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the aversive effect of antifeedants and toxicants: 
a model alternative phagostimulant 
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Abstract 

Background Sugar, when used as the phagostimulant in attractive toxic bait control tools, limits the efficacy 
and selectivity of this technology. Thus, more potent and selective phagostimulants than sugar are required 
to improve this technology. The potency of adenosine triphosphate (ATP) as an alternative model phagostimulant 
was assessed to determine its capacity to override the aversive effects of select antifeedants and toxicants. How ATP 
and sucrose modulate the rate of toxicity in the yellow fever mosquito Aedes aegypti was also examined.

Methods A no-choice feeding assay was used to investigate the phagostimulatory ability of ATP to override 
the aversive effects of structurally divergent antifeedant and toxicant compounds, and to modulate the rate of tox-
icity over 24 h. Binary combinations of antifeedant and toxicant compounds, at various concentrations, were simi-
larly assessed for enhanced lethal potency. In comparison, no-choice open access and cotton wick feeding assays 
were used to determine the phagostimulatory role of sucrose in the ingestion of boric acid-laced diets. Dissections 
of the guts were performed to determine the diet destination as dependant on the phagostimulant.

Results ATP is a potent phagostimulant that dose dependently overrides aversion to antifeedant and toxicant 
tastants. Feeding on antifeedant- or toxicant-laced diets that was induced by ATP selectively resulted in rapid knock-
down (nicotine, lobeline and caffeine) or death (boric acid and propylene glycol), with a combination of the two 
lethal compounds inducing a synergistic effect at lower concentrations. ATP- and sucrose-induced feeding predomi-
nantly directed the antifeedant- or toxicant-laced meals to the midgut and the crop, respectively.

Conclusions ATP is an efficacious alternative model phagostimulant to sucrose that overrides the aversive effects 
of antifeedants and toxicants, resulting in rapid toxic effects. Furthermore, this study demonstrates that variation 
in the rate of toxicity between ATP- and sugar-induced feeding is at least partly regulated by the differential feeding 
response, volume imbibed and the destination of the meals. Additional research is needed to identify structurally 
related, stable analogues of ATP due to the ephemeral nature of this molecule. For future applications, the workflow 
presented in this study may be used to evaluate such analogues for their suitability for use in attractive bait stations 
designed to target a broad range of haematophagous arthropods and prevent off-target species’ feeding.
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Background
Interventions targeting arthropod vectors are the most 
efficient strategies in the fight against vector-borne dis-
eases [1]. With a limited arsenal of vector control tools, 
and those that are available becoming less effective [1, 2], 
the World Health Organization advocates for the devel-
opment of new tools with different modes of action to be 
used in future integrated vector management strategies 
[3]. Although taste-based arthropod control tools date 
back as far as the eighteenth century [4], the model taste-
based tool, the attractive toxic sugar bait (ATSB), has 
received insufficient attention. Improvements in ATSB 
efficiency and efficacy offer a viable avenue to increase 
their usefulness for integrated vector management 
strategies.

Current ATSB technologies have several limitations, 
primary among which is the use of sucrose as a non-
selective phagostimulant, targeting select disease vectors 
and beneficial insects, e.g. pollinators, alike [5]. In addi-
tion, sucrose may not be an efficient phagostimulant to 
override the aversive effects of natural antifeedants and 
synthetic toxicants, as reliance on sugar phagostimulants 
is prone to resistance [6, 7]. Moreover, many disease vec-
tors are obligate blood feeders that do not imbibe sugar 
meals [8], and are thus not targeted by ATSBs. For mos-
quito vectors, which tend to imbibe small sugar meals at 
a time, it may also require multiple visits to an ATSB sta-
tion to accumulate a sufficient level of a toxin for it  to 
be lethal. Thus, to mitigate the limitations highlighted, a 
more potent and selective phagostimulant, to which the 
cost of evolutionary pressure is too high for the vector to 
develop resistance, needs to be identified.

A model alternative phagostimulant for this pur-
pose is adenosine triphosphate (ATP), a highly potent 
and strongly selective phagostimulant for the major-
ity of blood-feeding arthropods [9]. The likelihood of 
blood-feeding vectors developing resistance to ATP is 
low because ATP is an indicator of a blood meal, which 
is required to secure fitness-related behaviours. Due to 
the labile nature of ATP [10], it cannot be used in current 
ATSB technology. An increased understanding of the 
signalling pathway and how this modulates the uptake 
of toxic antifeedants may, however, provide guidance 
for the identification and/or development of stable ATP 
analogues for future use in attractive toxic ATP-analogue 
bait technology. In this study, ATP was assessed for its 
ability to drive the feeding of the yellow fever mosquito 
Aedes aegypti on a variety of structurally different anti-
feedant and toxicant compounds that elicited varying 
degrees of toxicity, ranging from knockdown to lethal 
effects. Depending on the phagostimulant used, i.e. ATP 
or sugar, the diet destination differed, correlating with 
different rates of action of the toxic compounds. We 

discuss the use of ATP as a model for alternative phago-
stimulants to sugar as a driver for toxic baits in vector 
control tools.

Methods
Mosquito rearing
Aedes aegypti (Rockefeller strain) was reared at 25 ± 2 °C, 
70 ± 2% relative humidity and a 12  h:12  h light:dark 
photoperiod. Briefly, eggs were hatched in plastic trays 
(23.5  cm × 18  cm × 7.5  cm; ca. 300  ml water), with ca. 
300 larvae per tray. The pupae, which were collected in 
small plastic cups (30  ml water), were transferred into 
BugDorm-4E1515 cages (17.5  cm × 17.5  cm × 17.5  cm; 
Megaview Science, Taichung, Taiwan). Emerging adults 
were provided with ad libitum access to 10% weight/vol-
ume (w/v) sucrose up to 4 days post-eclosion, and then 
starved for 22 ± 2 h with ad libitum access to water prior 
to the feeding experiments.

Bioassay to assess ATP‑induced feeding on antifeedant 
and toxicant compounds
To make the feeding test solutions, stock solutions of 
12  mM ATP [Chemical Abstracts Service (CAS) no. 
34369-07-8; Merck, Darmstadt, Germany] were pre-
pared by dissolving ATP in bicarbonate buffered saline 
[150  mM sodium chloride (Merck) and 10  mM sodium 
bicarbonate (Merck)] at pH 7.4 ± 0.07, and then stored 
at − 20  °C. To examine whether ATP overrides feeding 
deterrence and induces feeding on natural antifeedants 
or synthetic toxicants, a panel of tastants, previously clas-
sified as antifeedants, toxicants or feeding deterrents, 
were assessed at a range of concentrations (Table 1). The 
natural antifeedants were the plant-derived alkaloids caf-
feine [11, 12], quinine, nicotine [11, 13, 14], lobeline [13] 
and capsaicin [15, 16], while the toxicants were the syn-
thetic compounds N,N-diethyl-meta-toluamide (DEET), 
a major insect repellent [13], and propylene glycol [17], 

Table 1 Antifeedant and toxicant compounds and concentration 
ranges evaluated in the presence of 0.6 mM adenosine triphosphate 
(ATP)

DEET N,N-diethyl-meta-toluamide, CAS Chemical Abstracts Service

Compound CAS number Concentration (mM)

Caffeine 58-08-02 0.10–20

Nicotine 54-11-5 0.10–3

Quinine 130-95-0 0.0010–2

Lobeline hydrochloride 134-063-4 0.10–3

Capsaicin 10,045-35-3 0.10–5

Boric acid 57-55-6 1.60–323.50

Propylene glycol 134-62-3 131–2628.50

DEET 404-86-4 0.0050–53.30
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and the mineral acid boric acid, which are known insecti-
cides [16, 18–20] (Table 1). Stock solutions of the tastants 
were prepared as follows: water-soluble compounds, 
i.e. caffeine (80  mM), propylene glycol (10.5  M), DEET 
(209  mM), nicotine (20  mM) and boric acid (1.3  M), 
were dissolved in the bicarbonate buffered saline. This 
was done at room temperature, except for boric acid 
and quinine that required heating at 42  °C to fully dis-
solve. In contrast, lobeline hydrochloride (100 mM) and 
capsaicin (100 mM) were dissolved in 50% (volume/vol-
ume; v/v) ethanol, while quinine (20 mM) was dissolved 
in 30% (v/v) ethanol. Working dilutions were prepared 
for lobeline hydrochloride and capsaicin at 5  mM, and 
for quinine at 2  mM in the bicarbonate buffered saline. 
The final concentrations contained less than 2.5% (v/v) 
ethanol. Ethanol at 2.5% (v/v) was examined for its effect 
on ATP phagostimulation in a membrane feeding assay, 
as described below, which demonstrated that it had no 
effect on ATP potency [U(9) = 10.50, Z = 0.30, P > 0.99].

Each stock solution of the tastant compounds was 
serially diluted using the pH-controlled bicarbonate 
buffered saline to which was added an equal volume of 
ATP to a final concentration of 0.6  mM, a concentra-
tion that elicited maximum phagostimulation [maximal 
effective concentration  (ECmax)] in Ae. aegypti, as deter-
mined in a preliminary analysis, through the genera-
tion of a dose–response curve with nine doses between 
0.005 and 0.6 mM (data not shown), and supported by a 
previous study [21]. In addition, xylene cyanol FF (CAS 
no. 2650-17-1; Merck) was added to a final concentra-
tion of 1  mg   ml−1 to aid visualisation of engorged indi-
viduals. The final concentration ranges of the tastants are 
indicated in Table 1. A positive control (0.6 mM ATP in 
buffer) and two negative controls, i.e. buffer alone and 
buffer together with the lowest concentration of each 
antifeedant and toxicant, were used, in which avid prob-
ing, but no engorgement, was observed.

To confirm whether the mosquitoes detected the anti-
feedants and toxicants, a concentration at, or close to, 
the threshold of behavioural response was used. The 
assay included a negative control (antifeedant or toxi-
cant “tastant” alone) and two positive ATP controls, the 
50% and fully effective concentrations (respectively,  EC50 
0.072 mM and  ECmax 0.6 mM, as determined in prelimi-
nary studies; see above), as well as the tests, i.e. combina-
tions of the tastant with either of the ATP concentrations 
(n = 5, n = 50).

Ten female mosquitoes at 5 days post-eclosion were 
gently aspirated into bioassay chambers (tall polystyrene 
Petri dishes, 12  cm diameter × 6  cm height; Semadeni, 
Ostermundigen, Switzerland) covered with fine mesh, 
for each of the controls and tests, and for five replicates. 
Using a membrane feeding system (Hemotek, Blackburn, 

UK), and feeding reservoirs (0.3  ml; Hemotek) filled 
with 200  μl of the diets under a collagen membrane 
(Hemotek), the mosquitoes were exposed to the diets for 
30 min at 37 °C. Since Ae. aegypti is a diurnal feeder, the 
assays were performed at Zeitgeber time 6–9, within the 
peak activity period [22]. Mosquitoes that scored iv or 
v on the feeding scale were considered engorged, while 
those that scored above ii were considered fed (Fig. 1a), 
and used as such in further analyses.

Toxic effects of antifeedant and toxicant diets imbibed 
during ATP‑induced feeding
To examine the toxic effect of the antifeedant and toxi-
cant compounds, a no-choice feeding assay was used as 
described above in which 10 mosquitoes were exposed to 
the antifeedant and toxicant diets and observed for 24 h 
without access to sugar and water. This experiment was 
replicated 5 times. Unlike in previously conducted sugar-
bait toxic assays, in which the mosquitoes had access to 
the toxic diet ad  libitum for the duration of the experi-
ment [19, 20, 23], the mosquitoes in this experiment had 
access to the ATP diet for 30 min, since ATP is thermola-
bile and rapidly loses its integrity. Lethal and knockdown 
effects were scored after exposure to the diets for up to 
24 h.

Toxicity of sucrose‑induced feeding on boric acid
Taste-based toxic baits commonly include sucrose as 
a feeding stimulant. To compare our results of ATP-
induced feeding on boric acid by Ae. aegypti to those 
of previous studies, an assessment of the sugar-induced 
feeding [10% (w/v) sucrose] on a boric acid diet was con-
ducted. For this purpose, 10 female mosquitoes (5 days 
post-eclosion) were placed in a BugDorm cage and then 
exposed to the diet via either of two methods: a cotton 
wick soaked in a 1% (w/v) boric acid, 10% (w/v) sucrose 
(Merck) and xylene cyanol (1 mg  ml−1) diet contained in 
a 5-ml glass vial; or an open-access feeding assay, in which 
200  μl of the same solution was added to a Hemotek 
feeding reservoir (without a membrane), as described 
above, with refills every 20–24  h. In both experiments, 
eight replicates of the treatments and two replicates of 
the control [10% (v/v) sucrose plus dye (xylene cyanol)] 
were conducted. The survival of the exposed individuals 
was scored for up to 5 days.

Synergistic effect of ATP‑induced feeding on combined 
antifeedant and toxicant diets
In our panel of toxicants, boric acid and propylene gly-
col elicited lethal effects, while the antifeedants nicotine, 
lobeline and caffeine induced knockdown followed by 
recovery. We hypothesised that a combination of lower 
concentrations of each of the compounds would result 
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in a synergistic lethal effect. To address this hypothesis, 
the same membrane feeding assay as described above 
was performed with 10 female mosquitoes, and was rep-
licated 5 times, using a combination of boric acid and 
propylene glycol, nicotine or caffeine (Additional file  1: 
Table S1). In all cases, the mosquitoes were stimulated to 
feed using 0.6 mM ATP, which also served as the positive 
control.

Destination of ATP‑ and sucrose‑induced diets
Having observed that the rate of toxicity in ATP-induced 
feeding was, by far, much faster when compared to 
sucrose-induced feeding, we hypothesised that this dif-
ference was in part due to the destination of the meals 
in either instance. To test this hypothesis, the lowest 
concentrations that induced the highest level of engorge-
ment while still eliciting a toxic effect were considered for 
each individual compound. In brief, for the ATP-induced 
meal, the membrane feeding assay, as described above, 
was used. For comparison, a sucrose-induced feeding 
assay was used, in which cotton balls soaked with the diet 
were placed on top of bioassay chambers (Semadeni) and 
heated to 37  °C for 40  min. Each BugDorm contained 

10 mosquitoes per diet. After exposure, the mosquitoes 
were anaesthetised on ice and their guts dissected in 
Ringer’s solution under a stereo microscope (×10, Nikon 
SMZ100;  Nikon, Stockholm, Sweden) equipped with a 
64 MP Android camera (Tecno Camon 19 Pro; Tecno, 
Shenzhen, China). The experiment was repeated until the 
guts of 10 fed individuals per diet had been successfully 
dissected.

Statistical analysis
To test whether the mosquitoes detected the antifeed-
ant and toxicant compounds, a one-way ANOVA was 
used to test the proportion of individuals that engorged 
on ATP  (EC50) and those that fed on a combination of 
ATP  (EC50) plus tastant. In addition, an ANOVA was 
used to test whether ATP  (ECmax) is able to override the 
aversive effect of the antifeedants and toxicants (ATP at 
 ECmax plus tastant). To analyse the level of feeding aver-
sion of mosquitoes across the antifeedant and toxicant 
compounds in the presence of ATP  (ECmax 0.6 mM), the 
dose–response curves were compared using the least 
squares regression method in a non-linear regression 
model, in which the proportion of engorged mosquitoes 

Fig. 1a–c Adenosine triphosphate (ATP) overrides the aversive response to antifeedants and toxicants in Aedes aegypti. a The scale (i–v) used 
to score unfed to engorged individuals. b The proportion of Ae. aegypti engorged on meals of antifeedant and toxicant compounds, in combination 
with ATP at half maximal effective concentration  (EC50) (0.072 mM) and  ECmax (0.6 mM) (n = 50). The behavioural response of the mosquitoes 
to the antifeedant and toxicant compounds is aversive when these are presented in combination with ATP at  EC50, whereas ATP  ECmax is able 
to override this effect. ANOVA was used for the pairwise comparisons; ns non-significant, * P < 0.05, ** P < 0.01. c Mosquitoes engorged on 0.6 mM 
ATP-containing antifeedant and toxicant diets in a dose-dependent manner. The error bars indicate the SEM. The number of replicates for each diet 
and concentration was 50. DEET N,N-diethyl-meta-toluamide, PRO propylene glycol
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was the response variable, while the diets were the pre-
dictor variables. An extra sum-of-squares F-test was used 
to compare whether the best fit values of select param-
eters (log  EC50, Hill slope, top value) differed between 
individual antifeedant and toxicant datasets. To assess 
the mortality rates of both ATP-induced (24  h) and 
sucrose-induced (5 days) toxicity, the probability of sur-
vival was visualised using Kaplan–Meier survival curves, 
and the rate of survival analysed using the log-rank Man-
tel-Cox test. To test for differences in the potency of the 
knockdown effects, a Kruskal–Wallis test followed by 
Dunn’s pairwise post hoc comparison was used based 
on the 30-min timepoint as the earliest peak knockdown 
time point. In contrast, the comparison of mortality as a 
result of boric acid alone and that of boric acid in combi-
nation with either nicotine or caffeine was analysed using 
the Mann–Whitney U-test based on data at the 24-h 
timepoint. All of the analyses and generated graphs were 
done using GraphPad Prism software (GraphPad Prism, 
v. 8.0.0; GraphPad Software, San Diego, CA) and variance 
is indicated on the graphs, where appropriate.

Results
ATP overrides the aversive effect of antifeedant 
and toxicant compounds
To assess whether the mosquitoes were able to detect the 
antifeedant and toxicant compounds, no-choice feed-
ing assays were performed, which demonstrated that all 
tastants elicited an aversive response when combined 
with ATP at  EC50 (0.072  mM; Fig.  1a, b). In contrast, 
when tested at the same concentration, the antifeedant 
and toxicant compounds in combination with ATP at 
 ECmax (0.6  mM) elicited no aversive response (Fig.  1b), 
demonstrating that ATP is able to override the aversive 
effect of these tastants. A comparison of the proportion 
of females engorging in response to a range of concen-
trations of antifeedant and toxicant compounds together 
with ATP  (ECmax) demonstrated an overall significant 
difference in sensitivity to various antifeedant and toxi-
cant compounds [F(7,212) = 30.54, P < 0.001; Fig. 1c]. More 
specifically, the antifeedants and toxicants were ranked 
with respect to female mosquito sensitivity as follows: 
DEET  (EC50 = 0.39  mM) = quinine  [EC50 = 0.23  mM; 
F(1, 61) = 1.19, P = 0.28] < lobeline  [EC50 = 1.14  mM; 
F(1, 61) = 23.03, P < 0.001] = nicotine  (EC50 = 1.25  mM; 
F = 0.21, P = 0.65) < capsaicin  (EC50 = 3.07 mM; F = 57.15, 
P < 0.001) < caffeine  (EC50 = 9.34  mM; F = 51.37, 
P < 0.001) < boric acid  (EC50 = 321.80  mM; F = 16.50, 
P < 0.001) < propylene glycol  (EC50 = 1429  mM; F = 8.11, 
P = 0.0070) (Fig. 1c).

The observed volume of antifeedant- and toxi-
cant-laden diets imbibed due to ATP phagostimula-
tion was higher (stage iv–v) than that observed in the 

sugar-induced feeding (stage ii–iii; Fig. 1a). However, the 
volume of nicotine imbibed due to ATP-induced feeding 
was lower than that of the other antifeedants or toxicants 
tested, ranking on average as fed (stages ii–iii) compared 
to engorged (stages iv–v), respectively (Fig.  1a). In gen-
eral, the females that fed on the antifeedant- and toxi-
cant-laden meals displayed similar windows of dynamic 
response to the antifeedant and toxicant compounds, 
as indicated by similar slopes of the linear parts of the 
curves (F = 2.87, P = 0.0070; Fig.  1c). While similar, the 
slopes associated with feeding on DEET (slope = − 0.92) 
and propylene glycol [slope = − 1.21; F(1, 44) = 0.39, 
P = 0.53] demonstrated wider dynamic windows for these 
antifeedants and toxicants when compared to the rest of 
the compounds, which shared similar dynamic windows 
[F(5, 168) = 0.49, P = 0.80; Fig. 1c].

Feeding on toxicant‑laced diets elicits toxic effects
ATP-induced feeding on boric acid and propylene glycol 
elicited rapid lethal effects in individuals that engorged 
(Fig.  2a, b), as well as in those that had fed, but not 
engorged, on the diets (Additional file  2: Fig. S1a, b). 
Boric acid (χ2 = 247.50, df = 5, P < 0.001) and propylene 
glycol (χ2 = 163.00, df = 4, P < 0.001) elicited significant 
mortality in engorged individuals in a dose-dependent 
manner, with maximum mortality observed within the 
first 3 h for the two and three highest doses tested of the 
respective toxicants (Fig. 2a, b). Among the total individ-
uals exposed to the highest concentration of propylene 
glycol, mortality was observed in those that had engorged 
as well as in those that imbibed less than a complete meal 
(Additional file 2: Fig. S1b).

The highest doses of boric acid and propylene glycol 
that did not result in a reduction in the proportion of 
mosquitoes engorging (boric acid, 16 mM; propylene gly-
col, 131 mM; Fig. 2c) caused no significant effect on mor-
tality alone, but when combined, elicited a synergistic 
effect on mortality (Fig. 2d). The second lowest combined 
doses, eliciting both engorging and feeding (boric acid, 
81  mM; propylene glycol, 657  mM), elicited an effect 
similar to that of propylene glycol alone (propylene gly-
col, 657 mM; Fig. 2e; Additional file 2: Fig. S1c), while at 
the highest doses tested (boric acid, 162 mM; propylene 
glycol, 1314 mM), mortality reduced with the combined 
diet compared with the individual toxicants (Fig.  2f ), 
likely due to the reduced diet intake (Fig. 2c).

ATP‑induced feeding on antifeedants and boric acid diets 
elicits knockdown toxic effects
In addition to the observed lethal effects, knockdown 
effects were observed in response to feeding on nico-
tine, lobeline and caffeine in a dose-dependent man-
ner (Fig.  2g; Additional file  2: Fig. S1d–f ). Nicotine 
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elicited a more rapid knockdown effect, peaking after 
30 min, compared with lobeline and caffeine (H = 10.76, 
df = 2, P < 0.001; Fig.  2g). Dunn’s post hoc comparison 
indicated a significantly higher knockdown effect for 
nicotine than caffeine (Z = 2.20, P = 0.030) or lobeline 
(Z = 3.21, P = 0.0010), whereas the knockdown effects 
of caffeine and lobeline were not significantly different 
(Z = 1.010, P = 0.31; Fig. 2g).

To assess the possible synergistic effect of nicotine 
and boric acid on mortality, mosquitoes were fed on 
combined diets, which demonstrated that the reduction 
in engorgement elicited by nicotine at the two highest 
doses tested resulted in reduced mortality in the com-
bined diets compared to that induced by boric acid 
alone (Additional file  3: Fig. S2a, b). The lowest doses 
tested elicited no difference in engorgement and no 
mortality in response to the combined diet (Additional 
file  3: Fig. S2a, b). To assess the potentiation effect of 
caffeine on mosquitoes engorging on boric acid, 5 mM 
caffeine, the concentration eliciting the highest level 
of engorgement alone, was used together with various 
concentrations of boric acid in the toxicity assay. There 
was no increase in the proportion of mosquitoes feed-
ing [F(2, 30) = 1.53, P = 0.23; Additional file  3: Fig. S2c], 
nor was there an increase in the mortality within the 
corresponding combinations (χ2 = 9.5, df = 5, P = 0.091; 
Additional file  3: Fig. S2d–f ), when combined caffeine 
and boric acid diets were analysed.

Sucrose‑induced feeding on boric acid‑containing diets 
elicits slow lethal effects
To compare the mortality rates in response to ATP- and 
sugar-induced diets, three modes of sugar meal delivery 
were assessed. While membrane feeding did not elicit 
sufficient numbers of fed mosquitoes within 30  min 
to compare with ATP-fed individuals, open source 
and cotton wick feeding ad  libitum resulted in diet 
uptake and significant mortality (comparison between 
sucrose plus boric acid vs. sucrose alone, χ2 = 108, df = 2, 
P < 0.001; comparison between open source vs. cotton 
wick feeding, χ2 = 2.51, df = 1, P = 0.11; Fig. 2h). The maxi-
mum mortality in response to feeding on boric acid-laced 
sugar diets occurred at or before 5 days (Fig. 2h).

Diet destination is modulated by the type 
of phagostimulant
To assess whether ATP and sucrose modulate the des-
tination of the antifeedant and toxicant diet in the mos-
quito, gut dissections were performed. In the mosquitoes 
that were induced to feed on blood or ATP-containing 
diets the meals were predominantly directed to the mid-
gut, whereas in those induced to feed on sucrose-con-
taining diets the meals were predominantly directed to 
the crop (Fig.  3). It is noteworthy that caffeine induced 
an increase in the volume imbibed when combined with 
sucrose (stage iv) compared to the other diets (stage ii, 
iii), while feeding on both caffeine and DEET, in combi-
nation with sucrose, led to variable distribution of the 
meal to different destinations in the gut (Fig. 3).
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Fig. 3 ATP and sucrose variably modulate the final destination of the meal. Exemplar micrographs of gut dissections of Aedes aegypti demonstrate 
the predominant destination of antifeedant- and toxicant-laced meals [NIC, LOB, quinine (QUI), capsaicin (CAP), CAF, BOR] to the crop (CP), 
oesophagus (OS), midgut (MG) and hindgut (HG). The control gut dissections for unfed, sucrose-, blood- and ATP-fed mosquitoes are presented 
in the four leftmost panels. The guts of mosquitoes fed on antifeedant- and toxicant-laden meals induced by either sucrose or ATP are shown 
in the upper and lower panels, respectively. The pie charts represent a semi-quantitative indication of the distribution of the meals to the four main 
gut regions. The colour intensities in the pie chart (scale to the right) visually rank the average intensity of the blue dye in the gut regions on a scale 
of 0 (lowest) to 3 (highest (n = 10). For other abbreviations, see Figs. 1 and 2
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Discussion
The ATSB technology used in the control of mosquito 
vectors relies on sugar as the phagostimulant for the 
toxin-laden meals. A general food substrate for many 
non-target organisms, sugar induces intermittent feed-
ing by mosquitoes [24], requiring multiple visits to the 
control tool, which results in a low rate of toxicity [5]. 
In this study, we evidenced that ATP is a potent model-
alternative phagostimulant to sucrose, overriding the 
aversive effect of a range of structurally divergent anti-
feedant and toxicant compounds in a dose-dependent 
manner. The ATP-induced feeding on a toxic diet pre-
dominantly directed the meal to the midgut and rapidly 
elicited both knockdown and lethal effects, contrary to 
the slower acting sugar-induced toxicity (this study; [5, 
17]). The combination of ATP and binary mixtures of 
toxic compounds resulted in either synergistic or addi-
tive lethal effects at low concentrations. In sum, we 
identified a novel and more effective pathway for deliv-
ering toxic and/or modifying agents in mosquito vector 
control tools.

Feeding on ATP-containing meals induces rapid inges-
tion of high volumes of the meal that are directed to the 
midgut, as part of a chain of reflexes initiated during host 
seeking [24], while feeding on sucrose induces a slower 
ingestion of smaller meal volumes, which are directed 
predominantly to the crop [15, 25–28]. This difference 
in feeding strategy likely relates to the risk of assault 
associated with host-seeking and blood-feeding [29, 30] 
compared to feeding on nectar resources. Both ATP and 
sucrose dose dependently override the aversive response 
induced by antifeedant and toxicant compounds, with 
ATP driving the meal uptake at a more rapid rate and 
to a greater volume than sucrose (this study; [15, 26]). 
The behavioural response to the antifeedant and toxi-
cant compounds suggests differential sensitivity of the 
pathways detecting aversive compounds, similar to that 
observed in Drosophila, in which antifeedant and toxi-
cant compounds can activate antifeedant- and toxicant-
sensitive receptors and/or suppress the response of 
sugar-sensitive neurons [31, 32]. Behavioural evidence 
in mosquitoes (this study; [13, 33]) suggests that che-
mosensory neurons in sensilla on the labrum, or in the 
cibarium, differentially detect antifeedants and toxi-
cants. However, whether antifeedant compounds modu-
late the response of sensory neurons in these sensilla in 
mosquitoes, or act through a dedicated pathway, is cur-
rently unknown. As with other flower-visiting insects, 
mosquitoes have evolved the ability to detect aversive 
compounds as a response to their presumed toxicity in 
nectar sources [32, 34, 35]. Similarly, there appears to be 
a selection pressure to detect antifeedant compounds in 
blood (this study; [13, 33]), as evidenced by the ability of 

obligate haematophagous animals to maintain antifeed-
ant-sensitive receptors over an evolutionary timescale 
[36].

The risk associated with naturally occurring alkaloids 
likely explains the higher sensitivity to these tastants 
compared to boric acid, the most common lethal agent 
[5], and the synthetic compound propylene glycol, a 
potentially safer toxicant [17, 37] for use in ATSBs. Of 
the alkaloids tested in this study, nicotine, lobeline and 
caffeine elicited a knockdown effect, likely by acting as 
agonists of the nicotinic acetylcholine receptors [38, 39]. 
While the cholinergic antagonist quinine [40] had no 
effect in Ae. aegypti (this study; [13]), in Anopheles gam-
biae, blood meals containing quinine induced knock-
down effects [33], likely due to differences in sensitivity 
to quinine. In contrast, the mechanisms of action of boric 
acid and the breakdown products of propylene glycol are 
direct, with the former acting as a stomach poison in the 
midgut of mosquitoes, disrupting the gut epithelium, 
affecting metabolism, and potentially acting as a neural 
toxin [41]. While the ability to detect and evade antifeed-
ant- or toxicant-containing meals is an innate response, 
this can be overridden by the use of a phagostimulant, 
which in turn influences the meal destination and the 
rate of toxicity.

ATP-induced feeding elicited a more rapid toxic effect 
compared to sucrose-induced feeding (this study; [17–19, 
23, 42]), as a result of directing the meals containing the 
toxic agents almost exclusively to the midgut, as opposed 
to the crop. The destination of the meals was not influ-
enced by the type of the antifeedant or toxicant com-
pound contained within, with two notable exceptions, 
caffeine and DEET, when combined with sucrose. This 
suggests that the detection of select antifeedants and 
toxicants has the potential to affect diet destination. Caf-
feine combined with boric acid was predicted to poten-
tiate the lethal effects of boric acid when feeding was 
induced by ATP; however, this was not observed in the 
present study. In contrast, combinations of low doses of 
boric acid and propylene glycol significantly and syner-
gistically enhanced the lethal effect. Combinations of the 
most potent knockdown-inducing compound, i.e. nico-
tine, with boric acid, did not increase the lethal effect of 
the meal, likely due to nicotine regulating the ingestion of 
low diet volumes at the high concentrations. Overall, the 
available results suggest that phagostimulants triggering 
feeding via the ATP-pathway may be used to improve the 
efficacy and efficiency of the technology in the control of 
disease vectors.

ATP as a model phagostimulant in taste-based con-
trol tools provides additional advantages compared 
with sucrose. In principle, not only would ATP agonists 
increase selectivity for haematophagous vectors, these 
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would also include obligate blood feeders [8] that are cur-
rently not targeted by sugar-based control tools. Resist-
ance is a major factor limiting the usefulness of currently 
available vector control tools [43–45]. Moreover, resist-
ance to glucose, caused by the misexpression of a sugar 
receptor in the aversive sensory neuron, has led to a loss 
of efficacy of ATSBs used to control cockroaches [7]. The 
evolutionary cost of a mutation in the ATP-detection 
pathway would detrimentally affect vector fitness and 
is thus highly unlikely to be a “selected for” trait. Taken 
together, the advantages associated with ATP as a phago-
stimulant strongly suggest that its thermostable agonists 
represent a set of alternative phagostimulants to sucrose 
for future oral-based vector control technologies. Such 
technologies would allow for the oral delivery of other 
vector-modifying agents, including biological material 
(e.g. Bacillus thuringiensis toxins), genetic material (e.g. 
double-stranded RNA) and chemical agents [5, 46–48].

Conclusions
Aedes aegypti, used as a representative haematopha-
gous vector, responds reflexively to ATP and demon-
strates variable sensitivities to ATP-laced antifeedant 
and toxicant meals. ATP non-specifically overrides the 
aversive effect of a range of structurally divergent anti-
feedants and toxicants in a dose-dependent manner. 
Based on the combined aspects of ATP-driven feed-
ing responses, i.e. reflexive engorgement, high meal 
volume and midgut diet destination, ATP serves as a 
model alternative phagostimulant delivering more effi-
cient toxic effects than sucrose when used in available 
ATSBs, which non-selectively affects off-target organ-
isms, and does not target obligate blood-feeding vec-
tors. Being an ephemeral molecule, rapidly degrading 
at room temperature, further studies are required to 
identify structurally related, stable analogues of ATP, 
such as the non-hydrolysable ATP analogues adenylyl 
imidodiphosphate and adenylyl methylene diphosphate 
[49], from among the currently known and commer-
cially available ATP analogues [50, 51]. Such analogues 
may allow for the use of more lethal and eco-friendly 
toxic compounds, which can be used individually or 
synergistically, in future attractive toxic bait technolo-
gies. Further still, to ascertain the wide application of 
ATP analogue-based toxic baits, the stable analogues 
should be examined with a wider array of representa-
tive haematophagous vectors under both laboratory 
and field conditions. For this purpose, the workflow 
presented in this study is ideal, and is amenable to the 
recently developed bait stations designed to prevent 
off-target species feeding [52].
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