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Abstract

It is commonly believed that if a two-way analysis of variance (ANOVA) is carried out in R,

then reported p-values are correct. This article shows that this is not always the case.

Results can vary from non-significant to highly significant, depending on the choice of

options. The user must know exactly which options result in correct p-values, and which

options do not. Furthermore, it is commonly supposed that analyses in SAS and R of simple

balanced experiments using mixed-effects models result in correct p-values. However, the

simulation study of the current article indicates that frequency of Type I error deviates from

the nominal value. The objective of this article is to compare SAS and R with respect to cor-

rectness of results when analyzing small experiments. It is concluded that modern functions

and procedures for analysis of mixed-effects models are sometimes not as reliable as tradi-

tional ANOVA based on simple computations of sums of squares.

Introduction

In this digital age, researchers are presented with an unprecedented opportunity to analyze a

wide range of data quickly and efficiently using statistical software. While these software aim

to employ the same methods for data analysis, the results they produce can vary broadly,

which in turn leads to different conclusions being drawn. Sometimes, conclusions may even

be incorrect. Hence comes the importance of the statistical method for data analysis.

Within the various software, an array of options are available to analyze linear fixed-

effects and mixed-effects models. Here, the question posed is as to which of the results

obtained are more accurate. We examine functions in R [1] and procedures of SAS [2] for

linear fixed-effects and mixed-effects models. For the fixed-effects case, we discuss unbal-

anced two-factorial experiments and type 3 tests, while for the mixed-effects case, we exam-

ine balanced randomized complete block experiments and split-plot experiments with focus

on Type I error.

In fixed-effects models, there are exact F-tests, calculated from sums of squares in classical

analysis of variance table [3]. There are different types of sums of squares commonly known as

types 1, 2 and 3. For balanced datasets, results are identical, whereas for unbalanced datasets

the different types are associated with different null hypotheses [4]. There have been and still

are many different viewpoints regarding the types of sums of squares [5, 6]. The following are
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recurring arguments: Type 1 sums of squares are useful when cell frequencies are good esti-

mates of population proportions [7]; Type 2 sums of squares have better power than type 3

sums of squares when interaction is negligible [8]; and type 3 sums of squares are appropriate

when observations are missing at random, as their null hypotheses are not dependent on the

cell frequencies [4, 9]. The choice of type depends on the question the researcher wants to

answer [10].

Nowadays, the linear mixed-effects model is used extensively and has in practice overrun

the classical analysis of variance [11]. The linear mixed-effects models are advantageous when

applied in an array of sophisticated problems. The F-tests obtained using linear mixed-effects

models are, however, in general approximate. The F-test statistics are no longer ratios of sim-

ple mean squared errors from analysis of variance, but are computed using linear functions of

parameter estimates. These statistics are also functions of variance components associated

with random effects. Variance components can be estimated by equating the observed mean

squares to their expected values in a simple analysis of variance setting, or by using likelihood-

based methods such as the restricted maximum likelihood (REML) method [12, 13]. Although

the computed variance components can be negative [11, 14], they can still be interpreted in a

legitimate manner [15, 16]. In practice, the estimates of the variance components are con-

strained to be non-negative, which may affect the assumption on the appropriate number of

degrees of freedom in the denominator of the F-distribution. Different methods for computing

the denominator degrees of freedom are available [17]. The Kenward and Roger method [18,

19] is recommended [20–23]. However, this method is implemented differently in SAS and R

with regard to how the number of degrees of freedom is calculated when estimates of the vari-

ance components are zero. This poses a problem at hypothesis testing of fixed effects, because

different software give different results.

Bearing in mind the many limitations associated with traditional analysis of variance, the

linear mixed-effects model has gained a broader application. It is however necessary to carry

out the analysis carefully, even in simple cases. In this study, we investigate the implications of

the available options in the different software with regard to tests of fixed effects in linear

fixed-effects and mixed-effects models.

As regards fixed-effects models, we are particularly interested in the type 3 tests provided

by the Anova function of the car package [24] and the ezANOVA function of the ez package

[25] in R. It has been noted that the Anova function ‘does not always give the same results as

SAS does.’ [5] From a practical point of view, this important observation deserves more atten-

tion. We will present an example that displays differences in p-values computed in SAS and R,

depending on the procedure or function used. Through this example, we shall clarify what null

hypotheses are actually tested.

Regarding mixed-effects models, we investigate how R and SAS handle non-positive esti-

mates of variance components and what consequences it has for the p-values. In our experi-

ence, non-positive estimates are common. We will draw attention to the fact that statistical

packages handle this situation differently and discuss the alternatives.

The next section, Background and methods, recalls the theory and specify models. The

Examples section provides illustrating examples. The unbalanced two-factorial experiment

uses a fixed-effects model and notes differences between R and SAS with regard to results of

type 3 tests. The randomized complete block and split-plot experiments use mixed-effects

models with non-positive estimates of variance components and observes differences between

R and SAS regardless of the type of test. The Simulation studies section investigates mixed-

effects models further. In this section, frequency of Type I error is estimated through simula-

tion. The Practical advice section gives useful recommendations. The article ends with a

Discussion.
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Background and methods

General model

A general fixed-effects linear model can be written as

Y ¼ Xbþ e; ð1Þ

where Y is an n × 1 vector of observations, X is a known n ×m design matrix, β is an m × 1 vec-

tor of unknown fixed-effects parameters, e is an n × 1 vector of normally distributed random

effects assumed to have mean 0 and variance-covariance matrix s2
e In, where In is an n × n iden-

tity matrix. If X is of full rank, then the best linear unbiased estimator is obtained using the

least-squares solution b̂ ¼ ðX0XÞ� 1X0Y . Otherwise, if X is not of full rank, i.e., if some columns

are linearly dependent, the model is said to be overparameterized and the inverse of X0X can-

not be computed. Instead a generalized inverse, (X0X)−, can be used, and the solution will be

b̂ ¼ ðX0XÞ� X0Y [3]. This solution is not unique, because it depends on the choice of the gener-

alized inverse. In practice, the sweep operator may be used for the computation [26]. Using

this method, the least-squares solution depends on the ordering of the columns of the design

matrix X. However, there are some linear functions of the parameters, the so-called estimable

functions, that have unique solutions.

A linear hypothesis can in general be expressed as

H0 : Lb ¼ 0; ð2Þ

where L is a vector or matrix that is a linear combination of the rows of X, which makes Lβ esti-

mable even if the model is overparametrized. This hypothesis (2) can be tested using the F-sta-

tistic

F ¼
QA=k
ŝe

2
; ð3Þ

where QA ¼ ðLb̂Þ
0
ðLðX0XÞ� L0Þ� 1

ðLb̂Þ, k = rank(L), and ŝ2
e is the estimated error variance, i.e.,

the mean square error. Under the null hypothesis, F is F-distributed with k and n − rank(X)

degrees of freedom.

Another way to deal with the problem of an overparametrized model is through putting

constraints on the parameters. Usually this is done by setting the parameters corresponding to

the first or last levels of the factors to zero, or just constrain the parameters of each factor in

such a way that they sum up to zero, which is called sigma-restriction [4].

Adding random effects to model (1) gives the so-called mixed-effects model:

Y ¼ Xbþ Zuþ e; ð4Þ

where Z is an n × q incidence matrix of known elements, and u is a q × 1 vector of unknown

random effects. It is assumed that u and e are independently distributed, and u* N(0, G),

where G is a block-diagonal variance-covariance matrix. Hence, Y* N(Xβ, V), where

V ¼ ZGZ0 þ s2
e In. When estimates are substituted for the variance components of V, this

matrix is denoted V̂ . The hypotheses (2) can be tested using the test statistic

F ¼
ðLb̂Þ0ðLĈL0Þ� 1

ðLb̂Þ
k

; ð5Þ

where b̂ ¼ ðX0V̂ � 1XÞ� X0V̂ � 1Y is the estimate of the fixed effects, β, and Ĉ ¼ ðX0V̂ � 1XÞ� is the

estimated variance-covariance matrix of b̂. This F-statistic is approximately F-distributed with
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k ¼ rankðLĈL0Þ and û degrees of freedom, where û must be estimated. In the software we con-

sider, there are a number of available methods for computing υ, among them the Kenward

and Roger method [19, 20].

A two-way fixed-effects model for unbalanced data

In the context of analysis of variance, we consider a special case of model (1), a two-way fixed-

effects model with interaction:

yijk ¼ mþ ai þ bj þ gij þ eijk; i ¼ 1; . . . ; a; j ¼ 1; . . . ; b; k ¼ 1; . . . ; nij; ð6Þ

where μ is an intercept, and αi and βj are unknown fixed effects for the factors A and B, respec-

tively. The interaction of the i-th and j-th level of the two fixed factors A and B is represented

by γij. The experimental errors, eijk, are assumed independently distributed, eijk � Nð0; s2
eÞ.

The data can be written in a table with a rows, b columns and nij observations in the ij-th

cell. Notice that this two-way table has no empty cells, i.e., nij� 1, but the numbers of observa-

tions may vary between the cells. The total number of observations is n:: ¼
Pa

i¼1

Pb
j¼1

nij, and

the cell means are �yij: ¼
Pnij

k¼1 yijk=nij. Furthermore, let μij denote the expected value in ij-th

cell, i.e., μij = μ + αi + βj + γij.
There are three commonly used computing procedures with regard to sums of squares and

tests, known as types 1,2 and 3. When data is balanced they are all equal; however, in unbal-

anced data they are usually not. The type 1 test is a forward sequential procedure. First, the

sum of squares for one factor, say A, is computed without the other factor, B, in the model.

Next, the sum of squares for B is computed, given that A is already in the model. With this

type of test, the result depends on which of the two factors is specified first. For types 2 and 3,

the order does not matter. Using type 2, the sum of squares for A is computed given that factor

B is already in the model, whereas the sum of squares for B is computed given that A is already

in the model. The type 3 test computes sums of squares for A that are adjusted for effects of B
and orthogonal to effects of A × B interaction [6]. Similarly, the sums of squares for B are

adjusted for A and orthogonal to A × B. The type 3 test was defined by SAS [2, 6] and is the

one that tests the null hypothesis of no differences between the unweighted marginal means.

Specifically, the three types of sums of squares test the following null hypotheses [9, 27].

Provided that A is specified before B at the analysis, the type 1 test of A tests the null

hypothesis

H0 :
1

n1:

Xb

j¼1

n1j m1j ¼
1

n2:

Xb

j¼1

n2j m2j ¼ � � � ¼
1

na:

Xb

j¼1

naj maj ; ð7Þ

where ni. is the total number of observations for the i-th level of factor A. Each cell mean μij

is weighted with respect to the number of observations in the ij-th cell. The type 2 test of A
tests the null hypothesis

H0 :
Xb

j¼1

nij mij ¼
Xb

j¼1

Xa

k¼1

nij nkj mkj

n:j
; for i ¼ 1; 2; . . . ; a ; ð8Þ

where n.j is the total number of observations for the j-th level of factor B. The type 3 test of

A tests the null hypothesis

H0 : m1: ¼ m2: ¼ � � � ¼ ma: ; ð9Þ
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where mi: ¼
Pb

j¼1
mij=b is the unweighted marginal mean of the i-th treatment, i.e., all the

cells are weighted equally, regardless of their cell frequencies.

The three types of tests can be carried out through computations on reductions of sums of

squares [4]. For the type 3 test, this method requires sigma-restricted parametrization. How-

ever, the type 3 test coincides with Yates’s method of weighted squares of means [28], which

does not require sigma-restriction [4, 6]. Commonly, software neither uses the reduction-of-

sums-of-squares method nor the method of weighted squares of means for computations of

type 1–3 tests. Instead the general test statistic (3) is used, where L may be specified, depending

on the type of test, using the Forward-Doolittle operator [26].

Three mixed-effects models for balanced data

We consider three balanced mixed-effects models (4); the first is a model for analysis of ran-

domized complete block experiments with random effects of blocks:

yij ¼ mþ ai þ bj þ eij; i ¼ 1; . . . ; a; j ¼ 1; . . . ; b ; ð10Þ

where yij is the response of the i-th level of the fixed effect A and the j-th level of the random

effect B. The intercept is denoted as μ, the fixed effect of treatment as αi, the random effect of

block as bj � Nð0; s2
BÞ, and the residual error effect as eij � Nð0; s2

eÞ. Let �yi: ¼
Pb

j¼1
yij=b, �y :j ¼

Pa
i¼1

yij=a and �y :: ¼
Pa

i¼1
�yi:=a. The expected values can be expressed as μi = μ + αi.

Under the assumption of model (10), the null hypothesis of no difference between the fixed

treatment effects, H0 : μ1 = μ2 = . . . = μa, can be performed using the F-statistic

F ¼
xA=ða � 1Þ

xE=ðða � 1Þðb � 1ÞÞ
; ð11Þ

where xA ¼ b
Pa

i¼1
ð�yi: � �y::Þ

2
and xE ¼

Pa
i¼1

Pb
j¼1
ðyij � �yi: � �y :j þ �y ::Þ

2
. This test statistic is

exactly F-distributed with a − 1 and (a − 1)(b − 1) degrees of freedom. Note that (11) is a func-

tion of sums of squares and degrees of freedom only. The test is therefore independent of

which method is used to estimate the variance components. In particular, it does not matter

whether the estimate of s2
B is positive or not.

Next, we consider a split-plot experiment. With random effects of blocks, the following

mixed-effects model can be used:

yijk ¼ mþ ai þ bj þ ðabÞij þ tk þ ðatÞik þ eijk; i ¼ 1; . . . ; a; j ¼ 1; . . . ; b; k ¼ 1; . . . ; c ; ð12Þ

where yijk is the observation in the k-th subplot in the i-th main plot of the j-th block. In (12), μ
is the intercept, αi is the fixed effect of the main-plot-treatment factor, bj is the random effect

of the block factor, τk is the fixed effect of the subplot factor, and (ατ)ik is the effect of interac-

tion. The random effects in the model are assumed independently and normally distributed:

bj � Nð0; s2
BÞ, ðabÞij � Nð0; s2

ABÞ, and eijk � Nð0; s2
eÞ. Let �yij: ¼

Pc
k¼1

yijk=c,

�yi:: ¼
Pb

j¼1

Pc
k¼1

yijk=ðbcÞ, �y :j: ¼
Pa

i¼1

Pc
k¼1

yijk=ðacÞ and �y ::: ¼
Pa

i¼1

Pb
j¼1

Pc
k¼1

yijk=ðabcÞ. The

expected values can be denoted μik = μ + αi + τk + (ατ)ik.

With fixed effects of blocks, the model can be written:

yijk ¼ mþ ai þ bj þ ðabÞij þ tk þ ðatÞik þ eijk; i ¼ 1; . . . ; a; j ¼ 1; . . . ; b; k ¼ 1; . . . ; c ; ð13Þ

where βj are fixed block-effects, and all other terms are defined as in model (12).

The null hypotheses of no difference between the effects of the main-plot treatments, H0 :

μ1. = μ2. = . . . = μa., where mi: ¼
Pc

k¼1
mik=c can be tested in the models (12) and (13) using the
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exact F-test,

F ¼
xA=ða � 1Þ

xAB=ðða � 1Þðb � 1ÞÞ
; ð14Þ

where xA ¼
Pa

i¼1

Pb
j¼1

Pc
k¼1
ð�yi:: � �y :::Þ

2
and xAB ¼

Pa
i¼1

Pb
j¼1

Pc
k¼1
ð�yij: � �yi:: � �y :j: þ �y :::Þ

2
are

the sums of squares for main-plot treatments and interaction, respectively. This test statistic is

exactly F-distributed with a − 1 and (a − 1)(b − 1) degrees of freedom. Unlike (5), which is

used by most software packages for mixed-effects models, (14) does not require any estimates

of the variance components. Thus, it does not matter whether the estimates of s2
B and s2

AB are

positive or not.

Examples

This section includes two subsections. The first of these illustrates differences between the

three types of tests in an unbalanced two-factorial experiment. Specifically, the issue of the

computation of the type 3 test is discussed. The model is a fixed-effects model with a single

error variance. The estimate of this variance is always positive, so the issue of non-positive var-

iance estimates is not investigated. The second subsection illustrates differences between meth-

ods for computing F-tests in balanced randomized complete block and split-plot experiments.

Mixed-effects models are used. Differences between methods (5), (11) and (14) for computing

the F-statistics are investigated in presence of non-positive estimates of variances components.

Unbalanced two-factorial experiment

Here we present an example using model (6). Weight gain was registered (Table 1) after sub-

jecting each of fifteen animals to one of three different diets (B = Diets). We were specifically

interested in the effect of sex (A = Sex), which is specified as the first factor in the model. The

data was analyzed using all three types of tests (1–3), and the analysis was carried out using the

glm procedure [2, 29] in SAS and the lm, anova and Anova functions [1, 24] in R. The

anova function, with a small initial “a”, was used for the type 1 test, whereas the Anova func-

tion of the car package [24], with capital “A”, was applied for the types 2 and 3 tests. In addi-

tion, the ezANOVA function of the ez package [25] and the aov1, aov2, aov3 and GLM
functions of the sasLMpackage [30] were investigated. The R script and the SAS program are

provided as supporting information in S1 and S2 Files, respectively.

In R, parameters of factors are constrained through coding of factor levels. In this work, we

have investigated three options for coding: contr.treatment, which is the default option,

contr.sum and contr.SAS. With contr.treatment, the first level of the factor is the

reference level, i.e., the parameter corresponding to that level is set to zero, whereas with

contr.SAS, the last level is the reference level. With contr.sum, however, there is no ref-

erence level, but instead the parameters of the levels are sigma-restricted, i.e., their sum is con-

strained to zero [24].

Table 2 presents the results of the analyses, when using the lm, anova and Anova func-

tions in R and the glm procedure in SAS. The three types of tests gave very different F- and p-

Table 1. Observed weight gain in an unbalanced two-factorial experiment.

Diet 1 Diet 2 Diet 3

Female 10 19, 21 23, 22, 25

Male 13, 17, 14 18, 20, 17 17, 18, 20

https://doi.org/10.1371/journal.pone.0295066.t001
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values. Likewise in R, the results with respect to each contrast were highly dependent on the

type of test. Regarding the results of types 1 and 2, all methods gave the same result.

Since the dataset is unbalanced, the three types of tests are testing different hypotheses.

Consequently, the three types were expected to give different F- and p-values. However, within

each type of tests, there should be no differences between the methods. The observed differ-

ences between the methods for type 3 were not expected.

For type 1, the null hypothesis is

H0 :
1

6
ðm11 þ 2 m12 þ 3m13Þ ¼

1

3
ðm21 þ m22 þ m23Þ; ð15Þ

and for type 2, the null hypothesis is

H0 :
3

4
m11 þ

6

5
m12 þ

3

2
m13 ¼

3

4
m21 þ

6

5
m22 þ

3

2
m23 : ð16Þ

For type 3, correct results were obtained only using the contr.sum parametrization in R or

using SAS. The correct type 3 hypothesis is

H0 :
1

3
ðm11 þ m12 þ m13Þ ¼

1

3
ðm21 þ m22 þ m23Þ: ð17Þ

The test of sex presented by the Anova function as a type 3 test when using the

contr.treatment parametrization is a test of the null hypothesis H0 : α2 = 0. With this

paramerization, α1 = β1 = γ11 = γ12 = γ13 = γ21 = 0. Because of these constraints, μ11 = μ and μ21

= μ + α2. Thus, the null hypothesis H0: α2 = 0 is equivalent to

H0 : m11 ¼ m21 : ð18Þ

In other words, this test of the factor sex is a test of no difference between males and females,

provided they take the first diet. Specifically, it should be noted that this test is not a type 3 test,

i.e., it does not test the null hypothesis (17). Since contr.treatment is the default parame-

trization and no warning is provided in the R console, it is likely that this conditional test is

often mistaken for a type 3 test. Similarly, using the contr.SAS parametrization, the test of

sex presented as type 3 does not test the type 3 hypothesis (17), but is a test of no difference

between males and females when conditioned on the third diet.

SAS does not put any constraints on the parameters but uses the Forward-Doolittle factori-

zation [26, 31] to determine the L that gives the correct type 3 test. It should be noted that both

the glm procedure of SAS and the Anova function of the car package in R uses (3) for com-

putation of the F-statistic, but these methods, glm and Anova, specify L differently.

Table 2. Results from analyses of the unbalanced two-factorial experiment using the lm, anova and Anova functions of R and the glm procedure of SAS: F-statis-

tics and p-values for the test of sex.

Method Type 1 Type 2 Type 3

F p F p F p
R

contr.treatment

10.9622 0.0091 3.8073 0.0828 5.9595 0.0373

R

contr.sum

10.9622 0.0091 3.8073 0.0828 0.5151 0.4911

R

contr.SAS

10.9622 0.0091 3.8073 0.0828 13.6824 0.0049

R

proc glm

10.9622 0.0091 3.8073 0.0828 0.5151 0.4911

https://doi.org/10.1371/journal.pone.0295066.t002
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The ezANOVA function of R gave the same results as those presented for R in Table 2.

Thus, the type 3 tests were incorrectly computed when contr.treatment and

contr.SAS were used. In contrast, the aov1, aov2, aov3 and GLM functions produced

the same results as the glm procedure of SAS. In this example, these functions performed

types 1–3 tests correctly.

Randomized complete block and split-plot experiments

In the following examples, the mixed procedure [2, 15] in SAS and the lmer function [32] in

R were used for fitting models with both fixed and random effects, i.e., mixed-effects models

(4). With both the mixed procedure and the lmer function, the variance components were

estimated using the restricted maximum likelihood (REML) method. Using lmer, variance

components are bounded to be non-negative. This is also the default setting of the mixed pro-

cedure. However, using the nobound option of the mixed procedure, negative estimates of

the variance components are allowed. The analyses were carried out using version 9.4 of SAS

and version 4.2.2 of R.

Three examples following the models (10), (12) and (13) were considered. In the random-

ized complete block model (10), we studied tests of treatments. In the split-plot models (12)

and (13), we studied tests of main-plot treatments. Exact F-tests were calculated using (11) for

model (10), and (14) for models (12) and (13). In both SAS and R, the F-values were computed

as in (5), and the Kenward and Roger method [18, 19], as implemented in the software, was

used for computation of denominator degrees of freedom. Datasets, SAS programs and R

scripts are included as supporting information. Results are summarized in Table 3.

In Example 1, a randomized complete block experiment with a = 2 treatment levels and

b = 4 block levels was analyzed using model (10). Variance component estimates were ŝ2
B ¼

� 0:1063 and ŝ2
e ¼ 0:2996 using the mixed procedure with the nobound option. Without

this option or using lmer, variance component estimates were ŝ2
B ¼ 0 and ŝ2

e ¼ 0:1932.

Using the exact F-test (11), denominator degrees of freedom were calculated as (a − 1)(b − 1),

which agrees with the results obtained using the nobound option of the mixed procedure.

These methods also agree with regard to F- and p-values. Using the default setting of the

mixed procedure, denominator degrees of freedom were calculated as a(b − 1), i.e., as if using

a one-way ANOVA model. This computation gave a significant result (p = 0.026), while the

computation using the nobound option did not (p = 0.100). With lmer, denominator

degrees of freedom were the same as obtained with the nobound option of the mixed proce-

dure. However, the F-value was the same as obtained with the mixed procedure without

using the nobound option. Notice that with default settings, SAS and R gave different results.

In the former, the effects of treatments were significant (p = 0.026), but in the latter they were

not (p = 0.061). Neither software package provided the exact F-test value by default.

In Example 2, a split-plot experiment was analyzed using model (12). There were b = 2

blocks, a = 3 main plots per block and c = 12 subplots per main plot. Using the nobound

Table 3. Results of hypothesis testing in the three examples. Denominator degrees of freedom (df), F-values and p-values using different methods.

Example 1 Example 2 Example 3

df F p df F p df F p
Exact F-test 3 5.54 0.100 2 22.82 0.042 2 11.72 0.079

SAS mixed, nobound 3 5.54 0.100 2 22.82 0.042 2 11.72 0.079

SAS mixed, default 6 8.58 0.026 35 9.58 0.001 35 6.18 0.005

R lmer 3 8.58 0.061 2 9.58 0.094 2 6.18 0.139

https://doi.org/10.1371/journal.pone.0295066.t003
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option of the mixed procedure, the estimates of the variance components were

ŝ2
B ¼ 15:5005, ŝ2

AB ¼ � 0:04346 and ŝ2
e ¼ 0:8775. Without this option, or using lmer, the

estimates were ŝ2
B ¼ 15:487, ŝ2

AB ¼ 0 and ŝ2
e ¼ 0:848. The results of the exact F-test and the

mixed procedure were the same when the nobound option was used. The denominator

degrees of freedom obtained using lmer were equal or close to the correct number (a − 1)(b
− 1) = 2. While the result using the nobound option of the mixed procedure was significant,

(p = 0.042), it was highly significant (p = 0.001) without this option. Using the default settings

of the mixed procedure, denominator degrees of freedom were computed as (ac − 1)(b − 1) =

35. The same F-value, 9.58, was obtained using the mixed procedure with default settings and

using lmer. The results using the default settings of SAS and R were very different. In SAS,

effects of main-plot treatments were highly significant (p = 0.001); however in R they were not

(p = 0.094).

In Example 3, another dataset, with the same experimental layout as in Example 2, was ana-

lyzed, but using model (13). In this example, block effects were considered fixed. Unbounded

variance component estimates (proc mixed, nobound) were ŝ2
AB ¼ � 0:0441 and

ŝ2
e ¼ 1:0856, and bounded (proc mixed, default and lmer) were ŝ2

AB ¼ 0 and ŝ2
e ¼ 1:055.

With fixed effects of blocks, results using the mixed procedure with the nobound option

were the same as with the exact F-test. As in Example 2, the p-value differed between the

default SAS and R.

The results of Table 3 were all produced using type 3 tests. In R, the contr.sum parame-

trization was used, and the tests were provided by the lmerTest package [33]. Note that the

differences between the methods in Table 3 are not due to type 3 test calculations, because the

examples are balanced. The differences are explained by the fact that the exact F-test uses equa-

tions (11) and (14), while the other three methods all use equation (5) but with different vari-

ance estimates and degrees of freedom.

Neither the type of test nor the choice of parametrization should matter when the dataset is

balanced. However, it was noted that with types 1 and 2 tests, the F-statistic was occasionally

computed as 0 when contr.treatment or contr.SAS was used, whereby the p-value

was correspondingly computed as 1. In SAS, the same phenomenon occurred when analyzing

Example 3 using model (12).

Simulation studies

Design

In the randomized complete block and split-plot examples, methods gave different results

although datasets were balanced. Since those were just a few examples, a simulation study was

performed, exploring a wider range of datasets. Specifically, the Type I error rates of the differ-

ent options for hypothesis testing were estimated.

For each of the models, six layouts, i.e., combinations of a, b and c were investigated, as

specified in the first columns of Tables 4 and 5, for model (10) and (12), respectively. In model

(10), the error variance was s2
e ¼ 1, but different values were adopted for the block variance:

s2
B ¼ 0:1; 0:3; 0:5; 0:7; 0:9. In model (12), the block and split-plot error variances were s2

b ¼ 1

and s2
e ¼ 1, respectively, while the main plot error variance varied:

s2
AB ¼ 0:1; 0:3; 0:5; 0:7; 0:9. All fixed parameters, i.e., μ, αi, τk and (ατ)ik in models (10) and

(12) were zero. For each case, i.e., row of Tables 4 and 5, 200 000 datasets were generated, and

for each generated dataset, the null hypothesis H0 : μ1 = μ2 = . . . = μa in model (10) and H0 : μ1.

= μ2. = . . . = μa. in model (12), was tested at significance level 0.05. With 200 000 simulations,

an approximate 0.95 tolerance interval of ±1.96(0.05(1 − 0.05)/200000)1/2 = ±0.001 was
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achieved. In addition, 10 000 datasets were generated for each case to estimate the probability

of a non-positive estimate of s2
B in (10) and s2

AB in (12).

Analyses were performed using the lmer and Anova functions of R and the mixed pro-

cedure of SAS. In R, type 2 tests were applied with contr.sum parametrization. Also in SAS,

type 2 tests were used. The choice of type of test should not matter, as all designs were bal-

anced. In SAS, the analyses were performed both with and without the nobound option. The

Kenward and Roger method [18, 19] for computation of denominator degrees of freedom was

applied as implemented in the software. In addition to these likelihood-based procedures, the

null hypotheses were tested using the exact F-tests (11) and (14), utilizing the anova proce-

dure of SAS for computation of sums of squares. For the exact F-tests, denominator degrees of

freedom were calculated as (a − 1)(b − 1).

For the specific layout {a = 3, b = 2, c = 12} in model (12) with parameter values s2
e ¼ 1,

s2
b ¼ 1 and s2

AB ¼ 0:1, an additional simulation study was performed, at which the null

hypothesis H0 : μ1. = μ2. = . . . = μa. was tested using type 3 tests. In R, using the lmer function,

the contr.sum parametrization was applied. In SAS, using the mixed procedure, tests were

Table 4. Frequency of Type I error at significance level 0.05 and frequency of a non-positive variance estimate, using the randomized complete block model (10).

a b σ2
B R SAS nobound SAS default Exact F-test Pr(σ̂2

B�0Þ
2 2 0.1 0.052 0.052 0.072 0.050 0.448

2 2 0.3 0.051 0.050 0.067 0.049 0.405

2 2 0.5 0.055 0.050 0.066 0.050 0.377

2 2 0.7 0.051 0.051 0.065 0.050 0.348

2 2 0.9 0.051 0.050 0.064 0.050 0.335

2 4 0.1 0.054 0.050 0.067 0.050 0.426

2 4 0.3 0.052 0.050 0.061 0.050 0.352

2 4 0.5 0.052 0.050 0.059 0.050 0.288

2 4 0.7 0.052 0.050 0.057 0.050 0.236

2 4 0.9 0.052 0.050 0.056 0.050 0.201

3 2 0.1 0.052 0.054 0.068 0.050 0.504

3 2 0.3 0.051 0.053 0.066 0.051 0.435

3 2 0.5 0.051 0.053 0.064 0.051 0.385

3 2 0.7 0.051 0.053 0.062 0.050 0.353

3 2 0.9 0.050 0.052 0.061 0.050 0.332

3 4 0.1 0.054 0.050 0.062 0.051 0.431

3 4 0.3 0.053 0.050 0.057 0.050 0.305

3 4 0.5 0.052 0.050 0.055 0.050 0.230

3 4 0.7 0.051 0.050 0.054 0.050 0.181

3 4 0.9 0.051 0.050 0.053 0.050 0.144

4 4 0.1 0.055 0.050 0.059 0.050 0.413

4 4 0.3 0.052 0.050 0.054 0.050 0.273

4 4 0.5 0.052 0.049 0.053 0.049 0.180

4 4 0.7 0.052 0.050 0.053 0.050 0.142

4 4 0.9 0.051 0.050 0.052 0.050 0.117

10 3 0.1 0.053 0.050 0.054 0.050 0.357

10 3 0.3 0.052 0.050 0.052 0.050 0.204

10 3 0.5 0.052 0.050 0.051 0.050 0.138

10 3 0.7 0.051 0.050 0.051 0.050 0.106

10 3 0.9 0.050 0.049 0.051 0.049 0.090

https://doi.org/10.1371/journal.pone.0295066.t004
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made both with and without the nobound option. Furthermore, the exact F-test (14) was

included. This simulation study comprised 10 000 simulated datasets. The quantiles of the

obtained p-values were plotted against the quantiles of the continuous uniform distribution U
(0, 1).

Results

Table 4 shows the results of the simulation study using model (10). In R, with regard to all

cases, frequency of Type I error was slightly too high. Especially when s2
B was low, larger values

than 0.05 were obtained, i.e., the null hypothesis was rejected somewhat too frequently. In

those cases, the block variance, s2
B, was more often estimated as zero than in other cases. In

SAS, frequency of Type I error was close to the nominal level 0.05 in all cases, provided the

nobound option was applied, except for the layout {a = 3, b = 2}. However, using the default

setting of the mixed procedure, i.e., without using the nobound option, frequency of Type I

error was consistently too large. A positive correlation was observed between frequency of

Table 5. Frequency of Type I error at significance level 0.05 and frequency of a non-positive variance estimate, using the split-plot model (12).

a b c σ2
AB R SAS nobound SAS default Exact F-test Pr(σ̂2

B�0Þ
2 4 12 0.1 0.013 0.050 0.055 0.050 0.257

2 4 12 0.3 0.033 0.051 0.059 0.051 0.099

2 4 12 0.5 0.040 0.050 0.058 0.050 0.055

2 4 12 0.7 0.043 0.050 0.057 0.050 0.040

2 4 12 0.9 0.047 0.050 0.057 0.050 0.029

3 2 12 0.1 0.000 0.042 0.089 0.051 0.329

3 2 12 0.3 0.006 0.044 0.102 0.050 0.188

3 2 12 0.5 0.014 0.046 0.092 0.050 0.123

3 2 12 0.7 0.022 0.048 0.086 0.050 0.093

3 2 12 0.9 0.028 0.048 0.080 0.049 0.076

3 4 12 0.1 0.030 0.050 0.054 0.050 0.139

3 4 12 0.3 0.046 0.050 0.052 0.050 0.025

3 4 12 0.5 0.050 0.050 0.052 0.050 0.008

3 4 12 0.7 0.051 0.051 0.053 0.051 0.004

3 4 12 0.9 0.051 0.050 0.053 0.050 0.002

3 4 5 0.1 0.018 0.050 0.046 0.049 0.287

3 4 5 0.3 0.036 0.050 0.054 0.049 0.108

3 4 5 0.5 0.043 0.050 0.054 0.051 0.048

3 4 5 0.7 0.047 0.050 0.054 0.050 0.028

3 4 5 0.9 0.049 0.050 0.054 0.050 0.020

4 4 12 0.1 0.039 0.050 0.053 0.051 0.087

4 4 12 0.3 0.050 0.049 0.050 0.050 0.009

4 4 12 0.5 0.050 0.050 0.051 0.050 0.001

4 4 12 0.7 0.050 0.050 0.052 0.050 0.000

4 4 12 0.9 0.051 0.050 0.051 0.050 0.000

10 3 12 0.1 0.047 0.050 0.052 0.050 0.021

10 3 12 0.3 0.051 0.051 0.051 0.050 0.000

10 3 12 0.5 0.050 0.051 0.051 0.051 0.000

10 3 12 0.7 0.051 0.050 0.051 0.050 0.000

10 3 12 0.9 0.050 0.050 0.051 0.050 0.000

https://doi.org/10.1371/journal.pone.0295066.t005
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Type I error and frequency of block variance estimated as zero. As expected, the exact method

showed frequencies of Type I error close to the nominal level.

Table 5 provides the results for model (12). In R, with layouts {a = 2, b = 4, c = 12} and

{a = 3, b = 2, c = 12}, frequency of Type I error was much lower than the nominal level 0.05. In

all examples, it was noticed that for lower values of s2
AB, frequency of Type I error was below

0.05. Using the mixed procedure with the nobound option, frequency of Type I error was

close to the nominal level 0.05 in all cases, except with layout {a = 3, b = 2, c = 12}, where Type

I error rates were too low. Using the mixed procedure with default settings, frequency of

Type I error was almost always higher than the nominal level 0.05. Very high frequencies were

observed for the problematic layout {a = 3, b = 2, c = 12}. It is noteworthy that results obtained

with R and the default setting of SAS were sometimes very different. With the layout {a = 3,

b = 2, c = 12}, frequency of Type I error varied between 0.00 and 0.03 in R, and between 0.08

and 0.10 in SAS. This layout was characterized by relatively large probabilities for a non-posi-

tive estimate of the main-plot variance s2
AB.

The results of the additional simulation study are presented in Fig 1. In these Q-Q plots, the

performance of the methods can be studied for arbitrary levels of significance. As shown in Fig

1(A), the exact method (14) gave a uniform distribution of p-values, as expected. In Fig 1(B),

the curve is above the reference line, indicating too many non-significant results when using

the lmer function of R. With this method, the null hypothesis is rejected too rarely, due to the

F-value being smaller than with the exact method (Table 3, Example 2).

The curve in Fig 1(C), for the mixed procedure of SAS using the default setting, is notably

below the reference line at low levels of significance. Thus, when testing at significance levels

0.05 or 0.10, too many significant results are obtained using this method. This is a consequence

of too many denominator degrees of freedom as compared to the exact method (Table 3,

Example 2). For the mixed procedure using the nobound option, the curve of Fig 1(D) runs

above the line. Although this is particularly so at large levels of significance, also at small levels

e.g., 0.05, too few significant results are obtained (Table 5, design {a = 3, b = 2, c = 12}).

Practical advice

This article discussed two issues: i) type 3 tests, and ii) non-positive estimates of variance com-

ponents. The first issue is a problem, since the Anova and ezANOVA functions of R some-

times perform type 3 tests incorrectly. The second issue is a problem too, since the actual

significance level, i.e., the true probability of incorrectly rejecting the null hypothesis, may dif-

fer from the nominal significance level. Here, we give some practical advice on how to work

around these problems in R and SAS when possible.

Correct type 3 tests are obtained in R using the Anova function of the car package if the

line

options(contrasts = c(''contr.sum'', ''contr.poly''))
is included in the beginning of the R script. This code changes the contrasts globally. The

code

contrasts(A) <- contr.sum
is useful if the change is to be made only for factor A. Note that the Anova function is spelled

with an initial capital A and is different from the anova function. Just like the Anova func-

tion, the ezANOVA function is dependent on the choice of contrast, so the default

contr.treatment should not be used for type 3 tests, but contr.sum may be employed

instead. Alternatively, the aov3 or the GLM function of the sasLM package may be preferred.

These functions give correct type 3 tests even when contr.treatment is used. For mixed-

effects models, correct type 3 tests are provided by the lmerTest package. These are
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obtained using the type argument of the anova function when applied to a model fitted by

the lmer function. Note that the lmerTest package must be loaded before the model is fit-

ted. No specific options are needed for correct type 3 tests using the glm and mixed proce-

dures of SAS.

For mixed-effects models and balanced datasets, exact F-tests based on sums-of-squares

computations, can be obtained using the test statement of the anova and glm procedures

Fig 1. Quantiles of observed p-values, testing H0 : μ1. = μ2. = μ3. versus quantiles of the uniform distribution U(0,1). Based on 10 000 simulated

datasets using model (12) with layout {a = 3, b = 2, c = 12} and parameter values s2
e ¼ 1, s2

b ¼ 1 and s2
AB ¼ 0:1. (A) Exact F-test. (B) R using the lmer

and anova functions. (C) SAS using the mixed procedure with default settings. (D) SAS using the mixed procedure with the nobound option.

https://doi.org/10.1371/journal.pone.0295066.g001
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of SAS, where the user specifies the correct error terms. Similarly in R, exact F-tests can be

computed using the aov function, which allows for a single error term in addition to the resid-

ual error term. For split-plot experiments, the sp.plot function of the agricolae package

[34] is another option.

For analyses using the mixed procedure of SAS, we recommend allowing negative esti-

mates of variance components when the main purpose is to draw conclusions about the fixed

effects. This is made possible by the nobound option. Unfortunately, a similar option is not

available for the lmer function. Although the tests are correctly implemented, the actual sig-

nificance level deviates from the nominal one, as assessed in the Simulation section. Excep-

tional results such as discussed in the last paragraph of the Examples section might in R be

avoided by using contr.sum.

Discussion

Using different statistical software, a broad variation in results can be observed, even though

the same statistical model is assumed. Hence, the accuracy of the results renders the choice of

the statistical method for data analysis essential. This article investigated the glm procedure in

SAS and several functions for analysis of variance in R, as applied to an unbalanced dataset

with two factors in a crossed design. Furthermore, the mixed procedure of SAS and the

lmer function of the lme4 package in R were studied with focus on balanced randomized

complete block and split-plot experiments.

In unbalanced fixed-effects experiments, exact F-tests can be calculated from three different

types of sums of squares, known as types 1, 2, and 3. While in balanced data, these are identical,

in unbalanced data they correspond to different hypotheses [4, 9, 27]. The hypotheses of the

type 3 tests do not depend on the number of observations in each treatment combination, and

are therefore often preferred when analyzing unbalanced data. In addition to the choice of

type of test, the user of R needs to select how the parameters of the factors should be con-

strained by coding of the factor levels, known as contrast functions. Here, three such contrasts

were investigated; contr.treatment, contr.sum and contr.SAS [24]. Correct type 3

tests of no differences between the marginal means are obtained with the glm procedure of

SAS and the sasLM package in R. Correct type 3 tests are also obtained with the Anova and

ezANOVA functions of R when using contr.sum [35]. However, incorrect results are

obtained in R with these functions when the default parametrization, contr.treatment,

is applied. The tests obtained using this default contrast in R are not type 3 tests of marginal

means, but tests of means conditioned on the first level of the other factor.

There is a misconception that type 3 tests are only correct if orthogonal coding is used [36].

According to the help page for the Anova function of the car package, type 3 tests ‘will nor-

mally only be sensible when using contrasts that, for different terms, are orthogonal in the

row-basis of the model, such as those produced by contr.sum, contr.poly, or contr.helmert, but

not by the default contr.treatment.’ This statement is misleading. The type 3 test is sensible

regardless of the contrast used, provided it is correctly computed. The type 3 test is equivalent

to Yates’s method of weighted squares of means [28], which does not result from zero-sum

restrictions [4, 6]. In fact, the term ‘type 3 test’ origins from the SAS software [6], where

orthogonal coding is not used [2]. In R terminology, the type 3 test is not dependent on which

contrast is employed. However, the so called ‘type 3’ test provided by the Anova function of

the car package is dependent on the choice of contrasts. In this article, we have explained

what hypotheses the Anova function is actually testing.

In linear mixed-effects modelling of experiments, estimation of variance components and

computation of denominator degrees of freedom, associated with inference on the fixed
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effects, are important parts of the analysis. Using the lmer function of R, variance estimates

are always bounded at zero. Similarly, the mixed procedure of SAS has a default lower bound-

ary constraint of zero. With variance components estimated to zero, the denominator degrees

of freedom of the F-statistics are calculated differently in R and SAS, despite both software

employing the Kenward and Roger method.

In the simulation study, Type I error rate was investigated, having the variance components

either constrained at zero or not, using the different options offered by the software. With the

default setting of SAS, higher frequencies of Type I error were observed in SAS than in R, due

to the fact that the number of degrees of freedom is calculated differently and is higher in SAS.

Thus, significant results are obtained more often with SAS than with R. Using the nobound
option of the mixed procedure, i.e., allowing negative estimates of variance components, the

frequency of Type I error was close to the correct value. This method can be recommended

since it controls Type I error [37]. However, in our study, inaccurate results (F = 0) occasion-

ally occurred when using the nobound option. For more complicated models than those

investigated in this article, the default setting of the mixed procedure may be preferable for

practical reasons, as problems with convergence may presumably arise more frequently with

the nobound option.

Negative estimates of variance components, as allowed by the nobound option, may seem

strange since variances cannot be negative. It is certainly challenging to explain the occurrence

of negative estimates of variances. Furthermore, when any variance component is negative, it

does not make sense to calculate the total variance and the components’ percentages of this

total variance, as may otherwise be done. It is an old question how to act when estimates of

variances become negative [3, 11]. One recurring suggestion is to replace negative estimates

with zero, but such procedure disturbs the properties of the estimates. In particular, the distri-

bution of the F-statistic is affected so that it is no longer F-distributed.

Linear mixed-effects models are very useful for analysis of complicated datasets, but

hypothesis tests are usually approximate. For statistical analysis of simple experiments, there

are exact methods based on sums of squares calculations, which should be preferred.
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