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a b s t r a c t 

Global commitments to mitigating climate change and halting biodiversity loss require reliable 

information about Earth’s ecosystems. Increasingly, such information is obtained from multiple 

sources of remotely sensed data combined with data acquired in the field. This new wealth of 

data poses challenges regarding the combination of different data sources to derive the required 

information and assess uncertainties. In this article, we show how predictors and their variances 

can be derived when hierarchically nested models are applied. Previous studies have developed 

methods for cases involving two modeling steps, such as biomass prediction relying on tree-level 

allometric models and models linking plot-level field data with remotely sensed data. This study 

extends the analysis to cases involving three modeling steps to cover new important applications. 

The additional step might involve an intermediate model, linking field and remotely sensed data 

available from a small sample, for making predictions that are subsequently used for training a 

final prediction model based on remotely sensed data: 

• In cases where the data in the final step are available wall-to-wall, we denote the approach 

three-phase hierarchical model-based inference (3pHMB), 

• In cases where the data in the final step are available as a probability sample, we denote the 

approach three-phase hierarchical hybrid inference (3pHHY). 
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Method details 

Background 

Assessment of state and change of forest biomass has become important worldwide due to the large carbon dioxide fluxes incurred

by deforestation and afforestation, as well as by tree growth and harvesting in managed forests (e.g., [1] ). Intergovernmental Panel

on Climate Change (IPCC) guidance specifies that parties must report changes in biomass carbon stocks as well as uncertainties of the

reported figures. Since large parts of the world’s forests are inaccessible, applying remotely sensed (RS) data is an important option

for such assessments (ibid.). However, the accuracies of the assessments should be quantified using objective and consistent methods 

(e.g., [2] ). 

A standard model-based approach to forest biomass assessment is to specify and estimate a model that links biomass measured

in the field with RS metrics. The estimated model is then applied across the forest area of interest, whereby biomass predictions

and their uncertainties can be obtained utilizing standard methods of model-based inference (e.g., [3] ). Uncertainties arise since a

model cannot perfectly predict the actual biomass conditions. In some cases, several models are needed to make biomass assessments

feasible. For example, models are often applied to predict the biomass of individual trees in the field from measurements of their

diameters and heights. Subsequently, these predicted biomasses are used for developing models linking field biomass at the level of

sample plots with RS metrics. In this case, the overall uncertainty arises from two modeling steps (e.g., [4] ). 

Remote sensing methods that utilize laser measurements have revolutionized forest resource assessments [5–7] . These methods 

provide information about the 3D structure of forests, which is closely linked to biomass. However, laser measurements are expensive,

and thus in many cases they cannot be conducted wall-to-wall but only through sample coverage [8] . Important examples include

the strip samples of laser measurements conducted in Alaska [9] , and the samples of laser footprints from NASA’s Global Ecosystem

Dynamics Investigation (GEDI; [1 , 10] and the Ice, Cloud, and land Elevation Satellites 1 and 2 (ICESat-1 and − 2; [11–17] . For many

of these applications, existing methods for assessing uncertainties using frameworks such as model-assisted estimation (e.g., [9] ), 

hybrid inference (e.g., [1 , 11] ), and hierarchical model-based inference (e.g., [10] ) have been sufficient. 

Sometimes the available data structure requires additional levels in the hierarchy. New methods that utilize several RS-based 

models in hierarchical structures call for further development of methods to assess uncertainties. An example application involves 

modeling plot level biomass from field measurements, linking these with laser measurements through a second model, and utilizing

laser-based predictions of biomass at sample locations as substitutes for field data in estimating a third model for biomass prediction

based on RS data available wall-to-wall, such as data from the Landsat satellite [18] . In this case, three hierarchically nested modeling

steps contribute to the overall uncertainty of the biomass prediction for the study area. Ideally, the different datasets involved should

stem from about the same time point Hou et al. [19] . 

Note the difference between this type of hierarchically nested models and the hierarchy of data and models applied in standard

multi-level modeling (e.g., [20] ). In our case, the target response variable in the first modeling step is replaced by model predictions of

the response variable in the subsequent modeling steps. In standard multi-level modeling, the response variable does not change, and

multi-level modeling (also called mixed-effects modeling) refers to handling groups of observations, within which the observations 

are dependent. 

This article aims to develop and demonstrate predictors and methods for uncertainty assessment for model-based inference involv- 

ing three hierarchically nested modeling steps. If data in the final step are available wall-to-wall, we denote the method three-phase

hierarchical model-based inference (3pHMB). If data in the last step are available from a probability sample, we denote the method

three-phase hierarchical hybrid inference (3pHHY). The methods are similar in the first three steps, and differ only in the last step

(see the Graphical Abstract). 

Overview 

In the following sections, we first derive and present the formulas needed for applying the 3pHMB and 3pHHY frameworks.

Secondly, we provide further theoretical support for the approach through an analysis based on a multivariate superpopulation 

model; in this section, we also demonstrate important consequences of multi-stage hierarchical modeling. Lastly, we validate our 

theoretical results through Monte Carlo simulation. 

Details of three-phase hierarchical model-based inference (3pHMB) 

We base our description of 3pHMB inference on an example from forest inventory aiming at assessing the biomass for some large

study area. We define our population as the grid-cells that tessellate the study area into 𝑁 units. The size of the grid-cells corresponds

to the size of plots utilized in field inventories and to the size of pixels for which RS data can be retrieved. For each grid-cell RS data

are available, e.g., multispectral optical satellite data from the Landsat satellite (e.g., [21 , 22] ). With the 3pHMB method, wall-to-wall

RS data are used for predicting the biomass in each grid-cell and through averaging across the study area we predict the biomass

density. All other data sources, described below, are utilized for providing data for estimating the parameters of this prediction model,

which we denote the Landsat model. 

When the 3pHMB method is applied, field data are not adequate for immediately estimating the parameters of the Landsat model,

but “pseudo-field ” biomass data are available from a sample of accurate predictions based on, e.g., airborne laser scanning (ALS)

data. This sample dataset is used for estimating the Landsat model parameters. However, to make the ALS-based predictions, the
2 
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parameters of the ALS model must also be estimated. This model is estimated from a small sample of field biomass assessments with

corresponding ALS data. 

The biomasses of trees in the field also need to be predicted from models (often called allometric biomass models, e.g., [23] ), since

direct measurement is expensive and destroys the resource being monitored. Thus, biomass models are typically estimated from small

samples of trees, which are cut down and carefully weighed during dedicated research studies (e.g., [24 , 25] ). When applying the

3pHMB method we often aggregate model predictions of tree-level biomass to plot level, e.g., using the method described in Saarela

et al. [ [4] , pp. 11–12, Section “Aggregation of tree-level AGB predictions to plot level ”] and in Varvia et al. [ [26] , Appendix A.1]. In

this article, we do not address the details of this aggregation but assume that plot level biomass is either available from aggregation

of tree-level predictions (based on field data) or directly predicted from plot level measurements in the field of, e.g., basal area and

mean height. 

Thus, our study area of interest (AOI) is tessellated into 𝑁 grid-cells that constitute the population elements. We assume that the

objective is to predict the population mean, �̄� 𝑈 , of grid-cell level aboveground biomass density (AGBD), defined as 

�̄� 𝑈 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑦 𝑖 , 

where 𝑈 denotes the set of elements in the AOI. The RS data available for this set (e.g., Landsat data) are denoted 𝑷 𝑈 , which is a

matrix with 𝑁 observations of 𝑡 explanatory variables (plus a column of 1 ′ s for a model intercept). The dataset available for estimating

the prediction model used in the final stage is denoted 𝑆 𝐼 𝐼 𝐼 . It has 𝑛 𝐼 𝐼 𝐼 sample elements and contains data of the kind described

above (denoted 𝑷 𝐼 𝐼 𝐼 for this set) and intermediate RS data (e.g. from ALS) denoted 𝒁 𝐼 𝐼 𝐼 , which is a matrix with 𝑛 𝐼 𝐼 𝐼 observations of

𝑞 explanatory variables (plus a column of 1 ′ s). Further, the dataset 𝑆 𝐼𝐼 has 𝑛 𝐼𝐼 elements and data in the datasets 𝒁 𝐼𝐼 (as above, but

with 𝑛 𝐼𝐼 observations) and 𝑿 𝐼𝐼 , which is a matrix with 𝑛 𝐼𝐼 observations of ℎ variables (plus a column of 1 ′ s). The latter data are field

measurements (such as basal area, and plot averages of tree diameters and tree heights). Finally, the dataset 𝑆 𝐼 has 𝑛 𝐼 observations.

It contains field measurements in 𝑿 𝐼 (as above, but with 𝑛 𝐼 observations) and data from actual measurements of AGBD, in the vector

𝒚 𝐼 . 

For deriving a formula for the variance of the 3pHMB method, we start by defining a univariate linear model F, which links AGBD

and field measurements at the grid-cell level, using data from 𝑆 𝐼 : 

F ∶ 𝑌 𝑖 = 𝒙 𝑖 𝜷 + 𝜖𝑖 , 𝜖𝑖 ∼  

(
0 , 𝜔 

2 ), (1) 

where 𝑌 𝑖 is the variable of interest (AGBD), 𝒙 𝑖 is a ( ℎ + 1 ) -length row vector of explanatory variables (field measurements) with a unit

term for the intercept, 𝜷 is a ( ℎ + 1 ) -length column vector of model parameters to be estimated, and 𝜖𝑖 is a variability (a.k.a. error)

term which we assume follows a normal distribution with zero mean and constant variance 𝜔 

2 . 1 

The model parameters are estimated using the ordinary least squares (OLS) estimator (e.g., [27] ): 

�̂� = 

(
𝑿 

𝑇 
𝐼 
𝑿 𝐼 

)−1 
𝑿 

𝑇 
𝐼 
𝒚 𝐼 

The estimated model is then used to predict the target variable (AGBD) for the elements in 𝑆 𝐼𝐼 : 

�̂� 𝐹 = 𝑿 𝐼𝐼 ̂𝜷 . 

The index 𝐹 is used to denote that the AGBD predictions in 𝑆 𝐼𝐼 are based on the model F ( Eq. (1) ). The values �̂� 𝐹 are predictions

of AGBD based on field data, which are subsequently used for estimating the parameters of the model predicting AGBD from ALS

data. The ALS model is thus the next model to be addressed in the model hierarchy. 

To support the construction of the ALS model, we specify a multivariate model, G 

∗ , which links the ( ℎ + 1 ) -multivariate response

variable of field measurements 𝑿 𝑖 and a ( 𝑞 + 1 ) -length row vector 𝒛 𝑖 of ALS explanatory variables: 

G 

∗ ∶ 𝑿 𝒊 = 𝒛 𝑖 𝐀 

∗ + 𝝊∗ 𝑖 , 𝝊
∗ 
𝑖 ∼  

(
0 , 𝚫∗ ), 

where 𝐀 

∗ is a ( ( 𝑞 + 1 ) × ( ℎ + 1 ) ) - matrix of model parameters to be estimated, 𝝊∗ 
𝑖 

is a ( ℎ + 1 ) -length multivariate vector of variability

terms, which are assumed to be independent, normally distributed, have zero mean, and their variance-covariance matrix 𝚫∗ is of 

size ( ( ℎ + 1 ) × ( ℎ + 1 ) ). 
By multiplying each model component in G 

∗ by 𝜷 we obtain the univariate model ( [28] , Appendix A.3) 

𝑿 𝑖 𝜷 = 𝒛 𝑖 𝐀 

∗ 𝜷 + 𝝊∗ 𝑖 𝜷, 𝝊
∗ 
𝑖 𝜷 ∼  

(
0 , 𝜷𝑇 𝚫∗ 𝜷

)
, 

Denoting 𝐀 

∗ 𝜷 as 𝜶, 𝝊∗ 
𝑖 
𝜷 as υ𝑖 , and 𝜷𝑇 𝚫∗ 𝜷 as 𝛿2 , we obtain the following model, which we denote as G: 

G ∶ 𝑿 𝑖 𝜷 = 𝒛 𝑖 𝜶 + υ𝑖 , υ𝑖 ∼  

(
0 , 𝛿2 

)
. (2) 

Here, 𝒛 𝑖 a ( 𝑞 + 1 ) -length row vector of ALS explanatory variables with a unit term for the intercept and 𝜶 is a ( 𝑞 + 1 ) -length column

vector of model parameters to be estimated. This model links the expectation of AGBD, due to the model F, with ALS explanatory

variables. 
1 In the case of heterogeneity and correlation among model error terms, the generalized least square estimator should be applied to estimate the 

model parameters. Varvia et al. [26] presents an example where heterogeneous variance was taken into account in the context of 3pHHY. 

3 
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Table 1 

A summary of datasets and estimation steps involved in 3pHMB prediction. 

Dataset Available information Model training steps Model application step 

The field dataset 𝑆 𝐼 AGBD and field 

measurements 

A model linking AGBD and field measurements (model F) –

The ALS dataset 𝑆 𝐼𝐼 Field measurements and ALS 

variables 

An ALS model, used to predict AGBD from ALS variables 

(model G) 

The model F is applied on the 𝑆 𝐼𝐼 dataset 

The Landsat dataset 𝑆 𝐼 𝐼 𝐼 ALS and Landsat variables A Landsat model, used to predict AGBD from Landsat 

variables (model Q) 

The model G is applied on the 𝑆 𝐼 𝐼 𝐼 dataset 

The AOI, 𝑈 Landsat data – The model Q is applied to the entire 

population 

 

 

 

 

 

 

 

 

 

 

 

The predictions �̂� 𝐹 are used as the response variables in the model G to estimate its model parameters, 𝜶, based on the explanatory

variables 𝒁 𝐼𝐼 from 𝑆 𝐼𝐼 ( [28] , Appendix A.3): 

�̂� = 

(
𝒁 

𝑇 
𝐼𝐼 
𝒁 𝐼𝐼 

)−1 
𝒁 

𝑇 
𝐼𝐼 ̂
𝒚 𝐹 = 

(
𝒁 

𝑇 
𝐼𝐼 
𝒁 𝐼𝐼 

)−1 
𝒁 

𝑇 
𝐼𝐼 
𝑿 𝐼𝐼 ̂𝜷 = 𝐀 

∗ 𝜷 . 

Here, 𝐀 

∗ = ( 𝒁 

𝑇 
𝐼𝐼 
𝒁 𝐼𝐼 ) 

−1 
𝒁 

𝑇 
𝐼𝐼 
𝑿 𝐼𝐼 are estimated model parameters from the multivariate model G 

∗ . 

At this point, we have utilized the actual measurements of AGBD from 𝑆 𝐼 to predict AGBD for all elements in 𝑆 𝐼𝐼 based on field

measurement data. The AGBD predictions for 𝑆 𝐼𝐼 have subsequently been used for training an ALS model (the G model), through

which we now can predict AGBD for 𝑆 𝐼 𝐼 𝐼 : 

�̂� 𝐺 = 𝒁 𝐼 𝐼 𝐼 ̂𝜶. 

The predicted values �̂� 𝐺 are used for training the model to be applied in the last stage, based on wall-to-wall RS data, i.e., the

Landsat model. 

In support of constructing the Landsat model, we introduce a second multivariate model, which links the ( 𝑞 + 1 ) -multivariate

variable 𝒁 𝑖 (ALS variables) as a multivariate response variable with a ( 𝑡 + 1 ) -length row vector of Landsat explanatory variables 𝒑 𝑖 ;

the model is denoted Q 

∗ : 

Q 

∗ ∶ 𝒁 𝑖 = 𝒑 𝑖 𝚪∗ + 𝒆 ∗ 𝑖 , 𝒆 
∗ 
𝑖 ∼  

(
0 , 𝚯∗ ), 

where 𝚪∗ is a ( ( 𝑡 + 1 ) × ( 𝑞 + 1 ) )-matrix of model parameters, 𝒆 ∗ 
𝑖 

is a ( 𝑞 + 1 ) -multivariate variable of variability terms which are

independent, normally distributed, have zero mean and variance-covariance 𝚯∗ of size ( ( 𝑞 + 1 ) × ( 𝑞 + 1 ) ) . 
By multiplying model components in Q 

∗ with the model coefficients from G, we obtain the following univariate model 

𝒁 𝑖 𝜶 = 𝒑 𝑖 𝚪∗ 𝜶 + 𝒆 ∗ 𝑖 𝜶, 𝒆 
∗ 
𝑖 𝜶 ∼  

(
0 , 𝜶𝑇 𝚯∗ 𝜶

)
. 

Denoting 𝚪∗ 𝜶 as 𝜸, 𝒆 ∗ 
𝑖 
𝜶 as 𝑒 𝑖 and 𝜶𝑇 𝚯∗ 𝜶 as 𝜃2 we obtain the following model, which we denote as Q: 

Q ∶ 𝒁 𝑖 𝜶 = 𝒑 𝑖 𝜸 + 𝑒 𝑖 , 𝑒 𝑖 ∼  

(
0 , 𝜃2 

)
, (3) 

where, 𝜸 is an ( 𝑡 + 1 ) -length vector of model coefficients to be estimated. 

The ALS-based predictions of AGBD, �̂� 𝐺 , are used for estimating the model parameters, 𝜸, using information on explanatory 

Landsat variables 𝑷 𝐼 𝐼 𝐼 from 𝑆 𝐼 𝐼 𝐼 : 

�̂� = 

(
𝑷 𝑇 

𝐼 𝐼 𝐼 
𝑷 𝐼 𝐼 𝐼 

)−1 
𝑷 𝑇 

𝐼 𝐼 𝐼 ̂
𝒚 𝐺 = 

(
𝑷 𝑇 

𝐼 𝐼 𝐼 
𝑷 𝐼 𝐼 𝐼 

)−1 
𝑷 𝑇 

𝐼 𝐼 𝐼 
𝒁 𝐼 𝐼 𝐼 ̂𝜶 = 

(
𝑷 𝑇 

𝐼 𝐼 𝐼 
𝑷 𝐼 𝐼 𝐼 

)−1 
𝑷 𝑇 

𝐼 𝐼 𝐼 
𝒁 𝐼 𝐼 𝐼 𝐀 

∗ �̂� = ̂𝚪∗ 𝐀 

∗ �̂�, 

where 𝚪∗ = ( 𝑷 𝑇 
𝐼 𝐼 𝐼 

𝑷 𝐼 𝐼 𝐼 ) 
−1 
𝑷 𝑇 

𝐼 𝐼 𝐼 
𝒁 𝐼 𝐼 𝐼 are estimated model parameters from the model Q 

∗ . 

Finally, the estimated Q model is used to predict the AGBD across the entire AOI, i.e., for all the elements in 𝑈 : 

�̂� 𝑈 = 𝑷 𝑈 ̂𝜸. 

The 3pHMB population mean predictor is then: 

̂̄𝑦 𝑈 3 𝑝𝐻 𝑀 𝐵 
= 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝒑 𝑖 ̂𝜸 = �̄� 𝑈 ̂𝜸, (4) 

where �̄� 𝑈 is the ( 𝑡 + 1 ) -length row vector of Landsat explanatory variable averages over the AOI . 

Table 1 summarizes the description of the datasets and the estimation steps. In the table, the datasets used in the analyses are

listed with descriptions of available variables and whether they are used for model training or model application. 

Fig. 1 gives a graphical overview of 3pHMB prediction. 

The 3pHMB predictor variance and its estimator 

Application of 3pHMB for making predictions, only, across some AOI is fairly straightforward, and does not require all the model

formalism from the previous section. What is required is a procedure where the AGBD is first measured on the elements in 𝑆 𝐼 , then

predicted in a stepwise manner for the elements in 𝑆 , 𝑆 , and 𝑈 . However, the formalism introduced in the previous section
𝐼𝐼 𝐼 𝐼 𝐼 

4 
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Fig. 1. A graphical overview of 3pHMB prediction based on wall-to-wall auxiliary (remotely sensed) data. 

 

 

 

 

is needed for assessing the uncertainty associated with predicting the AGBD for the AOI. In this section, we build on the previous

section and derive a formula for the variance of the predictor of AGBD, and its corresponding estimator. 

For deriving the 3pHMB predictor variance, we begin with its expectation: 

𝐸 

[
̂̄𝑦 𝑈 3 𝑝𝐻 𝑀 𝐵 

]
= 𝐸 

[
�̄� 𝑈 ̂𝜸

]
= �̄� 𝑈 𝐸 [ ̂𝜸] . 

Since independent datasets (normally) are used for the three modeling steps, the estimated parameters in each step are independent

and thus 

𝐸 [ ̂𝜸] = 𝐸 

[
𝚪∗ 𝐀 

∗ �̂�
]
= 𝚪∗ 𝐀 

∗ 𝜷 = 𝜸. 

Thus, the expectation of the predictor of the population mean is 

𝐸 

[
̂̄𝑦 𝑈 3 𝑝𝐻 𝑀 𝐵 

]
= �̄� 𝑈 𝜸. 

Following the definition, the variance of ̂�̄� 𝑈 3 𝑝𝐻 𝑀 𝐵 
is 

𝑉 
(
̂̄𝑦 𝑈3 𝑝𝐻 𝑀 𝐵 

)
= 𝐸 

[ (
̂̄𝑦 𝑈3 𝑝𝐻 𝑀 𝐵 − 𝐸 

[
̂̄𝑦 𝑈3 𝑝𝐻 𝑀 𝐵 

])2 ] 
= 𝐸 

[(
�̄� 𝑈 ̂𝜸 − 𝐸 

[
�̄� 𝑈 ̂𝜸

])2 ]
= �̄� 𝑈 𝐸 

[
( ̂𝜸 − 𝐸 [ ̂𝜸] ) 2 

]
�̄� 𝑇 
𝑈 

= �̄� 𝐶𝑜𝑣 ( ̂𝜸) ̄𝒑 𝑇 𝑈 . (5) 

It can be noted that the covariance of the estimated model parameters is at the core of this expression. Since several modeling

steps have been involved in the estimation of the model parameters �̂�, the covariance can be decomposed into the following terms

using the law of total covariance [29] : 

𝐶𝑜𝑣 ( ̂𝜸) = 𝐶𝑜𝑣 
(
𝚪 ∗ ̂𝜶

)
= 𝐸 𝐺 

[
𝐶𝑜𝑣 𝑄 ∗ 

(
𝚪 ∗ ̂𝜶

)]
+ 𝐶𝑜𝑣 𝐺 

(
𝐸 𝑄 ∗ 

[
𝚪 ∗ ̂𝜶

])
= 𝐸 𝐺 

[
�̂�𝑇 𝐶𝑜𝑣 𝑄 ∗ 

(
𝚪 ∗ 
)
�̂�
]
+ 𝚪 ∗ 𝐶𝑜𝑣 𝐺 ( ̂𝜶) 𝚪∗ 𝑇 

= 𝜶𝑇 𝐶 𝑜𝑣 𝑄 ∗ 

(
𝚪 ∗ 
)
𝜶 + 𝚪 ∗ 𝐶 𝑜𝑣 𝐺 ( ̂𝜶) 𝚪∗ 𝑇 + 𝑇 𝑟 

[
𝐶 𝑜𝑣 𝑄 ∗ 

(
𝚪 ∗ 
)
𝐶 𝑜𝑣 𝐺 ( ̂𝜶) 

]
, (6) 

where the step from the second last to the last line is obtained from 

𝐸 𝐺 

[
�̂�𝑇 𝐶𝑜𝑣 𝑄 ∗ 

(
𝚪 ∗ 
)
�̂�
]
= 𝐸 𝐺 

[ ( 𝑞+1 ) ∑
𝑖 =1 

( 𝑞+1 ) ∑
𝑗=1 

�̂�𝑖 𝐶𝑜𝑣 𝑄 ∗ 
(
�̂�𝑖 , ̂𝛾𝑗 

)
�̂�𝑗 

] 

= 

( 𝑞+1 ) ∑
𝑖 =1 

( 𝑞+1 ) ∑
𝑗=1 

𝐶𝑜𝑣 𝑄 ∗ 
(
�̂�𝑖 , ̂𝛾𝑗 

)
𝐸 𝐺 

[
�̂�𝑖 ̂𝛼𝑗 

]

5 



S. Saarela, P. Varvia, L. Korhonen et al. MethodsX 11 (2023) 102321 

 

 

 

 

 

 

 

= 

( 𝑞+1 ) ∑
𝑖 =1 

( 𝑞+1 ) ∑
𝑗=1 

𝐶 𝑜𝑣 𝑄 ∗ 
(
�̂�𝑖 , ̂𝛾𝑗 

)(
𝛼𝑖 𝛼𝑗 + 𝐶 𝑜𝑣 

(
�̂�𝑖 , ̂𝛼𝑗 

))
= 

( 𝑞+1 ) ∑
𝑖 =1 

( 𝑞+1 ) ∑
𝑗=1 

𝐶 𝑜𝑣 𝑄 ∗ 
(
�̂�𝑖 , ̂𝛾𝑗 

)
𝛼𝑖 𝛼𝑗 + 

( 𝑞+1 ) ∑
𝑖 =1 

( 𝑞+1 ) ∑
𝑗=1 

𝐶 𝑜𝑣 𝑄 ∗ 
(
�̂�𝑖 , ̂𝛾𝑗 

)
𝐶 𝑜𝑣 

(
�̂�𝑖 , ̂𝛼𝑗 

)
= 𝜶𝑇 𝐶 𝑜𝑣 𝑄 ∗ 

(
𝚪 ∗ 
)
𝜶 + 𝑇 𝑟 

[
𝐶 𝑜𝑣 𝑄 ∗ 

(
Γ̂ ∗ 
)
𝐶 𝑜𝑣 𝐺 ( ̂𝜶) 

]
However, 𝐶𝑜𝑣 𝐺 ( ̂𝜶) in Eq. (6) emanates from several interacting models, and in order to present the variance formula in a format

that would later on allow estimation of, 𝐶𝑜𝑣 𝐺 ( ̂𝜶) is further decomposed using the law of total covariance: 

𝐶𝑜𝑣 𝐺 ( ̂𝜶) = 𝐶𝑜𝑣 𝐺 

(
𝐀 ∗ ̂𝜷

)
= 𝐸 𝐹 

[
𝐶𝑜𝑣 𝐺∗ 

(
𝐀 ∗ ̂𝜷

)]
+ 𝐶𝑜𝑣 𝐹 

(
𝐸 𝐺∗ 

[
𝐀 ∗ ̂𝜷

])
= 𝐸 𝐹 

[
�̂�
𝑇 
𝐶𝑜𝑣 𝐺∗ 

(
𝐀 ∗ 

)
�̂�
]
+ 𝐀 ∗ 𝐶𝑜𝑣 𝐹 

(
�̂�
)
𝐀 ∗ 𝑇 

= 𝜷𝑇 𝐶 𝑜𝑣 𝐺∗ 

(
𝐀 ∗ 

)
𝜷 + 𝐀 ∗ 𝐶 𝑜𝑣 𝐹 

(
�̂�
)
𝐀 ∗ 𝑇 + 𝑇 𝑟 

[
𝐶 𝑜𝑣 𝐺∗ 

(
𝐀 ∗ 

)
𝐶 𝑜𝑣 𝐹 

(
�̂�
)]
, (7) 

where the third term ( 𝑇 𝑟 [ 𝐶 𝑜𝑣 𝐺 ∗ ( ̂𝐀 

∗ ) 𝐶 𝑜𝑣 𝐹 ( ̂𝜷) ] ) follows from 𝐸 𝐹 [ ̂𝜷
𝑇 
�̂�] = 𝜷𝑻 𝜷 + 𝐶𝑜𝑣 ( ̂𝜷) . 

Thus, the variance of the AGBD predictor can be expressed as: 

𝑉 
(
̂̄𝑦 𝑈 3 𝑝𝐻 𝑀 𝐵 

)
= �̄� 𝑈 

(
𝜶𝑇 𝐶𝑜𝑣 𝑄 ∗ 

(
𝚪 ∗ 
)
𝜶
)
�̄� 𝑇 
𝑈 

+ ̄𝒑 𝑈 

(
𝚪 ∗ 𝜷𝑇 𝐶𝑜𝑣 𝐺∗ 

(
𝐀 ∗ 

)
𝜷 𝚪∗ 𝑇 

)
�̄� 𝑇 
𝑈 

+ ̄𝒑 𝑈 
(
𝚪 ∗ 𝐀 ∗ 𝐶𝑜𝑣 𝐹 

(
�̂�
)
A ∗ 𝑇 𝚪∗ 𝑇 

)
�̄� 𝑇 
𝑈 

+ ̄𝒑 𝑈 

(
𝚪 ∗ 𝑇 𝑟 

[
𝐶 𝑜𝑣 𝐺∗ 

(
𝐀 ∗ 

)
𝐶 𝑜𝑣 𝐹 

(
�̂�
)]

𝚪∗ 𝑇 
)
�̄� 𝑇 
𝑈 

+ ̄𝒑 𝑈 

(
𝑇 𝑟 
[
𝐶 𝑜𝑣 𝑄 ∗ 

(
𝚪 ∗ 
)(

𝜷𝑇 𝐶 𝑜𝑣 𝐺 ∗ 

(
𝐀 ∗ 

)
𝜷 + 𝐀 ∗ 𝐶 𝑜𝑣 𝐹 

(
�̂�
)
𝐀 ∗ 𝑇 + 𝑇 𝑟 

[
𝐶 𝑜𝑣 𝐺 ∗ 

(
𝐀 ∗ 

)
𝐶 𝑜𝑣 𝐹 

(
�̂�
)])])

�̄� 𝑇 
𝑈 
. (8a) 

In the simulation analyses that we performed to validate our methodology (illustrated in Table 7 ), we found that all the terms

involving traces were small, and could be neglected in the variance formula, for simplification. Thus, a good approximation of the

variance of the AGBD predictor would be 

𝑉 
(
̂̄𝑦 𝑈3 𝑝𝐻 𝑀 𝐵 

)
= �̄� 𝑈 

(
𝜶𝑇 𝐶𝑜𝑣 𝑄 ∗ 

(
𝚪∗ 
)
𝜶
)
�̄� 𝑇 
𝑈 
+ ̄𝒑 𝑈 

(
𝚪∗ 𝜷𝑇 𝐶𝑜𝑣 𝐺 ∗ 

(
𝐀 

∗ 
)
𝜷 𝚪∗ 𝑇 

)
�̄� 𝑇 
𝑈 
+ ̄𝒑 𝑈 

(
𝚪∗ 𝐀 

∗ 𝐶𝑜𝑣 𝐹 
(
�̂�
)
𝐀 

∗ 𝑇 𝚪∗ 𝑇 
)
�̄� 𝑇 
𝑈 
. (8b) 

By replacing the covariances of estimated model parameters and the model parameters by their corresponding estimators, we 

obtain a variance estimator. In the simulation analysis that we performed to validate our methodology, it was found that the variance

estimators were approximately unbiased. 

If we would like to derive the MSE of the predictor rather than the variance, we may define the true AGBD over the AOI through

the models involved. We first express the AGBD variable using the model Q as 

𝒁 𝑈 𝜶 = 𝑷 𝑈 𝜸 + 𝒆 𝑈 , 

Using model G, we can express 𝒁 𝑈 𝜶 as 𝑿 𝑈 𝜷 − 𝝊𝑈 and thus 𝑿 𝑈 𝜷 − 𝝊𝑈 = 𝑷 𝑈 𝜸 + 𝒆 𝑈 , leading to 

𝑿 𝑈 𝜷 = 𝑷 𝑈 𝜸 + 𝒖 𝑈 + 𝝊𝑈 . 

Using model F, we can express 𝑿 𝑈 𝜷 as 𝒚 𝑈 − 𝜖𝑈 and thus 𝒚 𝑈 − 𝜖𝑈 = 𝑷 𝑈 𝜸 + 𝒖 𝑈 + 𝝊𝑈 , which implies that the variable of interest for

all elements in the AOI can be expressed using models F, G and Q as 

𝒚 𝑈 = 𝑷 𝑈 𝜸 + 𝒆 𝑈 + 𝝊𝑈 + 𝜖𝑈 . 

The AGBD mean for 𝑈 can thus be expressed as 

�̄� 𝑈 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

(
𝒑 𝑖 𝜸 + 𝑒 𝑖 + 𝜐𝑖 + 𝜖𝑖 

)
= �̄� 𝑈 𝜸 + 

𝑒 𝑈 + 

𝜐𝑈 + 

𝜖𝑈 . 

The MSE of the predictor ̂�̄� 𝑈 3 𝑝𝐻 𝑀 𝐵 
is then, according to the definition of MSE, 

𝑀𝑆𝐸 

(
̂̄𝑦 𝑈 3 𝑝𝐻 𝑀 𝐵 

)
= 𝐸 

[ (
̂̄𝑦 𝑈 3 𝑝𝐻 𝑀 𝐵 

− �̄� 𝑈 

)2 ] 
= 𝐸 

[(
�̄� 𝑈 ̂𝜸 − ̄𝒑 𝑈 𝜸 − 𝑒 𝑈 − ̄𝜐𝑈 − ∈̄𝑈 

)2 ]
. 

Under an assumption of independence between the variability terms, the MSE can be expressed as 

𝑀𝑆𝐸 

(
̂̄𝑦 𝑈3 𝑝𝐻 𝑀 𝐵 

)
= �̄� 𝑈 𝐶𝑜𝑣 ( ̂𝜸) ̄𝒑 𝑇 𝑈 + 

𝜃2 

𝑁 

+ 

𝛿2 

𝑁 

+ 

𝜔 

2 

𝑁 

= 𝑉 
(
̂̄𝑦 𝑈3 𝑝𝐻 𝑀 𝐵 

)
+ 

𝜃2 

𝑁 

+ 

𝛿2 

𝑁 

+ 

𝜔 

2 

𝑁 

. (9) 

However, note that it is not obvious that the three variability terms are independent, and typically there is also spatial autocor-

relation among them. Thus, MSE expressions become complicated and require further investigation. 
6 
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Fig. 2. A graphical overview on the 3pHHY prediction based on a probability sample of auxiliary (remotely sensed) data. 

 

 

 

Details of three-phase hierarchical hybrid inference (3pHHY) 

Next, we present our second case, i.e., when the last step auxiliary information is available only for a probability sample from the

AOI, rather than wall-to-wall. This step is the only difference compared to 3pHMB inference. In our forest inventory example, the

auxiliary information in this case could be retrieved from the ICESat-2 spaceborne LiDAR. 

Thus, �̄� 𝑈 in this case is estimated using the design-based estimator (e.g., [30] , p. 42) 

̂̄𝒑 𝑈 = 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

, 

where 𝑆 𝐼𝑉 is a probability sample drawn from the AOI, 𝒑 𝑘 is a vector of ICESat-2 auxiliary values for the 𝑘 𝑡ℎ element in the sample,

and 𝜋𝑘 is the probability of including the 𝑘 𝑡ℎ element to the sample 𝑆 𝐼𝑉 . 

The design-based expectation of ̂�̄� 𝑈 is 

𝐸 𝐷 

[
̂̄𝒑 𝑈 

]
= �̄� 𝑈 . 

The 3pHHY predictor of the AGBD mean over the AOI is then (cf., [31–33] ) 

̂̄𝑦 𝑈3 𝑝𝐻 𝐻 𝑌 = 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

�̂�. (10) 

Fig. 2 gives a graphical overview of 3pHHY prediction. 

The 3pHHY predictor variance and its estimator 

To derive the variance of the 3pHHY predictor, we begin with the expectation of the predictor, which can be decomposed as 

𝐸 

[
̂̄𝑦 𝑈3 𝑝𝐻 𝐻 𝑌 

]
= 𝐸 

[ 
1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

�̂�

] 
= 𝐸 𝐷 

[ 
𝐸 𝑄 

[ 
1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

�̂�

] ] 

= 𝐸 𝐷 

[ 
1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

𝐸 𝑄 [ ̂𝜸] 

] 
= ̄𝒑 𝑈 𝐸 𝑄 [ ̂𝜸] = �̄� 𝑈 𝚪∗ 𝐀 

∗ 𝜷 = �̄� 𝑈 𝜸, 

where the subscript 𝐷 denotes expectation due to the design. 

The variance of the 3pHHY predictor can be decomposed using the law of total variance as 

𝑉 
(
̂̄𝑦 𝑈3 𝑝𝐻 𝐻 𝑌 

)
= 𝑉 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

�̂�

) 

= 𝑉 𝐷 

( 

𝐸 𝑄 

[ 
1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

�̂�

] ) 

+ 𝐸 𝐷 

[ 
𝑉 𝑄 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

�̂�

) ] 
7 
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= 𝑉 𝐷 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

𝜸

) 

+ 𝐸 𝐷 

⎡ ⎢ ⎢ ⎣ 1 𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

𝐶𝑜𝑣 ( 𝜸) 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

) 𝑇 ⎤ ⎥ ⎥ ⎦ 
= 𝜸𝑇 𝐶 𝑜𝑣 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

) 

𝜸 + ̄𝒑 𝑈 𝐶 𝑜𝑣 ( ̂𝜸) ̄𝒑 𝑇 𝑈 + 𝑇 𝑟 

[ 
𝐶 𝑜𝑣 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

) 

𝐶 𝑜𝑣 ( ̂𝜸) 

] 
. (11) 

The third term in the final expression of Eq. (11) is due to 

𝐸 𝐷 

⎡ ⎢ ⎢ ⎣ 1 𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

) 𝑇 ⎤ ⎥ ⎥ ⎦ = �̄� 𝑈 ̄𝒑 
𝑇 
𝑈 
+ 𝐶𝑜𝑣 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

) 

. 

Our simulation analysis showed that the third term, 𝑇 𝑟 [ 𝐶 𝑜𝑣 ( 1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 
) 𝐶 𝑜𝑣 ( ̂𝜸) ] , in Eq. (11) is small and may be neglected. Thus,

for any given sampling design the 3pHHY variance is 

𝑉 
(
̂̄𝑦 𝑈3 𝑝𝐻 𝐻 𝑌 

)
= 𝜸𝑇 𝐶 𝑜𝑣 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

) 

𝜸 + ̄𝒑 𝑈 𝐶 𝑜𝑣 ( ̂𝜸) ̄𝒑 𝑇 𝑈 . (12) 

Under a simple random sampling without replacement design, the variance is 

𝑉 
(
̂̄𝑦 𝑈3 𝑝𝐻 𝐻 𝑌 

)
= 

1 
𝑛 𝐼𝑉 

(
1 − 

𝑛 𝐼𝑉 
𝑁 

)
𝜸𝑇 𝐶 𝑜𝑣 

(
𝑷 𝑈 
)
𝜸 + ̄𝒑 𝑈 𝐶 𝑜𝑣 ( ̂𝜸) ̄𝒑 𝑇 𝑈 , (13) 

where 𝑛 𝐼𝑉 is the sample size, ( 1 − 

𝑛 𝐼𝑉 
𝑁 

) is the finite population correction factor, and 𝐶𝑜𝑣 ( 𝑷 𝑈 ) is the population covariance of the

ICESat-2 explanatory variables. In the simulations performed to validate the results, Eq. (13) was used, since simple random sampling

was assumed. 

By replacing the covariance of estimated model parameters, 𝐶𝑜𝑣 ( ̂𝜸) , the model parameters, 𝜸, and the design-based covariance

𝐶𝑜𝑣 ( 1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 
) with their corresponding estimators we obtain a variance estimator. Our simulation analysis showed that the variance

estimator is approximately unbiased. 

If we would like to derive the MSE of the 3pHHY predictor, we may proceed along the route previously outlined for 3pHMB, i.e. 

𝑀𝑆𝐸 

(
̂̄𝑦 𝑈3 𝑝𝐻 𝐻 𝑌 

)
= 𝐸 

[ (
̂̄𝑦 𝑈3 𝑝𝐻 𝐻 𝑌 − �̄� 𝑈 

)2 ] 

= 𝐸 

⎡ ⎢ ⎢ ⎣ 
( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

�̂� − ̄𝒑 𝑈 𝜸 − 𝑒 𝑈 − ̄𝜐𝑈 − ∈̄𝑈 

) 2 ⎤ ⎥ ⎥ ⎦ 
= 𝐸 

⎡ ⎢ ⎢ ⎣ 
( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

�̂� − ̄𝒑 𝑈 ̂𝜸 + �̄� 𝑈 ̂𝜸 − ̄𝒑 𝑈 𝜸 − 𝑒 𝑈 − ̄𝜐𝑈 − ∈̄𝑈 

) 2 ⎤ ⎥ ⎥ ⎦ 
= 𝐸 

⎡ ⎢ ⎢ ⎣ 
( ( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

− ̄𝒑 𝑈 

) 

�̂� + �̄� 𝑈 ( ̂𝜸 − 𝜸) − 𝑒 𝑈 − ̄𝜐𝑈 − ∈̄𝑈 

) 2 ⎤ ⎥ ⎥ ⎦ 
= 𝜸𝑇 𝐶 𝑜𝑣 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

) 

𝜸 + ̄𝒑 𝑈 𝐶 𝑜𝑣 ( ̂𝜸) ̄𝒑 𝑇 𝑈 + 𝑇 𝑟 

[ 
𝐶 𝑜𝑣 

( 

1 
𝑁 

∑
𝑆 𝐼𝑉 

𝒑 𝑘 

𝜋𝑘 

) 

𝐶 𝑜𝑣 ( ̂𝜸) 

] 
+ 

𝜃2 

𝑁 

+ 

𝛿2 

𝑁 

+ 

𝜔 

2 

𝑁 

= 𝑉 
(
̂̄𝑦 𝑈3 𝑝𝐻 𝐻 𝑌 

)
+ 

𝜃2 

𝑁 

+ 

𝛿2 

𝑁 

+ 

𝜔 

2 

𝑁 

. (14) 

Like in the case of 3pHMB, this MSE formula assumes independence between the variability terms and absence of spatial auto-

correlation. Thus, deriving a useful MSE expression is complicated and requires further investigation. 

Study of hierarchical modeling in the context of a superpopulation model 

The previous sections of this article have provided the formulas needed for applying 3pHMB and 3pHHY for prediction, and for

assessing uncertainties. In this section, we study properties of hierarchical modeling that cannot be straightforwardly deduced from 

the formulas presented in the previous sections. We do this by specifying a superpopulation model with normally distributed random

variables. Some of the non-standard models from the previous sections, e.g., Eqs. (2) and (3) , will now be derived through condi-

tional expectation, thus validating the previously presented models. This section will also provide insights into effects of hierarchical 

modeling that are important to understand, such as the reduced variability of the response variable the more hierarchically nested

models are added. Examples of the magnitude of such variability reduction are provided. 

We assume that with each population element a multivariate random variable is associated, i.e., for the 𝑖 𝑡ℎ observation, the values

( 𝑦 𝑖 , 𝑥 𝑖 , 𝑧 𝑖 , 𝑝 𝑖 ) are outcomes from a multivariate random variable ( 𝑌 𝑖 , 𝑋 𝑖 , 𝑍 𝑖 , 𝑃 𝑖 ). The joint distribution of the random variables for the

elements in the population defines a superpopulation model denoted 𝜉 ( [34] , p. 80). 
8 
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The superpopulation model 𝜉 shapes the relationship between the variables in the population, and the observations linked to 

them. We assume the same type of population elements, variables and observations as previously, i.e. 𝑦 𝑖 is the AGBD measured in

the field, 𝑥 𝑖 is some field plot measurements, such as average tree diameter (DBH), 𝑧 𝑖 is some ALS variable, and 𝑝 𝑖 some Landsat (in

the case of 3pHMB) or ICESat-2 variable (in the case of 3pHHY). The values ( 𝑦 𝑖 , 𝑥 𝑖 , 𝑧 𝑖 , 𝑝 𝑖 ) are realizations from the corresponding

multivariate random variable ( 𝑌 𝑖 , 𝑋 𝑖 , 𝑍 𝑖 , 𝑃 𝑖 ). 

We assume a multivariate normal distribution, i.e. ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑌 𝑖 
𝑋 𝑖 

𝑍 𝑖 

𝑃 𝑖 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
∼  ( 𝝁, 𝚺) , 

where 𝝁 = ( 𝜇𝑌 , 𝜇𝑋 , 𝜇𝑍 , 𝜇𝑃 ) is a vector of superpopulation means, and 𝚺 is the superpopulation variance-covariance matrix with 

variances 𝜎2 
( ⋅) for each variable on the diagonal and covariances 𝜎( ⋅)( ⋅) between the variables on the off-diagonal elements. We assume 

that our multivariate variables are exchangeable, i.e., every permutation of the order of the population elements follows the same

joint distribution 𝜉 ( [34] , p. 85). 

We now derive the models previously presented Eqs. (1) , ( (2) , and (3) ) through the superpopulation model. We begin with

describing the model linking AGBD and DBH, i.e., the model F. Following the joint distribution 𝜉, the conditional probability density

function of 𝑌 𝑖 , given that 𝑋 𝑖 = 𝑥 𝑖 for the 𝑖 𝑡ℎ unit, is 

𝑓 𝑌 |𝑋 ( 𝑦 |𝑥 ) = 

𝑓 𝑋,𝑌 ( 𝑥, 𝑦 ) 
𝑓 𝑋 ( 𝑥 ) 

, 

where 𝑓 𝑋,𝑌 ( 𝑥, 𝑦 ) is the joint probability density function of 𝑌 and 𝑋, and 𝑓 𝑋 ( 𝑥 ) is the marginal density function for 𝑋. Under the

normality assumption the conditional expectation of 𝑌 𝑖 given 𝑋 𝑖 = 𝑥 𝑖 can be expressed as ( [35] , p. 72) 

𝐸 

[
𝑌 𝑖 |𝑋 𝑖 = 𝑥 𝑖 

]
= 𝐸 

[
𝑌 𝑖 
]
+ 

𝐶𝑜𝑣 
(
𝑌 𝑖 , 𝑋 𝑖 

)
𝑉 
(
𝑋 𝑖 

) (
𝑥 𝑖 − 𝐸 

[
𝑋 𝑖 

])
= 𝜇𝑌 + 𝑟 𝑌 𝑋 

𝜎𝑌 
𝜎𝑋 

(
𝑥 𝑖 − 𝜇𝑋 

)
= 𝜇𝑌 |𝑋 (15) 

where 𝑟 𝑌 𝑋 is the correlation between 𝑌 𝑖 and 𝑋 𝑖 , and 𝜎( ⋅) is the superpopulation standard deviation for the given variable. The variance

of the conditional distribution is ( [35] , p. 72) 

𝑉 𝑎𝑟 
(
𝑌 𝑖 |𝑋 𝑖 = 𝑥 𝑖 

)
= 𝑉 

(
𝑌 𝑖 
)
− 

𝐶𝑜𝑣 2 
(
𝑌 𝑖 , 𝑋 𝑖 

)
𝑉 
(
𝑋 𝑖 

) = 𝜎2 
𝑌 

(
1 − 𝑟 2 

𝑌 𝑋 

)
= 𝜎2 

𝑌 |𝑋 . (16) 

The conditional distribution of 𝑌 𝑖 , given that 𝑋 𝑖 = 𝑥 𝑖 for the 𝑖 𝑡ℎ observation is then 

𝑌 𝑖 |𝑋 𝑖 = 𝑥 𝑖 ∼  

(
𝜇𝑌 |𝑋 , 𝜎2 

𝑌 |𝑋 
)
. 

Thus, in our example, the AGBD random variable associated with the 𝑖 𝑡ℎ population element has the expectation 𝜇𝑌 and variance

𝜎2 
𝑌 

; 𝑋 𝑖 is the DBH random variable with expectation 𝜇𝑋 and variance 𝜎2 
𝑋 

. However, for a fixed outcome 𝑥 𝑖 from 𝑋 𝑖 , there is a

random subset of 𝑌 𝑖 conditional on the fixed 𝑥 𝑖 ; this subset is the variable 𝑌 𝑖 |𝑋 𝑖 = 𝑥 𝑖 with expectation 𝜇𝑌 |𝑋 = 𝜇𝑌 + 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑋 

( 𝑥 𝑖 − 𝜇𝑋 )
and variance 𝜎2 

𝑌 |𝑋 = 𝜎2 
𝑌 
( 1 − 𝑟 2 

𝑌 𝑋 
) . This corresponds to regressing 𝑌 𝑖 on 𝑋 𝑖 , which reveals how much information about 𝑌 𝑖 is contained

in an observation of 𝑋 𝑖 ( [35] , p. 73). 

Therefore, using the conditional distribution, we can define our first model (F), which links AGBD and DBH as 

F ∶ 𝑌 𝑖 = 𝜇𝑌 |𝑋 + 𝜖𝑖 , 𝜖𝑖 ∼  

(
0 , 𝜎2 

𝑌 |𝑋 
)
, (17) 

where 𝜖𝑖 is the variability term. By denoting 𝜔 

2 = 𝜎2 
𝑌 |𝑋 , 𝛽0 = ( 𝜇𝑌 − 𝑟 𝑌 𝑋 

𝜎𝑌 
𝜎𝑋 

𝜇𝑋 ) and 𝛽1 = 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑋 

we can rewrite F in the form previously

introduced, i.e. 

F ∶ 𝑌 𝑖 = 𝛽0 + 𝛽1 𝑥 𝑖 + 𝜖𝑖 , 𝜖𝑖 ∼  

(
0 , 𝜔 

2 ), 
and in linear algebra notation 

F ∶ 𝑌 𝑖 = 𝒙 𝑖 𝜷 + 𝜖𝑖 , 𝜖𝑖 ∼  

(
0 , 𝜔 

2 ), 
where 𝜷 = ( 𝛽0 , 𝛽1 ) 𝑇 and 𝒙 𝑖 = ( 1 , 𝑥 𝑖 ) . By substituting the variances and correlations in the parameter formulas with their corresponding

estimators, we obtain the well-known formulas for parameter estimation from OLS regression. 

Similarly, to derive the model G ( Eq. (2) ), we introduce 𝐸[ 𝑌 𝑖 |𝑋 𝑖 ] , which is a random variable since we now condition on the

random variable 𝑋 𝑖 rather than some fixed outcome 𝑋 𝑖 = 𝑥 𝑖 ( [27] , p. 131–132). The variance of 𝐸[ 𝑌 𝑖 |𝑋 𝑖 ] is 

𝑉 
(
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

])
= 𝑉 

( 

𝜇𝑌 + 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑋 

(
𝑋 𝑖 − 𝜇𝑋 

)) 

= 𝑉 

( 

𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑋 

𝑋 𝑖 

) 

= 𝑟 2 
𝑌 𝑋 

𝜎2 
𝑌 

𝜎2 
𝑋 

𝑉 
(
𝑋 𝑖 

)
= 𝑟 2 

𝑌 𝑋 

𝜎2 
𝑌 

𝜎2 
𝑋 

𝜎2 
𝑋 
= 𝑟 2 

𝑌 𝑋 
𝜎2 
𝑌 
. (18) 

The expectation of 𝐸[ 𝑌 𝑖 |𝑋 𝑖 ] can be derived through the law of iterated expectations ( [27] , p. 132) 

𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]]
= 𝐸 

[
𝑌 𝑖 
]
= 𝜇𝑌 . (19) 
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The next step is to introduce the ALS variable, 𝑍 𝑖 . Based on our superpopulation model, the conditional distribution of 𝐸[ 𝑌 𝑖 |𝑋 𝑖 ]
given that 𝑍 𝑖 = 𝑧 𝑖 has the expected value (cf. Eq. (15) ) 

𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 = 𝑧 𝑖 
]
= 𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]]
+ 

𝐶𝑜𝑣 
(
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]
, 𝑍 𝑖 

)
𝑉 
(
𝑍 𝑖 

) (
𝑧 𝑖 − 𝐸 

[
𝑍 𝑖 

])
= 𝜇𝑌 + 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 

𝜎𝑌 
𝜎𝑍 

(
𝑧 𝑖 − 𝜇𝑧 

)
= 𝜇𝑌 |𝑋 |𝑍 , (20) 

where, 

𝐶𝑜𝑣 
(
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]
, 𝑍 𝑖 

)
= 𝐶𝑜𝑣 

( ( 

𝜇𝑌 + 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑋 

(
𝑋 𝑖 − 𝜇𝑋 

)) 

, 𝑍 𝑖 

) 

= 𝐶 𝑜𝑣 

( 

𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑋 

𝑋 𝑖 , 𝑍 𝑖 

) 

= 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑋 

𝐶 𝑜𝑣 
(
𝑋 𝑖 , 𝑍 𝑖 

)
= 𝑟 𝑌 𝑋 

𝜎𝑌 
𝜎𝑋 

𝑟 𝑋𝑍 

√ 

𝑉 
(
𝑋 𝑖 

)
𝑉 
(
𝑍 𝑖 

)
= 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 𝜎𝑌 𝜎𝑍 . 

The variance is (cf. Eq. (16) ) 

𝑉 𝑎𝑟 
(
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 = 𝑧 𝑖 
)
= 𝑉 

(
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

])
− 

𝐶𝑜𝑣 2 
(
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]
, 𝑍 𝑖 

)
𝑉 
(
𝑍 𝑖 

)
= 𝑟 2 

𝑌 𝑋 
𝜎2 
𝑌 
− 

(
𝑟 𝑋𝑍 𝑟 𝑌 𝑋 𝜎𝑌 𝜎𝑍 

)2 
𝜎2 
𝑍 

= 𝜎2 
𝑌 
𝑟 2 
𝑌 𝑋 

(
1 − 𝑟 2 

𝑋𝑍 

)
= 𝜎2 

𝑌 |𝑋 |𝑍 (21) 

The conditional distribution of 𝐸[ 𝑌 𝑖 |𝑋 𝑖 ] , given that 𝑍 𝑖 = 𝑧 𝑖 is then 

𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 = 𝑧 𝑖 ∼  

(
𝜇𝑌 |𝑋 |𝑍 , 𝜎2 

𝑌 |𝑋 |𝑍 
)
. 

Thus, we can define the model G: 

G ∶ 𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]
= 𝜇𝑌 |𝑋 |𝑍 + 𝜐𝑖 , 𝜐𝑖 ∼  

(
0 , 𝜎2 

𝑌 |𝑋 |𝑍 
)
. (22) 

Denoting model parameters 𝛼0 = ( 𝜇𝑌 − 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑍 

𝜇𝑍 ) , 𝛼1 = 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑍 

, and the variance of the variability term 𝜐𝑖 as 𝛿2 = 𝜎2 
𝑌 |𝑋|𝑍 ,

we can rewrite G as 

G ∶ 𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]
= 𝛼0 + 𝛼1 𝑧 𝑖 + 𝜐𝑖 , 𝜐𝑖 ∼  

(
0 , 𝛿2 

)
and in linear algebra notation 

G ∶ 𝑿 𝑖 𝜷 = 𝒛 𝒊 𝜶 + 𝜐𝑖 , 𝜐𝑖 ∼  

(
0 , 𝛿2 

)
, 

where 𝑿 𝑖 = ( 1 , 𝑋 𝑖 ) , 𝜶 = ( 𝛼0 , 𝛼1 ) 𝑇 and 𝒛 𝒊 = ( 1 , 𝑧 𝑖 ) . This model coincides with the model presented in Eq. (2) in the previous section. 

It remains to derive the model Q, ( Eq. (3) ) in a similar fashion. Thus, we define a new random variable, 𝐸 [ 𝐸 [ 𝑌 𝑖 |𝑋 𝑖 ] |𝑍 𝑖 ] , which

has variance 

𝑉 
(
𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 

])
= 𝑉 

( 

𝜇𝑌 − 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑍 

(
𝑍 𝑖 − 𝜇𝑍 

)) 

= 𝑉 

( 

𝑟 𝑋𝑍 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑍 

𝑍 𝑖 

) 

= 𝑟 2 
𝑋𝑍 

𝑟 2 
𝑌 𝑋 

𝜎2 
𝑌 
, (23) 

and expectation (following the law of iterated expectations) 

𝐸 

[
𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 

]]
= 𝐸 

[
𝑌 𝑖 
]
= 𝜇𝑌 . (24) 

The conditional distribution of 𝐸 [ 𝐸 [ 𝑌 𝑖 |𝑋 𝑖 ] |𝑍 𝑖 ] given 𝑃 𝑖 = 𝑝 𝑖 is 

𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 

]|𝑃 𝑖 = 𝑝 𝑖 ∼  

(
𝜇𝑌 |𝑋 |𝑍|𝑃 , 𝜎2 

𝑌 |𝑋 |𝑍|𝑃 
)
, 

where 

𝐸 

[
𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 

]|𝑃 𝑖 = 𝑝 𝑖 
]
= 𝜇𝑌 + 𝑟 𝑍𝑃 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 

𝜎𝑌 
𝜎𝑃 

(
𝑝 𝑖 − 𝜇𝑃 

)
= 𝜇𝑌 |𝑋 |𝑍|𝑃 , (25) 

given that the covariance 

𝐶 𝑜𝑣 
((

𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 

])
, 𝑃 𝑖 
)
= 𝐶 𝑜𝑣 

( ( 

𝜇𝑌 − 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑍 

(
𝑍 𝑖 − 𝜇𝑍 

)) 

, 𝑃 𝑖 

) 

= 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑍 

𝐶 𝑜𝑣 
(
𝑍 𝑖 , 𝑃 𝑖 

)
= 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 𝜎𝑌 𝜎𝑃 , 

and the variance is 

𝑉 
(
𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 

]|𝑃 𝑖 = 𝑝 𝑖 
)

= 𝜎2 
𝑌 
𝑟 2 
𝑌 𝑋 

𝑟 2 
𝑋𝑍 

(
1 − 𝑟 2 

𝑍𝑃 

)
= 𝜎2 

𝑌 |𝑋 |𝑍|𝑃 . (26) 
10 
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Table 2 

The expectation and variance of the response variable used in models F, G and Q. 

Model Response variable Expectation of the response variable Variance of the response variable 

F 𝑌 𝑖 𝜇𝑌 𝜎2 
𝑌 

G 𝐸[ 𝑌 𝑖 |𝑋 𝑖 ] 𝜇𝑌 𝑟 2 
𝑌 𝑋 

𝜎2 
𝑌 

Q 𝐸 [ 𝐸 [ 𝑌 𝑖 |𝑋 𝑖 ] |𝑍 𝑖 ] 𝜇𝑌 𝑟 2 
𝑋𝑍 

𝑟 2 
𝑌 𝑋 

𝜎2 
𝑌 

Table 3 

The decrease of the variance of the response variable in model G ( 𝑟 2 
𝑌 𝑋 

𝜎2 
𝑌 
) for different correla- 

tions ( 𝑟 𝑌 𝑋 ) between the explanatory and response variables in model F. 

= 0 . 9 𝑟 𝑌 𝑋 = 0 . 8 𝑟 𝑌 𝑋 = 0 . 7 𝑟 𝑌 𝑋 = 0 . 6 

0 . 81 × 𝜎2 
𝑌 

0 . 64 × 𝜎2 
𝑌 

0 . 49 × 𝜎2 
𝑌 

0 . 36 × 𝜎2 
𝑌 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, the model Q is 

Q ∶ 𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 

]
= 𝜇𝑌 |𝑋 |𝑍|𝑃 + 𝑒 𝑖 , 𝑒 𝑖 ∼  

(
0 , 𝜎2 

𝑌 |𝑋 |𝑍|𝑃 
)
. (27) 

Denoting the model parameters as 𝛾0 = ( 𝜇𝑌 − 𝑟 𝑍𝑃 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑃 

𝜇𝑃 ) and 𝛾1 = 𝑟 𝑍𝑃 𝑟 𝑋𝑍 𝑟 𝑌 𝑋 
𝜎𝑌 
𝜎𝑃 

, the variance of the variability term 𝑒 𝑖 as

𝜃2 = 𝜎2 
𝑌 |𝑋|𝑍|𝑃 , we can rewrite Q as 

Q ∶ 𝐸 

[
𝐸 

[
𝑌 𝑖 |𝑋 𝑖 

]|𝑍 𝑖 

]
= 𝛾0 + 𝛾1 𝑝 𝑖 + 𝑒 𝑖 , 𝑒 𝑖 ∼  

(
0 , 𝜃2 

)
, 

and in linear algebra notation as 

Q ∶ 𝒁 𝒊 𝜶 = 𝒑 𝑖 𝜸 + 𝑒 𝑖 , 𝑒 𝑖 ∼  

(
0 , 𝜃2 

)
, 

where 𝒁 𝑖 = ( 1 , 𝑍 𝑖 ) , 𝜸 = ( 𝛾0 , 𝛾1 ) 𝑇 and 𝒑 𝒊 = ( 1 , 𝑝 𝑖 ) , which coincides with Eq. (3) in the previous section. 

Decreased variability of the response variable 

Deriving the models through conditional expectation reveals properties of 3pHMB (and 3pHHY) that cannot be immediately ob- 

served from the first section of this article. An important property to note is that as more modeling steps are included, the variability

of the response variable decreases. This decreased variability (of proxy AGBD in our example) may have important implications

in applications. One obvious case is if the objective is to map the AGBD distribution across a landscape. In case several hierarchi-

cally nested models have been utilized, the mapped AGBD variability in the landscape would be substantially smaller than the real

variability. A potential solution to avoiding such decreased variability could be to apply calibration (e.g., [36] ). 

The decreased variability may also have negative implications if the objective is to predict the AGBD, not least for domains. As

pointed out by Chambers and Clark [37] , a means to minimize the uncertainty of model-based predictors is to ensure first-order

balanced samples, meaning that the mean values of explanatory variables in the dataset used for model estimation coincide with the

mean values of the explanatory variables in the target population. Although not specifically studied in this article, we hypothesize

that first-order balanced sampling becomes increasingly important the more modeling steps are included. Further, whereas the most 

relevant uncertainty measure in connection with model-based inference would be the MSE, several studies suggest that for large

areas, the relative difference between MSE and variance would be small (e.g., [33,38] ) in case model-unbiased predictors are applied.

However, in case the variability of the response variable is substantially reduced, it remains to be evaluated if this assertion holds. 

Thus, model-based inference should be applied with caution in case the variability of the (proxy) response variable is substantially

reduced compared to the real-world variability of the response variable. Below, we demonstrate how the variance of the response

variable is affected by multi-step modeling (the models F, G and Q). 

Table 2 gives an overview of the models and the corresponding expectation and variance of the response variable, under the

previously introduced superpopulation model. 

From Table 2 , we can see that whereas the response variables have the same expectation, their variability around the expectation

is not the same. With the increased hierarchy of conditions, the variability of the proxy target variable is decreasing in comparison

to the variability of the actual target variable. 

In Tables 3 and 4 we show numerical examples of the reduction of the variance of the response variable. In Table 3 , this is shown

for model G, i.e., for the case of two modeling steps. 

From Table 3 we can see that, e.g., if the correlation between the response and explanatory variables is 0.8, the variance of the

response variable in model G is 36% smaller than the original variance of the response variable; if the correlation is 0.7, about half

of the variability is lost. 

Table 4 gives numerical examples for the case of three modeling steps. Now, the decreased variance of the response variable is

further accentuated. For example, when both correlations are 0.8, 59% of the original variance is lost; if both are 0.7, the corresponding

figure is 76%. 
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Table 4 

The variance of the response variable for model Q ( 𝑟 2 
𝑋𝑍 

𝑟 2 
𝑌 𝑋 

𝜎2 
𝑌 
) for different correlations between 

the explanatory and response variables in model F and model G ( 𝑟 𝑌 𝑋 and 𝑟 𝑋𝑍 ). 

𝑟 𝑌 𝑋 = 0 . 9 𝑟 𝑌 𝑋 = 0 . 8 𝑟 𝑌 𝑋 = 0 . 7 𝑟 𝑌 𝑋 = 0 . 6 

𝑟 𝑋𝑍 = 0 . 9 0 . 66 × 𝜎2 
𝑌 

0 . 52 × 𝜎2 
𝑌 

0 . 40 × 𝜎2 
𝑌 

0 . 29 × 𝜎2 
𝑌 

𝑟 𝑋𝑍 = 0 . 8 0 . 52 × 𝜎2 
𝑌 

0 . 41 × 𝜎2 
𝑌 

0 . 31 × 𝜎2 
𝑌 

0 . 23 × 𝜎2 
𝑌 

𝑟 𝑋𝑍 = 0 . 7 0 . 40 × 𝜎2 
𝑌 

0 . 31 × 𝜎2 
𝑌 

0 . 24 × 𝜎2 
𝑌 

0 . 18 × 𝜎2 
𝑌 

𝑟 𝑋𝑍 = 0 . 6 0 . 29 × 𝜎2 
𝑌 

0 . 23 × 𝜎2 
𝑌 

0 . 18 × 𝜎2 
𝑌 

0 . 13 × 𝜎2 
𝑌 

Table 5 

Input information. 2 

Description Input values 

Superpopulation means 𝜇𝑌 𝜇𝑋 𝜇𝑍 𝜇𝑃 

62.62 10.94 7.16 8.28 

Superpopulation standard deviations 𝑠𝑑 𝑌 𝑠𝑑 𝑋 𝑠𝑑 𝑍 𝑠𝑑 𝑃 
49.53 6.30 4.34 5.69 

Superpopulation correlations between variables 𝑟 𝑌 𝑋 𝑟 𝑋𝑍 𝑟 𝑍𝑃 

0.77 0.75 0.76 

Sizes of datasets involved in the analysis 𝑛 𝐼 𝑛 𝐼𝐼 𝑛 𝐼 𝐼 𝐼 𝑛 𝐼𝑉 𝑁

102 943 1721 5760 38,400 

2 The input data mimics the conditions of the empirical case study presented in Varvia et al. [26] . Note that, although 𝑛 𝐼 < 𝑛 𝐼𝐼 < 𝑛 𝐼 𝐼 𝐼 < 𝑛 𝐼𝑉 < 𝑁

in this case, the presented methodological framework does not require any specific dataset size relations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 suggests that even if the correlation between explanatory variables and the response variable is fairly strong in the first

two modeling steps, the last model is estimated using a response variable with substantially reduced variability compared to the

response variable it is mimicking. 

Methods validation 

We validated the correctness of the presented variance formulas for 3pHMB and 3pHHY prediction through Monte Carlo (MC)

simulation. A real-world application of 3pHHY is presented by Varvia et al. [26] . 

An R Markdown file is available as supplementary material to this article. It provides an R code for the simulation with a step-by-

step description of how the simulations were performed. The input information mimics boreal forest conditions in the northern part

of Finland. The target variable is the AGBD ( 𝑌 𝑖 ). The explanatory variable for model F is DBH ( 𝑋 𝑖 ) ; in model G it is an ALS variable

related to vegetation height ( 𝑍 𝑖 ), and in model Q, it is an ICESat-2 variable related to vegetation height ( 𝑃 𝑖 ). The superpopulation

means ( 𝜇( ⋅) ) and standard deviations ( 𝑠𝑑 ( ⋅) ) of the variables and the correlations between them are presented in Table 5 . The sizes of

the datasets are also given in the table. 

The evaluation of the performance of the proposed predictors and variance formulas was conducted following the steps described 

below. 

• Step 1a: Using the input information on the superpopulation means and standard deviations, the “true ” model parameters and

variances of variability terms in models F, G 

∗ , G, Q 

∗ and Q were obtained following the theoretical outline presented in the

section “Study of hierarchical modeling in the context of a superpopulation model ”. 

• Step 1b: The explanatory variables ( 𝑿 𝐼 for model F over the dataset 𝑛 𝐼 , 𝒁 𝐼𝐼 for model G over the dataset 𝑛 𝐼𝐼 , 𝑷 𝐼 𝐼 𝐼 for model Q

over the dataset 𝑛 𝐼 𝐼 𝐼 , and 𝑷 𝑈 over 𝑈) were generated based on their mean values and standard deviations following normal

distributions. 

• Step 1c: The variances of the 3pHMB and 3pHHY predictors were computed according to Eqs. (8a) and (11) based on the results

from steps 1a and 1b. 

Steps 1a – 1c are preparations for the MC simulation, but located outside the MC loop, since they are repeated only once. The MC

iterations included the following steps: 

• Step 2a: The variability terms for the models F, G 

∗ , G, Q 

∗ and Q were generated randomly based on Step 1a. As a consequence,

the response variables for models were also generated for all elements in the datasets. 

• Step 2b: The model parameters of the models F, G 

∗ , G, Q 

∗ and Q were estimated based on the simulated data, and applied for

predicting the AOI population mean following 3pHMB inference. The predicted value was recorded for each MC iteration. 

• Step 2c: A simple random probability sample (without replacement) was drawn from 𝑷 𝑈 and the AOI population mean was 

predicted following 3pHHY inference. Note that the predicted value was recorded for each MC iteration. 

• Step 2d: Variance estimators were applied to estimate the variance of the 3pHMB and 3pHHY predictors based on the simulated
outcomes from each MC iteration. The estimates were recorded for each MC iteration. 
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Table 6 

The variance of the 3pHMB and 3pHHY predictors and their corresponding estimated variances; 

𝑉 ( ̂�̄� 𝑈 ( ⋅) ) is the variance of the population mean predictor based on Eqs. (8a) and (11) , 𝑉 𝑀𝐶 ( ̂�̄� 𝑈 ( ⋅) ) 
is the empirical variance of the population mean predictor from the MC iterations, and 𝑉 ( ̂�̄� 𝑈 ( ⋅) ) 
is the average of estimated variances across the MC iterations. 

3pHMB 3pHHY 

𝑉 ( ̄̂𝑦 𝑈 3 𝑝𝐻 𝑀 𝐵 ) 𝑉 𝑀𝐶 ( ̄̂𝑦 𝑈 3 𝑝𝐻 𝑀 𝐵 ) 𝑉 ( ̄̂𝑦 𝑈 3 𝑝𝐻 𝑀 𝐵 ) 𝑉 ( ̄̂𝑦 𝑈 3 𝑝𝐻 𝐻 𝑌 ) 𝑉 𝑀𝐶 ( ̄̂𝑦 𝑈 3 𝑝𝐻 𝐻 𝑌 ) 𝑉 ( ̄̂𝑦 𝑈 3 𝑝𝐻 𝐻 𝑌 ) 
10.94 10.96 10.96 11.03 11.04 11.04 

Table 7 

The contribution of the terms involving traces to the overall variance of 3pHMB and 3pHHY predictors. 

Predictor Predictor variance based on Eq. (8a) and (11) Terms involving traces Relative contribution of terms involving traces 

3pHMB 10.94 2.0 × 10 − 3 1.8 × 10 − 2 % 

3pHHY 11.03 0.8 × 10 − 3 0.7 × 10 − 2 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steps 2a – 2d were repeated one million times. Based on the MC simulations, the empirical variances of the 3pHMB and 3pHHY

predictors were obtained and could be compared with the variances according to the results from Eqs. (8a) and (11) as well as the

corresponding variance estimators. 

The results of the simulations are presented in Tables 6 and 7 . In addition, it was observed that the average of the predicted AOI

population means over the MC iterations based on the 3pHMB and 3pHHY predictors corresponded well with the AGBD superpopu-

lation mean, which shows that the predictors are approximately unbiased. 

Table 6 shows the results from comparing the analytically derived variances of the predictors with the corresponding empirical

variances from the MC iterations, and the average values of estimated variances. The Table shows that Eqs. (8a) and (11) are valid

as variance formulas and that the corresponding variance estimators are approximately unbiased. 

Referring to the Eqs. (8a) and ( 8b ), it was suggested that terms with traces in (8a) could be neglected due to their small contribution

to the overall variance of the 3pHMB and 3pHHY predictors. The empirical results in Table 7 validate this assertion. 

Conclusions 

The main purpose of this study was to present predictors, variances, and variance estimators for hierarchical model-based inference 

and hierarchical hybrid inference involving three modeling steps. Previous studies have proposed solutions for methods involving 

two modeling steps (e.g., Saarela et al. [39] ). The need for methods of this kind emanates from forest resources assessment utilizing

multiple sources of remotely sensed data in combination with field data. In Monte Carlo simulations, the correctness of the proposed

formulas was validated. In addition, it was shown that caution should be exercised when applying several modeling steps based

on models with weak correlation between the explanatory variable(s) and the response variable, since multiple modeling steps 

dramatically reduce the variability of the predicted target variable, which may lead to problems in some applications. For example, a

map produced on the basis of multiple modeling steps would display substantially reduced variability for the target variable compared

to the real variability. 

Although this article has focused on applications based on remotely sensed data, the methods are general and can be applied in

any discipline where empirical data are lacking but proxies can be obtained through hierarchically nested models. 
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