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Abstract
The expression of plant resistance traits against arthropod herbivores often comes 
with costs to other essential plant functions such as growth and fitness. These trade-
offs are shaped by the allocation of limited resources. However, plants might also 
possess the capability to allocate resources to both resistance and growth, thereby 
ensuring their survival when under herbivore attacks. Additionally, the extent of dam-
age caused by herbivores could vary across different years or seasons, subsequently 
impacting plant performance. In this study, we aimed to investigate how the annual 
variations in herbivore abundance and damage levels affect plant performance. We 
generated F2 progeny through a cross between two populations of the annual herb 
Datura stramonium (Solanaceae). These populations are known to have differing lev-
els of chemical defense and herbivory. These F2 plants were cultivated in a common 
natural environment for two consecutive years (2017 and 2018). Our findings reveal 
that plants with higher resistance, attained higher seed production but this trend was 
evident only during 2018. This relationship coincided with a five-fold increase in the 
abundance of Lema daturaphila (Chrysomelidae) larvae in 2018. Indeed, the plants ex-
perienced a 13-fold increase in damage during this second year of study. Furthermore, 
our results indicated that there was no trade-off between resistance, growth, and 
fitness in either of the 2 years. In contrast, during 2018, when plants faced stronger 
herbivore pressure, they allocated all available nutritional resources to enhance both 
resistance and growth. Our study highlights how the selection for plant resistance is 
dependent upon the inter-annual variation in herbivore abundance.
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1  |  INTRODUC TION

Plants face the challenge of being attacked by multiple species 
of herbivores either simultaneously or sequentially. This, in 
turn, drives natural selection on their defensive traits, encom-
passing both indirect and direct defenses, with the aim of min-
imizing damage (Agrawal et  al.,  2012; Thompson,  2005; Wise 
& Rausher,  2013). The presence of multiple herbivores attack-
ing a plant can significantly alter the evolutionary dynamics of 
plant defense against herbivory (Edwards et  al.,  2023; Wise & 
Rausher,  2013, 2016). However, due to variations in the extent 
of damage caused by different herbivores, plants must strategi-
cally determine how to allocate their limited nutrient resources 
to costly defensive traits, in order to effectively manage di-
verse herbivore pressures (Schuman & Baldwin,  2016; Wise & 
Rausher,  2016; Züst & Agrawal,  2017). As a result, plants may 
allocate nutrient resources to preferentially defend themselves 
against one herbivore species, which consequently reduces de-
fense against another herbivore species (known as diffuse coevo-
lution; Iwao & Rausher, 1997; Juenger & Bergelson, 1998; Wise & 
Rausher, 2013). Additionally, variations in herbivore abundance, 
such as insect outbreaks, occurring between seasons or years, can 
also impact the selective pressure on plant defense (as reviewed 
by Agrawal & Maron, 2022). For instance, research indicates that 
certain genotypes possessing specific chemical defenses ex-
hibit higher survival rates during intense insect herbivore attack 
compared to those genotypes that lack such chemical defenses 
(Züst et  al.,  2012). Consequently, outbreaks of herbivores have 
the potential to induce alterations in population genetic compo-
sition and demography (Agrawal & Maron, 2022). Therefore, it is 
essential to determine whether natural selection acting on plant 
defense varies over time (e.g., between years), in order to gain a 
comprehensive understanding of the evolutionary dynamics be-
tween plants and herbivores, particularly within the context of 
changing environments.

The production of defense traits in response to different herbi-
vores can result in increased costs of resistance (often quantified 
as the inverse of herbivore consumption; Simms & Rausher, 1987) 
and potential trade-offs with other plant functions, such as growth 
and reproduction (e.g., allocation cost; He et  al., 2022; Herms & 
Mattson, 1992; Monson et  al., 2022; Watts et  al., 2023; Züst & 
Agrawal,  2017). Any redirection of limited nutrient resources 
from primary metabolism to defense mechanisms may lead to a 
reduction in growth and reproduction (Züst & Agrawal, 2017). In 
contrast, when nutrient resources are not a constraint (e.g., rich-
nutrient soils), it is likely that trade-offs between growth and 
defense may disappear or at least be reduced. This could lead 
to plants simultaneously growing and defending (He et al., 2022; 
Monson et  al.,  2022). Empirical evidence also suggests that the 
relationship between growth and defense can vary depending on 
factors like the timing and level of damage received by plants and 
the abundance of herbivores present (Mauricio et al., 1997; Strauss 
& Agrawal, 1999; Züst & Agrawal, 2017). For example, the annual 

variability in insect herbivore abundance, such as insect outbreaks, 
is expected to increase plant damage and ultimately affect natural 
selection on plant resistance and growth (Agrawal & Maron, 2022). 
Furthermore, evidence indicates that some herbivores tend 
to prefer larger plants due to their higher biomass for feeding 
(Cornelissen et  al.,  2008; Price,  1991; Schlinkert et  al.,  2015; 
White, 1969). As a result, plants must strategically allocate their 
available resources to either defensive traits and/or growth to sur-
vive herbivore attacks. However, there is still a scarcity of empir-
ical studies investigating the inter-annual effects of herbivory on 
plant growth and fitness, as well as the potential trade-offs across 
years (Agrawal & Maron, 2022; De Jong & Van Der Meijden, 2000; 
Valverde et al., 2003; Züst & Agrawal, 2017).

The main aim of this study was to assess the effects of herbivory 
(including both the damage inflicted and the abundance of multiple 
herbivores) and relative growth rate (RGR) on plant fitness across 
multiple years (2017 and 2018). Additionally, we aimed to identify 
potential trade-offs among plant resistance, RGR, and reproduc-
tion. We hypothesize that plants with higher fitness will have an 
increased resistance and a lower number of herbivores over the 
2 years. This hypothesis suggests that plant resistance traits (e.g., 
secondary compounds and trichomes) reduce herbivory, thereby 
conferring a fitness benefit to the plants. Additionally, we propose 
that larger plants with faster growth rates will show higher fitness 
but lower resistance to herbivores. This second hypothesis posits 
that plants preferentially allocate nutrients towards rapid growth to 
accelerate their life cycle and secure reproductive success, rather 
than allocating resources to the production of costly resistance 
traits. To achieve this, we generated F2 progeny by crossing two 
distinct parental plants from different populations of the annual 
herb Datura stramonium (Solanaceae). These populations exhibit 
variations in chemical defense levels and herbivore communities 
(De-la-Cruz, Cruz, et al., 2020; De-la-Cruz, Merilä, et al., 2020). The 
F2 plants were planted in a common natural environment in Mexico 
for both consecutive years. Our investigation focused on two main 
questions: (1) Does the relationship between sexual fitness and plant 
resistance, herbivore abundance and RGR vary between years? (2) 
Are there trade-offs between resistance, RGR, and fitness across 
different years?

2  |  MATERIAL S AND METHODS

2.1  |  The study system

Datura stramonium is an annual herb that only grows during the 
summer season in Mexico (June–September; Núñez-Farfán & 
Dirzo, 1994). This species produces erect fruits and is distributed 
throughout North and South Mexico (Bye & Sosa,  2013; Mace 
et  al.,  1999). This species is well-known for its highly toxic tro-
pane alkaloids and terpenoids against insect herbivores (Castillo 
et  al.,  2015; De-la-Cruz, Merilä, et  al.,  2020; Miranda-Pérez 
et al., 2016). It has been discovered that foliar trichomes also play 
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a role in the defensive mechanisms of D. stramonium (Valverde 
et  al.,  2001). Previous studies have documented the evolution of 
certain tropane alkaloids and terpenoids through positive selection 
by herbivores (Castillo et al., 2015; De-la-Cruz, Merilä, et al., 2020; 
Miranda-Pérez et al., 2016; Shonle & Bergelson, 2000).

The experimental site, situated in Teotihuacán (State of Mexico, 
coordinates 19°41′6.96″ N, 98°52′19.63″ W), was selected due to 
the presence of three specialist herbivore species that infest D. stra-
monium. These herbivores consist of the two chewing beetles Lema 
daturaphila (Chrysomelidae), Epitrix parvula (Chrysomelidae), and 
the seed predator Trichobaris soror (Curculionidae) (De-la-Cruz, 
Merilä, et al., 2020). Evidence indicates that these three main her-
bivores are present across nearly the entire geographical range of 
D. stramonium in temperate climates, with their development being 
closely linked to the growing season of D. stramonium (Castillo 
et  al.,  2013,  2015; Miranda-Pérez et  al.,  2016; Núñez-Farfán & 
Dirzo, 1994). The abundance of these herbivores fluctuates over 
time in the Teotihuacán site. Furthermore, prior research has 
demonstrated that these herbivore species exert selection pres-
sures for increased resistance in D. stramonium at this site (Carmona 
& Fornoni, 2013; De-la-Cruz, Merilä, et al., 2020).

2.2  |  Experimental design

For the production of the F1 and F2 progeny used in this study, a 
total of 21 tropane alkaloids were initially identified and analyzed 
for the parental plants (comprising 45 and 47 distinct plants from 
Teotihuacán and Ticumán, respectively), employing the methods 
outlined in De-la-Cruz, Merilä, et al. (2020) (see also Figure 1). Briefly, 
to extract the tropane alkaloids from each plant, frozen leaf tissue 
was transferred to 2-mL Eppendorf tubes, grinding it with a plastic 
pestle while keeping it frozen by adding liquid nitrogen (De-la-Cruz, 
Merilä, et al., 2020). We then weighed the pulverized frozen leaf tis-
sue in Eppendorf tubes. We added two steel balls to each Eppendorf 
tube along with 1.5 mL of extraction buffer (80% methanol; MeOH; 
and 1% formic acid); the tubes were then shaken for 60 s at 30 Hz 
in a TissueLyser II (QIAGEN Inc.) (De-la-Cruz, Merilä, et al., 2020). 
Finally, the samples were centrifuged for 20 min at 14,000 revolu-
tions per minute; 700 μL of supernatant was collected and stored 
in glass vials (1.5 mL) and maintained at −4°C (De-la-Cruz, Merilä, 
et al., 2020). The samples were injected into an Agilent 1260 Infinity, 
coupled to an Accurate-Mass Time-of-Flight (TOF) LC/MS-6230, 
with an auto-sampler Agilent Technology 1200 Infinity (De-la-Cruz, 
Merilä, et al., 2020).

The cumulative quantity of all alkaloids represented the over-
all tropane alkaloid concentration of each parental plant (Figure 1). 
Subsequently, we selected the pair displaying the greatest disparity 
in total tropane alkaloid concentration: the parents Teotihuacán 1 
and Ticumán 23 (Figure 1). These plants exhibited a 58-fold differ-
ence in their total alkaloid concentration (1013 vs. 59,000 ng/g of 
leaf, respectively) (Figure  1). As the plants reached the flowering 

stage, we carried out manual pollination of the flowers. The par-
ent plant from Teotihuacán served as the pollen receptor, while the 
parent from Ticumán acted as the pollen donor (De-la-Cruz, Cruz, 
et al., 2020; De-la-Cruz, Merilä, et al., 2020; Figure 1). Germinated 
F1 seeds resulting from the cross between these two parental plants 
were cultivated and grown, following the procedure detailed in De-
la-Cruz, Cruz, et al. (2020) and De-la-Cruz, Merilä, et al. (2020) (but 
see Figure 1). To germinate the F1 progeny, we utilized seeds from 
three fruits of the same selected cross (Teotihuacán 1 and Ticumán 
23) (Figure 1). Among the germinated F1 plants (n = 8), we randomly 
selected a single plant, whose flowers were enclosed in bags to pre-
vent pollen contamination from other plants (although the plants 
were cultivated in a glasshouse; Figure 1). This particular F1 individ-
ual was allowed to self-pollinate to generate the F2 generation prog-
eny (single-family: Figure 1).

The seeds from the parental plants, F1, and F2 progenies were 
germinated by immersing them in water containers and maintain-
ing them within an environmental chamber under a photoperiod of 
12:12 L:D, at a temperature of 30°C during the day and 25°C at night, 
with a constant humidity of 85%. To promote germination, the seeds 
were sacrificed (Fornoni & Núñez-Farfan, 2000). Subsequently, the 
germinated F2 seeds were transplanted into plastic pots (237 mL) 
filled with a 1:1 mixture of sand and vermiculite, and then randomly 
distributed across benches within the greenhouse. Each F2 plant re-
ceived a uniform daily water supply (500 mL) until they were relo-
cated to natural conditions. F2 seeds were germinated separately for 
each year of study.

2.3  |  Field experiment

2.3.1  |  Experiment design

Once the two true leaves had emerged, F2 seedlings (n = 230) were 
transplanted at the start of June in both 2017 and 2018, enabling the 
F2 plants to experience the natural conditions of the experimental 
site in Teotihuacán. The planting of F2 seedlings followed a complete 
randomized design, with plants being spaced 1 m apart in a uniform 
grid pattern. The experimental plot was regularly weeded to prevent 
interference and competition by other species.

2.3.2  |  Damage by herbivores

The percentage of consumed leaf area by the three main chew-
ing herbivores was estimated with the mobile application BioLeaf 
(Machado et  al.,  2016) during three sampling periods (15, 30, and 
45 days after planting) in each year. We took photographs of eight 
randomly chosen fully expanded leaves per plant using a mobile 
phone (Samsung Galaxy S6 edge) in each sampling date. The app 
automatically calculates the injured leaf regions caused by insect 
herbivory and then estimates the defoliation (in percentage) relative 
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to the total leaf area (Machado et  al.,  2016). Thus, we estimated 
the average damage during the three sampling periods per plant. 
However, it is important to point out that in 2018 most leaf tissue 
was completely eaten by herbivores in many plants. In these cases, 
we assigned 100% of the damage to these plants.

2.3.3  |  Herbivore abundance

Three species of herbivores were recorded during three sam-
pling periods (15, 30, and 45 days after planting). In each plant, we 

counted the adults of (1) Epitrix parvula, (2) Lema daturaphila, and 
(3) Trichobaris soror. We also counted the abundance of larvae of (1) 
Lema daturaphila, and (2) Trichobaris soror (visible inside the fruits). 
Since larval development and pupation of E. parvula occur in the soil, 
we were unable to record these stages. Therefore, only the number 
of adults of this herbivore species per plant was recorded. To mini-
mize bias in insect counting, only one person counted the herbivores 
on each plant in all the sampling periods. At the end of the experi-
ments, we summed the three sampling periods as a measurement of 
the total abundance that each plant experienced by each herbivore 
in both years.

F I G U R E  1 Depiction of the 
experimental design used to produce the 
F2 generation progeny used in the study. 
Random crosses (ca. 200) were carried out 
with plants from Ticumán and Teotihuacán 
(Parental populations). Plants from these 
two populations are highly differentiated 
in their concentration of tropane alkaloids. 
We screened the concentration of 21 
tropane alkaloids for each plant. From all 
the crosses, we selected the couple with 
the most differentiated individuals in 
their concentration of tropane alkaloids; 
Ticumán 23 and Teotihuacán 1. This 
cross was self-pollinated to generate a 
F1 progeny. Seeds from the F1 progeny 
were germinated, and we only selected 
one individual to produce seeds (F2 
progeny). F2 seeds were germinated, 
and seedlings were transplanted to a 
common environment in Teotihuacán 
where the main specialist herbivores of 
Datura stramonium occur (see Section 2 for 
details).
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2.3.4  |  Plant performance

At the end of the experiment (2 months after sowing), we collected 
all fruits produced by each plant. Fruits were bagged individu-
ally and labeled. In the lab, seed set per fruit was counted and the 
total number of seeds per plant was used as a proxy of maternal 
plant fitness (see Section 2.4; Mauricio & Rausher, 1997; Motten & 
Antonovics, 1992; Nunez-Farfan et al., 1996). The plant size (plant 
height; cm) of the plants was also measured during all sampling ses-
sions. Plant height was scored from the base of the stem (at the soil 
surface) to the tip of the terminal bud using a measuring tape.

2.4  |  Statistical analysis

2.4.1  |  Statistical considerations

All statistical analyses were performed using the JMP PRO pack-
age (v17.0; SAS Institute). Plotting was made using ggplot2 
(Wickham, 2016) in R v1.1.463 (R Core Team, 2022).

First, standardized individual sexual fitness was calculated using 
the formula wi = Xi/x, where Xi represents the total number of seeds 
produced per plant, and x denotes the average number of seeds per 
plant in the experiment for each year. We used the inverse of plant 
damage as a measure of plant resistance (calculated using the oper-
ational definition 1−mean proportion of leaf area damaged; Simms 
& Rausher, 1987). We calculated the Relative growth rate (RGR) as 
an indirect predictor of plant growth/resource acquisition (Camargo 
et al., 2015; Gianoli & Salgado-Luarte, 2017) as follows:

where S1 and S2 are the plant height measured at time 1 (T1; when 
plants were transplanted) and time 2 (T2; 45 days after transplantation 
2), respectively.

2.4.2  |  Inter-annual effect on plant damage, fitness, 
relative growth rate, and herbivore abundance

We employed generalized linear models (GLMs) to examine variations 
in levels of leaf damage, fitness, relative growth rate, and herbivore 
abundance between the 2 years of study. For each of the response 
variables—fitness and herbivore abundance—we conducted sepa-
rate GLMs using a Poisson error distribution with a log link function. 
A Student's t-test was employed to assess the mean differences in 
relative growth rate between the 2 years under study. The normality 
of the residuals from the Student's t-test analysis was assessed using 
the Shapiro–Wilk test (W = 0.99, p = .0863). Additionally, a GLM with 
a binomial distribution with a logit link was conducted to analyze 
leaf damage (response variable) variation between years. All models 
were performed using raw data.

2.4.3  |  Relationship between plant fitness, 
resistance, and relative growth rate between years

We performed a Spearman's correlation analysis to assess the rela-
tionships among the damage, RGR, and abundance of each herbivore 
species for each year. All variables were standardized (x = 0, SD = 1). 
p-values of the correlations were adjusted using the Benjamini–
Hochberg False Discovery Rate (Benjamini & Hochberg,  1995). 
These correlations enabled us to examine which herbivore was most 
strongly positively correlated with plant damage. Additionally, we 
investigated whether larger and faster-growing plants or smaller and 
slower-growing plants were associated with higher herbivore abun-
dance and damage.

A phenotypic selection analysis was then performed to evalu-
ate the combined effect of RGR and resistance on plant fitness for 
each year (Lande, 1979; Lande & Arnold, 1983). For these analyses, 
we utilized a Poisson distribution with a log link. The relative sexual 
fitness was used as a response variable, while RGR, resistance, and 
their interaction were considered as predictors. By introducing the 
interaction term between resistance and RGR, we were able to inves-
tigate whether the relationship between resistance and sexual fitness 
is influenced by the plants' growth rate. This also allowed us to assess 
potential trade-offs between plant performance and resistance.

We performed two additional GLMs (one per year) using a 
Poisson distribution with a log link. These models were constructed 
with fitness as the response variable and the total abundance of each 
folivore species, RGR, and their interaction as predictors. An addi-
tional GLM was conducted (Poisson distribution, log link) to assess 
the direct impact of the seed predator (T. soror larvae) on sexual re-
production. In this model, fitness was used as the response variable, 
while the abundance of T. soror larvae, RGR, and their interaction as 
predictors. Incorporating the interactions between RGR and herbi-
vore abundance into our models, allowed us to investigate if relative 
plant fitness was affected by the interaction between growth and 
herbivore abundance.

All numeric variables used as predictors in the GLMs were 
standardized to a mean of zero and a standard deviation of one 
(x  = 0, SE = 1). The model coefficients (also named the selection 
gradients; βi, Lande & Arnold,  1983) obtained from the models 
represent the strength and direction of predictors acting directly 
on plant fitness in comparable units (standard deviations; Wise & 
Rausher, 2013).

3  |  RESULTS

3.1  |  Inter-annual effect on plant damage, fitness, 
RGR, and herbivore abundance

The percentage of leaf damage exhibited a significant 13-fold in-
crease in 2018 compared to 2017 (Table 1, Figure 2). The mean abun-
dance of both adults and larvae of L. daturaphila, along with adults of 

RGR =

S2 − S1

T2 − T1
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T. soror, displayed significantly higher numbers in 2018 when con-
trasted with 2017 (Table  1; Figure  2). Conversely, the abundance 
of E. parvula adults and T. soror larvae was greater in 2017 (Table 1; 
Figure 2). A significant increase was observed in the relative growth 
rate and relative sexual fitness in 2017 compared to 2018 (Table 1, 
Figure 2).

3.2  |  Correlation between RGR and herbivory

In 2017, larger plants with a faster growing (higher RGR) had 
higher abundance of T. soror (both larvae and adults) and E. parvula 
(Appendix 1). In 2018, plants with higher damage (more susceptible) 
had higher abundance of L. daturaphila larvae (Appendix  1). Plants 
with lower damage (more resistant) had higher RGR values only in 
2018 (Appendix 1).

3.3  |  Phenotypic selection analyses for plant 
resistance, RGR, and herbivore abundance

The GLMs of relative fitness versus resistance and RGR per year 
indicated that plants with increased resistance displayed higher fit-
ness, albeit only in 2018 (Table 2, Figure 3a). Moreover, plants with 
higher relative growth rate also had higher fitness during both years 
(Table 2, Figure 3a). No significant interaction between RGR and re-
sistance was found in both years (Table 2, Figure 3a).

The GLMs of relative fitness versus herbivore abundance (both 
larvae and adults of L. daturaphila and E. parvula, and T. soror adults) 
revealed that plants exhibiting higher sexual fitness were associ-
ated with a greater abundance of the adults of L. daturaphila (only 
in 2017), E. parvula (only in 2018) and T. soror (only in 2017) (Table 2; 
Figure 4a–c). In 2017, larger and faster-growing plants exhibited a 
decreased abundance of L. daturaphila larvae (L. daturaphila × RGR 

Year N Mean SE Estimate SE
L-R X2 
or F p

(a) Leaf area consumed

2017 218 4.83 0.21 −1.79 0.17 184.05 .0001

2018 177 65.74 1.57

(b) Relative growth rate

2017 218 1.93 0.02 0.60 0.01 1031.48 .0001

2018 177 0.72 0.03

(c) Relative sexual fitness

2017 218 0.99 0.02 0.25 0.05 26.78 .0001

2018 177 0.59 0.02

(d) Larvae of Lema daturaphila

2017 218 6.79 0.71 −0.75 0.07 126.34 .0001

2018 177 30.63 2.55

(e) Lema daturaphila

2017 218 1.46 0.12 −0.37 0.05 44.88 .0001

2018 177 3.09 0.23

(f) Larvae of Trichobaris soror (fruit)

2017 218 21.79 1.17 0.81 0.11 87.39 .0001

2018 177 4.26 0.72

(g) Trichobaris soror (leaf)

2017 218 0.16 0.02 −0.25 0.12 4.21 .0402

2018 177 0.27 0.04

(h) Epitix parvula

2017 218 8.61 0.32 0.09 0.03 6.13 .0132

2018 177 7.18 0.48

Note: (a) Leaf area consumed (plant damage). (b) Relative growth rate (RGR). (c) Relative sexual 
fitness. (d) Abundance of Lema daturaphila larvae. (e) Abundance of Lema daturaphila. (f) Abundance 
of Trichobaris soror larvae. (g) Abundance of Trichobaris soror. (h) Abundance of Epitrix parvula. 
Generalized linear models were performed using raw data.
Abbreviations: Estimate, coefficient of the model; L-R X2, likelihood-ratio test; N, number of 
individuals; SE, standard error.
Significant p-values are in bold.

TA B L E  1 Mean differentiation of traits 
measured in this study between 2017 and 
2018.
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interaction; Table 2). In 2017, plants exhibiting greater sexual fitness 
were observed to have a higher abundance of L. daturaphila larvae. 
Conversely, in 2018, plants with higher sexual fitness displayed a 
lower abundance of L. daturaphila larvae (Table  2; Figure  4d). No 

significant interaction between herbivores and RGR was observed 
in 2018 (Table 2).

In 2017, larger and faster-growing plants with higher fitness dis-
played a higher abundance of T. soror larvae (Table 2; Appendix 2). 

F I G U R E  2 Barplots showing the mean differentiation and error bars of relative sexual fitness (a), relative growth rate (b), leaf area 
consumed % (c), abundance of Lema daturaphila larvae (d), abundance of L. daturaphila adults (e), abundance of Epitrix parvula (f), abundance 
of Trichobaris soror adults (g) and abundance of T. soror larvae (h) between the 2 years of study (2017 and 2018). Raw data were used for 
plotting. *Depicts a significant p-value < .05. See also Table 1.
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In contrast, in 2018, plants with higher fitness and growth rate 
also demonstrated a lower abundance of T. soror larvae (Table  2; 
Appendix 2).

4  |  DISCUSSION

In this study, during 2017, herbivory was significantly lower com-
pared to 2018. In 2017, plant resistance did not increase plant fit-
ness. In contrast, in 2018, the escalated herbivory caused mainly 
by L. daturaphila larvae led to higher plant mortality or reduced 
seed production in the surviving plants. However, these surviving 
plants with higher seed production also exhibited higher resist-
ance and a lower abundance of L. daturaphila larvae. This suggests 
that plants allocated nutrient resources to resistance traits when 
faced with more severe herbivory in 2018. These findings empha-
size the influence of L. daturaphila larvae as a selective agent of 
resistance in D. stramonium at the study site. Moreover, our find-
ings also highlight how the year-to-year variation in the abundance 
of L. daturaphila may lead to frequency-dependent selection for 
an increased plant resistance. For example, positive selection for 
plant resistance may be relaxed at lower abundance of L. datu-
raphila larvae. In contrast, outbreaks of this herbivore can increase 
the selective pressure, resulting in selection for an increased plant 
resistance, as we observed. Thus, conducting long-term studies 
(e.g., >2 years) into plant-herbivore interactions not only evaluates 
the consequences of species interactions but also considers them 
within the context of fluctuating population densities, changing 
environmental conditions, and shifts in the community composi-
tion (Agrawal & Maron, 2022).

Our results also demonstrated that larger plants with a faster 
growth rate exhibited higher fitness in both years. However, the ef-
fect size of the relative growth rate on fitness was more pronounced 
during the second year when the abundance of L. daturaphila lar-
vae was higher. Furthermore, these larger plants with faster growth 
rates were also more resistant, particularly in 2018. This suggests 

that plants might have strategically allocated all their available nutri-
ent resources to simultaneously resist herbivory and promote faster 
growth, thereby increasing their chances of survival under the in-
tense herbivore attack experienced in 2018 (Allcock & Hik, 2004; 
Carmona & Fornoni, 2013; Fornoni et al., 2004). Previous research 
has shown that individuals with faster biomass accumulation have 
greater carbon availability, leading to increased growth of roots and 
shoots. This, in turn, improves access to light and soil nutrients, re-
sulting in overall biomass accumulation and reaching the reproduc-
tive stage faster, thus ensuring their survival (Chiariello et al., 1989). 
Therefore, the increased resistance and RGR in 2018, may provide 
higher fitness benefits by simultaneously allocating resources to 
both traits. This synergistic strategy could surpass the advantages 
offered by either strategy alone when faced with severe herbiv-
ory (Carmona & Fornoni, 2013; Fornoni et al., 2004; Núñez-Farfán 
et al., 2007; Stinchcombe & Rausher, 2002).

Our findings also contrast with the common growth-defense 
trade-off observed in resource allocation strategies of plants (Züst 
& Agrawal,  2017). While nutrient redirection to defensive traits 
often leads to a trade-off between growth and defense (Ågren & 
Schemske, 1994; He et al., 2022; Herms & Mattson, 1992; Monson 
et  al.,  2022; Watts et  al.,  2023), certain plant species with high 
growth rates can still produce defensive traits, enhancing overall fit-
ness (Almeida-Cortez et al., 1999; Carmona & Fornoni, 2013). Our 
results suggest potential functional complementarity between re-
sistance and growth traits, particularly when resistance alone is in-
sufficient against herbivores. In such cases, a faster growth may help 
buffer the negative impact of herbivore damage on fitness (Carmona 
& Fornoni, 2013; Valverde et al., 2003).

We also observed that the damage caused by L. daturaphila 
larvae could potentially impact the fitness and survival of other 
specialist herbivores. For instance, in 2017, when plants were not 
subjected to lethal damage, they exhibited better health. Therefore, 
we recorded a higher abundance of T. soror (adults and larvae) and 
E. parvula in larger and faster-growing plants that also had a higher 
fitness. In contrast, in 2018, a year marked by elevated plant damage 

F I G U R E  3 Relationships between 
relative sexual fitness, plant resistance, 
and relative growth rate in 2017 (a) 
and 2018 (b). Predictor variables were 
standardized to mean = 0 and standard 
deviation = 1. Lines of the generalized 
linear models are only shown for 
significant relationships (p-value < .05). 
See also Table 2.
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by L. daturaphila, plants produced a lower average number of seeds 
and grew smaller compared to 2017, resulting in a decreased avail-
ability of seeds and leaves for T. soror and E. parvula. Therefore, the 

impact of L. daturaphila on plant fitness may intensify direct compe-
tition for limited plant resources. This is because L. daturaphila larvae 
consume considerable quantities of plant tissues, including leaves 

F I G U R E  4 Relationships between 
relative sexual fitness, adults of Lema 
daturaphila (a), adults of Epitrix parvula 
(b), adults of Trichobaris soror (c), and 
larvae of Lema daturaphila (d) during 
2017 and 2018. Predictor variables 
were standardized to mean = 0 and 
standard deviation = 1. Lines of the linear 
models are only shown for significant 
relationships (p-value < .05). See also 
Table 2.

(a)

(b)

(c)

(d)
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and seeds, thereby reducing resource availability for the other spe-
cialist herbivores.

During the second year of study, we also observed that plants 
displaying higher seed production exhibited a reduced abundance of 
T. soror larvae. We speculate that these plants might have defended 
themselves against this herbivore. Previous research has documented 
that the seeds of D. stramonium contain scopolamine, a tropane alka-
loid known to serve as a defense against this seed predator (Miranda-
Pérez et al., 2016). Furthermore, in a prior study involving the same F2 
progeny used here for 2018, we reported that scopolamine led to a 
decrease in the number of T. soror adults found on leaves (De-la-Cruz, 
Merilä, et al., 2020). These findings also stress the plants' capability 
to withstand attacks from multiple herbivores to survive (Iwao & 
Rausher, 1997; Juenger & Bergelson, 1998; Wise & Rausher, 2013).

Determining the causes of high plant damage—whether it arises 
from increased herbivore numbers, low plant resistance, or both—
is complex. However, our correlation analysis did show that plants 
with more leaf damage had higher numbers of L. daturaphila larvae. 
Notably, this association was only observed during 2018, the year of 
the herbivore outbreak. Furthermore, in a previous study, we have 
reported the genetic basis for chemical defenses in the F2 progeny 
used here (De-la-Cruz, Merilä, et  al.,  2020). Our results revealed 
that plants with high leaf damage (low resistance) were more ge-
netically related to the Teotihuacán parent, which was selected for 
its lower alkaloid concentration. Conversely, plants that exhibited 
low leaf damage (high resistance) were genetically more related to 
the Ticumán parent, selected by its higher alkaloid concentration 
(De-la-Cruz, Merilä, et al., 2020). Indeed, we observed positive se-
lection for a triterpenoid compound in plants genetically related to 
the Ticumán parent (De-la-Cruz, Merilä, et al., 2020). This compound 
also reduced the abundance of L. daturaphila larvae in the F2 plants 
more genetically linked to the Ticumán parent (De-la-Cruz, Merilä, 
et al., 2020). It is noteworthy to mention that triterpenoids also in-
hibit the larvae of Manduca sexta in other Solanaceae species such as 
Nicotiana tabacum (Laothawornkitkul et al., 2008). Thus, our results 
indicate that plant resistance was inherited in the F2 progeny. We 
ruled out the likelihood of a phenotypic plastic response in plant re-
sistance, as we would anticipate that plants more genetically related 
to the Teotihuacan parent (low resistance) would also exhibit high 
resistance, yet our observations did not show this (De-la-Cruz, Cruz, 
et al., 2020; De-la-Cruz, Merilä, et al., 2020).

In summary, our results are in line with our hypothesis that plant 
resistance traits reduce herbivory and confer a fitness advantage, 
particularly under the high levels of herbivory observed in the sec-
ond year of the study. Our results did not support the hypothesized 
trade-off between plant resistance, growth, and fitness. We antici-
pated that larger plants with accelerated growth would show higher 
fitness but reduced resistance to herbivores. However, our obser-
vations revealed no evidence of this trade-off. Rather, it appears 
that plants allocated their nutritional resources to both resistance 
and growth as a survival strategy, especially under severe herbi-
vore pressure from L. daturaphila larvae in 2018. This highlights 
how a major herbivore species (L. daturaphila larvae) can drive the 

evolution of plant defense mechanisms and, by competing for food 
resources, can influence the fitness of other herbivore species. Our 
study also highlights that fluctuating environments, exemplified by 
inter-annual variations in herbivore abundance, have a significant 
impact on plant resistance and, ultimately, on plant performance.
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APPENDIX 1
Correlograms illustrate the relationships between herbivore abundance and leaf area consumed (plant damage) and relative growth rate for 
the years 2017 (a) and 2018 (b). The magnitude and color intensity of each circle indicate the strength of the correlation. Only statistically 
significant correlations (p-value < .05) are displayed; blank spaces denote non-significant correlations.

APPENDIX 2
Relationship between fitness, relative growth rate, and abundance of Trichobaris soror larvae across the 2 years of study (2017 and 2018). 
Predictor variables were standardized to mean = 0 and standard deviation = 1. Lines of the linear models are only shown for significant rela-
tionships (p-value < .05). See also Table 2.

(a) (b)
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