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Abstract
Introduction The Automated Quantification Algorithm (AQuA) is a rapid and efficient method for targeted NMR-based 
metabolomics, currently optimised for blood plasma. AQuA quantifies metabolites from 1D-1H NMR spectra based on the 
height of only one signal per metabolite, which minimises the computational time and workload of the method without 
compromising the quantification accuracy.
Objectives To develop a fast and computationally efficient extension of AQuA for quantification of selected metabolites in 
highly complex samples, with minimal prior sample preparation. In particular, the method should be capable of handling 
interferences caused by broad background signals.
Methods An automatic baseline correction function was combined with AQuA into an automated workflow, the extended 
AQuA, for quantification of metabolites in plant root exudate NMR spectra that contained broad background signals and 
baseline distortions. The approach was evaluated using simulations as well as a spike-in experiment in which known metabo-
lite amounts were added to a complex sample matrix.
Results The extended AQuA enables accurate quantification of metabolites in 1D-1H NMR spectra with varying complexity. 
The method is very fast (< 1 s per spectrum) and can be fully automated.
Conclusions The extended AQuA is an automated quantification method intended for 1D-1H NMR spectra containing 
broad background signals and baseline distortions. Although the method was developed for plant root exudates, it should be 
readily applicable to any NMR spectra displaying similar issues as it is purely computational and applied to NMR spectra 
post-acquisition.
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1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is com-
monly used in metabolomics for identification and quantifi-
cation of metabolites in different biological samples (Crook 
& Powers, 2020). NMR has many advantages; it is inher-
ently quantitative, highly reproducible, non-destructive, and 

enables analysis of compounds with different chemical prop-
erties in one single experiment. However, the complex mix-
tures of natural products that are studied in metabolomics 
typically yield complicated 1D-1H NMR spectra with exten-
sive spectral overlap, which can make both identification 
and quantification of individual metabolites challenging. 
Spectral overlap occurs because one metabolite can generate 
several NMR signals, and signals from different compounds 
often appear at similar chemical shifts. The resulting sig-
nal interferences are especially problematic for quantitative 
studies because concentrations of individual metabolites 
will be overestimated unless the interferences are properly 
accounted for. Two-dimensional NMR experiments can be 
used to increase signal dispersion, but 2D spectra typically 
take longer time both to acquire and to analyse than 1D 
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spectra. Furthermore, quantification based on 2D spectra is 
not straightforward since the intensity of individual peaks 
is influenced by their coupling constants and transverse 
relaxation times. Accordingly, calibration with pure refer-
ence compounds, either externally or internally, is required 
for accurate quantification (Crook & Powers, 2020; Mar-
tineau et al., 2020). Therefore, 1D-1H NMR experiments are 
still the most common in high-throughput studies and there 
continues to be a high demand for methods that can accu-
rately quantify metabolites based on 1D-1H spectra. Various 
approaches have been developed, both manual (Weljie et al., 
2006) and automated (Zheng et al., 2011; Hao et al., 2012; 
Ravanbakhsh et al., 2015; Tardivel et al., 2017; Lefort et al., 
2019; Häckl et al., 2021; Rout et al., 2023).

An Automated Quantification Algorithm (AQuA) for tar-
geted metabolomics has previously been developed in our 
group (Röhnisch et al., 2018, 2021). This method quantifies 
metabolites from 1D-1H NMR spectra using only one signal 
per metabolite, which reduces the computational time and 
workload substantially compared to e.g. curve-fitting quan-
tification algorithms (Zheng et al., 2011; Hao et al., 2012; 
Ravanbakhsh et al., 2015; Tardivel et al., 2017). At the same 
time, AQuA corrects for signal interferences between differ-
ent metabolites as well as inter-spectral variation in signal 
position. Currently, AQuA is optimised for ultra-filtered 
human plasma samples but it would be desirable to extend 
its use to other, more heterogeneous, sample types as well, 
preferably without any time-consuming sample preparation.

Whereas human blood plasma and serum are well studied 
by NMR and the majority of signals have been assigned 
(Psychogios et al., 2011; Nagana Gowda et al., 2015), many 
other biological samples are less well characterised. Plant 
samples, for example, are very complex with numerous dif-
ferent metabolites of widely different concentrations, which 
complicates NMR analysis (Deborde et al., 2017). In the 
present study, aqueous oilseed rape (Brassica napus) root 
exudate samples were used as a model system to develop 
the proposed workflow (Fig. 1). Root exudates consist of all 
substances that are excreted by plant roots during growth, 
including sugars, organic acids, and amino acids (Vives-
Peris et al., 2020). In addition, the samples used in this study 
all contained various unknown compounds, likely lipids, that 
gave rise to broad signals in the spectra (Fig. 1b and c). 
Before accurate quantification can be performed, these sig-
nals need to be accounted for in some way. 

In blood plasma and serum, macromolecules giving rise 
to broad signals are routinely removed by ultrafiltration or 
precipitation with organic solvents before NMR analysis 
(Daykin et al., 2002; Nagana Gowda & Raftery, 2014). 
Other options are to use certain NMR experiments that tar-
get broad signals, such as the Carr-Purcell-Meiboom-Gill 
(CPMG) pulse sequence (Carr & Purcell, 1954; Meiboom 
& Gill, 1958) or diffusion-edited experiments (Liu et al., 

1996; de Graaf & Behar, 2003; Bliziotis et al., 2020). 
There are also methods solely based on computations, 
such as the Small Molecule Enhancement Spectroscopy 
(SMolESY) method (Takis et al., 2020, 2021) that utilises 
the first derivative of the imaginary part of the NMR data 
to generate a spectrum devoid of broad signals. SMolESY 
is capable of performing automated relative quantification 
in blood samples, but for more complex spectra remaining 
metabolite signal interferences may appear. Because the 
NMR signals in a SMolESY spectrum are not Lorentz-
ian shaped, standard spectral libraries cannot be used to 
model these interferences to obtain absolute concentra-
tions. Another strategy is to include broad signals in the 
quantification methods, either by modelling them as sig-
nals using e.g. wavelets (Hao et al., 2012) or Lorentzians 
(de Graaf et al., 2015), or by treating them as baseline 
distortions and removing their interference by approximat-
ing a baseline correction function through the broad signal 
(Zheng et al., 2011; Jacob et al., 2017). Most of these 
methods are developed for plasma, but could potentially 

Fig. 1  a  Typical 1H NMR spectrum of oilseed rape root exudate 
dissolved in  D2O, b  Magnification of spectral region 1.7–4.8 ppm, 
c Magnification of spectral region 0.70–1.65 ppm
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also be applied to the plant root exudate samples used as 
test system in the current study.

The aim of the current study was to develop a rapid, 
straightforward, and computationally efficient extension of 
AQuA for absolute quantification of selected metabolites in 
highly complex spectra containing broad background sig-
nals. The method should require minimal sample preparation 
without compromising the quantitative accuracy. Because 
of speed and computational cost, we decided to remove the 
interferences caused by the broad signals before the AQuA 
computation. This was done using an automatic baseline 
correction function; here we employed the widely used 
adaptive iteratively reweighted penalised least squares (air-
PLS) algorithm (Zhang et al., 2010). The combined method, 
called extended AQuA, was evaluated using simulations as 
well as a spike-in experiment performed in a complex sam-
ple matrix. This showed that the approach is both accurate, 
linear, and robust. Furthermore, the proposed workflow is 
fast and flexible and can easily be fine-tuned for individual 
samples.

2  Materials and methods

2.1  Root exudate collection

Seeds of various spring varieties of oilseed rape (Brassica 
napus) were kindly provided by Scandinavian Seed AB and 
Lantmännen Seed AB. All glassware was rinsed extensively 
with MilliQ water and autoclaved before use to minimise 
traces of detergents. Seeds were surface sterilised (10% chlo-
rine bleach for 5 min with mild shaking) and then rinsed 
with autoclaved MilliQ water four times. The seeds were 
germinated on petri dishes containing 0.5× Murashige-
Skoog medium, including vitamins (MS0222, Duchefa 
Biochemie B.V., Haarlem, Netherlands) and 0.6% bacto 
agar, in a growth chamber at 22/20 °C (day/night), 16/8 h 
photoperiod with 110 µE. After three to five days of germi-
nation, when cotyledons and rootlets were expanded, plant-
lets (n = 8) were transferred to sterile plastic nets attached to 
50 ml plastic tubes filled with autoclaved MilliQ water, so 
that the seedling roots were immersed into the water. This 
procedure was done in a sterile laminar flow hood. The sam-
ples were placed in a sterilised transparent plastic box and 
kept for four days with slow agitation in a growth chamber 
at 22/20 °C (day/night), 16/8 h photoperiod with 110 µE. 
Exudates were collected into glass bottles in a sterile laminar 
flow hood, shell frozen and lyophilised in darkness. Aliquots 
of the exudates were spread on plates containing LB agar or 
0.5× Murashige-Skoog agar and stored for 48 h to assess any 
microbial contamination. Blank samples did not contain any 
seedlings but were otherwise treated as described above.

Lyophilised root exudate and blank samples were dis-
solved in a few millilitres of MilliQ water, transferred to 15 
ml plastic tubes, and dried in a vacuum centrifuge. Dried 
samples were stored in a desiccator until use.

2.2  Sample preparation

NMR samples were prepared in a similar fashion to a previ-
ously published protocol (Kim et al., 2010). All experimental 
work was performed at room temperature. 750 µl  KH2PO4 
buffer in  D2O (45 mM, pD 7.0 (apparent pH 6.6) containing 
approximately 0.29 mM DSS-d6 (sodium 3-(trimethylsilyl)
propane-1-sulfonate-d6) was added to each sample. The sam-
ples were vortexed 30 s followed by 10 min ultrasonication. 
This procedure was repeated once. The samples were then 
transferred to 1.5 ml plastic tubes and centrifuged for 10 min 
at 17 000×g. For each sample, 600 µl of the supernatant was 
added to a 5 mm NMR tube.

2.3  NMR spectroscopy and spectral processing

NMR spectra were acquired on a Bruker Avance III 
600 MHz spectrometer with a 5 mm 1H/13C/15N/31P inverse 
detection cryoprobe equipped with a z gradient. 1D-1H 
NMR spectra (256 transients) were recorded at 25 °C using a 
NOESY presaturation pulse sequence (Bruker’s noesypr1d) 
with 1 s relaxation delay, 100 ms mixing time, 4.5 s acqui-
sition time, and 12 ppm spectral width, to enable absolute 
quantification based on the Chenomx library. 65 536 data 
points were collected and the carrier frequency was placed 
on the HDO signal (4.70 ppm). After acquisition, an expo-
nential line broadening of 0.3 Hz was applied and the spec-
tral quality was evaluated by assessing the full width half 
maximum (FWHM) of the DSS signal. If  FWHMDSS was 
greater than 1.20 Hz, a new spectrum was recorded. Spectra 
were processed (zero-filling, line broadening, phase cor-
rection, crude baseline correction) using Chenomx NMR 
Suite Professional Software package (version 8.6, Chenomx 
Inc., Edmonton, Canada). The line-broadening factor was 
adjusted for each spectrum to obtain  FWHMDSS = 1.20 Hz. 
If necessary, a crude baseline correction was applied to 
obtain a flat baseline around the internal standard signal 
before determining  FWHMDSS. The processed spectra were 
subjected to spectral binning (− 0.50 to 4.68 ppm and 4.98 
to 10.00 ppm, 0.0002 ppm/bin, 51 000 bins in total) and 
imported to MATLAB (version R2020a, MathWorks Inc., 
Natick (MA), USA).

To verify metabolite identification, 1H,1H-TOCSY 
(Bruker pulse sequence dipsi2gpphpr) and 1H,13C-HSQC 
(Bruker pulse sequence hsqcedetgpsisp.2) spectra were 
recorded for some of the samples. These spectra were pro-
cessed with TopSpin 4.0.6 (Bruker BioSpin).
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2.4  Metabolite identification and quantification

AQuA does not attempt at automated metabolite identifica-
tion, hence metabolite signals have to be selected prior to 
AQuA computation. Here, identification of metabolites was 
based on previous literature (Vives-Peris et al., 2020) and 
reference NMR spectra included in the Chenomx library. 
The identity of the metabolites was verified with 1H,1H-
TOCSY and 1H,13C-HSQC NMR spectra recorded for some 
of the samples. 13C NMR chemical shifts were compared 
with those available in the Biological Magnetic Resonance 
Data Bank (Ulrich et al., 2008). Only metabolites verified by 
2D NMR experiments, or displaying an excellent fit for sev-
eral signals with the Chenomx library, were included in the 
quantification model. Furthermore, only primary metabolites 
were included since one of the aims was to develop a method 
capable of quantifying only a subset of all metabolites in an 
NMR spectrum.

Binned processed NMR spectra (see Sect.  2.3) were 
imported to MATLAB and subjected to the airPLS algo-
rithm (Zhang et al., 2010) to fine-tune the baseline where 
affected by irregularities or the presence of broad signals. 
As default, the airPLS smoothing factor λ was set to 1 ×  107, 
but a local value was determined for spectral regions where 
the default λ failed to yield a satisfactory baseline correction. 
The values for the other parameters in the airPLS algorithm 
were used as default (order = 2, weight exception propor-
tion = 0.1, asymmetry parameter = 0.05, and maximum itera-
tion time = 20). The airPLS algorithm, using the optimised 
λ values, was incorporated in an automated joint workflow 
with AQuA in MATLAB. This workflow is referred to as the 
extended AQuA. Metabolite quantification using AQuA was 
performed on the corrected spectra according to the strategy 
previously described (Röhnisch et al., 2018), using the Che-
nomx library as a basis to model metabolite signals. In total, 
24 metabolites were targeted for quantification, including 
various amino acids, organic acids, and sugars (Table S1). 
One reporter signal to be used for quantification was selected 
for each metabolite (Table S1). Additionally, a few unknown 
signals were included in the model as Lorentzians generated 
in Chenomx (Fig. S1).

2.5  Simulations

A simple smoothing algorithm developed in-house was 
applied to one root exudate spectrum to model the spectral 
background. The algorithm was built in MATLAB based 
on the ‘smooth’ function. In short, the following steps were 
employed: (1) localisation of narrow high-intensity signals 
(spikes), (2) determination of spike borders, (3) spike deple-
tion by linear regression inside spike borders, and (4) aver-
age-based smoothing of the spike-depleted spectrum (for 
more information and a visual description of the process, 

see Supplementary Information Sect. 3, especially Fig. S5). 
In the final step, three levels of smoothing (low, medium, 
and high) were used to obtain three distinct spectral back-
ground models (referred to as A, B, and C, respectively, see 
Fig. S6). Normalised reference spectra of 24 metabolites 
(Table S1) were summed together and added to each spectral 
background in seven different scaling levels, thus yielding 
21 simulated spectra. The spectra were corrected with the 
airPLS algorithm using three different λ values (1 ×  106, 
1 ×  107, and 1 ×  108) applied to the whole spectra. Peak pick-
ing of one signal per metabolite was performed as previously 
described (Röhnisch et al., 2018) to obtain signal intensities 
in the corrected spectra.

2.6  Spike‑in experiment

Six of the analysed root exudate samples were pooled 
together and then divided into five portions. Five metabolites 
(γ-aminobutyric acid (GABA), dl-asparagine, l(+)-tartaric 
acid, l-threonine, and D-xylose) not present in the pooled 
sample were added to different concentrations. As control, 
five identical blank samples were spiked the same way. The 
chosen metabolites have signals in different spectral regions 
with different multiplicities and differ in how much they are 
affected by broad signals or baseline distortions. The large 
variation in concentration (10 µM-3200 µM) between the 
spiked metabolites reflects the large dynamic range observed 
in the experimental data set, both between different metabo-
lites in the same sample and between the same metabolite in 
different samples. See Supplementary Information, Sect. 4.1, 
for more details about the design of the spike-in experiment.

The spiked root exudate samples were analysed as 
described above, i.e. NMR analysis, spectral processing, and 
metabolite quantification using an airPLS-extended AQuA, 
which had been adjusted to include all spiked metabolites 
(Table S1).

The spectra of the spiked blank spectra were care-
fully baseline corrected in Chenomx. For the analysis of 
these spectra, the airPLS step was omitted and an AQuA that 
only targeted the five spiked metabolites plus lactic acid was 
used to calculate metabolite concentrations.

3  Results and discussion

3.1  Extended AQuA: workflow, parameter 
optimisation, and general considerations

The 1D-1H NMR spectra of oilseed rape root exudates dis-
played baseline irregularities, including broad background 
signals, that would impair metabolite concentration esti-
mates if not properly accounted for (Fig. 1). The broad sig-
nals in the low-frequency part of the spectra were the most 
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problematic distortions, due to their interference with several 
amino acid signals. Different methods for elimination of the 
baseline distortions were evaluated, utilising sample prepa-
ration, spectral editing, and computations, respectively (see 
Supplementary Information, Sect. 2). It was found that an 
automatic baseline correction function such as the airPLS 
algorithm (Zhang et al., 2010) could be employed to yield 
root exudate spectra suitable for targeted metabolomics, 
i.e. with well-preserved metabolite signal line shapes, a 
flat baseline, no pronounced residual broad signals, and no 
severe intensity modulation (see Fig. S2). Manual baseline 
correction was not considered feasible due to the complexity 
of the spectra.

The airPLS algorithm was combined with AQuA into 
a joint automated workflow, i.e. the extended AQuA, for 
quantification of metabolites in experimental 1H NMR spec-
tra of root exudates, acquired with minimal prior sample 
preparation (Fig. 2). The identity of the metabolites was 
confirmed with 1H,1H-TOCSY and 1H,13C-HSQC experi-
ments. Because the AQuA quantification is based on just 
one signal per metabolite, the airPLS algorithm was used 
to obtain a good baseline around these signals only, rather 
than aiming for a perfect baseline in the entire spectrum. 
The spectral library used here was created from Chenomx 
but other sources, e.g. in-house libraries, can be used instead 
if desired.

For the airPLS algorithm to work properly, the smoothing 
factor λ needs to be optimised. This parameter, which can be 
set to any value between 1 and 1 ×  109 (Zhang et al., 2010), 
strongly affects the result of the baseline correction. If λ is 
set too high, the fitted baseline does not include enough of 
the background, whereas if it is set too low, the algorithm 
starts to remove parts of the metabolite signals (Fig. 3). 
Here, due to the non-uniform distribution of broad signals 
and other baseline distortions, a single λ value was not used 
for an entire spectrum; instead, different λ values were used 
for different spectral regions (see Sect. 3.2). Despite the vir-
tually unlimited number of options, it was neither difficult 
nor time-consuming to find suitable λ values. Importantly, 
the optimised λ values could be kept fairly constant through-
out each data set and could thereby be included in the auto-
mated workflow. Before applying the extended AQuA to 
a data set, the result of the baseline correction should be 
assessed carefully on a representative subset of the spec-
tra, although one has to keep in mind that the procedure 
is inevitably an estimation and may not exactly match the 
actual baseline of the spectrum. However, this is true for all 
baseline correction methods, regardless of if they are manual 
or automated.

In addition to baseline distortions, interference can also 
be caused by spectral overlap with narrow unknown signals. 
In the current study, the aim was to quantify a preselected 
subset of metabolites while leaving remaining signals in the 

spectra untargeted. However, other signals that interfere with 
the metabolite signals used in AQuA need to be included in 
the quantification model to avoid overestimating the metab-
olite concentrations. Here, four unknown signals between 
0.93 and 0.97 ppm were added to the quantification model 
as single Lorentzians to obtain a more accurate concentra-
tion estimate of leucine based on the signal at 0.96 ppm 
(Table S1 and Fig. S1).

3.2  Evaluation of the extended AQuA

3.2.1  Simulations

The extended AQuA was first evaluated using simulated 
spectra of root exudates where the contributions of the broad 
signal background and the narrow metabolite signals were 

Fig. 2  Proposed workflow for NMR-based quantification of primary 
metabolites in plant root exudates after minimal sample prepara-
tion (see Materials and methods). The workflow includes the airPLS 
algorithm (Zhang et al., 2010) for removal of broad signals, followed 
by quantification using AQuA (Röhnisch et  al., 2018). The in silico 
library, here created from Chenomx, contains 1D-1H NMR spectra 
of all targeted metabolites. Other compatible methods, e.g. for signal 
alignment, can also be included in the workflow if desired
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exactly known (Fig. 4). To test how well the method can 
handle different types of spectra, three different spectral 
background models (A, B, and C) with varying smoothness 
were created (Figs. S5 and S6) and a simulated narrow sig-
nal spectrum was added to the backgrounds in seven dif-
ferent intensity levels. In total, 21 simulated spectra were 
thus obtained with differences in their spectral backgrounds 
as well as in their ratio between narrow and broad signals 
(Figs. S7–S10 and Table S2). For reference, Fig. 4a depicts 
the simulated spectrum created with the medium-smooth 
background B (Fig. 4b) and an intermediate intensity of the 
narrow signal spectrum (Fig. 4c). The airPLS algorithm was 
applied three times to all spectra, with three different λ val-
ues, to evaluate the robustness of the method. The signal 
heights in the airPLS corrected spectra (Fig. 4d) were com-
pared to those in the corresponding narrow signal spectra 
(Fig. 4c) using linear regression. Thereby, it was possible 
to precisely assess how well the airPLS algorithm could 
remove interferences caused by broad signals and baseline 
irregularities, and to what extent the narrow signal part of 
the spectrum was affected by the procedure.

In general, the agreement between the intensities in the 
baseline corrected spectra and the original narrow signal 
spectra was good for the signals used in AQuA, as indi-
cated by slopes and  R2 coefficients close to one and inter-
cepts close to zero (Fig. 5 and Table S3). This suggests that 

the airPLS feature specifically corrected the baseline and 
removed broad background signals without notably affect-
ing the selected metabolite signals. Percentage differences 
(Table S3) were calculated to condense the accuracy esti-
mate into a single variable. For most metabolites, the differ-
ence was less than 10% with at least one of the λ values. The 
smoother backgrounds B and C were easier to fit than the 
rougher background A, hence the smaller intercepts (Fig. 5b 
and c). Overall, when the airPLS algorithm was applied to 
spectra created using background A the λ value needed to 
be smaller than for spectra based on background B or C. For 
metabolite signals situated in spectral regions without back-
ground interference, e.g. formic acid and fumaric acid, the 
accuracy was good for all spectra regardless of which λ value 
was being used (Fig. 5 and Table S3). In contrast, some 
metabolites had signal intensities in the corrected spectra 
that deviated substantially from their true values. Often, this 
coincided with a pronounced interference from the spectral 
background (see Table S2 and Fig. S10). For example, the 
signals of fructose, glyceric acid, lactic acid, and threonine 
were all highly influenced by the spectral background and so 
the quantification accuracy of these metabolites was strongly 
dependent on the performance of the baseline correction. 
Because of the large variation in signal intensity in the simu-
lated spectra, the results could have been more accurate if 
the λ value had been optimised for each individual spectrum 

Fig. 3  The effect of different λ values (1 ×  107 − 1 ×  102) on the base-
line correction of the lactic acid/threonine region of a root exudate 
spectrum. Black: experimental spectrum before baseline correc-

tion, dashed: fitted baseline, grey: experimental spectrum after base-
line correction. Note that the experimental and corrected spectra are 
superimposed, not stacked on top of each other
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(see next section). However, in an experimental data set, the 
inter-spectral variation is usually not as big. Furthermore, 
the quantification accuracy for a given metabolite gener-
ally increased with increasing signal intensity relative to the 
spectral background. Thus, the lower the intensity of the nar-
row signals and the higher the intensity of the background, 
the more critical it becomes to optimise the method param-
eters to avoid quantification errors. Ideally, the signals used 
in the AQuA computation should all have a low degree of 
interference and high signal to noise ratio (Röhnisch et al., 
2018); however, this is not possible for all metabolites. Still, 
the proposed method appears to be both linear and accurate 
for most metabolites.

3.2.2  Spike‑in experiment

A spike-in experiment was conducted to further evaluate 
the extended AQuA (Tables S4, S5 and Fig. S11). Five 
metabolites (asparagine, GABA, tartaric acid, threonine, and 
xylose) were added both to blank samples and to aliquots 

of a pooled root exudate sample in concentrations above 
the limit of quantification (10 × S/N) for each metabolite. 
The blank spectra displayed minimal signal interference and 
lacked the broad background signals and baseline distor-
tions that were present in the root exudate spectra. There-
fore, these spectra were only subjected to manual baseline 
correction before the AQuA computation. The spiked root 
exudate spectra, on the other hand, were baseline corrected 
with the airPLS algorithm to remove broad background sig-
nals. Here, the default λ value gave a satisfactory correction 
for all metabolites except threonine and GABA, as evaluated 
by manual inspection. Threonine was the most challenging 
metabolite to quantify in the spiked root exudate spectra 
because its selected signal overlapped both with the signal 
of the methyl group of lactic acid and with a broad signal 
that was not assigned unambiguously but can be tentatively 
attributed to a lipid methylene signal (Fig. S11). The latter 
could not be correctly suppressed unless a lower λ value 
was used (see Fig. 3). The GABA signal is a broad quintet 
whose intensity was slightly reduced with the default λ value 
because the fitted baseline removed a small portion of the 
signal (Fig. S12). Therefore, the size of λ was increased for 
this spectral region.

After baseline correction, AQuA computation was per-
formed on both the spectra from the spiked root exudates 
and the spiked blank samples, and the results were compared 
with each other using linear regression as well as percent dif-
ferences (Table 1). The calculated concentrations are listed 
in Table S6. Because the same amount of metabolites were 
added to both sample sets, all slopes should theoretically be 
equal to one, and all intercepts should be equal to zero as 
none of the spiked metabolites were present in the samples 
initially. However, since the sample matrices differed some-
what and all metabolite additions were done manually, some 
deviations could be expected. Still, as shown in Table 1, the 
 R2 values were > 0.999, all intercepts were close to the ori-
gin, and the percent differences were generally small. This 
was in agreement with the results from the simulations. To 
enable comparison of the intercepts amongst the different 
metabolites despite the big differences in concentration, the 
intercepts are reported both as the actual value and as per-
cent of the highest concentration for each metabolite. The 
tartaric acid signal was consistently more intense in the spec-
tra of the spiked root exudate samples than in the spectra of 
the corresponding blank samples (Fig. S13), hence the large 
slope and percent differences. An experimental error prob-
ably occurred when tartaric acid was added to the root exu-
date samples since the calculated concentration of tartaric 
acid in the blank samples, but not the root exudate samples, 
agreed well with the actual concentrations (Tables S6–S8). 
The values of the intercepts and slopes for the other metabo-
lites indicated that there was no clear, systematic over- or 
underestimation of the concentrations obtained using the 

Fig. 4  Examples of simulated spectra used to evaluate the extended 
AQuA. a Simulated root exudate spectrum, constructed from a simu-
lated spectral background b and a simulated narrow signal spectrum 
c. d  The simulated root exudate spectrum after correction with the 
airPLS algorithm (λ = 1 ×  107 for the entire spectrum). Ideally, the 
spectra in c  and d  should be identical. An intensity scale has been 
added to all spectra to facilitate comparison between the spectra
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proposed method compared to when the same metabolites, 
in the absence of baseline distortions, were quantified with 
the non-extended AQuA.

3.3  Application to plant root exudates

The extended AQuA was applied to a data set consisting 
of 50 NMR spectra from oilseed rape root exudates and 7 

Fig. 5  Evaluation of the extended AQuA applied to seven simulated 
spectra constructed using spectral background model A, B, or C (see 
Figs. S5–S9). Linear regression was performed using signal heights 
in the simulated narrow signal spectra as predictor (x-axis) and sig-
nal heights in the corresponding simulated spectra with both broad 
and narrow signals, after correction with the airPLS algorithm, as 

response (y-axis). Only the signals used in AQuA were evaluated. Bar 
heights display values of the intercepts and slopes for each metabo-
lite in the simulated spectra. Bar colour indicates the λ value used 
in the baseline correction. Asterisks denote linear regressions with 
 R2 < 0.9900
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blank spectra. Concentration estimates were computed for 
24 metabolites (Table S1). Additionally, four unknown sig-
nals were included to model signal interferences (Fig. S1) 
but they were not quantitatively interpreted.

The extended AQuA process (i.e. baseline correction fol-
lowed by the quantification of 24 target metabolites) applied 
to all 57 spectra was typically completed in less than 30 s on 
a standard personal computer. The same method parameters 
were used for all spectra. In addition to the default λ value, 
two local values were used in the airPLS baseline correc-
tion (λ = 1 ×  106 for the spectral region 0.899–0.967 ppm 
and λ = 1 ×  105 for the region 1.225–1.334 ppm). If only one 
λ value was used, the total computation time decreased to 
around 10 s. It has been shown that AQuA requires less than 
one second to quantify 67 metabolites in 1342 spectra (Röh-
nisch et al., 2018). Introducing the airPLS step thus increases 
the computation time but the combined method is still very 
rapid. Because the airPLS algorithm is the rate-limiting step, 
the computation time increases notably with the number of 
spectra and λ values whereas it is negligibly affected by the 
number of metabolites targeted for quantification.

3.4  Advantages and limitations

The method described here allows for quantification of 
metabolites in complex spectra that contain broad signals 
and baseline distortions. Only minimal sample preparation 
is required and because the method is purely computational, 
knowledge about the compounds causing the broad signals is 
not needed. However, in case of binding interactions between 
metabolites and other compounds such as proteins, applica-
tion of the method would be more challenging. The occur-
rence of such interactions can be estimated by assessing the 

line width and shape of the internal standard signal, since 
both DSS and TSP are known to interact with macromol-
ecules (Bell et al., 1989; Kriat et al., 1992; Shimizu et al., 
1994; Nowick et al., 2003). Here, both metabolite signals 
and the internal standard signal were narrow and symmetric, 
which indicated that no significant macromolecular interac-
tion was taking place.

As shown here, the baseline correction method airPLS 
and the quantification method AQuA can be combined into 
a fully automated workflow, provided that prior metabolite 
identification and parameter optimisation have been con-
ducted. Optimising the airPLS algorithm is straightforward 
and depends only on the parameter λ. Here, we did not strive 
for an optimal baseline in the whole spectrum but only in 
regions containing signals used in AQuA, which reduced 
the optimisation time and effort. The combined method is 
extremely fast and typically requires less than one second 
per spectrum. This is due both to the sparse matrix charac-
teristic of the airPLS algorithm, but more importantly the 
AQuA data reduction strategy. AQuA only considers a set 
of pre-selected signals in the quantitative process, one for 
each metabolite, which facilitates very rapid computations 
whilst still accounting for interferences between metabolites.

Here, we chose to use the airPLS algorithm for baseline 
correction but it is possible to use other methods instead, 
as long as they are compatible with AQuA. The metabolite 
library can also be exchanged if e.g. in-house spectral librar-
ies are preferred.

There are also some limitations of the method. Relying 
on the height of one single metabolite signal for deriving 
concentrations may make the method more sensitive to 
systematic errors caused by database discrepancies com-
pared to when several signals are used (see Supplementary 

Table 1  Comparison of the 
concentrations obtained for the 
spiked blank samples and the 
concentrations obtained for the 
spiked root exudate  samplesa

a Results from linear regression. Predictor (x-axis): Concentrations for spiked blank samples calculated 
using an AQuA including only the five spiked metabolites and lactic acid. Response (y-axis): Concentra-
tions for spiked root exudate samples calculated using an airPLS-extended AQuA including the metabo-
lites listed in Table S1. Used airPLS parameters: λdefault = 1 ×  107, λThr = 1 ×  105 − 1 ×  106 (depending on the 
intensity of the threonine signal), λGABA = 1 ×  108

b Actual value for the spiked sample with the highest concentration
c Intercept as percent of the maximum concentration for the metabolite
d Average difference (%) for each spiked metabolite, comparing the calculated concentrations found for the 
spiked root exudate samples with the calculated concentrations for the corresponding blank samples (calcu-
lated as 100 × |Cblank −  Csample|/Cblank). See Table S6 for a complete list of difference values

Metabolite Max conc. (µM)b R2 Slope Intercept (µM) Rel.  interceptc % Mean % dif-
ference blank-
sampled

Asparagine 1604 1.0000 0.976 − 0.474  − 0.0295 2.7
GABA 403 1.0000 1.00  − 3.23  − 0.801 4.0
Tartaric acid 800 0.9994 1.16 6.70 0.837 20.0
Threonine 164 0.9996 1.01 2.22 1.36 6.2
Xylose 3224 1.0000 0.999 4.49 0.139 1.2
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Information, Sect. 4.2). However, this has not been fully 
evaluated, neither have we investigated whether other 
quantification methods are less susceptible to this kind of 
errors. Since AQuA is not an identification method, there 
is also a risk of erroneous metabolite quantification if the 
chemical shift windows have not been properly selected or 
if there are unknown signals present in some spectra that 
have not been accounted for. If a signal from another com-
pound, metabolite or impurity, with higher intensity than 
the intended metabolite signal resides in the chemical shift 
window, the algorithm will pick this signal for quantifica-
tion instead. For reliable results, metabolite identification 
should ideally be assessed manually. However, the prob-
lem with possible false identification of metabolites is not 
unique to AQuA, especially when the targeted metabolite 
signals are singlets.

4  Conclusions

We have here presented a fast and accurate approach for 
automated quantification of selected metabolites in com-
plex NMR spectra. The spectra of minimally handled plant 
root exudate samples were successfully analysed with the 
proposed method, despite the presence of unknown broad 
signals, baseline distortions, and extensive spectral overlap. 
Although not evaluated here, the method is theoretically 
applicable to any spectrum with similar characteristics, as 
long as the metabolite signals are unaffected by macromo-
lecular interactions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11306- 023- 02073-z.
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