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sugar beet
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and Just Jensen1

1Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark, 2Research and
Development, Nordic Seed A/S, Odder, Denmark, 3Research Division, DLF Seeds A/S, Store
Heddinge, Denmark, 4Research and Development, DLF Beet Seed AB, Landskrona, Sweden,
5Breeding, Nordic Seed Germany GmbH, Nienstädt, Germany, 6Department of Plant Breeding,
Swedish University of Agricultural Sciences, Alnarp, Sweden
Genomic models for prediction of additive and non-additive effects within and

across different heterotic groups are lacking for breeding of hybrid crops. In this

study, genomic prediction models accounting for incomplete inbreeding in

parental lines from two different heterotic groups were developed and

evaluated. The models can be used for prediction of general combining ability

(GCA) of parental lines from each heterotic group as well as specific combining

ability (SCA) of all realized and potential crosses. Here, GCA was estimated as the

sum of additive genetic effects and within-group epistasis due to high degree of

inbreeding in parental lines. SCA was estimated as the sum of across-group

epistasis and dominance effects. Three models were compared. In model 1, it

was assumed that each hybrid was produced from two completely inbred

parental lines. Model 1 was extended to include three-way hybrids from

parental lines with arbitrary levels of inbreeding: In model 2, parents of the

three-way hybrids could have any levels of inbreeding, while the grandparents of

the maternal parent were assumed completely inbred. In model 3, all parental

components could have any levels of inbreeding. Data from commercial

breeding programs for hybrid rye and sugar beet was used to evaluate the

models. The traits grain yield and root yield were analyzed for rye and sugar beet,

respectively. Additive genetic variances were larger than epistatic and dominance

variances. The models’ predictive abilities for total genetic value, for GCA of each

parental line and for SCA were evaluated based on different cross-validation

strategies. Predictive abilities were highest for total genetic values and lowest for

SCA. Predictive abilities for SCA and for GCA of maternal lines were higher for

model 2 and model 3 than for model 1. The implementation of the genomic

prediction models in hybrid breeding programs can potentially lead to increased
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genetic gain in two different ways: I) by facilitating the selection of crossing

parents with high GCA within heterotic groups and II) by prediction of SCA of all

realized and potential combinations of parental lines to produce hybrids with

high total genetic values.
KEYWORDS

genomic selection, non-additive genetic effects, Gca and sca, hybrid breeding, heterotic
groups, inbreeding, grain yield, root yield
1 Introduction

Hybrid varieties of important crops, such as maize (Zea mays

L.), rye (Secale cereale L.), and sugar beet (Beta vulgaris L. ssp.

vulgaris), are widely cultivated and perform considerably better

than inbred or population varieties (Campbell, 1990; Duvick, 2005;

Laidig et al., 2017). The improved performance is due to heterosis or

hybrid vigor, which occurs when genetically different lines are

crossed (Labroo et al., 2021). However, breeding programs for

hybrid crops typically require many resources and have long

breeding cycles (Longin et al., 2012). Both of these factors limit

genetic gain in hybrid crops compared to line breeding programs.

Rye and sugar beet are both crops that are commonly cultivated as

hybrids, which are produced by crossing inbred lines from different

heterotic groups. In the current study, data from three-way hybrids

and their parental components were evaluated. First, two-way

crosses between cytoplasmic male-sterile (MS) and non-restorer

(NR) lines from one heterotic group are produced, and the resulting

male-sterile offspring are then crossed with a pollinator or restorer

(R) line from a different heterotic group to produce the three-way

hybrids. MS lines do not produce viable pollen. When MS lines are

crossed with an NR line, the offspring remain male-sterile, and

when MS lines are crossed with a restorer line, the offspring become

male-fertile and can produce viable pollen (Vendelbo et al., 2020).

Many studies have shown that genomic prediction can be

applied to a broad range of complex traits in animals and crops

to increase rate of genetic gain and improve effectiveness in

breeding programs (Meuwissen et al., 2016; Crossa et al., 2017;

Kristensen et al., 2019). For genomic prediction, numerous of

genome-wide markers are used to predict genomic breeding

values of lines, based on a training set consisting of lines that

have both been genotyped and phenotyped (Meuwissen et al.,

2001). Many important agronomic traits have a complex genetic

architecture, i.e. they are controlled by many QTL, each having a

small effect (Würschum et al., 2011; Hackauf et al., 2017). For such

traits, genomic prediction models have been shown to be more

accurate than marker-assisted selection based on few markers

(Wang et al., 2014; Arruda et al., 2016).

For optimal use of genomic selection in breeding programs for

hybrid crops, it is essential to have models that can predict both

genomic breeding values of lines within heterotic groups as well as

the total genetic value of the hybrids (Technow et al., 2012).

However, studies of genomic prediction in hybrid rye and sugar
02
beet have so far been conducted using datasets and models, where it

was not possible to separately estimate additive genetic effects of

each parent and non-additive genetic effects of the hybrids, which

limits the practical use for breeding (Hofheinz et al., 2012;

Würschum et al., 2013; Wang et al., 2014; Auinger et al., 2016;

Schulthess et al., 2016; Bernal-Vasquez et al., 2017). Non-additive

genetic effects consist of dominance and epistatic deviations from

the additive allele substitution effects. Dominance deviations are

due to interactions between different alleles within a locus. Epistatic

deviations are due to interactions between alleles across loci, and

can consist of additive by additive, additive by dominance,

dominance by dominance, and any higher order interactions

(Falconer and Mackay, 1996).

González-Diéguez et al. (2021) developed a “GCA-model” to

predict the performance of hybrids made by crossing completely

inbred parental lines from two different heterotic groups. In this

model, hybrid performance could be split into additive effects from

the parental lines in each heterotic group, epistatic deviations both

within and across the two groups, and dominance deviations.

Genetic effects might differ between heterotic groups due to

differences in allele frequencies, differences in linkage

disequilibrium between QTL and markers, markers linked to

opposite phases of the QTL, or due to QTL that segregate in one

group, but not in the other (Vendelbo et al., 2020; Vendelbo et al.,

2021a). Therefore, effects were defined separately for each of the two

heterotic groups in the model (González-Diéguez et al., 2021). If

parental lines are completely inbred, general combining ability

(GCA) can be estimated as the sum of the additive and within-

line epistatic deviations for each parent, while specific combining

ability (SCA) can be estimated as the sum of the dominance and

across-group epistatic deviations. If parental lines are not inbred,

within-line epistatic deviations are not always transmitted to the

offspring due to recombination during meiosis, and GCA is

therefore estimated based on additive genetic effects only.

González-Diéguez et al. (2021) evaluated their model using data

from a hybrid maize breeding program, and the GCA-model

resulted in high prediction accuracies for grain yield (0.80 to 0.92

based on different cross-validation strategies).

In the current study, the GCA-model was extended from

predicting the performance of two-way hybrids produced from

fully inbred lines to predicting the performance of three-way

hybrids produced from parental lines with arbitrary levels of

inbreeding. The models were evaluated using data from two
frontiersin.org
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commercial breeding programs for hybrid rye and sugar beet. The

genetic variation and the degree of homozygosity in the parental

lines of the different heterotic groups of the breeding programs were

investigated. Rye grain yield and sugar beet root yield were

analyzed, and different cross-validation strategies were used for

evaluating the predictive abilities. The models can be used in

breeding programs to predict SCA for all realized and potential

hybrids as well as GCA for all genotyped individuals in the two

parental heterotic groups.
2 Materials and methods

2.1 Phenotypic and genotypic data

Data from the rye breeding program of the company Nordic

Seed and from the sugar beet breeding program of the company

DLF Beet Seed was used (Supplementary Tables). The phenotypic

data consisted of yield of three-way hybrids tested in replicated

multi-location trials across several European countries from 2016-

2022 for rye and from 2012-2022 for sugar beet. Environmental

effects and spatial variations in the fields were accounted for by the

fixed effects in the genomic models described below. For rye, grain

yield of plots was corrected to a moisture content of 15%.

Replications within a trial were either treated with fungicides and

growth regulators or were untreated. For sugar beet, root yield of

plots was recorded as fresh weight, and all replicates were treated

with fungicides. The three-way hybrids were produced by first

crossing an MS and an NR line. The MS lines were derived from

NR lines via several generations of backcrossing. Thus, the MS and

NR both belong to the same heterotic group. The two-way hybrid

from the cross between MS and NR was then crossed with an R line

from a second heterotic group to produce a three-way hybrid. The

number of tested three-way hybrids and of the parental components

used for producing the hybrids are shown in Table 1. Parental

components of the hybrids (MS, NR, and R lines) were genotyped
Frontiers in Plant Science 03
with SNP chip arrays. For rye lines, DNA was extracted from leaves

of seedlings, and genotyping was carried out by TraitGenetics

GmbH (Germany) using a custom Illumina Infinium 15K wheat

+ 5K rye SNP iSelect ultra HD chip array (Vendelbo et al., 2020).

For sugar beet lines, DNA was extracted from first true leaves using

the sbeadex™ Magnetic Bead Kit (LGC) in accordance with the

manufacturer’s instructions, and genotyping was carried out by

Eurofins Genomics Europe (Denmark) using a custom 21K Sugar

beet Affymetrix Axiom microarray. After filtering for minor allele

frequency and missing values (thresholds of 0.1% and 20%,

respectively), 5,768 SNPs were included in the analyses for rye

and 6,514 SNPs for sugar beet.
2.2 Genomic prediction models

Three genomic prediction models were evaluated. Model 1

(M1) was based on the GCA-model developed by González-

Diéguez et al. (2021). Here, it is assumed that each hybrid was

produced from completely inbred parental lines. The maternal lines

belonged to heterotic group 1, and the paternal lines belonged to

heterotic group 2. Genotypes of the two-way crosses were imputed

from the genotypes of the MS and NR lines, and these genotypes

were used in the calculation of genomic relationship matrices. If a

SNP marker was heterozygous in a parental line (alleles B1b1 in

group 1 or B2b2 in group 2), it was randomly assigned to one of the

two homozygous genotypes (B1B1/b1b1 or B2B2/b2b2, respectively).

In model 2 (M2) and model 3 (M3), the genotypes of the MS

and NR lines were used directly in the calculations in order to better

utilize the genomic relationship between the lines within group 1. In

M2, the R lines and the two-way crosses could have arbitrary levels

of inbreeding, while the MS and NR lines were assumed completely

inbred. Any heterozygous SNPs in the MS and NR lines were

randomly assigned to one of the two homozygous genotypes. In M3,

the R lines, the two-way crosses, and the MS and NR lines could all

have arbitrary levels of inbreeding. If all parental components are

completely inbred, then M2 and M3 are equivalent to M1.

Thus, the M1 model was:

y = Xb + T1ɡA(1)
+ T2ɡA(2)

+ T3ɡD + T1ɡAA(1)
+ T2ɡAA(2)

+ T3ɡAA(3)

      + T1r(1) + T2r(2) + T3r(3) + T4k + T5l + T6m + e

(1)

where y is the vector of phenotypes of the hybrids; X is the design

matrix for fixed effects (year x location x trial. For rye, treatment was

included as a second fixed effect); b is the vector of fixed effects; T1

and T2 are design matrices to assign hybrids to their parental lines in

heterotic group 1 and 2, ɡA(1)
and ɡA(2)

are vectors of additive genetic

effects from parental lines from group 1 and 2, respectively, with

ɡA(1)
∼ N(0,GA(1)

s 2
A(1)

) and ɡA(2)
∼ N(0,GA(2)

s 2
A(2)

), where s 2
A(1)

and

s2
A(2)

are additive genetic variances and GA(1)
and GA(2)

are additive

genomic relationship matrices; ɡAA(1)
and ɡAA(2)

are vectors of

additive-by-additive epistatic effects within heterotic group 1 and 2,

respectively, with ɡAA(1)
∼ N(0,GAA(1)

s 2
AA(1)

) and GAA(2)
∼ N(0,

GAA(2)
s2
AA(2)

), where s 2
AA(1)

and s 2
AA(2)

are epistatic genetic variances

within each heterotic group and GAA(1)
and GAA(2)

are within-group
TABLE 1 Number of three-way hybrids, parental components, and plots
of three-way hybrids.

Crop No. of components
No. of
plots

Rye

MS lines 13

NR lines 11

R lines 302

Two-way crosses 33

Three-way hybrids 570 12,326

Sugar beet

MS lines 17

NR lines 58

R lines 223

Two-way crosses 83

Three-way hybrids 657 47,703
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epistatic genomic relationship matrices; T3 is the design matrix for

the effects of the hybrids; ɡAA(3)
is the vector of additive-by-additive

epistatic effects between alleles from heterotic group 1 and 2,

respectively, with ɡAA(3)
∼ N(0,GAA(3)

s 2
AA(3)

), where s 2
AA(3)

is

epistatic genetic variance between the heterotic groups and GAA(3)
is

the across-group epistatic genomic relationship matrix; gD is the

vector of genetic dominance deviations due to within locus

interactions between alleles from different heterotic groups with ɡD ∼
 N(0,Ds 2

D), where s 2
D is genetic dominance variance and D is the

dominance relationship matrix across hybrids; r(1), r(2) and r(3) are
vectors of residual genetic effects of lines from group 1 and 2 and of

the hybrids, respectively, with r(1) ∼  N(0, Ir(1)s
2
r(1) ), r(2) ∼  N(0, Ir(2)

s 2
r(2) ) and r(3) ∼  N(0, Ir(3)s

2
r(3) ), where Ir(1) , Ir(2) , and Ir(3) are identity

matrices and s 2
r(1) , s

2
r(2) and s

2
r(3)   are residual genetic variances; T4, T5,

and T6 are design matrices for random effects of interactions between

year x location and maternal parent, paternal parent or treatment

(only included for rye), respectively, and k, l, andm are the vectors of

the random effects of the interactions with k   ∼  N(0, Iks 2
k ), l   ∼

 N(0, Ils 2
l ), and m   ∼  N(0, Ims 2

m), where Ik, Il, and Im are identity

matrices and s 2
k , s

2
l , and s 2

m, are variances for the interactions; e is
the vector of random residual effects with e  ∼  N(0, Ies 2

e ), where Ie is
an identity matrix and s 2

e is residual variance.

For M1, genomic relationship matrices were calculated as

proposed by González-Diéguez et al. (2021):

Additive genomic relationship matrix for heterotic group 1:

GA(1)
=  

Z1Z
0
1

onsnp
i p1i q1i

(2)

where p1i and q1i are the frequencies of allele B1i and b1i for the i
th

marker, respectively, and Z1 = M1 - P1; M1 is a matrix with

genotypes of parental lines in group 1 coded as 0 for genotype

b1b1 and 1 for genotype B1B1 for each marker; P1 is a matrix where

each column contains the allele frequencies of B1, and nsnp is

number of markers.

Additive-by-additive epistatic relationship matrix for lines

within group 1 was calculated as the Hadamard product of the

additive genomic relationship matrix for group 1 scaled by the trace

of the resulting matrix divided by the number of lines in group 1 to

get an average diagonal of 1:

GAA(1)
=

GA(1)
⨀  GA(1)

tr(GA(1)
⨀  GA(1)

)=n1
(3)

The additive and epistatic genomic relationship matrices for

heterotic group 2 were calculated in same way as for group 1.

Additive-by-additive epistatic relationship matrix between lines

in group 1 and 2:

GAA(3)
=

T1GA(1)
T

0
1 ⨀  T2GA(2)

T
0
2

tr(T1GA(1)
T

0
1 ⨀  T2GA(2)

T
0
2)=nH

(4)

where nH is the number of hybrids. The matrices GAA(3)
and D can

both include realized hybrids as well as all potential crosses of the

parental lines, so the crosses with the largest effects can be predicted

even though they are not yet phenotypically tested.
Frontiers in Plant Science 04
Dominance relationship matrix of dominance interactions

between alleles from different heterotic groups:

D =  
W1W

0
1

onsnp
i (4p1i q1i p2i q2i )

(5)

where p1i , q1i , p2i and q2i are the frequencies of the alleles B1i and b1i
in heterotic group 1 and B2i and b2i in heterotic group 2 for the ith

marker, respectively, andW1 is a matrix with a row for each hybrid

and a column for each marker (González-Diéguez et al., 2021). The

elements of W1 are shown in Table 2.

It should be noted that the mean heterosis of the hybrids is not

estimated separately in the model but is included in the overall

mean of the hybrid phenotypes. Thus, the across-group epistatic

and dominance effects that are estimated are deviations of

individual hybrids from the mean heterosis.
TABLE 2 Elements of W1, W2, and W3 for each marker in the hybrids
from crosses between parental lines from group 1 and group 2, which
are used in the calculation of the dominance relationship matrix for M1,
M2, and M3, respectively*.

Parental
genotypes

w1 w2 w3

(B1B1 x B1B1) x B2B2 − 2q1q2 − 2q1q2 − 2q1q2

(B1B1 x B1B1) x B2b2 − (p1 − 1)(2p2 − 1) − (p1 − 1)(2p2 − 1)

(B1B1 x B1B1) x b2b2 2q1p2 2q1p2 2q1p2

(B1B1 x B1b1) x B2B2
(B1b1 x B1B1) x B2B2

−(4p1 − 3)(p2 − 1)
2

(B1B1 x B1b1) x B2b2
(B1b1 x B1B1) x B2b2

−(4p1 − 3)(2p2 − 1)
4

(B1B1 x B1b1) x b2b2
(B1b1 x B1B1) x b2b2

−(4p1 − 3)p2
2

(B1B1 x b1b1) x B2B2
(B1b1 x B1b1) x B2B2
(b1b1 x B1B1) x B2B2

− (2p1 − 1)(p2 − 1) − (2p1 − 1)(p2 − 1)

(B1B1 x b1b1) x B2b2
(B1b1 x B1b1) x B2b2
(b1b1 x B1B1) x B2b2

−
(2p1 − 1)(2p2 − 1)

2
−
(2p1 − 1)(2p2 − 1)

2

(B1B1 x b1b1) x b2b2
(B1b1 x B1b1) x b2b2
(b1b1 x B1B1) x b2b2

− (2p1 − 1)p2 − (2p1 − 1)p2

(b1b1 x B1b1) x B2B2
(B1b1 x b1b1) x B2B2

−(4p1 − 1)(p2 − 1)
2

(b1b1 x B1b1) x B2b2
(B1b1 x b1b1) x B2b2

−(4p1 − 1)(2p2 − 1)
4

(b1b1 x B1b1) x b2b2
(B1b1 x b1b1) x b2b2

−(4p1 − 1)p2
2

(b1b1 x b1b1) x B2B2 2p1q2 2p1q2 2p1q2

(b1b1 x b1b1) x B2b2 − p1(2p2 − 1) − p1(2p2 − 1)

(b1b1 x b1b1) x b2b2 − 2p1p2 − 2p1p2 − 2p1p2
*The elements in w1 are from González-Diéguez et al. (2021), and remaining elements were
derived in this study (Appendix 1).
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In M2, paternal R lines and maternal two-way crosses could

have arbitrary levels of inbreeding, while MS and NR lines were

assumed completely inbred. Genotypes of MS and NR were used for

the calculation of additive and epistatic genomic relationship

matrices for heterotic group 1. If an MS and NR lines had the

same genotypes for all SNPs, it was only included once in the

relationship matrices.

Thus, the M2 model was:

y = Xb + (T7 + T8)ɡA(1,1)
+ T2ɡA(2)

+ T3ɡD + (T7 + T8)ɡAA(1,1)

+ T2ɡAA(2)
+ T3ɡAA(3)

+(T7 + T8)r(1,1) + T2r(2) + T3r(3) + T4k + T5l + T6m + e

(6)

where y is the vector of phenotypes of the three-way hybrids; T7 and

T8 are design matrices for MS and NR, respectively; ɡA(1,1)
, ɡAA(1,1)

,

and rA(1,1)
are vectors of additive, epistatic, and residual genetic

effects for both MS and NR, respectively, with ɡA(1,1)
∼  N(0, 12 GA(1,1)

s 2
A(1,1)

), ɡAA(1,1)
∼  N(0,GAA(1,1)

s2
AA(1,1)

), and r(1,1) ∼  N(0, Ir(1,1)s
2
r(1,1) ),

where s 2
A(1,1)

, s 2
AA(1,1)

and s 2
r(1,1)  are additive, within-group epistatic

and residual genetic variances for MS and NR, and GA(1,1)
and

GAA(1,1)
are additive and epistatic genomic relationship matrices, and

Ir(1,1) is an identity matrix. GA(1,1)
was scaled by ½ to account for the

first cross between MS and NR, which produced the two-way cross.

Additionally, M2, which was used in the calculation of the additive

genomic relationship matrix for group 2 (GA(2)
) now included

heterozygous genotypes B2b2 coded as 0.5. The marker matrix for

the dominance relationship matrix, W2, was extended to account

for heterozygous genotypes in the two-way crosses and in the R

lines, which now have twelve possible crossing combinations

instead of four in M1 (Table 2). The additive-by-additive epistatic

relationship matrix between lines in group 1 and 2 was calculated

as:

GAA(3)
=

(T7 + T8)GA(1,1)
(T7 + T8)

0 ⨀  T2GA(2)
T

0
2

tr((T7 + T8)GA(1,1)
(T7 + T8)

0 ⨀  T2GA(2)
T

0
2)=nH

(7)

In M3, the same model parameters were used as for M2

(Equation 6), but now every parental line (MS, NR, two-way

crosses, and R) could have arbitrary levels of inbreeding.

Therefore, M1, which was used in the calculation of the additive

genomic relationship matrix for MS and NR ( GA(1,1)
) included

heterozygous genotypes B1b1 coded as 0.5. The marker matrix for

the dominance relationship matrix, W3, was further extended to

account for heterozygous genotypes in all parental lines, which now

have 27 possible crossing combinations (Table 2).
2.3 Estimation of variance components and
heritabilities

Variance components for the random effects included in M1,

M2, and M3 were estimated by restricted maximum likelihood

using the software package DMU (Madsen and Jensen, 2013).

Estimated genetic variances were multiplied with DK (the mean of

the diagonal of the respective relationship matrix minus the overall

mean of the matrix) in order to account for the lack of Hardy-
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Weinberg equilibrium (Legarra, 2016; Vitezica et al., 2017).

Narrow-sense heritabilities were calculated as the sum of additive

genetic variances divided by total phenotypic variance, and broad-

sense heritabilities were calculated as sum of additive and non-

additive genetic variances divided by total phenotypic variance.

Heritabilities were calculated both at plot level and at entry mean

level of the three-way hybrids, i.e. based on the mean of all plot

records for each three-way hybrid.

Phenotypic variance at plot level, ŝ 2
pplot , was calculated as:

ŝ 2
pplot = ŝ 2

ɡA
+ ŝ 2

ɡAA
+ ŝ 2

ɡD
+ ŝ 2

r + ŝ 2
k + ŝ 2

l + ŝ 2
m + ŝ 2

e (8)

where ŝ 2
ɡA

is the estimated sum of additive genetic variances for

group 1 and 2, ŝ 2
ɡAA

is the estimated sum of epistatic genetic

variances within and across group 1 and 2, ŝ 2
ɡD

is estimated

dominance genetic variance, ŝ 2
r is the estimated sum of residual

genetic variances of group 1, group 2 and of the hybrids, ŝ 2
k, ŝ

2
l ,

and ŝ 2
m are estimated variances for the year x location interactions

defined above for M1, and ŝ 2
e is estimated residual variance.

Phenotypic variance at entry mean level of the three-way

hybrids, ŝ 2
pentry , was calculated as:

ŝ 2
pentry = ŝ 2

ɡA
+ ŝ 2

ɡAA
+ ŝ 2

ɡD
+ ŝ 2

r +
ŝ 2

k

nk
+
ŝ 2

l

nl
+
ŝ 2

m

nm
+
ŝ 2

e

ne
(9)

where nk is average number of year x location observed per two-way

cross, nl is average number of year x locations observed per R line,

nm is average number of observations per year x location x

treatment interaction (only included for rye), and ne is average

number of observations per three-way hybrid.
2.4 Cross-validation strategies and
predictive abilities

Predictive abilities of the models were evaluated using four

different leave-one-out cross-validation strategies. Phenotypes of

three-way hybrids were left out from the training set based on their

parental components and predicted based on the remaining data. In

the four cross-validations, the phenotypes were left out based on I)

the maternal two-way cross, II) the paternal R line, III) the specific

combination of the two parents (three-way hybrid), or IV) based on

the breeding cycle of the R lines. Predictive abilities were then

defined as the correlation between estimated genetic effects and the

phenotype corrected for all other effects, which is equivalent to the

genetic effects estimated from the full model plus the residual

effects. The strategies were chosen to evaluate predictive abilities

for total genetic values, for GCA of each parental line, and for SCA.

For total genetic values, correlations were calculated based on the

sum of all genetic effects, and for GCA and SCA, correlations were

based only on the effects of the component that was left out in the

cross-validation strategy. GCA was estimated as the sum of additive

genetic effects and with-in group epistasis of parental components

from each heterotic group, and SCA was estimated as across-group

epistasis and dominance of the three-way hybrids. Furthermore,

correlations were calculated at plot level and at entry mean level of

the three-ways hybrids.
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3 Results

3.1 Phenotyping and genotyping

For rye, 570 three-way hybrids were phenotyped for grain yield

with a total of 12,326 plot observations from seven years. For sugar

beet, 657 three-way hybrids were phenotyped for root yield with a

total of 47,703 plot observations from eleven years. The

distributions of the phenotypes are shown in Figure 1, and for

both traits, they were approximately normally distributed. The

average rye grain yield was 8.7 t/ha with a coefficient of

phenotypic variation of 21.1%, and the average sugar beet root

yield was 82.4 t/ha with a coefficient of phenotypic variation

of 25.8%.

The number of parental components used for producing the

hybrids are shown in Table 1. The MS, NR and R lines had been

inbred for several generations and had a high degree of homozygosity

based on SNP markers (mean from 88 to 96%, Table 3). The

homozygosity based on the SNPs might be different from the

homozygosity of QTL, because each QTL is most likely not in

complete linkage disequilibrium with one SNP. The two-way crosses

were produced by crossing MS and NR lines belonging to the same

heterotic group, and their mean homozygosity estimated from the

parental genotypes was therefore relatively high (70% and 86% for

sugar beet and rye, respectively). Each two-way cross was a mix of

plants that were homozygous and plants that were heterozygous for

SNPs that were heterozygous in at least one of the parental lines (mean

of 7% and 23% of the SNPs for rye and sugar beet, respectively).

Plots of the first two principal components from a principal

component analysis of the SNP genotypes of the parental lines

(explaining 39.6% and 5.2% of the variance for rye, and 55.4% and

4.4% for sugar beet) showed that the MS and NR lines were located

together in one small group for both crops, while the R lines formed

another and more diverse group (Figure 2). For rye, the two groups
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were clearly separated, while there was a small overlap between the

groups for sugar beet.
3.2 Genetic variances and heritabilities

The estimated variance components for the three genomic

prediction models M1, M2, and M3 that differed in the

assumptions about inbreeding of the parental components are

shown in Figure 3. For both crops, the differences in the

estimated variances were relatively small when comparing M1,

M2, and M3. For M1, the additive genetic variance for R lines

was higher, and the additive genetic variance for MS and NR was

lower, compared to the estimated variances for M2 and M3. For

grain yield in rye, the majority of the phenotypic variance of the

three-way hybrids could be explained by additive genetic variance

in the R lines (57% for M1 and 50% for M2 and M3). Additive

genetic variance of MS and NR and epistatic variances of R lines and

of three-way hybrids explained similar, but smaller proportions of

the total variance, ranging from 5% to 11%. For sugar beet root

yield, additive genetic variances explained large proportions of the

total variance for both MS and NR and for R (41% and 36%,

respectively, based on M1, and 43% and 30% based on M2 and M3).

For M1, variances for epistatic and dominance effects in the three-

way hybrids explained equal proportions, while the epistatic

variance explained a higher proportion in M2 and M3, and the

dominance variance in the three-way hybrids explained less

than 1%.

The estimated heritabilities of both traits were high at entry

mean level and intermediate at plot level (Table 4). The heritabilities

estimated based on the three models were very similar, however the

broad-sense heritabilities were slightly higher based on M2 and M3

than based on M1. For sugar beet, the differences between the

broad-sense and narrow-sense heritabilities were slightly larger
BA

FIGURE 1

Histograms of phenotypic observations for (A) rye grain yield and (B) sugar beet root yield.
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based on M2 and M3 than based on M1. Genetic variances of GCA

of MS+NR lines were considerably lower than variances of GCA of

R lines for rye, while variances of GCA of MS+NR and of R lines

were similar for sugar beet. Genetic variances of SCA were lower

than variances of GCA for both crops.
3.3 Genomic predictions

For all three genomic prediction models, the four cross-

validation strategies resulted in high predictive abilities of hybrid

performance at plot level and especially at entry mean level for both

rye and sugar beet (Figures 4, 5). Prediction accuracies of total

genetic values were up to 0.55 at plot level and 0.88 at entry mean

level for M3 based on the leave three-way hybrid out cross-

validations for rye and 0.47 at plot level and 0.89 at entry mean

level for sugar beet. The prediction of non-additive effects in the

three-way hybrids (SCA) resulted in lower predictive abilities of

0.10 at plot level and 0.32 at entry mean level for M3 for rye and of

0.13 at plot level and 0.50 at entry mean level for sugar beet.

Differences between predictive abilities at plot level and at entry

mean level were larger for sugar beet than for rye due to more
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observations per hybrid for sugar beet (average of 21.6 observations

for rye and average of 72.6 observations for sugar beet). The

differences between the predictions based on the three models

were very small, and in most cases, M2 and M3 performed

equally well or slightly better than M1. The largest significant

differences between the models were for prediction of SCA, where

the predictive ability increased from 0.10 at plot level for M1 to 0.13

for M3 for sugar beet and from 0.08 for M1 to 0.11 for M2 for rye.

Differences in predictive abilities based on the four cross-validation

strategies were mainly found for predictions of GCA or SCA rather

than for prediction of total genetic values (Figures 4, 5C, D). In rye,

the predictive ability was lower for GCA of MS+NR lines and for

SCA than for GCA of R lines. In sugar beet, the predictive ability

was lower for SCA than for GCA of both parental groups. The

leave-breeding cycle-out cross-validation resulted in lower

predictive abilities of total genetic values, particularly for rye.
4 Discussion

4.1 Genetic variances and heritabilities

Genetic variance components of additive, epistatic and

dominance deviations were estimated based on the genomic

models. For rye, the majority of genetic variance for grain yield

was due to additive effects from the R lines, while variances of

additive genetic effects of the maternal lines and of non-additive

genetic deviations were low. The reason for the low genetic variance

of maternal lines might be that the tested three-way hybrids were

produced from a relatively small number of different maternal lines,

and there was less genetic variation between these lines based on the

principal component analysis of the SNPs compared to the

variation between R lines (Figure 2). For sugar beet, the number

of maternal lines was higher, and there was more genetic variation

between them based on the principal component analysis of the

SNPs and also based on the estimated genetic variances for root

yield. For both rye and sugar beet, genetic variance of SCA was

considerably lower than variance of GCA, which is in agreement
BA

FIGURE 2

Principal component analysis for (A) rye and (B) sugar beet MS, NR (red circles) and R lines (blue circles) based on their SNP markers.
TABLE 3 Mean homozygosity and heterozygosity of parental
components estimated based on SNP markers.

Crop Component
Mean

homozygosity,
%

Mean
heterozygosity,

%

Rye

MS+NR lines 96 (0.8) 4 (0.8)

R lines 95 (0.2) 5 (0.2)

Two-way crosses 86 (0.8) 14 (0.8)

Sugar
beet

MS+NR lines 88 (0.8) 12 (0.8)

R lines 88 (0.5) 12 (0.5)

Two-way crosses 70 (0.5) 30 (0.5)
For two-way crosses, estimations were based on genotypes of their parental components.
Standard errors are in parentheses.
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with other studies of yield in hybrid crops (Technow et al., 2014;

Wang et al., 2017; Werner et al., 2018; González-Diéguez et al.,

2021). However, this does not mean that the overall heterotic effects

in the hybrids are small, but that the variance for these effects are

low between the hybrids compared to the variance of additive

genetic effects or that part of non-additive variances is captured as

additive (Reif et al., 2007; Huang and Mackay, 2016).
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The entry mean heritabilities for rye grain yield and sugar beet

root yield were considerably higher than heritabilities at plot level

due to a high average number of observations per hybrid in the

datasets. The residual variances were therefore relatively low, when

corrected for the average number of observations. Similarly, the

correlations between estimated genetic effects and the corrected

phenotypes at entry mean level were also higher than correlations
TABLE 4 Broad-sense (H2) and narrow-sense (h2) heritabilities estimated from M1, M2 and M3 at entry mean level of the three-way hybrids or at plot

level, and estimated genetic variances of GCA for each heterotic group (s 2
GCAðMSþNRÞand s 2

GCAðRÞ ) and SCA (s 2
SCA).

Rye, grain yield Sugar beet, root yield

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

H2, entry mean 0.77 (0.03) 0.79 (0.03) 0.79 (0.03) 0.94 (0.01) 0.95 (0.01) 0.95 (0.01)

h2, entry mean 0.57 (0.13) 0.58 (0.15) 0.59 (0.14) 0.77 (0.18) 0.75 (0.22) 0.74 (0.19)

H2, plot 0.15 (0.02) 0.16 (0.02) 0.16 (0.02) 0.21 (0.02) 0.24 (0.03) 0.24 (0.03)

h2, plot 0.11 (0.03) 0.12 (0.04) 0.12 (0.03) 0.17 (0.05) 0.19 (0.07) 0.19 (0.06)

s 2
GCA(MS+NR)

1.01*10-2 (1.18*10-2) 2.03*10-2 (2.90*10-2) 2.13*10-2 (2.73*10-2) 5.87 (4.27) 7.87 (3.15) 8.10 (2.62)

s 2
GCA(R)

11.51*10-2 (2.45*10-2) 10.60*10-2 (2.35*10-2) 10.62*10-2 (2.36*10-2) 5.28 (1.29) 5.90 (1.34) 5.90 (1.33)

s 2
SCA 0.98*10-2 (0.57*10-2) 1.51*10-2 (0.65*10-2) 1.39*10-2 (0.66*10-2) 1.94 (0.48) 1.67 (0.46) 1.72 (0.46)
fr
Standard errors are in parentheses.
B

A

FIGURE 3

Plots of relative variance components for (A) rye grain yield and for (B) sugar beet root yield estimated using M1 (blue), M2 (grey), and M3 (yellow).
Variances of additive (a), additive-by-additive (aa), dominance (d) and residual genetic effects (l) in MS+NR, R lines and in three-way hybrids (H),
interaction effects between parental components and year-location (MSNR-yl and R-yl), year-location-treatment (ylt) and residuals (e) shown as
proportions of total phenotypic variance at entry mean level.
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based on corrected phenotypes at plot level due to the high average

number of observations per hybrid. Entry mean heritabilities in the

same high range as in the current study have been reported in

previous studies of grain yield in rye (Wang et al., 2014; Auinger

et al., 2016; Schulthess et al., 2016). For sugar beet, the differences

between broad- and narrow-sense heritabilities based on the three

genomic models indicated that a slightly smaller part of the genetic

variance was captured as additive in models M2 and M3 accounting

for incomplete inbreeding compared to M1. The degree of mean

heterozygosity in the parental lines of the hybrids were higher in

sugar beet than in rye (Table 3). Thus, larger differences between the

estimated variance components and between the predictive abilities
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of the three models were expected for sugar beet than for rye. The

estimates of residual genetic variance were slightly higher for R lines

in rye and for three-way hybrids in sugar beet based on M2 and M3

than M1, which could be due to the heterozygosity of SNPs in the

parental lines that was included in M2 and M3. Hybrids produced

from parents that are heterozygous for some loci, will be a mixture

of plants that are homozygous and plants that are heterozygous for

those loci, and thereby the effects of the loci are difficult to

estimate correctly.

The models M1, M2, and M3 are equivalent if all parental

components are completely inbred. In M2 and M3, the genotypes of

MS and NR parental lines were directly used in calculations of the
B

C D

A

FIGURE 5

Correlations for root yield in sugar beet based on M1 (blue), M2 (grey) and M3 (yellow) between total genetic values and phenotypes corrected for
non-genetic effects at plot level (A) and at entry mean level (B), and between the genetic effects of the component left out in each of the four
cross-validations and phenotypes corrected for other effects at plot level (C) and at entry mean level (D). Asterisks above the bars represent
significant differences between the correlations (p-value< 0.05/3).
B

C D

A

FIGURE 4

Correlations for grain yield in rye based on M1 (blue), M2 (grey) and M3 (yellow) between total genetic values and phenotypes corrected for non-
genetic effects at plot level (A) and at entry mean level (B), and between the genetic effects of the component left out in each of the four cross-
validations and phenotypes corrected for other effects at plot level (C) and at entry mean level (D). Asterisks above the bars represent significant
differences between the correlations (p-value< 0.05/3).
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genomic relationship matrices, and the heterozygosity of the two-

way crosses between them were accounted for. Unlike in M1, which

was developed for two-way hybrids. However, the differences

between the variance components estimated from the three

models were small, especially for rye, due to the low degree of

heterozygosity in both parental groups of the evaluated breeding

material. Larger differences between the estimates of the models

would be expected for breeding programs with higher degrees of

heterozygosity in the parental components, e.g. if synthetics are

used as restorers for top-cross hybrids (Siekmann et al., 2021;

Hackauf et al., 2022).
4.2 Partitioning of genetic variance

The sum of genetic variances estimated based on the three

models were similar. However, for M1 the additive variance of the

MS+NR lines was lower, and the additive variance of R lines was

higher than for M2 and M3. In model M1 that assumes complete

inbreeding of parental lines, the genomic relationship matrices all

have a mean diagonal equal to 1 and an overall mean very close to 0.

Therefore, the estimates of the variance components can be

interpreted as genetic variances, although the genotypes are not in

Hardy-Weinberg equilibrium (Legarra, 2016; González-Diéguez

et al., 2021). However, when including heterozygous marker

genotypes in M2 and M3, this no longer holds true. Therefore,

estimated variance components were be multiplied with Dk (the

mean of the diagonal of the respective relationship matrix minus the

overall mean of the matrix) to be practically interpretable as genetic

variances of the groups in the breeding programs (Legarra, 2016;

Vitezica et al., 2017). Correct partitioning of genetic variances into

additive and non-additive variances is important in order to make

informed decisions in breeding programs that might affect short- or

long-term genetic gain of GCA and SCA (Allier et al., 2019). If all

QTL for additive and non-additive effects are assumed to be in

linkage equilibrium, genetic variances can be estimated

orthogonally, and it should thereby be possible to partition

genetic variances correctly into additive, epistatic and dominance

variances using the genomic models (Appendix 1) (Cockerham

et al., 1954). However, when using empirical data, the assumption of

linkage equilibrium is rarely true, and therefore estimated variances

of different genetic effects might be correlated. Consequently, the

partitioning of genetic variances may change depending on which

parameters are included in the models (González-Diéguez et al.,

2021; Raffo et al., 2022). Thus, estimated genetic variances should be

carefully interpreted, as they might not completely reflect the

corresponding underlying biological additive and non-additive

gene actions (Huang and Mackay, 2016).
4.3 Dominance and epistatic deviations

High predictive abilities have been reported in studies of hybrid

rye (Wang et al., 2014; Auinger et al., 2016) and sugar beet

(Hofheinz et al., 2012; Würschum et al., 2013) that used genomic

prediction models, where non-additive effects were not explicitly
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included. This indicates that there is low variance for the non-

additive genetic effects or that non-additive genetic effects can be

partially captured as additive (Huang and Mackay, 2016; Vitezica

et al., 2017), which is in accordance with the results of the current

study. Including dominance in genomic prediction models has been

shown to result in similar or improved predictive abilities. The

improvement depends on the ratio between additive and

dominance variances of the trait and on the variability of

inbreeding in the studied populations (Nishio and Satoh, 2014;

Zhao et al., 2014; Duenk et al., 2017; Wang et al., 2017; Werner

et al., 2018; Ramstein et al., 2020; Roth et al., 2022).

Different conclusions have been reached in studies of the effect

of including epistasis in genomic prediction models. For wheat,

improvements in predictive abilities have been reported when

epistasis was included in addition to additive genetic effects (Jiang

and Reif, 2015; He et al., 2016; Raffo et al., 2022). For maize,

predictive abilities were reported to be similar for models with or

without inclusion of epistasis (Jiang and Reif, 2015; González-

Diéguez et al., 2021). For other species, examples of reductions in

predictive abilities have been reported, when epistasis was modelled

(Lorenzana and Bernardo, 2009; Forneris et al., 2017). The

parameterization of genetic effects and the degree of linkage

disequilibrium between markers and QTL can affect how genetic

effects are captured and partitioned in the models (Huang and

Mackay, 2016; Schrauf et al., 2020). Thus, including epistasis can

potentially improve prediction models, but the effect depends on

the species, the genomic relationships of the studied populations,

the genetic architecture of the trait, and on marker densities.

Dominance and epistatic deviations were included in the

genomic prediction models of the current study. Accurate

partitioning of the genetic variances of these non-additive

deviations is challenging, because their genomic relationship

matrices were highly correlated both in the current study and in

González-Diéguez et al. (2021). However, the non-additive genetic

variances were small compared to the additive genetic variances.

Besides potentially improving predictive abilities, an advantage of

including non-additive deviations in the models is that it enables

predictions of the best combinations of parental components to

produce hybrids. This can especially be helpful for hybrid breeding

programs, where there is large genetic variance for SCA.
4.4 Cross-validation strategies and
predictive abilities

Four different cross-validation strategies were used to evaluate

the predictive ability of the three models for GCA, SCA and total

genetic value in different scenarios. Prediction of GCA of parental

components is important for selection of lines within heterotic

groups, and prediction of SCA and total genetic value of hybrids is

important for selection of the optimal combinations of parental

lines. The cross-validation strategies leave two-way cross out and

leave R line out were used to study the predictive abilities for GCA

of untested parental components from each heterotic group. The

leave three-way out strategy was used to study predictive ability for

SCA, when parental components had been tested in other
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combinations. These cross-validations reflect the potential of the

models in scenarios, where half-sibs and full-sibs of untested

components are included in the training set. However, breeders

are often interested in predicting genetic values of untested lines

based only on previous breeding cycles (Auinger et al., 2016). Thus,

leave breeding cycle out cross-validations were used to study the

predictive abilities for total genetic values of hybrids and for GCA of

R lines within each breeding cycle based on the remaining cycles.

Predictive abilities based on the leave breeding cycle out cross-

validations were lower than predictive abilities based on the other

cross-validation strategies, because larger parts of the phenotypic

data were left out of the training set, and because the genomic

relationships between components in training and test sets were

lower. However, the reduction in predictive abilities was not as large

as in other studies, where similar cross-validation strategies were

used on data from barley and wheat breeding programs (Nielsen

et al., 2016; Kristensen et al., 2018; Raffo et al., 2022). A reason for

this could be that breeding programs for hybrid crops mainly use

internally developed lines as crossing parents for new breeding

cycles, while breeding programs for line cultivars commonly

include cultivars developed in external breeding programs as

crossing parents in addition to their internally developed lines

(Lüttringhaus et al., 2020). Thus, genomic relationships between

lines in training set and lines from new, untested breeding cycles

would be expected to be higher within hybrid breeding programs.

Another reason could be the high number of breeding cycles in the

training data. The reduction in predictive ability based on the leave

breeding cycle out cross-validation was lower for sugar beet than for

rye, which could indicate that having data from a higher number of

breeding cycles would lead to higher predictive abilities (Auinger

et al., 2016; Bernal-Vasquez et al., 2017). However, when many

breeding cycles are included, predictive abilities based on this cross-

validation strategy might be inflated if some lines have been used as

crossing parents for new breeding cycles and data based on their

offspring was included in the training set. Furthermore, predicted

genetic values might be inflated, because linkage disequilibrium

between markers and QTL erodes over several generations

(Boichard et al., 2022).
4.5 Models accounting for incomplete
inbreeding

The predictive abilities for total genetic values of hybrids were

equally high for the three genomic models for both rye and sugar

beet. The largest differences in predictive abilities between the

models were for GCA of MS+NR lines and for SCA, while

predictive abilities for GCA of R lines were very similar for the

models. This was as expected since R lines were almost completely

homozygous and thus better comply with the assumption of

complete inbreeding in M1. The two-way crosses were more

heterozygous, and the extended models M2 and M3 could

therefore capture GCA of MS+NR and SCA more accurately than

M1. Even though the differences between predictive abilities of the

three models were quite small, it would be advantageous to use M2

or M3 over M1 for breeding of three-way hybrids, because these
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models enable prediction of GCA for both MS and NR lines and not

only for their two-way crosses as in M1. Additionally, models that

account for incomplete inbreeding can be useful in a wider range of

real or simulated breeding schemes, where lines are more

heterozygous than in the datasets used here. For example, genetic

values might be estimated more accurately for lines in early

generations, before they have reached a high degree of

homozygosity (Bernal-Vasquez et al., 2017). Thereby, lines can be

selected as crossing parents earlier, and the generation time of

breeding cycles can be reduced, which could lead to higher

genetic gains.

The three-way rye hybrids evaluated in the current study were

based on the Gülzow (G) type cytoplasmic male sterility (CMS)

(Melz et al., 2003; Vendelbo et al., 2021b). The frequency of non-

restoration alleles for the G type system is low in Central European

rye germplasm, which makes it challenging to increase genetic

variation of NR lines for breeding (Łapiński and Stojałowski, 2003;

Hackauf et al., 2022). For the Owen type CMS in sugar beet, non-

restoration alleles are rare in most populations as well (Moritani

et al., 2013). Consequently, the genetic variation of the heterotic

group of MS and NR lines was low compared to the heterotic group

of R lines in both crops, and the degree of homozygosity of the

maternal two-way hybrids were high, especially in rye. Thereby, the

experimental three-way hybrids resemble two-way hybrids to a

large extent. The predominant hybridization system in rye is based

on the Pampa (P) type CMS. In contrast to the G type CMS system,

non-restoration alleles are common, while restoration alleles are

rare for the P type system. Additionally, synthetic restorers from

two inbred lines are used for the production of the commercial top-

cross hybrids. Thus, the average degree of heterozygosity in

restorers of the P type based breeding systems is higher than in

the R lines of the current study (Siekmann et al., 2021). The models

accounting for incomplete inbreeding could thereby be

advantageous to use, not only for three-way hybrids programs,

but also for breeding programs based on the P type CMS system.
5 Conclusion

Three genomic models for predicting hybrid performance were

evaluated based on data from two commercial breeding programs.

The models can be used to predict GCA of parental lines within

each of two heterotic groups and to predict SCA of realized and

potential three-way hybrids. Estimated genetic variances of GCA

(additive and within-group epistasis) were considerably larger than

variances of SCA (across-group epistasis and dominance) for both

grain yield in rye and root yield in sugar beet. For rye, variance of

GCA of R lines were larger than variance of GCA of MS+NR lines,

while variances of GCA of both parental groups were more similar

for sugar beet. Average levels of heterozygosity in parental

components were low, and therefore, the differences between the

three models were small. The predictive ability of model M1, which

assumes complete inbreeding in parental lines, was similar to or

lower than the predictive ability of the extended models M2 and M3

accounting for incomplete inbreeding in parental lines of three-way

hybrids. The predictive abilities of the three models were similar for
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predicting total genetic values of hybrids and for GCA of R lines.

For prediction of GCA of MS+NR lines in sugar beet and of SCA in

both crops, predictive abilities significantly improved when using

the extended models compared to using M1. Promising NR lines

can potentially be selected for producing new MS lines via

backcrossing at earlier stages in the breeding programs, because

the extended models enable prediction of GCA for both MS and NR

lines. Additionally, NR or R lines with high GCA can be selected as

crossing parents for new breeding cycles within each

heterotic group.

The predictive ability of the models was high for prediction of

hybrid performance (total genetic value), and the models can

therefore be a valuable tool for selecting the most promising

parental lines to produce new hybrids. Due to the relatively

narrow genetic variation within the heterotic group of MS+NR

lines, the differences in performance of hybrids will mainly be

affected by the GCA of their parental R lines for grain yield in rye.

However, other traits such as flowering time, plant height, and

disease resistances should also be considered when selecting the

optimal combinations of parents. For root yield in sugar beet,

performance of hybrids will be more equally affected by GCA of

parents from both heterotic groups and to a smaller extent by the

SCA of the combinations.

The models developed here are suitable for a wide range of

hybrid breeding programs, where the parental lines can have any

level of inbreeding. Thus, the genomic prediction models might

improve breeding programs for hybrid crops by facilitating

selection of lines within heterotic groups as well as selection of

best combinations of lines across groups for the production of

new hybrids.
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