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Fungi: a monophyletic
group of heterotrophic
eukaryotes with
chitinous cell wall

Mycorrhiza: a
mutualistic association
between a fungus and
a plant root

(fungus-root)
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Abstract

Fungi comprise approximately 20% of all eukaryotic species and are connected to virtually all life
forms on Earth. Yet, their diversity remains contentious, their distribution elusive, and their con-
servation neglected. We aim to flip this situation by synthesizing current knowledge. We present
a revised estimate of 2-3 million fungal species with a “best estimate” at 2.5 million. To name the
unknown >90% of these by the end of this century, we propose recognition of species known only
from DNA data and call for large-scale sampling campaigns. We present an updated global map
of fungal richness, highlighting tropical and temperate ecoregions of high diversity. We call for
further Red List assessments and enhanced management guidelines to aid fungal conservation.
Given that fungi play an inseparable role in our lives and in all ecosystems, and considering the
fascinating questions remaining to be answered, we argue that fungi constitute the next frontier
of biodiversity research.
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1. INTRODUCTION

Fungi underpin nearly all life on Earth, being vitally important to land plants, ecosystem func-
tioning and, ultimately, us. Mutualistic fungi improve the uptake of essential nutrients to plants
(e.g., mycorrhiza) and stimulate their immunity and stress resistance (e.g., endophytes) (1). They
can also recycle rigid natural polymers, such as lignin, cellulose, and chitin, and thus are significant
biomass decomposers (2). At the same time, many pathogenic fungi attack plants and cause signif-
icant crop loss worldwide (3, 4). Parasitism on animals is comparatively rare, but includes, e.g., an
amphibian chytrid fungus that is devastating populations of tropical frogs around the world (5).
The human interactions with fungi are manifold. Fungi have become an increasingly valuable
source of bioactive compounds, such as antibiotics, immunosuppressants, statins, or organic acids
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for industry and medicine (6) and provide eco-friendly materials for daily life (7). The digestive
enzymes secreted by fungi are used in food and livestock feed, textile and paper manufacturing,
and biofuel production, and some fungi can also be used in remediation of polluted sites (6, 8).
The ability of some fungi to combat pests and stimulate plant growth means they are also useful as
biopesticides and biofertilizers for sustainable agriculture (9, 10). The small size of fungal genomes
makes them a powerful target for genetic research on eukaryotic biology and an efficient microbial
cell factory for biotechnology and bioengineering (11-13). The excellent nutritional properties
of many macrofungi were recognized thousands of years ago, and the current global market of
mushroom farms is worth billions per year. Moreover, yeasts and filamentous fungi are widely
used in the food industry (6, 9). Alongside their many benefits, fungi can also be quite harmful
to humans, through specialist parasitism either permanently or intermittently in some stages of
their life cycle, or opportunistically when their host’s immune system gets compromised. Fungal
infections are estimated to kill approximately 1.6 million people every year (14, 15).

Fungal evolution started approximately 1.3 billion years ago, when the true Fungi diverged
from the common ancestor of the animal kingdom and other related eukaryotes (16). In contrast
to animals, fungal cells are covered by a rigid chitinous cell wall, and their mode of nutrition
is therefore also different—the rigid cell wall precluding the engulfment of food particles. Their
nutrition is instead based on the absorption of dissolved small molecules, which are digested out-
side the cell. Absorptive nutrition can only be efficient if the surface-to-volume ratio is large and
the environment is wet. This type of nutrition determines the shape of fungal bodies—either mul-
ticellular, consisting of thin filaments called hyphae which form a network (mycelium), or simple
spherical, single-celled (yeasts)—and forces them to live either inside their food or in direct con-
tact with it, in moist habitats. Consequently, fungi mainly live an ecologically cryptic life: The vast
majority of their mycelium is usually hidden in organic substrata such as soil, water, or dead wood
or leaf litter for saprotrophs, or other organisms for biotrophs. Yeasts and aquatic fungi usually
form biofilms on wet nutritious surfaces.

Most fungi disperse their spores by air, animals, or water droplets (17). This requires the forma-
tion of spore-bearing structures, such as the familiar mushrooms, truffles, cup and bracket fungi,
moulds, or rusts, among others. Many of these structures are ephemeral and, in some cases, show
seasonality. In contrast, lichen-forming fungi have a perennial appearance, with permanent spore-
bearing structures, as they feed on carbohydrates photosynthesized by their symbiotic partners
(bacteria and/or algae) and are able to withstand extreme desiccation (18). Fungi come in a vast
array of sizes; they hold the record for being the largest organism on Earth [e.g., Armillaria ostoyae,
spanning more than 10 km? in Oregon, USA (19, 20)], but they can also have diminutive bodies
hard to examine with conventional morphometric techniques.

The arrival of DNA technologies around 30 years ago opened an exciting new era in mycol-
ogy, including a new understanding of how fungi diversified (Figure 1), and now with genomics
we are seeing a second wave of revolution (see also the sidebar titled How DNA Technology Is
Rewriting Everything We Thought We Knew About Fungi). It has become clear that we only
know a fraction of the global Funga (21, 22) and that the highest diversity of traits underlying the
evolution and speciation of fungi is hidden not in their morphology but in their physiology, bio-
chemistry, and genetics (23-25). Here, we review and summarize our current knowledge on fungal
diversity, distribution, and conservation research and propose future directions for research and
conservation.

2. DIVERSITY

Fungi rank third among the major kingdoms in terms of known taxa, with approximately 155,000
species scientifically documented to date (26, 27). Animals number 1.45 million (28) and plants
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Figure 1

Synopsis of the current classification of phyla in the kingdom Fungi, compiled from References 152
(phylogenomics), 148 (multimarker), 84 (phylogenomics), 150 (phylogenomics), and 151 (multimarker). For
comparison, see also the synoptical tree by Spatafora et al. (153). Some conflicts in the placement of
individual phyla across these studies are indicated (dashed line): Glomeromycota has been either placed as
sister to Asco-, Basidio-, and Entorrhizomycota in multimarker studies or nested with Mucoromycota in
phylogenomic approaches; Blastocladiomycota appears as an early emerging lineage in some phylogenomic
approaches (150, 152) or as a supported sister to Sanchytriomycota next to Zoopagomycota,
Entomophthoromycota, and Kickxellomycota or included in the clade formed by these latter three phyla in
other phylogenomic and in multimarker studies (61, 84, 151). The phylum Caulochytriomycota, proposed
for the genus Caulochytrium (see 151), is here considered a synonym of Chytridiomycota, following Ahrendt
etal. (152). Background colors set apart major clades.

345,000-390,000(-435,000) (26, 29-31). Estimated global species richness varies considerably
among these three kingdoms and between authors (lowest and highest estimates given in paren-
theses): (3-)8-9(=30) million for animals (32-34), 450,000-500,000 for plants (30, 35-37), and
(0.5-)1.5-6.3(~19.35) million for fungi (38-43). The most current figures given here suggest that
a large proportion of plant species (80-85%) is likely already known, whereas the full diversity
of animals, particularly invertebrates (less than 20% known), and fungi (less than 5-10% known)
remains largely undescribed.

HOW DNA TECHNOLOGY IS REWRITING EVERYTHING WE THOUGHT WE
KNEW ABOUT FUNGI

DNA sequences provide a wealth of data, dramatically improving our understanding of fungal biology, diversity,
distribution, and evolution. Nowadays we have tools to efficiently read DNA barcodes or even genomes of hundreds
of species from environmental samples (i.e., metabarcoding and metagenomics, respectively), at relatively low costs
and to place any fungus in the evolutionary tree of life. DNA data are, consequently, transforming fungal taxonomy
and the classification of fungi at all levels (Figure 1). In the past four years alone, five new phyla have been established
(84, 148), and in most recent studies, the number of accepted phyla ranged from 12 to 20 (149-151). DNA has also
brought the unveiling of many new fungal orders, families, genera, and species (57, 151).
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2.1. Estimating the Global Richness of Fungi

Global richness predictions are based on extrapolation of existing data, and the level of uncertainty
associated with them—mainly due to insufficient sampling—makes reliable estimates challenging.
Historically, global fungal richness has been estimated since the early works of Elias Fries, the fa-
ther of mycology (see Supplemental Figure 1). Estimates of fungal species richness published
since Hawksworth’s (44) seminal work range from half a million (45) to more than 12 million
(46) and even 19.35 when extrapolating the figures given by Tedersoo et al. (41), but many of
these predictions are made ad hoc, without quantitative assessments, or make misguided assump-
tions, as discussed below. In addition, (semi)quantitative assessments often only focus on particular
groups of fungi, missing insights that may come from looking across the full range of diversity.
The large range of variation in these numbers invites a critical look at the underlying data and the
extrapolation methods used.

2.1.1. Global estimation derived from scaling laws. Mora etal. (33) provided global richness
predictions for all major groups of organisms, using scaling laws in taxonomic hierarchies, that is,
predicting species numbers from patterns in numbers of higher taxa. Their estimates were also
used in a recent overview of global biodiversity by Diaz & Malhi (47). For fungi, Mora et al.
(33) estimated 611,000 species; however, their input of 43,271 species known was less than half
the actual number accepted at the time, approximately 100,000 (48-50). Using the correct figure,
one would arrive at approximately 1.4 million (Table 1). This figure would not include, however,
higher taxa not known at the time, such as Archaeorhizomycetes (51). In addition, Mora et al.
(33) assumed saturation effects for the accumulation of higher taxa, as demonstrated in animals.
However, in fungi there have been additions even at high ranks over the past decade, so even the
corrected number given above could underestimate the actual global richness of fungi.

2.1.2. Global estimation derived from fungus:plant ratios. The fungus:plant (F:P) ratio has
been used in various prediction scenarios, based on selected localities, larger geographic areas
including countries, or specific plant taxa. The exact definition of the F:P ratio is not clear: It can
relate only to fungi directly associated with plants or to all fungi known from a given area for
which the number of plants is known. As a result, proposed global F:P ratios oscillate between 6:1
and 10:1, and ratios for individual sites or hosts reach up to 89:1 (Supplemental File 1). With a
growing number of known plant species, global estimates for fungi thus range between 1.5 and
3.8 million (38, 42, 44). However, F:P ratios are not constant across environmental gradients, vary
across latitudes (39), and may show a saturation effect with increasing area. While site-based ratios
often exceed 10:1, country-based ratios were calculated at between 2.5:1 and 5.1:1 for Japan, the
United States, Canada, Germany, and France (52, 53). The United Kingdom appears to be an
exception, with a ratio of 9:1 when taking into consideration only native plants. The inclusion of
alien plants, which also bear fungi included in the national species list, would decrease the ratio
to only 2.6:1 (54). We therefore propose a more conservative ratio of 5:1 (53) for temperate areas
and a lower ratio of 3.5:1 for tropical areas [applying the correction proposed by Tedersoo et al.
(39)]. With one-third of the estimated 390,000 known plant species occurring outside and two-
thirds inside the tropics, this would result in a prediction of 1.56 million fungi (Table 1). While
considerably lower than the 3.8 million proposed by Hawksworth & Liicking (42), this revised
figure does not fully take into account hidden diversity within presumably known taxa, and it
ignores fungal groups that are usually not detected in such inventories; it is therefore likely to be
an underestimate.

2.1.3. Global estimation derived from actual versus previously known number of species.
Hawksworth & Liicking (42) analyzed hidden diversity in presumed known fungal species, entities
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fungal groups (largely) not considered in prediction methods®

Table 1 Extended list of global fungal diversity predictions, proposed corrections, and proposed totals including

Reference Approach Original Adjusted Total adjusted
Martin (156) F:P ratio (pathogens) 0.25 million 1.20 million 3.10-3.17 million
Pascoe (73) F:P rato (pathogens) 2.70 million 0.94 million 2.45-3.01 million
Hawksworth (44) F:P ratio (general) 1.50 million 1.63 million 2.30 million
Hawksworth (44) F:P ratio (general), F:I ratio 3.00 million 2.13 million 2.30 million
Hywel-Jones (162) | F:Iratio 1.50 million 0.55 million 2.77 million
Shivas & Hyde (74) | F:P ratio (tropical pathogens) 0.27 million 0.40 million 2.57 million
Cannon (157) Species-area relationships 9.90 million 2.23 million 2.33 million
Aptroot (158) Ascomycota (tropical) 0.04-0.07 million 0.20-0.70 million 0.58-1.86 million
Frohlich & Hyde F:P ratio (general) 8.68 million 1.49 million 2.36 million

(159)

May (45) F:P ratio (general) 0.50 million 1.56 million 2.43 million

Arnold et al. (160) F:P ratio (endophytes) >1.50 million 0.50 million 2.57 million

Hawksworth (38) F:P ratio (general) 2.27 million 2.01-2.45 million 2.68-3.12 million

O’Brien et al. (58) Metabarcoding (soil; 97 %) 5.1 million 1.34 million 2.84 million

Schmit & Mueller F:P ratio and others 0.71 million 1.12 million 2.58 million
(161)

Mora et al. 33)

Scaling laws (taxonomy)

0.62 million

1.42 million

1.52 million

Taylor et al. (59)

F:P ratio (general),
metabarcoding (soil; 97%)

5.91 million

1.56 million

3.11 million

Tedersoo et al. (39)

F:P ratio (general),
metabarcoding (soil; 97%)

2.04-3.00 million

0.54-0.79 million

2.16-2.41 million

Hawksworth & F:P ratio (general) 3.8 million 1.56 million 2.21 million
Liicking (42)

Hawksworth & Hidden diversity (known taxa) 1.70 million 1.47 million 1.57 million
Liicking (42)

Wu et al. (46)

Metabarcoding versus
culturable fungi

Baldrian et al. (43)

Metabarcoding (general; 97 %)

6.28 million

3.06 million

3.23 million

1.66 million

1.73 million

Tedersoo et al. (40)

Metabarcoding

Tedersoo et al. (41)

Metabarcoding (98%); hidden
diversity

Senanayake et al.

7

Ascomycota (teleomorphic)

>1.53 million

(1.37-)1.86(-2.56) million

>1.53 million

>3.03 million

2.28 million

3.83 million

1.50 million

2.69 million

Access provided by Swedish University of Agricultural Sciences on 01/09/24. See copyright for approved use.

*The following are details on the original estimates and corrections: original, original prediction; adjusted, adjusted prediction (see comments on each
entry above); total, total prediction including fungal groups not considered in the prediction approach (see comments on each entry above). Cells are
colored according to number ranges: gray, <1 million; light green, 1-2 million; bright green, 2—3 million; yellow, 3—5 million; orange, 5-10 million; red,
>10 million. Abbreviations: F:I, fungus:insect; F:P, fungus:plant.

treated as single species that in reality represent several to many species. They came up with a
weighted mean of 11.3:1 for the number of actual versus presumed species across a large taxonomic
sample. This factor would increase the currently known 150,000 species to 1.7 million, if it holds
across all fungal lineages. However, the base reference should be corrected to 130,000, the number
of known species at the onset of most studies on species complexes, resulting in a prediction of
1.47 million instead (Table 1).
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A critical issue related to this approach is the precise definition of species (55), requiring inte-
grative taxonomy to combine different lines of evidence (sequence data, phenotype, distribution)
through quantitative approaches (56). Unfortunately, it is not possible to apply this approach to
species only known from DNA data, although guidelines can be derived from the comparison
of phylogenetically defined lineages of other fungi that have been assessed through integrative
taxonomy.

2.1.4. Global estimation derived from metabarcoding studies. Environmental metabarcod-
ing has emerged as the most powerful approach for documenting fungal diversity globally (40,
41,43, 57). Several studies using metabarcoding data to extrapolate on global fungal species rich-
ness have been published, with predictions ranging from (1.5-)3.5-5.1(-6.3) million (38, 40, 41,
43, 58, 59). Tedersoo et al. (41) used long-read PacBio sequences to estimate species richness for
the ten largest genera of fungi in soil, including Cortinarius (14,375 species) in the Basidiomy-
cota, Cladophialophora (15,968) in the Ascomycota, and Glomus (7,610) in the Glomeromycota,
resulting in the factor of 80-115:1 compared to currently accepted species in these genera (27).
Extrapolation would result in a global estimation of more than 19 million fungi (Table 1).

A pitfall of these methods is that they rely on operational taxonomic unit (OTU) clustering,
which requires a fixed threshold and is sensitive to sequencing errors and stochastic point varia-
tion (60, 61). The aforementioned metabarcoding studies used a 97% or 98% threshold for OTU
clustering, which, in theory, should underestimate taxonomic diversity, as species-level thresh-
olds are often closer to and even above 99% (56). However, even such conservative thresholds
considerably overestimate taxonomic diversity due to nontaxonomic sequence variation. Rather,
accurate estimates of taxonomic diversity are achieved through multiple alignment-based methods
or phylogenetic read placement (62-64).

Applying a corrective factor of 3.8:1 (Supplemental File 2) to the global estimates of 5.1, 6.0
and 6.3 million fungal species based on metabarcoding data and 97% OTU clustering, we arrive
at adjusted predictions of 1.34, 1.58, and 1.66 million species, respectively (Table 1). Applying a
correction factor of 8.6:1 to the genus-based figures provided by Tedersoo et al. (41) would result
in a ratio of 8-6:1, reducing the estimate of 19 million to 2.28 million.

Although here we apply corrections to metabarcoding extrapolations, these studies mostly fo-
cus on data from soil fungi (except 43), omitting aboveground fungi, such as plant and animal
pathogens, endophytic fungi, or lichens. Another issue with metabarcoding data is their repre-
sentativity in terms of taxonomic and functional composition (see Section 2.3). Considering these
issues, estimates of global fungal diversity derived from metabarcoding samples are to be inter-
preted with care. For reliable estimations, data should represent all habitats and consider different
types of substrata (soil, water, plants, etc.); additionally, certain lineages of fungi should not be left
uncovered because of methodological biases affecting particularly those fungi that diverge at the
base of the fungal tree (40, 65).

2.1.5. Comparison of the results from different methods. While original predictions of
global fungal diversity oscillate between 70,000 and more than 19 million species, the adjusted
figures presented here using scaling laws in taxonomic hierarchy, species-area relationships, F:P
ratios, metabarcoding, and hidden diversity are remarkably in line, many oscillating around
1.5 million (Table 1). As mentioned, however, these numbers are not inclusive in terms of all
known functional or phylogenetic groups and still require upward corrections. Using F:P ratios
may ignore fungi not associated with plants, whereas metabarcoding may miss aboveground plant
pathogens, endophytes, lichens, arthropod-related fungi, and those in aquatic and marine environ-
ments. Adding these corrections to the adjusted estimates resulted in surprisingly homogeneous
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global predictions, ranging from 1.5 to 3.2 million (Table 1), with a mean of 2.53 million and a
standard deviation of 20% (£0.49). We thus propose a revised range of (2-)2.5(-3) million fungi
globally. This revised estimate is above the 1.5 million first predicted by Hawksworth (44) but
below more recent extrapolations of up to 6.3 (or even 19.35) million from metabarcoding studies
(40,41,42,43,58,59). The 2-3 million proposed here would still place Fungi as the second largest
kingdom of eukaryotes, after animals. Given that only approximately 155,000 fungal species are
known, an estimated 92.5-95% of all fungi remains to be found and scientifically described.

2.2. Documenting and Describing the Unknown Diversity

Despite how high the true number of fungi is, the daunting task thus remains to discover and cat-
alogue perhaps millions of unrecognized fungi. Specimen- or culture-based taxonomy can achieve
only a fraction of this. Even if we speed up the process by an order of magnitude from currently
approximately 2,000 (see Supplemental Figure 2) to 20,000 new species per year, we would still
need 100 years to catalogue, e.g., 2 million additional fungi. Classification of fungi known from
environmental metabarcoding data could deal more efficiently with such a staggering number,
with formal names entirely based on sequence data (57), which could render viable 50,000 new
species catalogued per year. In addition, a concerted effort should be made to produce sequence
data from the world’s fungal collections: (#) Data from type specimens would anchor the use of
names described to date, simultaneously revealing which species are new to science, and remove
one of the biggest bottlenecks currently hindering the description of new species; (b)) non-type
collections contain a wealth of already collected but not yet named species just waiting to be de-
scribed. Together, data from these two sources would enable the creation of a global phylogenetic
framework for merging voucher-based and environmental sequence data.

2.3. Taxonomic and Functional Groups: Current Versus Predicted Patterns

Besides species numbers, unknown aspects of the world’s total fungal diversity also include its
taxonomic and functional composition. Predicting these is challenging; the most parsimonious
assumption would be that the composition derived from known species would not notably change.
However, given that the predicted numbers are at least an order of magnitude higher, shifts in the
proportion of major taxonomic and functional groups should be expected, reflecting the notion
that some groups are much better studied than others. The best example is lichen-forming fungi;
they currently constitute 13% of known fungi, but with a predicted 2-3 million fungi worldwide,
they are only likely to account for 1-2% of the total diversity.

Comparing metabarcoding studies (39, 40, 43) with the current classification in Species Fun-
gorum (27), marked differences arise in the composition of fungal phyla (Figure 2). The findings
from Baldrian et al. (43) reflect the proportions of described Ascomycota and Basidiomycota well,
whereas in Tedersoo et al. (39, 40) the percentages of these phyla are in part much lower. Con-
cerning fungal traits (Figure 3), Tedersoo et al. (39) show the proportions of saprotrophs and
symbiotrophs from DNA metabarcoding data are relatively close to those derived from known
species (27) and genera (66), whereas the proportion of pathotrophs is substantially smaller,
because pathotrophs are naturally underrepresented in soil samples.

In the global soil dataset analyzed by Tedersoo et al. (39), Dothideomycetes, Lecanoromycetes
(both Ascomycota), and Pucciniomycetes (Basidiomycota) are particularly underrepresented,
supporting the notion that studies focused on soil fungi neglect aboveground fungal guilds, in par-
ticular pathogens and lichens. A reliable estimate of the composition of taxonomic and functional
groups extrapolated from a global metabarcoding dataset would therefore require a sampling strat-
egy that is representative of the major global ecosystems, habitats, and substrata, further expanding
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on studies such as Tedersoo et al. (39-41) and Baldrian et al. (43), to represent the wealth of
ecologically hidden fungi.

3. DISTRIBUTION

Until the past decade, our knowledge on fungal distribution was mainly based on traditional, of-
ten broad, species concepts, which we now know include many closely related species that were
challenging to delimit based on morphology only. Moreover, the knowledge was mainly based
on collectable species, i.e., mushrooms, truffles, lichens, rusts, and visible sac fungi, excluding a
large proportion of “hidden” fungal diversity such as early-diverging fungal lineages and Glom-
eromycota. Besides their classification, the adoption and widespread use of DNA techniques also
transformed our views on fungal distributions (see the sidebar titled How DNA Technology Is
Rewriting Everything We Thought We Knew About Fungi).

3.1. How Is Fungal Diversity Distributed Globally?

"Two key studies have investigated global fungal diversity based on metabarcoding techniques, and
these showed a dual pattern: Whereas most groups indeed have their highest diversity in the trop-
ics, mirroring general patterns for plants and animals, others—ectomycorrhizal fungi and several
fungal classes—are most diverse in temperate ecosystems (39, 67). At least for ectomycorrhizal
fungi, this may be explained by the presence of suitable hosts and more structured soils in tem-
perate compared to tropical areas (39). However, as mentioned, both studies were based on soil
samples, and no comparable global study on the biogeography of the whole kingdom Fungi has
been published that also includes extensive sampling of the aboveground fungal diversity.

To synthesize current knowledge on this topic, we combined the data from different studies
(40, 68-72) to produce the most up-to-date map on the global diversity of soil fungi (Figure 4).
Our estimate shows that some of the most species-rich areas in the world are in tropical lowland
and montane forests and woodlands, but high-diversity temperate areas are also evident.

3.1.1. Fungal diversity and biomes. Among the main biomes of the world, forests, such as the
Amazon and the Atlantic Forest in South America, host the greatest diversity of soil fungi, but
grasslands and tundra also host a significant number of species, whereas far fewer fungi are found
in dry and cold areas, such as deserts and polar regions (Figure 4). For aboveground fungi, in
particular plant pathogens and endophytes, but also insect-associated fungi, this holds true as well
(73, 74). Aquatic habitats around the world may contain up to 100,000 species (75-77) belonging
to at least eight phyla. Some habitats with fewer fungal species may still host diverse lineages of
early colonizing fungi, e.g., lichens in rocky, otherwise hostile areas of tundra and deserts, and in
the Interior Antarctic (78).

The two most species-rich phyla of fungi, Ascomycota and Basidiomycota, as well as the smaller
phyla Chytridiomycota, Mucoromycota, and Glomeromycota (Figure 1), are found on all conti-
nents and in all biomes (39, 76, 79-82). In terrestrial habitats, early diverging fungi—those that
evolved before the rise of Dikarya [Asco-, Basidio-, and Entorrhizomycota (Figure 1)]—seem
to be relatively more common in nonwooded ecosystems (39). An example of an early diverging
fungal clade predominantly found in terrestrial habitats is the phylum Calcarisporiellomycota, its
members being saprotrophic in soil. Some of the early diverging lineages are either aquatic or
their hotspot of diversity is in aquatic habitats, such as Olpidiomycota, which are saprotrophs or
parasites of algae, aquatic fungi, and rotifers, and Aphelidiomycota and Sanchytriomycota, which
are parasites of mostly algae (83, 84). Some others are very restricted in their ecology: For instance,
members of the phylum Neocallimastigomycota live in anaerobic conditions within the guts and
dung of herbivores (85).
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fungi according to Tedersoo et al. (41).

All three main functional groups—saprotrophs, pathotrophs, and symbiotrophs—are present
in all terrestrial habitats. Saprotrophs and pathotrophs have the broadest distribution ranges, the
latter partially due to anthropogenic spread through human movement or via crops (86), and
animal parasites are particularly widely distributed (39, 41, 67). Mycorrhizal fungi seem to have
the narrowest climate niche (39, 41, 67). When looking at the species level, only a few species are
known to have a cosmopolitan distribution, the majority of them being saprotrophs and pathogens
in the Ascomycota (87). In freshwater and marine aquatic habitats, saprotrophs and pathotrophs
are the most commonly recorded lifestyles (75, 79). Mutualistic symbiotrophs are less well-known
from these habitats, but endophytes, mainly representing Ascomycota, seem to be the most diverse
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group inhabiting marine plants (i.e., algae, seagrass and mangrove trees), invertebrates (i.e., corals
and crustaceans), and fishes (88).

3.1.2. Biotic similarities across regions and biomes. The northern regions (Europe, West
and East Asia, and North America) host the most similar fungal communities, with many cir-
cumboreal species (41, 89). Other areas with a clear linkage are (#) New Zealand, Australia, and
southern South America, driven especially by the species associated with Nothofagaceae (90);
(&) Southeast Asia and New Guinea; and (c) regions of sub-Saharan Africa (39). Among North-
ern Hemisphere biomes, tundra and boreal and temperate forests are linked together, but they
also have an affinity with tropical montane forests (see Supplemental Figure 3). Other tropical
biomes form a separate group. This can be seen, for example, in South America, where ectomycor-
rhizal fungi associated with Fagaceae in the Andean region belong to Holarctic lineages, whereas
species in the Colombian Amazonian Region associated with the Fabaceae or Dipterocarpaceae
originate from tropical lineages of Gondwanan origin (91) and Nothofagus-associated taxa belong
to southern temperate lineages (92). The current distribution patterns are partially explained by
the comigration with hosts over Pleistocene land bridges such as Beringia, Wallacea, and the Isth-
mus of Panama (93, 94). Compared to plants and animals, the distribution patterns of fungi are
somewhat conflicting, since the Holarctic lineages in plants and animals are nested within larger
tropical groups (39). Additional bioregionalization analyses would be required to further clarify
the high-level organization of fungal taxonomic clusters worldwide (95).

3.2. Distribution Range Size and Endemism

Before the arrival of molecular methods, many fungi were considered to be widespread, and the
same species were found on different continents. Now we know that many of these “species” are
in fact groups of species: For example, the golden chanterelle (Cantharellus cibarius), once thought
to be a single subcosmopolitan species, has been shown to include at least 14 different species
with regionally limited distributions (42, 96, 97). An even more extreme example comes from the
lichen genus Coruz; it was once thought to include one species but now nearly 200 species are rec-
ognized (60, 98). The replacement of traditional taxon concepts with species delimitation based
on integrative taxonomy, including sequence data, has also dramatically changed our knowledge of
the proportion of widespread versus narrowly distributed species: In a study encompassing eight
lichen genera in Colombia, based on traditional taxonomy, 45% of the species were considered
widespread (on at least two continents) and less than 25% endemic to the country. When exam-
ining the same genera after phylogenetic revisions, only approximately 10% remained genuinely
widespread, whereas 75% were considered nationally endemic (91).

3.2.1. Global patterns of distribution range size. In general, the spatial patterns of range size
for soil fungi resemble those of vascular plants and animals in that they also have many narrowly
distributed species in tropical habitats (99, 100). The largest difference, however, is that in plants
and animals, islands or island-like continental habitats usually contain the greatest proportion of
narrowly distributed species, whereas in fungi the island habitats do not necessarily have greater
endemicity compared with continental habitats (41). For example, for soil fungi, the forests of
Amazonia and the Cerrado savanna of Brazil stand out as some of the regions with the highest
average of regionally endemic fungi (Figure 4). This does not mean that islands, e.g., Hawaii and
Madagascar, would not have endemic species of soil fungi, but, according to the current knowl-
edge, the proportion of species endemic to those island groups is not as high as in the top-ranking
regions, at least when measured in absolute rather than area-corrected terms [crucial for consider-
ing patterns of endemism (e.g., 101)]. However, including the above-ground diversity may change
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the picture since some groups of lichens in Hawaii, New Zealand and Galapagos show high island
endemism (e.g., 102-104).

Furthermore, in plants, large islands can host even endemic families, but in fungi island en-
demism seems to be more at the species level, e.g., Hawaii (102) and Madagascar (105). This may
be the result of a greater long-distance dispersal capacity of fungal spores relative to propagules
of plants and animals (17). For instance, the currently dominant families of fungi forming ecto-
mycorrhizal associations with the plants in Madagascar seem to have arrived on the island after its
separation from mainland Africa, and recent studies would also indicate multiple dispersal events
within genera or families to the island (105, 106). The difference between plants and fungi in the
proportion of endemic genera and families, however, could be smaller than currently observed
since growing understanding on fungal diversity is also affecting the classification, and many previ-
ous families and genera have been divided into smaller units; in addition, higher plants and animals
allow for much more refined genus- and family-level classifications due to their richness of pheno-
typic characters, and so these ranks are not directly comparable among kingdoms (107). A recent
revision of a cosmopolitan ectomycorrhizal genus Cortinarius (Agaricales), for example, concluded
that instead of one genus, the group contains ten genera, of which one is currently only known
from New Zealand and Australia and one is only associated with the species of Nothofagaceae in
the Southern Hemisphere (108).

3.3. Global and Regional Drivers of Fungal Richness

Drivers of fungal species richness vary from local to global scales and between different functional
groups of fungi, which show different patterns of diversity, distribution range size, and vulnera-
bility to climate change (41, 109). At the global scale, efforts to disentangle fungal richness and
their drivers have mostly focused on soil-inhabiting fungi, identifying climate and soil pH as key
factors, with fungal richness peaking in slightly acidic soils (39, 41, 110). Climate has a strong
direct effect on plant and fungal richness, but also an indirect effect by altering soil conditions
(e.g., soil pH and C:N ratio). Soil pH influences nutrient availability, metal solubility (essential
for enzymatic activities), and nitrogen speciation, potentially affecting fungal competition with
bacteria. Vegetation variables and organic carbon content have also been found to be significant
drivers of fungal community composition (67, 111). Deserts and Antarctic habitats, where plant
coverage and richness are lower, support the lowest fungal richness (39, 41). Aboveground fungal
diversity has been poorly studied, but its drivers might differ from those growing in soil. There
are also limitations to inferring responses to drivers from variations in their DNA detection in
soil, as dormant propagules and spore banks might differ from their active communities (112).

At regional scales, in temperate and boreal habitats in Europe, soil pH is the main predictor
of fungal species richness, together with atmospheric nitrogen deposition, which drives richness
and community composition of different groups of mycorrhizal fungi in roots of forest trees (113
115), grasslands (116), and ericoid plants in bogs and heathlands (117). The richness of epiphytic
lichens is also affected by these factors (118), while host and seasonality affect endophyte richness
(119, 120). In Amazonia, habitat type is the strongest factor explaining fungal diversity, whereas
soil properties show conflicting signals or appear less important (121). In the Brazilian Atlantic
Forest, latitudinal diversity gradients differ according to families, suggesting differential climate
adaptations as drivers of diversity (122).

4. CONSERVATION AND THREAT'S

Judging what to prioritize for conservation actions depends on knowledge from biology, social
sciences, and economy, and ultimately, decisions are significantly affected by our values. For too
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long, the conservation of fungi—with the exception of certain lichens—has been largely over-
looked. This is in part due to their cryptic nature and the challenges in studying and detecting
them with traditional methods that have often led to the earlier held incorrect perception that
fungi are intractable for conservation initiatives (123, 124).

4.1. Conservation Assessments of Fungi

Reports of lichen and macrofungal decline (e.g., 125-127) and the early success of the red-listing
of animals and plants inspired the development of the first national Red Lists of threatened macro-
fungi and lichens, starting in the late 1980s. Red List assessments, based on International Union
for Conservation of Nature (IUCN) criteria (128) and leading to entries on the IUCN Red List
of Threatened Species™ or national equivalents, are the global standard for identifying species
under threat, informing conservation needs and leading to the initiation of conservation actions.
Although notlegally binding per se, Red Lists influence political decisions and the effectiveness of
conservation measures, by being recognized as official documents of the best available knowledge
of species’ status and trends. National Red Lists of fungi are increasingly being used to identify and
prioritize areas and habitats to set aside for conservation, as reference points for including fungi
in conservation management guidelines, and to initiate species action plans, e.g., waxcap grassland
in the United Kingdom (129), numerous conservation management efforts in Fennoscandia and
Denmark, and forest protection in Chile. Red List data on fungi are also starting to be incorpo-
rated into conservation actions in Australia, New Zealand, and the United States. A few countries
have protected species, such as the United Kingdom and Croatia, and a few have linked their na-
tional fungal Red Lists to protection and legislation, e.g., Chile and Poland. Fungal Red Lists are
also increasingly considered in guidelines and legislation governing land use, together with ani-
mals and plants, e.g., in Fennoscandian national biodiversity plans and by the Forest Stewardship
Council. The number of countries with official or unofficial national Red Lists, or corresponding
lists of conservation values for macrofungi, stands at approximately 58 in 2022, and for lichens is
17 (Figure 5). The extent of species assessed, and amount and type of documentation, varies, but
even with these limitations, collectively more than 20,000 species have been assessed at national
levels.

Building on these national red-listing efforts, the Global Fungal Red List Initiative was estab-
lished in 2013 (130) to facilitate global assessment efforts by the fungal specialist groups of the
TUCN and volunteer mycologists across the world. Fungi on the global Red List draw attention
to and highlight threats to fungi that should be considered in any country regardless of whether
national fungal Red Lists are present or not. The IUCN Red List (130) includes 625 fungi, of
which 352 (56%) were assessed as globally threatened or near threatened (131) (Figure 5). Only
0.4% of the fungi described to date and 0.02% of those estimated to occur on Earth have therefore
been assessed. Fungi and invertebrates are the two most species-rich and poorly known groups
containing multicellular eukaryotes (Figure 6).

The classification of extinction risk for species on Red Lists, regardless of taxonomic group, is
based on the size of, and trends in, their population size (past and potential future changes), and
range (see 128). For many fungi, these estimates are often indirect and based on estimates of the
quantity and quality of their habitat, host plants and substrata (127, 132). However, the knowledge
of fungal distributions and their ecologies, primarily based on spore-bearing structures and thalli,
has substantially increased over the past decades, thanks to increasing interest from scientists and
field mycologists, the arrival of DNA techniques, surveys, for example, those required for forest
certification, and targeted citizen science initiatives focused on locating threatened species.

Because red-listing includes a population analysis, efforts at generating assessments have
raised challenging questions, otherwise infrequently addressed in fungi, about the biology and

Niskanen et al.



Annu. Rev. Environ. Resour. 2023.48:149-176. Downloaded from www.annualreviews.org
Access provided by Swedish University of Agricultural Sciences on 01/09/24. See copyright for approved use.

Number of nationally A
red-listed fungal \'\
species SN

1-100

100-1,000

>1,000

Number of nationally
unofficially red-listed
fungal species
1-100
100-1,000
>1,000

o~
Number of globally
red-listed fungal species

100 -

Figure 5

(@) Countries with officially approved national Red Lists of lichens or macrofungi (those acknowledging appropriate government
agency endorsement) are shaded red, with increasing intensity indicating greater numbers of taxa red-listed as Critically Endangered
(CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT), or Data Deficient (DD). Corresponding shading in yellow
highlights countries with unofficial national Red Lists or not using IUCN criteria. Countries shaded in gray have no national Red Lists
of lichens or macrofungi. Data compiled from Dahlberg et al. (133), Willis (154) and Leonardi et al. (155) together with updated
information and comments from the IUCN SSC Lichen Specialist Group and [IUCN SSC Mushroom, Bracket and Puftball Specialist
Group in January 2023. (b) The distribution of the 352 globally red-listed fungi, with shading in red highlighting the numbers of taxa
listed as CR, EN, VU, NT, and DD in different countries as of December 2022 (130) (Supplemental File 4).
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Figure 6

Diversity of species in the three kingdoms: fungi, plants, and animals (vertebrates and invertebrates shown separately). The size of an
organism within a circle is drawn in proportion to the number of described species; the size of the bigger version of the organism
reflects the total estimated number of species. The outer red portion of the circle represents the percentage of species assessed under
the Global Red List of Threatened Species (in relation to the species described). Numbers and references used for compiling the figure
are provided in Supplemental File 5. Artwork by Inessa Voet, with background image generated by DeepAlI (https://deepai.org/).
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life-history features such as (#) turnover and longevity of individuals; (§) required conditions for
establishment of mycelia; (¢) the presence and significance of a spore bank, since most species
appear to have short-lived spores and a limited spore bank; (d) the significance of mycelial
fragmentation and clonality; and (¢) symbiont/host specificity. It is also critical to consider factors
influencing whether individuals form sexual spore-bearing structures or not, the geographical
distribution of species, their commonness, and, importantly, if the data are of sufficient quality to
estimate potential sizes of fungal populations. These data are needed to better manage macro-
fungal and lichen habitats at different spatial and temporal scales to strengthen populations of
individual threatened species (124).

4.2. Threats to Fungi

Information provided by the global IUCN Red List indicates that the underlying threats to fungal
species are essentially the same as those to animals and plants, as threats that impact fungal hosts
and their substrata will have a substantial impact on fungi as well. They include, in decreasing order
of frequency, (#) land use change (comprising natural system modifications, forestry, agriculture,
residential and commercial development); (b) climate change; (¢) invasive species; (d) pollution
(such as the deposition of nitrogen); and (¢) direct exploitation (collection of economically valuable
sporing bodies, e.g., Butyriboletus loyo, Fomitopsis officinalis and Ophbiocordyceps sinensis) (114,123,130,
131, 133-135).
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Threats identified through national Red Lists show similarities to global patterns, although few
regions have been thoroughly surveyed. In Europe, assessments in Sweden and the Netherlands
(136, 137) show that habitat loss and fragmentation are mainly due to (#) decline of areas of older
natural forest and the intensification of timber production; (4) decline in the availability of coarse
dead wood and old trees; (¢) impoverishment and decline of old seminatural and unfertilized
grasslands (due to fertilization, reforestation, and lack of grazing); and (d) high anthropogenic
nitrogen deposition, particularly affecting ectomycorrhizal fungi in naturally nutrient-poor soils
(133). Although threatened animals, fungi and plants often occur in the same habitat, several
habitats differ in importance; for example, threatened fungi are more frequent in seminatural
grassland (i.e., ancient pastures and meadows traditionally managed by grazing or mowing,
without the use of pesticides or fertilizers in modern time) and sandy natural pine forests.

Although fungal species may be lost from an area as a result of environmental degradation, it
is difficult to effectively document fungal extinction through survey data, as absence of evidence
is not evidence of absence. So perhaps not surprisingly, only 34 species are officially listed as
Critically Endangered (Possibly Extinct) on the Red List. However, the most important purpose
of the Red List is to document and bring attention to threatened species so that declines can be
counteracted, or at least mitigated.

4.3. Advancing Fungal Research and Conservation

Although efforts to fill the large gaps in our knowledge of fungal diversity and distribution need
to continue, the key objective in fungal conservation today should be to raise scientific, public, and
political interest and awareness of fungi and their vital roles that benefit people, nature, and the cli-
mate. Ultimately, public awareness and appreciation of biodiversity set the foundation for conser-
vation to take place. The increasing public interest in fungi, thanks to committed mycologists and
their organizations together with recent popular science books, series, short videos, TED Talks,
documentaries, podcasts, and other media, may help conservation as much as improved science
(e.g., 138). Three of the most important actions needed for preventing the decline and enhanc-
ing the protection of threatened fungi are (#) to formally protect areas of conservation interest;
(%) to identify, design, and implement appropriate management actions inside and outside pro-
tected areas, including ecological restoration measures, to ameliorate habitat conditions for
threatened fungi; and (¢) to integrate fungal conservation with efforts to preserve plant and animal
life and to coordinate conservation of these three kingdoms across the network of protected areas
and among countries.

In light of climate change and increased pressure on natural areas, there is also a great need
to generate evidence-based, user-friendly guidelines for how land could be managed to support
different aspects of fungal biodiversity, particularly in areas of resource use such as forestry. Being
immobile and often long-lived, fungal species benefit from many of the general conservation ef-
forts employed for other species, such as site protection and sustaining processes and management
of habitats of conservation interest. But additional management practices are often needed to con-
serve fungal diversity and function. For example, preservation of veteran trees to serve as species
reservoirs, maintaining a continuity of trees and forest structures and maintaining the succes-
sion and amount of deadwood are essential to preserve many threatened lichens, and mycorrhizal
and wood-inhabiting fungi. Seminatural grassland fungi are best preserved by maintaining the
current management of the land and its nutrient-poor condition (132). The recognition of fun-
gal conservation practices both supports and strengthens overall conservation, and importantly
also preserves sites and habitats of importance for threatened fungi, irrespective of animals and
plants, to be identified, prioritized, and protected. May et al. (124) set out a research agenda for
conservation mycology, including identifying management needs beyond basic site conservation.
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Furthermore, advancing fungal conservation will require increased mycological expertise, hu-
man and financial resources, and utilization of new tools and analyses, for example using available
satellite surveillance data and other information to document and analyze status and changes in
land cover and habitat degradation (131). Metabarcoding offers a new additional tool to detect and
monitor fungal distributions and species populations, but rare species are typically not detected,
limiting the utility of the technique. Thus, combining the manual search for spore-bearing struc-
tures with environmental DNA data is recommended for the best outcome (139, 140). As more
global Red List assessments are carried out, we may soon reach suitable sizes of training datasets
to use machine learning approaches to help identify the putative threat status of unassessed fungal
species, especially those of Least Concern. This will enable efforts to focus on those most likely
to be threatened and therefore in need of expert-based evaluations for conservation actions to
be developed. To be efficient, documentations, assessments, and actions for fungal conservation
should be focused on species and habitats likely to be declining and threatened.

Whereas in situ conservation should always be a priority, the increasing number of severely
threatened habitats may require the complementarity of ex situ methods. Unlike in plants and
animals, ex situ conservation in fungi is still rare, with only a few examples such as translocations
in lichens (141, 142). A road map for potential translocations of native wood-inhabiting fungi
to their original habitats has been recently proposed as a means to strengthen threatened local
populations and prevent further decline (143). Considering that saprotrophic culturable fungi
represent 40% of fungal diversity, that brings in potential for ex situ conservation. According to
the World Data Centre for Microorganisms, more than 900,000 cultured strains of fungi, corre-
sponding to approximately 54,000 species, are being held in 824 culture collections worldwide. If
we account for redundancy, misidentifications, and synonyms, the actual number drops down to
approximately 20-25,000 species (A. Buddy, D. Smith, personal communication). Unfortunately,
from the 352 species assessed as globally threatened or near threatened, only 25 are preserved
in culture collections, demonstrating that there is little connection between these collections and
conservation initiatives. In addition, many symbiotic fungi, especially mutualists, cannot be grown
apart from their symbionts and thus are not suitable for living collections and further cryopres-
ervation. To secure ex situ conservation success, it is therefore important to improve the diversity
of culture collections and develop alternative methods of preservation and propagation for non-
culturable fungi, as well as to establish long-term studies to monitor the success of population
augmentation and relocation.

Although species and habitat conservation are heavily based on the information from Red Lists,
there are other conservation approaches to consider. One is to maximize phylogenetic diversity by
ensuring representation of many fungal clades (e.g., 144). Another is to heed hotspots, i.e., areas
with a high number of species of conservation interest including endemic species with restricted
distributions (see 41). A third approach is to pay attention to fungal ecosystem services identified as
ecologically and economically important, and this focuses on frequently and abundantly occurring
species that perform most fungal processes in a habitat (145, 146). These approaches rely largely
on species identification through molecular analyses, which enable identification of fungi from
not only spore-bearing structures but also from mycelia present in environmental samples.

5. CONCLUSIONS

Fungi are immensely important to the world’s ecosystems and humankind. Yet, probably because
they are mostly small, live hidden lives to our human eyes, and have complicated and unfamiliar
names and unknown functions, they have often been left in the shadow of plants and animals.
There is an urgent need to bring the knowledge on Funga to the same level as Flora and Fauna.
Our knowledge on fungi was long limited because of their cryptic nature and difficulty to assess
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them with traditional methods, but the arrival of DNA techniques has transformed our ability to
study them (see the sidebar titled How DNA Technology Is Rewriting Everything We Thought
We Knew About Fungi). Molecular and other novel techniques have allowed and continue to
enable us to understand the basic biological questions related to fungi, achieve natural classifica-
tions, and gather data on fungi at a speed never seen before. However, while the technologies to
generate data on a large scale have advanced rapidly, the analytical methods to assess those data
lag strongly behind. Furthermore, improvements to avoid methodological biases during the data
generation are needed.

Our conclusions on global patterns of fungi are currently based on far less data than that of
plants and vertebrates, in relation to the expected diversity for those three groups. Also, global
efforts have concentrated mainly on soil fungi and less data are available for aboveground diversity
and aquatic fungi. For gaining better data for the basis of diversity estimates and knowledge on
distribution patterns of fungi, a well-balanced and dense global sampling of all fungi from all
habitats will be needed. Recent global initiatives such as the Global Lichen Holobiont, FunAqua,
and FunLeaf projects will offer ample fungal biodiversity data from substrata other than soil.
Currently, the Sequence Read Archive contains approximately 150,000 environmental samples
corresponding to fungal DNA, and this number is growing exponentially (147). A concerted global
effort could easily generate ten times this number of samples within a period of five years, allowing
a global terrestrial grid cover of 20 x 20 km to cover most of the global fungal diversity. The key
challenges for achieving these are not scientific, but logistical: securing the resources, permits,
collaborations, and coordination required.

The underlying overall threats to fungal diversity are essentially the same as those to animals
and plants, including habitat destruction and fragmentation, climate change, pollution, and in-
vasive species, and fungi benefit from the same general conservation measures and priorities as
animals and plants, i.e., protection of sites and appropriate habitat management. However, addi-
tional actions can be required to conserve fungi. Fungi have largely been neglected in conservation,
but the situation is improving, and fungi are starting to increasingly be considered. Key tasks in
conservation will be to significantly increase the number of assessed species, enhance and increase
the interest and understanding of the importance of including fungi in conservation, and provide
user-friendly knowledge and guidelines to facilitate efficient conservation of threatened fungi.
Conservation knowledge needs to be spoken with “one voice,” to make it easy for decision makers
and stakeholders to understand and act upon.

1. Our assessment of the scientific literature and consideration of biases and gaps lead us
to propose a new estimate for global fungal richness ranging between 2 and 3 million
species, with a “best guess” at 2.5 million (representing both the mean and median across
calculations).

2. Between 92.5% and 95% of all fungal species remain unknown, and with the current
speed it will take 750—1,000 years to formally describe those remaining.

3. Our maps integrating datasets of soil-inhabiting fungi support the earlier findings that
the most species-rich areas in the world are in tropical lowland and montane forests, as
well as in some temperate areas.

4. Drivers of fungal species richness vary from local to global scales and differ between
functional groups.
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. The average distribution ranges of fungi are wider than those of plants and many groups

of animals, and there is no detectable relationship with insularity in certain groups of
fungi, such as soil fungi, whereas in others, such as lichen fungi, island endemism matches
that of plants and even some animals.

. Although threatened animals, fungi, and plants often occur in the same habitats, certain

habitats such as European grasslands and calcareous conifer forests are more important
for fungal conservation than for other groups of organisms, and fungi with specialized
ecologies; e.g., host and substrate specificity, need special consideration.

. Extensive fungal conservation initiatives are being carried out in only a few countries,

and only 625 species (0.4% of the total described, and 0.02% of those estimated) have
so far been assessed for their extinction risk in the global TUCN) Red List.

. The most effective way to protect fungal species is in situ, by formally protecting areas

and improving land use management. Ex situ conservation, through storage in cry-
obanks or cultures, provides an additional way to safeguard fungal species amenable to
cultivation and storage and to help with their re-establishment in nature.

. The topmost priority for advancing fungal knowledge is undertaking a taxonomically

and functionally comprehensive global sampling effort of fungi from all habitats and
regions.

. The mycological community needs to discuss and agree on appropriate sampling proto-

cols, building on the integration of environmental DNA (e.g., from soils, leaves, animals)
into fungal classifications, along with expert surveys likely needed to detect rare species.

. To accelerate scientific description of the >90% undocumented species, taxonomic

nomenclature rules may be revised to allow descriptions from molecular data only, pend-
ing the addition of morphological examinations. Alternatively, a separate classification
system could be established for this purpose. However, scientific guidelines must be de-
veloped and broadly agreed upon that guarantee a high quality of classifications derived
from DNA sequence data only.

. A concerted effort should be made to produce sequence data from the world’s fungal

collections. Data from type specimens would be needed to anchor the use of names
described to date, and data from other already collected specimens to reveal the yet
unnamed species. Together, voucher-based and environmental sequence data will enable
the creation of a complete fungal tree of life.

. Whenever possible, the identification, delimitation, and mapping of fungal species

from environmental DNA should be based on phylogenetic methods and multiple se-
quence alignments, rather than operational taxonomic unit clustering, due to recognized
problems in species delimitation with the latter approach. This will require further
development of methods and tools.

. Thousands more fungal species, particularly from Africa, Latin America, and Asia, should

be red-listed in order to support identification of habitats and critical areas for fungal
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conservation. This should be done as much as possible in concert with fauna and flora
to identify more efficient procedures for species not yet assessed by experts.

7. Advancing fungal conservation requires the compilation of evidence-based management
guidelines for species and areas, the integration of fungi into existing conservation pro-
grams, and further investigation on the potential of cryobanks to support ex situ storage
of fungal strains for conservation, research, and reintroductions.

8. Advancing fungal knowledge through research, training, and partnerships must ensure
fair and equitable sharing of benefits across the globe, with high potential to bring
tangible benefits to people and nature.
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