
Citation: Manickam, S.; Rajagopalan,

V.R.; Kambale, R.; Rajasekaran, R.;

Kanagarajan, S.; Muthurajan, R. Plant

Metabolomics: Current Initiatives

and Future Prospects. Curr. Issues

Mol. Biol. 2023, 45, 8894–8906.

https://doi.org/10.3390/

cimb45110558

Academic Editors: Laura Del Coco

and Chiara Roberta Girelli

Received: 5 October 2023

Revised: 30 October 2023

Accepted: 6 November 2023

Published: 8 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Plant Metabolomics: Current Initiatives and Future Prospects
Sudha Manickam 1,†, Veera Ranjani Rajagopalan 1,† , Rohit Kambale 1, Raghu Rajasekaran 1,
Selvaraju Kanagarajan 2,* and Raveendran Muthurajan 1,*

1 Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology,
Tamil Nadu Agricultural University, Coimbatore 641003, India; sudha.m@tnau.ac.in (S.M.);
rajaranji@gmail.com (V.R.R.); rohitkamble568@gmail.com (R.K.); raghu.r@tnau.ac.in (R.R.)

2 Department of Plant Breeding, Swedish University of Agricultural Sciences,
P.O. Box 190, 234 22 Lomma, Sweden

* Correspondence: selvaraju.kanagarajan@slu.se (S.K.); raveendrantnau@gmail.com (R.M.)
† These authors contributed equally to this work and share the first authorship.

Abstract: Plant metabolomics is a rapidly advancing field of plant sciences and systems biology. It
involves comprehensive analyses of small molecules (metabolites) in plant tissues and cells. These
metabolites include a wide range of compounds, such as sugars, amino acids, organic acids, secondary
metabolites (e.g., alkaloids and flavonoids), lipids, and more. Metabolomics allows an understanding
of the functional roles of specific metabolites in plants’ physiology, development, and responses
to biotic and abiotic stresses. It can lead to the identification of metabolites linked with specific
traits or functions. Plant metabolic networks and pathways can be better understood with the help
of metabolomics. Researchers can determine how plants react to environmental cues or genetic
modifications by examining how metabolite profiles change under various crop stages. Metabolomics
plays a major role in crop improvement and biotechnology. Integrating metabolomics data with other
omics data (genomics, transcriptomics, and proteomics) provides a more comprehensive perspective
of plant biology. This systems biology approach enables researchers to understand the complex
interactions within organisms.
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1. Introduction

Recent improvements in plant biotechnology techniques have significantly deepened
our understanding of the metabolic regulations in individual plants. Over the last two
decades, sophisticated molecular omics technologies have been widely used. These include
integrating high-throughput technologies using liquid chromatography–mass spectroscopy
(LC-MS) and gas chromatography–mass spectrometry (GC-MS) approaches to identify new
metabolic regulations in existing pathways that influence the cellular physiology, and, ulti-
mately, the plant phenotype. Recent metabolomics initiatives have prioritized yield-related
features with a focus on increasing quality. In particular, integrating metabolomics with
other approaches, like quantitative genetics, transcriptomics, and genetic manipulation,
has shown its crucial role in crop improvement.

Several integrated technologies and methodologies, such as methods based on mass
spectrometry (MS), are employed for the large-scale exploration of highly complex plant
extracts. They include GC-MS, LC-MS, NMR, MALDI, capillary-based MS, and other
MS-based techniques. In addition, the emergence of genome editing tools has enabled plant
biologists to perform precise and efficient targeted modification in a wide variety of plant
species to identify gene functions and manipulate metabolic pathways. Notably, applying
these modern tools has enabled crop improvement programs to flourish by enhancing the
quality traits, including flavonoids, folate, and protein composition. This comprehensive
review focuses on the latest investigations into plant metabolomics and its applications for
crop improvement.
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2. Metabolomic Platforms and Large-Scale Metabolite Databases

Metabolomics is a dynamic and developing area that comprehensively understands
the metabolic characteristics of biological systems. Metabolomics is the systematic study of
the metabolome of cells, biofluids, tissues, or organisms, utilizing high-throughput analyt-
ical techniques to identify and measure the changes in metabolites linked with diseases.
Multiple analysis techniques are required due to the complexity of the metabolome and
the vast range of physiochemical properties of the metabolites. Mass spectrometry, NMR,
LC-MS, and GC-MS are the most often utilized analytical platforms. These approaches
enable extensive data generation and enhanced chemometric analysis, which provide basic
information about the metabolites (Figure 1). In contrast to NMR, mass spectrometry’s
higher sensitivity enables researchers to systematically cover the metabolome data. Due
to this, researchers were able to find novel metabolic biomarkers and molecules that can
aid the reconstruction of metabolic networks. Recent developments in ionization tech-
nologies, such as air pressure chemical ionization (APCI), electrospray ionization (ESI),
and MALDI-TOF, have improved the accuracy of mass spectrometry [1]. Due to the large
sample requirement of NMR and its lower sensitivity, its capacities to identify physical
properties of ligands, binding sites on the protein, direct binding of the target protein, and
the detection of protein–ligand complex structures continue to be its advantages over MS.
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Figure 1. Schematic representation of metabolomics workflow.

The GC-MS platform involves the derivatization of samples, making the compounds
volatile and leaving underivatized compounds (except hydrocarbon) unnoticed during
analysis. Higher sample throughput and co-eluting peak separation have been made
possible by the advent of GC X GC-TOF-MS [2]. To identify both primary and secondary
metabolites of higher mass, LC-MS primarily employs ESI and APCI, which are frequently
utilized for targeted and non-targeted approaches [3]. In addition to these platforms,
targeted metabolomics focuses on analysis of specific categories of metabolites with precise
selectivity as well as on sensitivity and untargeted metabolomics studies in analyzing all
detectable metabolites, including unknown compounds. Capillary electrophoresis–mass
spectrometry (CE-MS) offers high-resolution separation of various analyte groups (charged,
neutral, polar, and hydrophobic) [4]. MS is also coupled with FAIMS (field asymmetric
waveform ion mobility spectrometry), an electrophoretic method based on ion mobility.
Biological samples, such as volatile chemicals produced during bacterial growth, are
detected using the FAIMS method [5]. MET-COFEA, MET-Align, ChromaTOF, and MET-
XAlign are a few examples of the data processing platforms used to process the extensive
data sets produced by the aforementioned high-throughput technologies [6–8]. Prior to the
identification of chemicals, this involved baseline correction, alignment, separation of co-
eluting peaks, and normalization (Figure 1). METLIN, NIST, GOLM, and other metabolome
databases can be utilized to detect metabolites [9]. Additionally, utilizing web-based tools
and software like MetaboAnalyst 5.0, Cytoscape 3.10.1 and statistical analysis tools, data
are subjected to statistical analysis to detect the metabolites [10,11]. Locating metabolic
markers linked to various traits is made easier by these analyses. Initiatives like the Plant
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Metabolic Network (PMN) and the Metabolomics Workbench will provide centralized
databases of plant metabolites, pathways, and related information that will aid researchers
in data sharing and analysis.

3. Role of Metabolomics in Crop Improvement

Metabolomics is a promising approach to the understanding of abiotic stress tolerance
in plant species. The use of metabolomics can help in designing novel strategies to direct
metabolism towards crop improvement. Metabolomics has recently been used to seek
unique metabolites in plants throughout their life cycles. Crop yield loss is significantly
affected by biotic and abiotic stresses [12]. The identification of specific events that acti-
vate immune sensors in plants to provide resistance, such as effector-triggered immunity,
pattern-triggered immunity, and pattern recognition receptors, is necessary for the detection
of invasive species. The plant produces phytohormones to provide stress resistance as soon
as abiotic stress occurs. Stomatal conductance is disrupted by oxidative stress, which also
activates a number of signaling systems [13]. Overall, a specific plant species with a unique
gene expression profile reflects the precise composition of its metabolites. The activation of
a specific metabolic network results in the synthesis of a novel bioactive compound [14].
The general steps involved, from diagnostics to metabolomics-assisted breeding for crop
improvement, are shown in Figure 1.

4. Metabolomics and Its Regulations in Abiotic Stresses

The most promising technique for understanding the regulation of abiotic and biotic
stress tolerance in plant species is metabolomics (Figure 2). In metabolomics studies, a plethora
of sophisticated MS-based instruments are widely utilized to enhance the comprehension
of plants’ ability to withstand abiotic stress [15]. In general, plant metabolic profiling under
abiotic stressors can be performed using GC-MS. Time of flight–mass spectrometry allows for
the quick and efficient discrimination and detection of a variety of metabolites in mixed sam-
ples, which is beneficial for the identification of abiotic stress-regulated metabolites [16–18].
Abiotic stresses drastically change plant growth and development, severely restricting plant
distribution and lowering the agricultural productivity [17]. Plants experience osmotic stress
as a result of altered ion concentration and homeostasis under drought and salinity stress [19].
All fundamental metabolites, including sugars, sugar alcohols, and amino acids are difficult
to synthesize in plants under abiotic stressors [20].

Eight wheat cultivars were subjected to GC-MS metabolic profiling in order to gain
insights into the mechanism of drought tolerance. Under drought stress, an elevated
amino acid concentration was observed [21]. In 2018, Yang and colleagues [22] applied
RP/UPLC-MS to conduct metabolic profiling of drought-stressed maize. The results indi-
cated increased lipid and carbohydrate metabolism, along with an accelerated glutathione
cycle. Metabolic profiling using LC-MS and GC-MS data also supported the difference in
metabolite accumulation between young and mature leaves [23,24]. A GC-MS technique
was used to detect increased synthesis of 4-hydroxycinnamic acid, ferulic acid, stearic acid,
and xylitol in rice under drought conditions [6]

GC-MS-based metabolic profiling of rice seedlings under salt stress revealed the hy-
peraccumulation of key amino acids such as leucine, isoleucine, valine, and proline [25].
Comparative metabolic profiling using GC-TOF-MS in salinity-tolerant and susceptible
genotypes of rice revealed higher concentrations of amino acids [26]. GC-MS based pro-
filing under salinity stress conditions revealed elevated levels of proline, sucrose, xylose,
maltose, and organic acids [27]. Another investigation on rice grown under salt stress
found that it possessed less shikimate and quinate [28]. In rice, using jasmonate has been
demonstrated to reduce salt damage. The jasmonate pathway is a crucial hormonal mech-
anism of great relevance [29]. Furthermore, metabolomics technologies have been used
to investigate changes in the metabolic profiles of numerous crop plants. Furthermore,
various metabolomics tools have been used to investigate changes in the metabolic profiles
of numerous crop plants, including tomato, maize, barley, and wheat [30–32].
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The synthesis of secondary metabolites is impacted by heat stress [33]. LC-MS/MS-
HPLC profiling of wheat grains revealed higher amounts of sucrose during heat stress [34].
Comparative metabolic profiling of heat-tolerant and susceptible soybean genotypes
showed higher concentrations of carbohydrates in the heat-tolerant genotype. Many
metabolites, including arabitol, pinitol, and erythritol, were also produced in lower con-
centrations by these tolerant genotypes [35]. In order to observe the impacts of heat stress,
metabolomics studies were also carried out for other significant crops, including tomato,
maize, and wheat [36–38].

According to metabolic fingerprinting, tomato plants under N stress have lower
concentrations of organic and amino acids [39]. A metabolic profiling technique based on
UHPLC revealed that barley underwent nutrient stress-induced synthesis of organic acids,
amino acids, and S-responsive metabolites [40]. Metabolic profiling of P-deficient barley
exhibits lower amounts of various organic acids [41]. Similarly, P stress in nodules and
roots was examined by common bean metabolic profiling [42], and low nitrogen levels in
wheat were also studied [43].

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 4 
 

 

genotypes of rice revealed higher concentrations of amino acids [26]. GC-MS based pro-

filing under salinity stress conditions revealed elevated levels of proline, sucrose, xylose, 

maltose, and organic acids [27]. Another investigation on rice grown under salt stress 

found that it possessed less shikimate and quinate [28]. In rice, using jasmonate has been 

demonstrated to reduce salt damage. The jasmonate pathway is a crucial hormonal mech-

anism of great relevance [29]. Furthermore, metabolomics technologies have been used to 

investigate changes in the metabolic profiles of numerous crop plants. Furthermore, vari-

ous metabolomics tools have been used to investigate changes in the metabolic profiles of 

numerous crop plants, including tomato, maize, barley, and wheat [30–32]. 

The synthesis of secondary metabolites is impacted by heat stress [33]. LC-MS/MS-

HPLC profiling of wheat grains revealed higher amounts of sucrose during heat stress 

[34]. Comparative metabolic profiling of heat-tolerant and susceptible soybean genotypes 

showed higher concentrations of carbohydrates in the heat-tolerant genotype. Many me-

tabolites, including arabitol, pinitol, and erythritol, were also produced in lower concen-

trations by these tolerant genotypes [35]. In order to observe the impacts of heat stress, 

metabolomics studies were also carried out for other significant crops, including tomato, 

maize, and wheat [36–38]. 

According to metabolic fingerprinting, tomato plants under N stress have lower con-

centrations of organic and amino acids [39]. A metabolic profiling technique based on 

UHPLC revealed that barley underwent nutrient stress-induced synthesis of organic ac-

ids, amino acids, and S-responsive metabolites [40]. Metabolic profiling of P-deficient bar-

ley exhibits lower amounts of various organic acids [41]. Similarly, P stress in nodules and 

roots was examined by common bean metabolic profiling [42], and low nitrogen levels in 

wheat were also studied [43]. 

 

Figure 2. Plant metabolomics: a new era in the advancement of crop improvement. 

  

Figure 2. Plant metabolomics: a new era in the advancement of crop improvement.

5. Metabolite Accumulation in Biotic Stresses

Metabolomics profiling identifies significant changes in plant primary and secondary
metabolites as a result of pathogen infection [44]. To activate defense mechanisms against
pathogen attacks, plants adopt various strategies. It is challenging to decode the entire
metabolome of a plant species because plant cells contain a diverse range of metabolites [45].
In response to biotic stressors, plants have built up a number of metabolites that function
as biomarkers to control biotic stress resistance in different plants [46]. Significant amounts
of benzoxazinoids (BXs), essential secondary metabolites, have been found in maize, acting
as a defensive mechanism against biotic stress [47]. The identification of complex metabolic
networks involved in plant–pathogen interaction is enabled by comparative metabolic
profiling of diseased and healthy plants [48].
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The capillary electrophoresis/time of flight mass spectrometry platform was used
to investigate rice cultivar tolerance to Rhizoctonia solani. Upon fungal infection, higher
quantities of glyceric acid, jasmonic acid, and mucic acid were generated [49]. To better
understand the metabolomics of viral infection, horse gram germplasms were evaluated
for tolerance to horse gram yellow mosaic virus, marking extreme groups of resistance and
susceptibility [50]. GC-MS was used to pinpoint a range of biomolecules that contribute
to HgYMV resistance. In the highly resistant genotype, the metabolite profile revealed
a significant accumulation of three anti-virals (octadecanoic acid, diphenyl sulfone, and
2-aminooxazole), one insecticidal (9,10-secocholesta-5,7,10(19)-triene-3,24,25-triol), one
antifeedant (cucurbitacin B), and six metabolites with unknown biological functions. In
our other study, comparative GC-MS analyses revealed that the powdery-mildew-resistant
mutant in horse gram expressed thirteen classes of unique defense-related metabolites that
allowed it to withstand pathogenicity with minimum yield loss [51].

Higher accumulations of phenylalanine, glutamine, and linoleic acid were identified
in gall-midge-resistant rice varieties by the GC-MS technique [52]. Similarly, GC-MS
profiling showed higher amounts of carbohydrates, lipids, alkaloids, acetophenone, and
xanthophylls in the bacterial-leaf-blight-resistant rice varieties [53]. Using LC-MS, GC-
MS, and NMR-based metabolomics methods, the metabolomic profile of rice infested
with Magnaporthe grisea was carried out and found to have a varied metabolomic profile.
Similarly, two metabolites, namely smiglaside and smilaside, were identified in maize
when examining the mechanism behind resistance to Fusarium graminearum [54]. Profiling
of metabolites revealed the presence of polyphenols, lignin, and flavonoids in an analysis
for resistance to southern corn leaf blight using FT-IR and NMR techniques [55].

6. Metabolomics in Assessing the Nutrients

Plants require essential nutrients for normal growth and development. Metabolites
are formed in plant cells from structural units including carbon, phosphorus, sulfur, and
nitrogen. Nitrogen serves as a fundamental structural unit for cellular metabolites, namely
nucleic acid, amino acids, and proteins, as well as for several secondary metabolites [56].
Large numbers of metabolites like threonate, glycerate, and inositol were synthesized under
a limited supply of nitrogen [57]. A comparative metabolomic analysis of the nutritional
and therapeutic potential of rice grains of the traditional variety Mappillai Samba profiled
the phytochemical contents of the therapeutically known traditional rice against white
rice CBMAS 14065 using non-targeted GC-MS/MS. This study identified therapeutically
important metabolites in Mappillai Samba [58]. Khan and colleagues used GC-MS and
LC/MS technology to undertake wheat metabolomic profiling and discovered increased
tyrosine, lysine, allo-inositol, and L-ascorbic acid synthesis in wheat under N stress [18].
Under N stress, increased amounts of fructose, ribulose, and lyxose were found in a wheat
metabolome investigation using an integrated GC-TOF-MS technique [59].

7. Metabolomics in Discovering Biomarkers

Metabolomics is used in plant biology to discover biomarkers associated with specific
physiological conditions or diseases. This can have applications in plant breeding and
precision agriculture. An efficient method of screening was developed and validated to
identify metabolic markers of several phenotypes from different environmental variations
or from the availability of genomic data. An untargeted screening procedure is utilized
to find biomarkers for traits with unknown biochemical mechanisms. The metabolic
biomarker screening tool is employed in the identification of biomarkers for several complex
traits that include yield, disease resistance, and stress tolerance.

Several metabolites have been identified as diagnostic biomarkers, such as fructose,
tyrosine, glucose, glutamine, threonine, serine, and valine, in post-harvest quality trait
identification of potato tubers. Metabolomics was also utilized to select progeny with
desired traits from a segregating breeding population [60]. Though metabolite-based
biomarkers or metabolite biomarkers have not yet been reported, metabolic biomarkers
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are commercially exploited. In addition, recently reported information on metabolomic
profiling revealed the presence of signature metabolites.

Efforts have been made in the recent past to analyze the parental metabolomes in
order to predict the power for heterosis for the selection of biomarkers. Gärtner et al. [61]
identified predictive biomarkers for biomass heterosis in Arabidopsis and demonstrated that
metabolic analysis can significantly improve the efficiency of genetic data, suggesting the
complex mechanism underlying heterosis.

8. Metabolomics-Assisted Breeding

Metabolite profiling serves as a powerful tool for guiding the breeding process towards
identification of promising traits in the early stages of selection. Genotypic variation is also
assessed with the use of metabolite profiling prior to the development of molecular tools
for a particular species [62].

High-throughput metabolome analysis paved the way for significant advancements
in software tool design as well as instrumentation innovation during the last decade.
Research fields, including biotechnology, functional genomics, precision plant breeding,
and disease diagnostics benefited from the applications of metabolomics and also the move
forward toward translational metabolomics [63]. Recent advancements have sped the
screening process, and the incorporation of metabolomic technologies will shorten the
time required to generate elite crop varieties resistant to biotic and abiotic influences. In
addition, metabolomics has a greater potential for the diagnosis of metabolites and plant
phenotyping [64]. Approximately 840 metabolite units were found in 524 rice varieties,
having the potential to be exploited in crop-breeding strategies in the future [65].

The combination of metabolomics and association-mapping approaches showed the
linkage between genomic regions of maize and kernel composition, starch content in potato,
pigment content in tomato, and pro vitamin A in maize [64]. Targeted metabolomic plat-
forms in turn benefit from several strategies because of higher mapping resolution and high
allele numbers [66] The transition from single metabolite measurements to metabolomic
platforms led to the developments of models that link different biochemical pathways,
metabolisms, and yield related traits. The key alleles identified in crops like tomato, wheat,
rice, sesame, broccoli, mustard, and Arabidopsis were utilized in metabolic engineering.

Metabolic genome-wide association studies (mGWASs) have recently emerged as a tool
to elaborate the natural genetic basis of several metabolic changes in the plant metabolome.
Novel candidate genes were identified in rice in an efficient manner by phenotypic genome-
wide association studies (pGWASs). The identification of biomarker metabolites in Ara-
bidopsis wild type and mutants used an integrative approach to metabolic profiling and
resulted in hundreds of individual compounds. Identification of biomarker metabolites
within metabolite protein correlation networks allowed the visualization of inherent time-
dependent biological characteristics in the identification of metabolites and proteins. This
serves as a promising approach toward diagnostic technology and biomarker discovery.

The location of genetic factors that determine natural variation in mapping populations
led the way in identifying biomarker metabolites that reflect the genotypic and phenotypic
variations in crops. These findings clearly define the way to integrate the studies of the
complex regulation of plant metabolism, which can be used for traditional breeding and for
metabolic engineering of agronomically important crops. In plant biology, metabolomics
has a key role as a fundamental tool in systems biology research, which also has great
potential for predictions and diagnostics for plant breeding and biotechnology. Intensive
development of comprehensive databases will accumulate and elaborate information about
metabolic networks. The correlation between the genotype and phenotype will provide
rich sources for the search of new, valuable phenotypic traits and their metabolite markers.

9. Implications of Data Science in Plant Metabolomics

Data science has the ability to completely revolutionize our understanding of plant
metabolism. In order to gain insights about plants’ development, growth, and interactions
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with their environment, enormous amounts of complicated data are being analyzed using
techniques like machine learning, statistical modeling, and network analysis. The goal of ap-
plying data science in plant metabolomics is to demonstrate the potential for analyzing data
from studies on plant metabolism using various data science methods and approaches [67].

Data science techniques are important in order to effectively address the problems
caused by harmful plant metabolites and environmental concerns. These techniques involve
analyzing vast, complicated datasets using statistical, computational, and mathematical
tools, allowing the detection of patterns, correlations, and trends that may not be readily
obvious from the raw data. Multivariate analytic tools, like principal component analysis
(PCA), partial least squares (PLS), partial least squares discriminant analysis (PLS-DA),
and orthogonal projections to latent structures (OPLS), are important tools among the
statistical techniques and software programs. These methods can aid in locating metabolite
data patterns that might be connected to particular biological elements, such as treatment
conditions or genetic variation. In response to biotic and abiotic challenges, a thorough
overview of the many analytical techniques that can be employed to identify alterations in
plant metabolomics was provided by [68]. To gain a more thorough understanding of plant
stress responses, the author emphasized the significance of integrating various forms of
data, such as transcriptome and proteomic data, with metabolite data. To research plant
metabolites with the involvement of more metabolomic pathways and their effects on the
environment, metabolomics uses a variety of data science techniques and modeling.

The use of artificial intelligence (AI) for the classification of plant metabolites and
plant metabolism is still in its infancy. However, there are some possible uses for AI in
plant metabolomics. To find new secondary metabolites and their functions, for instance,
large-scale metabolomic datasets can be analyzed using AI algorithms. AI algorithms are
effectively used to analyze large-scale metabolomic datasets for novel secondary metabo-
lite identification (Figure 3). Additionally, machine learning algorithms can be used to
categorize and forecast the roles of various metabolites based on their structural properties
and other variables [67]. This can improve our comprehension of the roles played by
various plant metabolites during plant development, defense, and environmental inter-
actions. In turn, the use of data science techniques predicts the role of plant metabolism
in influencing the environmental factors, as well as in improvising the strategies in plant
breeding programs.

Furthermore, it is possible to gather a wealth of information on plant metabolomic
studies. Integration of data sources, like remote sensing and high-throughput phenotyping,
facilitates the accuracy and efficient modeling of complex biological systems.

A convolutional neural network (CNN) was used in classifying spikes and spikelets
in images of wheat to interpret plants’ development [69]. Also, a deep neural network was
developed to detect pests and diseases in tomatoes [70]. Additionally, interdisciplinary
collaboration between plant scientists and data scientists will enable the usage of AI in
agricultural research into data integration for crop improvement.
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10. Metabolomics for Plant-Microbe Interactions Research

Various strategies are being used to investigate the relationships between microbial
species and the plants in which they live. In comparison to genomic and transcriptomic
techniques, the application of metabolomics and its tools in plant–microbe interaction
investigations are largely underutilized. Metabolomics not only gives a comprehensive
view of the metabolic pathways involved in plant–microbe interactions, but also lights up
the underlying mechanisms of host and microbe interactions. Arabidopsis, plant growth-
promoting bacteria (PGPB), and other bacteria communicate with one another, providing
an effective instance of the integration of several forms of omics data [71].

Despite the large number of studies that have been published utilizing metabolomics
techniques, research in this subject is still in its early stages, with a constantly evolving
methodology. Organic acids were the principal released metabolites absorbed by the
bacterial enrichment in the substrate [72]. Flavonoids were identified in root exudates
that trigger bacterial nod genes and initiate nodule development [15]. In another study,
untargeted metabolomics were used to identify a number of lipid indicators of Plasmopara
viticola inoculation in grapevines [73]. Another metabolomic study on the interaction
of several maize genotypes with two nitrogen-fixing PGPB species identified that plant
metabolites were altered by bacterial nitrogen fixation [74].

Metabolomics is an appropriate method for studying complex biological interactions
within the rhizosphere. Its application to the study of beneficial plant–microbe interactions
lags behind other omics approaches, despite the fact that it offers many opportunities to
broaden our understanding of the underlying mechanisms of beneficial plant–microbe
interactions [75]. The use of metabolomics to study plant–microbe interactions has several
challenges, including determining the origin of the metabolites studied, revealing the
metabolic complexity of two or more interacting organisms, and integrating metabolome
data with other omics approaches.

11. Interrelationship between Different Omics

Metabolomics is significantly smaller than proteome and genome, making it relatively
easier for data processing and analysis. Only around 3000 metabolites are often used in the
major metabolic pathways (Figure 4). The knowledge of metabolic QTLs (mQTLs) about
metabolic networks controlling the complex mechanisms in metabolomics has a potential
role in metabolomics-assisted breeding to develop elite cultivars for better quality and
yield, providing a complete understanding of quantitative genetics [76]. Metabolic profiling
identifies single-nucleotide polymorphism (SNP) markers or mQTL mapping analysis for
candidate gene finding by bridging the genotype–phenotype gap. Metabolic markers
are powerful tools for identifying agronomic features and investigating the metabolic
mechanisms underlying diverse phenotypes [77]. The mQTLs technique dissects the
integrated study of gene expression and metabolite profiles to establish a relationship
between the phenotype and the genotype [76].

Because of advancements in next-generation sequencing (NGS), mQTLs for candidate
genes can now be found using ultra-high-density maps [78]. Candidate genes influenc-
ing secondary metabolite production can be identified using multi-omics technologies
combined with reverse and forward genetics methodologies [79]. Further, the whole
metabolome uncovers population genetics with metabolomic profiling and many mQTLs
have been identified in flag leaf and germinating seed across 12 chromosomes [80]. In a
comparative metabolomic investigation of two rice cultivars, 19 metabolites were found
on 23 loci, indicating a significant intersection of genetic regulation in distinct cells [80].
Similar reports have been found for tomato [81], maize [76,78] and potato [82]. Over 700
different metabolic characteristics were revealed in mQTL analysis of back-crossed inbred
lines of rice cultivar [83].

An mQTL study of barley recombinant inbred lines (RILs) under drought stress re-
vealed 98 metabolites. Certain stress-responsive metabolites, such as sinapic acid, ferulic
acid, and flavones, act as antioxidants and regulate gene expression and protein function
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under stress [84]. Templer and his coworkers examined the metabolic response of barley
under drought stress. Approximately 57 metabolites and unique mQTLs, namely succi-
nate, glutathione, and -tocopherol, were identified, indicating a molecular basis for barley
breeding with greater drought tolerance [85]. Metabolite profiling and genetic study of
glucosinolate synthesis in Brassica napus revealed 105 mQTLs associated with glucosinolate
biosynthesis in leaves and seeds [86]. Over 679 secondary mQTLs linked with environ-
mental stress tolerance were identified by dissecting out the genomic regions linked with
synthesizing secondary metabolites in wild and introgression lines (ILs) of tomato, [87] and
tomato mQTL analysis was performed in a similar population [88]. mQTL mapping is a
powerful tool for identifying traits linked with stress susceptibility. Metabolomic profiling
in 179 double-haploid wheat lines using LC/MS resulted in the identification of 558 sec-
ondary metabolites, including phenylpropanoids, flavonoids, and alkaloids [89]. The RILs
of tomato seeds were profiled metabolically using GC-TOF/MS to identify the interaction
between seed metabolism, environment, and genetics in identifying metabolites [90]. Plant
metabolite environment interactions can be clearly understood by coupling metabolomics
with high-throughput phenotyping technologies.

Numerous studies have also identified mQTLs that regulate biotic interactions in
plants. With the advent of modern sequencing technology, many plant genomes have
been sequenced, frequently using mQTL analyses in agricultural crops. The host-pathogen
candidate genes are identified by mQTL mapping, which also analyzes the pathways that
govern the resistance mechanisms in plants. A holistic understanding of plant biology
will be provided only by integrating metabolomic data with other omic approaches like
genomics, transcriptomics and proteomics. Apart from the above studies, integrating
metabolomics data into systems biology models will certainly provide a comprehensive
understanding of how metabolites interact within cellular networks, leading to predictive
models of plant behavior.
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12. Concluding Remarks and Future Prospectives

In conclusion, plant metabolomics has emerged as a powerful tool for unraveling the
complexity of plant metabolism and understanding its diverse functions. It has provided
valuable insights into plant biology, facilitated the discovery of novel bioactive compounds,
and offered opportunities for improving crop traits and addressing global challenges in
agriculture. Linking metabolite profiles with specific biological functions will help to
elucidate the roles of various metabolites in plant growth, development, and responses
to environmental cues. As technology and analytical methods continue to advance, plant
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metabolomics is expected to contribute even more significantly to our understanding of
plant systems and the development of innovative solutions for a sustainable future.
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