel and Frans, 2006) test was performed using the R package 
rkt (Marchetto, 2021) to see if any cross-site trends could be detected. 

RMK tests weighted by land cover were also performed. Trends in TP, SS, 
TN, NH4–N and NO3–N were weighted by amount of agricultural land. A 
similar analysis was performed where trends in TOC were weighted by 
share of forest cover and wetlands. Weights were assigned in the 
following manner. Individual Mann-Kendall tests for all stations were 
performed using the same R package, followed by weighting was done 
on the Kendall’s score (S) statistics and the variance (σ) from the indi-
vidual tests. 

SWR =
1
W

∑m

L=1
wLSL (1.)  

σWR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
W

∑m

L=1
wLσL

√

(2.)  

Where SWR is the weighted regional S, L is the site number, m the total 
number of sites, w is the fraction of land use, and w is the mean land use 
(either agricultural land or forest and wetland). A p-value <0.05 was 
determined as statistically significant for all statistical and trend ana-
lyses. All statistical analyses were performed using R 4.0.3 (R Core 
Team, 2020). 

2.4. Summary of mitigation measures to reduce diffuse losses from 
agriculture 

All available data on mitigation measures implemented to reduce 
agricultural diffuse nutrient losses in the Norrström basin were down-
loaded on June 22, 2022 from Water Information System Sweden (WISS, 
2022). Only existing and fully implemented measures valid for the water 
cycle 2017–2021 were retained for further analysis. For constructed 
wetlands, the SMHI wetland database (SMHI, 2022b) was used as it is 
more complete than WISS for the study region. Each measure was 
assigned to a catchment based on reported geographic coordinates. Six 
main mitigation measures appeared in the search results: buffer zones, 
adjusted buffer zones, structural liming, spring tillage, catch crops and 
constructed wetlands. Measure validity was assessed based on infor-
mation from WISS for starting implementation year and measure life 
span. Structural liming has a life span of 15 years, constructed wetlands 
30 years and all other measures 5 years. Areas of all mitigation measures 
were summed for each tributary with consideration of existing upstream 
catchments. These areas were then related to total arable land area 
within the catchment and expressed as a percentage. Spatial analyses 
were performed using ArcGIS Desktop 10.8. 

Both buffer zones and adjusted buffer zones have permanent vege-
tation, often grass, between the field and the stream that is meant to trap 
particles and nutrients (primarily P) in overland flow, and thereby 
decrease losses to receiving waters (Uusi-Kämppä et al., 2000). Adjusted 
buffer zones may also be placed within a field, e.g., around a surface 
runoff inlet well. Structural liming is used mainly on clay soils to sta-
bilise soil structure and decrease erosion risk, thereby limiting particle 
and P loss (Ulén et al., 2012). Constructed wetlands can decrease losses 
of both N and P (Kynkäänniemi, 2014). Spring tillage primarily de-
creases N mineralisation and losses but also protects soil from erosion 
and thereby decreases particle and P losses (WISS, 2022). Catch crops 
are planted to avoid bare soils after harvesting, to reduce erosion and to 
take up remaining N, thereby reducing N losses (Aronsson et al., 2016). 

Statistics on manure and mineral fertilizer use were obtained from 
Statistics Sweden (SCB, 2021; production area 4, “Svealands 
slättbygder”). Winter wheat (Triticum aestivum) yields for four counties 
covering the Norrström basin were downloaded from Sweden Statistics 
database (SCB, 2022). 
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3. Results & discussion 

3.1. Water quality relations and catchment characteristics – 
transferability from headwaters to larger catchments 

Mälaren tributary catchments cover a range of physico-chemical 
conditions, hydrological regimes, land use and soil types (Table S1). 
Concentrations for water quality parameters are highly variable 
(Table S2). Differences in nutrient levels between sites dominated by 
forest versus arable land were apparent, e.g., fw TP concentrations in 
forest dominated catchments (>65%) (Arbogaån, all Kolbäcksån sta-
tions, Kölstaån, Hedströmmen, Valstaån and Svartån) were low, while 
catchments with higher percentages of arable land (Enköpingsån, 
Hjälstaån and Sagån) had higher fw TP concentrations (Tables S1 and 
S2). Catchments with a larger percentage of water have lower nutrient 
and SS concentrations, which is consistent with other studies (Saunders 
and Kalff, 2001; Land et al., 2016; Alexander et al., 2008). 

The PCA showed that percentage of water (mainly lakes and wider 
parts of streams) within the catchment and upstream catchment area 
were negatively correlated with both SS and P losses (Fig. S2). Similar to 
Sandström et al. (2020), there were linear relationships between both TP 
and SS and TP and soil clay content (Fig. S3). 

Despite the varying land uses across tributary catchments, SS and soil 
clay content are still the best predictors of TP (eq. (3)) (p < 0.001, R2 =

0.80, N = 30): 

TP= − 0.01 + 0.04∗SS+0.0009∗MedianClayContent (3.) 

Catchment percentage water area is also a significant predictor of SS 
(eq. (4)) (p < 0.001, R2 = 0.76, N = 30): 

SS= 3.5 − 0.42∗Waterarea+0.13∗MedianClayContent+0.22∗Arableland
(4.) 

Previously identified relations (Sandström et al., 2020) were also 
corroborated for these larger mixed land use catchments (Figs. S4 and 
S5). This demonstrates transferability of findings based on studies of 
smaller headwater catchments to larger, more complex ones, but also 
points out the importance of arable land and clay content for SS and P 
concentrations across spatial scales. The R2-values are slightly lower 
than those reported by Sandström et al. (2020) (0.59 and 0.75 (Figs. S4 
and S5) vs. 0.75 and 0.95 previously), but the equations are very similar. 
Tributary catchments are within the lower range of SS and P losses and 
are larger with a more mixed land use in comparison to those studied by 
Sandström et al. (2020). Thus it is reasonable that other factors also 
influence PP and SS concentrations, and regression models have a lower 
amount of explained variance. 

The PCA indicated that larger upstream catchment areas were 
correlated with lower SS and PP fw concentrations (Fig. S2). This finding 
corroborates Milliman and Syvitski (1992) who studied 280 rivers dis-
charging to the ocean across the world and highlighted the inverse 
relationship between drainage basin area and areal SS yield. Low relief 
landscapes in larger catchments tend to promote sediment deposition 
and storage, resulting in lower SS yields and concentrations (Woodward 
and Foster, 1997). Using 36 Swedish stations, Brandt (1990) concluded 
that concentrations of suspended material in small catchments were 
more than twice the mean value of those for nearby larger basins where 
suspended material could settle in lakes and reservoirs, on floodplains 
and in river channels. Catchments studied by Sandström et al. (2020) 
were all smaller, dominated by arable land and without lakes. Since 
lakes retain SS and slow down material transport, they should have in-
fluence on SS exports in rivers and streams. However, the influence of 
clay content and percent agricultural land seen in smaller headwater 
catchments is still apparent at the larger catchment scale. Previous 
studies have not been able to demonstrate this transferability across 
spatial scales. Bol et al. (2018) suggested that patterns visible at a larger 
catchment scale are not visible at a headwater scale. Dupas et al. (2023) 

suggest that this is due to larger variability between catchments. Hay-
garth et al. (2012) tested upscaling of P signals from plot scale to 
headwater scale. They found difficulties detecting the same signals at a 
headwater scale, that they observed on a plot scale. Taken together, 
these findings highlight the importance of (1) studying relationships 
between catchment properties and water quality across a range of 
spatial scales and (2) the importance of agricultural land, clay content 
and SS for P transport. 

Some N species also correlate with P (Fig. S2). TOC is not related to 
other water quality variables, but is positively correlated to amount of 
forest and wetlands (Fig. 2). High TOC levels are common in more 
forested catchments. The site with the greatest forest (Hjälstaån) also 
had the highest total mean TOC concentration (Tables S1 and S2). 
However, all Kolbäcksån sites have a large proportion of forest cover, 
but some of the lowest mean fw TOC concentrations. 

3.2. Water quality trends 

Soil clay content and percentage of agricultural land are generally 
stable over time. Thus, mitigation measures placed on agricultural land 
are one way to focus efforts for decreasing nutrient losses to surface 
waters, and water quality trend analyses can be used to detect potential 
effects and changes. No significant trends in modelled water discharge 
over the studied period (2004–2020) were detected (data not shown). 
GAM modelling of raw concentrations (Fig. 2) identified a larger number 
of significant trends than for fw concentrations and loads (Fig. S6). TOC 
had the largest number of detected trends for both raw (17/30) and fw 
concentrations (7/30, Fig. S6) of all analysed parameters, with most 
trends occurring approximately simultaneously (Fig. 2). Individual MK 
trend tests also identified the largest amount of trends in TOC, but the 
same amount for NH4–N (20/30 sites) (Table S3). 

3.2.1. Phosphorus and suspended solids 
There were six significant decreasing GAM trends for raw TP con-

centrations, with two lasting for the entire studied period (Kolbäcksån 
Västanfors and Tandlaån). MK trend tests identified 11 significant trends 
for raw TP concentrations, three increasing and eight decreasing 
(Table S3). For SS raw concentrations, three significant decreasing GAM 
trends that lasted the entire study period were found (Fyrisån Flottsund, 
Kolbäcksån Strömsholm and Oxundaån; Fig. 3 and Fig. S6). Valstaån 
showed an overall increasing raw SS concentration trend. Both GAM and 
MK trend tests identified significant trends at 12/30 sites for raw SS 
concentrations (Table S3, Fig. 2). Significant decreasing RMK trends for 
raw TP concentrations and raw SS concentrations were detected, both 
with the unweighted RMK and when the analysis was weighted for 
percentage agricultural land (Table S4). 

The small number of significant decreasing TP trends could depend 
on several factors. Internal loading where P is released the streambed 
could sustain TP concentrations even when external inputs are reduced 
(Sonesten et al., 2013; Withers and Jarvie, 2008). Most decreasing 
trends in TP were found in forest dominated catchments (Kolbäcksån 
Strömsholm, Kolbäcksån Västanfors and Kolbäcksån Virsbo). Decreases 
were also seen at Sävjaån Kuggebro and Tandlaån; both these catch-
ments have considerable amounts of arable land (>20%). Dupas et al. 
(2018) concluded that multidecadal P trends are influenced by 
decreasing point source emissions. In Mälaren, the largest point source 
reductions occurred three decades ago, before the start of the present 
study. Furthermore, the studied time period might be too short to detect 
changes using GAM analyses, since large amounts of data are needed to 
detect changes (Wellen et al., 2020). In the RMK analyses all data in the 
larger Norrström basin were used simultaneously, increasing the data 
amount compared to GAM analyses of individual sites. A 20% reduction 
of TP load and fw mean concentrations requires decades of data to be 
detected (Wellen et al., 2020). Wellen et al. (2020) use a “before and 
after” change approach, while in this study there is no clear time of 
implementation as measures are consistently being implemented, 
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resulting in a constant change. The difference in results between GAM 
and RMK highlights the need for large data sets and long term moni-
toring to actually detect trends. There are several additional possible 
explanations for the lack of strong significant downwards trends. In 
many cases there are simply not enough mitigation measures imple-
mented or correctly placed to make an actual difference in nutrient loads 
(Djodjic et al., 2020). The decreasing trends in several tributaries 
recorded at the end of 1960s and early 1970s (Persson, 2001) were all 
due to improved wastewater treatment. For instance, TP loads from 
Eskilstunaån, Fyrisån, Märstaån and Oxundaån to Mälaren decreased by 
44, 68, 94 and 76%, respectively before (1966–1970) and after 
(1981–1985) introduction of waste water treatment (Persson et al., 
1990). Such tremendous reductions in P inputs within a short period of 
time and usually very close to the measurement station resulted in a 
rapid response of riverine concentrations with clear decreasing trends. 
Since then, most P inputs to these tributaries are likely from diffuse 
sources (Mälarens vattenvårdsförbund, 2021). There are a number of 
possible reasons why effects of measures on water quality were not 
detected. In many cases, there is a lack of accurate information on exact 
location of the implemented measures. Compared to point sources, re-
ductions from diffuse sources are usually considerably lower, less 
certain, more variable and prolonged in time, and by definition occur-
ring very often far away from the measurement point, i.e. before the 
natural retention in the system occurred (Alexander et al., 2000). 
Similar results have been seen on a larger European scale. For example, 
(Haase et al., 2023) studied biodiversity recovery trends in rivers, which 
should be strongly connected to water quality. Recovery of freshwater 
biodiversity came to a halt after 2010, suggesting that current mitigation 
measures are not resulting in the desired effect. 

In general, lower nutrient concentrations were observed in the more 
forested dominated catchments (e.g. Kolbäcksån), especially for P 
(Table S1). One plausible explanation reported from several Swedish 
forested lakes with minimal anthropogenic impact is an ongoing 

oligotrophication (Huser et al., 2018; Camiolo, 2022), where P con-
centrations in already nutrient poor systems keep decreasing. 

3.2.2. Nitrogen 
Few GAM trends were detected for TN and NO3–N. However, con-

stant decreasing raw NH4–N concentration trends were noted for five 
stations using GAM analyses (Arbogaån, Kolbäcksån Ängelsberg, 
Märstaån, Oxundaån and Svartån Forsby) and 18 stations using MK 
tests. There were also decreasing GAM trends for NH4–N loads at five 
stations, and at seven stations for fw concentrations (Fig. S6). However, 
different tributaries had significant trends for raw concentrations, fw 
concentrations and loads. Fyrisån Flottsund, Hjälstaån, Örsundaån and 
Sagån showed constant decreasing trends for fw concentrations and 
loads but not for raw NH4–N concentrations, despite no detected trends 
for water flow. Both N fertilizer use and yields have increased during 
recent years (Fig. S7) and spring tillage (Fig. 3) is used in several 
catchments to decrease N losses. These counter-acting factors in com-
bination with increasing yields in recent years may balance the 
increased fertilization, resulting in no or decreasing trends. RMK tests 
for raw TN, NH4–N and NO3–N all resulted in significant decreasing 
trends whether or not trends were weighted by proportion of agricul-
tural land (Table S4). 

When fw concentrations and loads were used, fewer GAM trends 
were detected (Fig. S6), perhaps due to the shorter time period used for 
analysis (2004–2020) (Wellen et al., 2020). NH4–N showed many 
decreasing trends for raw concentrations, fw concentrations and loads. 
Tributaries with significant GAM trends for several parameters included 
Fyrisån Jumkilsån, Kolbäcksån Strömsholm and Kolbäcksån Virsbo. At 
Eskilstuna vattenverk only one trend (raw NO3–N concentrations) was 
detected during the studied time. 

3.2.3. Total organic carbon (TOC) 
Increasing TOC GAM raw concentrations occurred at several stations 

Fig. 2. Trends in raw water quality (from grab samples) for total phosphorus (TP), suspended solids (SS), total nitrogen (TN), ammonium-N (NH4–N), nitrate-N 
(NO3–N) and total organic carbon (TOC). Blue indicates a period with a significant decreasing trend, yellow no significant trend and red a significant increasing 
trend. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

S. Sandström et al.                                                                                                                                                                                                                             



Journal of Environmental Management 349 (2024) 119500

6

Fig. 3. a) Implemented mitigation measures for nutrient losses in all Mälaren catchments expressed as a percentage of arable land. BZ = buffer zones, ABZ = adjusted 
buffer zones, SL = structure liming, ST = spring tillage, CC = catch crops. The number after the bar represents the number of constructed wetlands within the 
catchment. The number in brackets after the name corresponds to the catchment number in the map in b). b) Map over implemented wetlands in the different 
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(Fig. 2). In all Fyrisån tributaries except Vattholma, all Kolbäcksån 
tributaries and five more locations (Arbogaån, Enköpingsån, 
Hedströmmen, Oxundaån, Sävjaån Kuggebro) temporarily increasing 
trends for raw TOC concentrations occurred around 2006–2009 (Fig. 2). 
Overall increasing trends occurred at Fyrisån Jumkilsån and Örsundaån. 
A similar pattern in TOC trends was seen by Eklöf et al. (2021) who 
studied temporal changes of TOC and coloured dissolved organic matter 
(CDOM) in 164 watercourses across Sweden, where a similar partial 
increase around 2007 was seen in several stations. They concluded that 
there has been a brownification with increasing TOC, which seem to 
have ceased. This could be what we are detecting here as well as their 
findings correspond with observations from individual stations (Fig. S8). 

For all Kolbäcksån sites, the increasing TOC raw concentration trend 
was followed by a decreasing trend (Fig. 2), with a peak around 2010 
followed by a decrease, that seems to be continuing (e.g. Fig. S8a). A 
spatial pattern in TOC trends (Figs. 1 and 2) is visible, with more trends 
in the western part of the Mälaren basin. The RMK tests indicated sig-
nificant increasing trends for both the unweighted and areal weighted 
analyses (Table S4). 

3.3. Mitigation measures 

The lack of strong decreasing trends in nutrient concentrations is 
most likely due to several factors including low sampling frequency, 
limitation of the statistical tools, a need for larger data sets, limited 
implementation of measures and poor targeting of existing measures. 

Mitigation measures were implemented in almost all study catch-
ments (Fig. 3). Structural liming and spring tillage are the most common 
measures followed by buffer zones (Fig. 3). However, the percentage of 
arable land subject to mitigation measures is generally low in all 
catchments, with the highest amount in Kölstaån (25% of arable land) 
and no mitigation measures implemented in the forest dominated Fyr-
isån Jumkilsån, Kolbäcksån Ludvika, Kolbäcksån Västanfors and 
Sävjaån Ingvasta catchments (Fig. 3). This is not surprising due to the 
low amount of arable land in these catchments. Some mitigation mea-
sures (e.g. structural liming and spring tillage) can overlap and cover the 
same area. In total, 239 wetlands were found in Norrström. However, 70 
of these were situated in the vicinity of Mälaren itself and therefore not 
assigned to any tributary. Eskilstunaån has the highest number of 
implemented constructed wetlands, while Täljeån has the highest 
wetland density (Fig. 3). 

The Täljeån tributary was therefore studied more in detail to esti-
mate potential nutrient reductions associated with implemented mea-
sures. Following Djodjic et al. (2020), we calculated potential nutrient 
reductions associated with all 36 constructed wetlands in the Täljeån 
tributary catchment. Long-term annual average nutrient loads trans-
ported by Täljeån are 748 t N and 14 t P. The total modelled N and P 
reduction for all wetlands in this catchment amounted to 3.8 t N and 0.7 
t P, accounting only for 0.5 and 5 % of total annual load for N and P, 
respectively (Table S5). The low effect was mainly due to the inappro-
priate wetland placement. Wetlands were placed in areas with low 
shares of arable land, thus nutrient loads and retention were both low 
(Djodjic et al., 2022). Such low reductions might be difficult to identify 
by trend analysis (Table S5). Optimizing placement within the catch-
ment for most efficient removal of nutrients would decrease the needed 
area of the constructed wetland and increase P retention (Djodjic et al., 
2020). Similarly placing buffer strips around erosion prone areas would 
increase their efficiency (Djodjic and Villa, 2015; Djodjic et al., 2018; 
Piniewski et al., 2021). Furthermore nutrient removal efficiency of 
wetlands and some other measures is highly dependent on loading rate 
(Land et al., 2016), meaning that the effect of implemented measures at 
the river outlet might be masked by natural variations in flow and 

nutrient concentrations. In other words, the high removal efficiency in 
wetlands during years with high nutrient loadings might not be detected 
as a significant change in river concentrations due to a higher loading 
from all other sources. This highlights the importance of continuous 
high frequency monitoring, to see if implemented mitigation measures 
will have an effect later on. 

Despite national and international commitments to reduce eutro-
phication and funding programs for mitigation measures, there are few 
detectable decreasing nutrient trends in the Mälaren tributaries. This is 
either due to low implementation levels or the limitations of trend an-
alyses. A lack of coordinated reporting of mitigation measure imple-
mentation makes it even more difficult to evaluate effectiveness 
(Swedish Institute for Marine Environment, 2022). Even catchments 
with high reported intensity of measure implementation, e.g., Kölstaån, 
Sagån, Enköpingsån and Oxundaån (>15%) had no detectable nutrient 
trends using GAM analyses (Fig. 2 and S5). Some mitigation measures, e. 
g., buffer zones (Hoffmann et al., 2009) and structural liming (Blom-
quist, 2021) can reduce erosion and surface runoff, and constructed 
wetlands slow water flows allowing SS and PP to settle. Since a large 
proportion of P loads in these catchments are from agriculture (Mälarens 
vattenvårdsförbund, 2021), mitigation measures implemented on arable 
land should have the most detectable effects. In addition, the strong 
signal of amount agricultural land affecting SS and P concentrations in 
these streams and rivers suggest that this is where we need to focus 
management efforts to decrease loads, since reducing the amount of 
agricultural land in most cases is not a viable solution. Hence, signifi-
cantly decreasing SS and TP trends were expected in catchments with a 
large number of implemented measures. On the other hand, the spatial 
extent of implemented mitigation measures is generally low (<5% of 
arable land) (Fig. 3). 

Legacy stores of e.g. P in lakes and streams (e.g. Lannergård et al., 
2020, (Sandström et al., 2021)) could also affect the situation where a 
reduced external input will not result in immediate decreasing concen-
trations in the stream with considerable time lags before the effects can 
be detected (Meals et al., 2010; Sharpley et al., 2013), the same is true 
for recently implemented measures (Van Meter and Basu, 2017). Van 
Meter et al. (2018) concluded that even if agricultural N use became 
100% efficient, it would take decades to meet target N loads due to 
legacy N within the Mississippi River basin. Fertilizer application stra-
tegies should consider the amount of nutrients accumulated in the soil. 
Goyette et al. (2018) calculated historical P accumulation in 23 Cana-
dian watersheds, and could define a threshold, where after a certain 
mass of P (2.1 t P km− 2) accumulated in the soil, losses to nearby wa-
tercourses increased linearly. Current P accumulation in Swedish agri-
cultural soils is an average of 65 t km− 2 (Andersson et al., 1998). 
Applying this value to the proportion of arable land in the Mälaren 
tributaries results in 25/30 catchments exceeding the critical threshold 
(Table S6). The forested Kolbäcksån catchments do not exceed this 
threshold or are just on the limit (2.1 t km− 2 for Kolbäcksån 
Strömsholm). Enköpingsån and Täljeån have the largest amounts of 
accumulated P (27.1 t km− 2 and 29.3 t km− 2 respectively). In these sites 
barely any P trends were detected except for a partial decreasing trend in 
TP raw concentrations at the start of the time period in Täljeån. 
Recently, the Swedish government identified 20 pilot study catchments 
across the country Catchment managers were appointed in each catch-
ment with a mandate to promote and facilitate the implementation of 
cost-efficient mitigation measures to reduce eutrophication (Swedish 
Agency for Marine and Water Management, 2021). This could be a way 
forward to increase implementation of mitigation measures. 

Increasing variability in rain intensity and more freeze/thaw cycles 
in a changing climate might lead to an increased variability in amount 
and timing in nutrient losses. Increases in precipitation and higher 

catchments and their main purpose. The red numbers correspond to catchment number in a). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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winter temperatures have already been noted in the studied area 
(Sonesten et al., 2013). On the one hand, effectiveness of currently 
implemented mitigation measures could be reduced by increases in 
precipitation and runoff. On the other hand, increased precipitation and 
runoff could instead prevent any increase in concentrations (Crossman 
et al., 2013; Räike et al., 2020). Catchments with higher percentages of 
recently implemented measures (Kölstaån, Oxundaån, Råckstaån, 
Sagån) should be carefully monitored in coming years to follow up on 
measure effectiveness. Given the variability in climate and including the 
uncertainty in sampling methodology and lab analyses, there is a need 
for better evaluation of measure effectiveness and trend detection. 

There is an ongoing transgression of the planetary boundaries, 
including biogeochemical flows of P and N (Steffen et al., 2015), and the 
lack of trends seen in these parameters in the tributaries to Mälaren does 
not suggest a step in the right direction. To decrease these flows and 
improve the status of Mälaren tributaries, Lake Mälaren and ultimately 
the Baltic Sea, the final recipient, there is a need to increase the efforts 
for decreased P and N losses. Using the findings from Mälaren, a great 
lake, implying that higher implementation rate of mitigation measures is 
possible and necessary, indicates that similar conditions might be valid 
for the Baltic Sea. 

4. Conclusions 

Water quality in agricultural catchments and elsewhere will be under 
increasing pressure in the near future, due to climate change, land use 
changes and the limited implementation of mitigation measures. 

Our specific findings are as follows:  

• The relationship between share of arable land, soil clay content and 
SS and P concentrations observed at the headwater scale is appli-
cable in larger, mixed land use catchments. This relationship should 
be recognised when targeting mitigation measures, to achieve higher 
cost-efficiency.  

• Few significant water chemistry trends were identified using GAM. 
However, RMK tests identified significant regional trends of all pa-
rameters. This emphasizes the importance of long-term, regional 
monitoring programs to document trends in water quality under a 
changing climate.  

• No connection between implemented mitigation measures on arable 
land and water quality trends could be seen, even though arable land 
is the main source of nutrients in the majority of the catchments. This 
may be due to insufficient implementation of mitigation measures or 
intrinsic limitations in the monitoring programme, emphasizing the 
need for further research to address effects of mitigation measures in 
different scales, ranging from fields and headwaters to river basins.  

• Careful evaluation and communication of results is imperative as the 
lack of significant trends might discourage from further mitigation. 
Absence of evidence is not evidence of absence. 

This study shows that the work done so far is not enough to improve 
the water quality in the studied catchments. More work needs to be done 
to explore the reasons behind this, e.g. follow up on implemented 
mitigation measures to determine if a change could be expected. As 
proven in this study, the effect of arable land and clay content on SS in 
small streams is strong enough to also show in larger rivers, indicating a 
possibility for further up-scaling, to use findings from great lakes on 
enclosed seas, e.g. the Baltic Sea. Future studies should explore this 
possibility further to develop policy actions to avoid crossing planetary 
boundaries. 
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Land, M., Granéli, W., Grimvall, A., Hoffmann, C.C., Mitsch, W.J., Tonderski, K.S., 
Verhoeven, J.T., 2016. How effective are created or restored freshwater wetlands for 
nitrogen and phosphorus removal? A systematic review. Environ. Evid. 5, 1–26. 
https://doi.org/10.1186/s13750-016-0060-0. 

Lannergård, E.E., Agstam-Norlin, O., Huser, B.J., Sandström, S., Rakovic, J., Futter, M.N., 
2020. New insights into legacy phosphorus from fractionation of streambed 
sediment. J. Geophys. Res.: Biogeosciences 125 (9), e2020JG005763. https://doi. 
org/10.1029/2020JG005763. 

Linefur, H., Norberg, L., Kyllmar, K., Andersson, S., Blomberg, M., 2019. 
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miljö, Sveriges lantbruksuniversitet. http://urn.kb.se/resolve?urn=urn:nbn:se:slu: 
epsilon-e-2142. (Accessed 17 June 2022). 

Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., 
Biggs, R., Carpenter, S.R., De Vries, W., De Wit, C.A., 2015. Planetary boundaries: 
guiding human development on a changing planet. Science 347, 1259855. https:// 
doi.org/10.1126/science.1259855. 

Stutter, M.I., Chardon, W.J., Kronvang, B., 2012. Riparian buffer strips as a 
multifunctional management tool in agricultural landscapes: introduction. 
J. Environ. Qual. 41 (2), 297–303. 

Swedish Agency for Marine and Water Management, 2021. Redovisning Av 
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Tomcszyk, N., Naslund, L., Cummins, C., Bell, E.V., Bumpers, P., Rosemond, A.D., 2023. 
Nonpoint source pollution measures in the Clean Water Act have no detectable 
impact on decadal trends in nutrient concentrations in U.S. inland waters. Ambio 52, 
1475–1487. https://doi.org/10.1007/s13280-023-01869-6. 
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