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Dairy cattle mating plans at herd level using
genomic information

Abstract

Genotyping of dairy cattle can benefit farmers by increasing the accuracy of
breeding values and improving mating plans at herd level. Validation studies on
breeding values in this thesis revealed that for the vast majority of traits analysed in
Holstein, Jersey and Nordic Red Dairy Cattle, genomically enhanced breeding
values for virgin heifers were able to predict cow performance significantly more
accurately than parent average breeding values. Linear programming was used to
optimise matings based on economic scores for Red Dairy Cattle and Holstein,
considering genetic level, semen cost, recessive genetic defects, and genetic
relationship. For Holstein, we also studied polledness and beta-casein genotype. The
mating results for Red Dairy Cattle showed that it was possible to reduce genetic
relatedness between parents and eliminate expression of genetic defects with
minimal effect on genetic level. Similar results were achieved for Holstein cattle, in
which it was also possible to increase the frequency of polled and beta-casein
genotype A2A2 offspring without negatively impacting other comparison criteria.
Evaluation of the long-term impact of genomic mating allocations in a simulation
study revealed that planning matings with genomic information at herd level
involves important risk management decisions, e.g. a trade-off between using fewer
bulls to increase the polled allele frequency more quickly and using more bulls to
reduce the rate of inbreeding and the variation in carrier frequency for genetic
defects.

Keywords: genomic relationship, pedigree relationship, mating program, linear
programming, genomic breeding value, genotyping, dairy cow



Anvandning av genomisk information vid
parningsplanering av mjolkkor pa
besattningsniva

Sammanfattning

I denna avhandling undersokte vi férdelarna med genomisk analys av mjolkkor, i
form av hogre sékerhet for genomiska avelsvarden och forbattrad parningsplanering.
Vi validerade avelsvérden och fann att genomiska avelsvédrden forutsdg kvigornas
framtida egenskaper betydligt béttre dn hirstamningsindex for majoriteten av
analyserade egenskaper hos nordiska rdda raser, holstein och jersey. Vi anvinde
linjér programmering for att optimera parningar med hjdlp av ekonomiska
poangsummor for nordiska roda raser och holstein, och tog hinsyn till genetisk niva,
seminkostnad, recessiva genetiska defekter och genetiskt sliktskap. For holstein
undersokte vi dven anlag for kullighet och Beta-kasein-genotyp. Parningsresultaten
for nordiska roda raser visade att det var mojligt att minska genetiskt slédktskap
mellan foréldrar och eliminera uttryck av genetiska defekter med minimal péverkan
pa genetisk niva. For holstein fann vi liknande resultat och det var ocksa mdjligt att
Oka andelen som var kulliga och hade dnskad Beta-kasein-genotyp utan att negativt
paverka andra jimforelsekriterier. Slutligen undersokte vi de langsiktiga effekterna
av genomiska parningar genom en simuleringsstudie. Resultaten visade att parningar
med genomisk information pa besittningsniva innebér viktiga riskhanteringsbeslut,
sdsom avvégningen mellan att anvénda farre tjurar for att snabbare o6ka frekvensen
av hornloshet och att anvinda fler tjurar for att minska inavelstakten och variationen
i bararfrekvens for genetiska defekter.

Nyckelord: Genomiskt sléktskap, sldaktskap baserat pa stamtavla, parningsprogram,
linjérprogrammering, genomiska avelsvirden, DNA-analys, mj6lkko,
valideringsstudie
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1. Introduction

Breeding work on dairy cattle has helped to improve the productivity and
profitability of the dairy sector. In the past, such work focused on milk yield,
but health and fertility have now become important breeding objectives
(Oltenacu & Broom, 2010). Recent animal breeding research has also
included traits related to sustainability and climate impact, e.g. efficiency,
methane emissions and resilience (Lavendahl ef al., 2018; Bengtsson et al.,
2022).

A technological breakthrough that has transformed dairy cattle breeding
in the past 15 years is the development of genomic selection (Meuwissen et
al., 2001; Schaeffer, 2006). It offers many advantages for dairy cattle
breeding, such as higher accuracy of breeding values for young animals
(which enables shorter generation intervals) and enhanced use of
reproductive technologies such as multiple ovulation and embryo transfer
(MOET) and ovum pick-up (OPU) (Thomasen et al., 2016). Genomic
selection makes it more cost-effective to breed for novel traits, as it reduces
the need for large daughter groups from each bull (Henryon et al., 2014).

Genotyping, which was once costly and used mainly for artificial
insemination (Al) bulls or candidates, has now become more affordable and
accessible for female selection and management. At present (2023 values),
the average cost of genotyping per animal is around €20-25, making it a
worthwhile investment for dairy farmers if the results are used actively
(Hjorte et al., 2015; Newton & Berry, 2020). At herd level, genomic
selection is often combined with sexed dairy bull semen and beef bull semen,
where the best heifers are inseminated with dairy bull semen and older cows
are inseminated with beef bull semen (Hjorte et al., 2015; Clasen et al.,
2021). Genomic data can also help with mating plans. For instance, single
nucleotide polymorphisms (SNPs) can be used to estimate genomic

15



relationships and monogenic traits can be detected and considered in mating
choices (Carthy et al., 2019; Bérodier et al., 2021). This thesis explored how
to use genomic data effectively at herd level, particularly when planning
matings.
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2. Background — Dairy cattle breeding in the
genomic era

Genomic selection is a method that predicts phenotypic traits based on many
genetic markers that cover the whole genome, as all quantitative trait loci
(QTL) are assumed to be in linkage disequilibrium with at least one marker.
Genetic markers are DNA sequences that vary between individuals and can
be detected by different technologies, such as SNP arrays or whole genome
sequencing. The estimated marker effects are then used to calculate
genomically enhanced breeding values (GEBV) for selection of candidates
of interest (Meuwissen et al., 2001; Schaeffer, 2006; Rajora, 2019). In
practice, this is achieved by first estimating the combined genetic effects for
each individual of a reference population and then using the information
obtained to infer GEBV for the selection candidates (Figure 1).

By enabling higher breeding value accuracies for young animals,
genomic selection makes it possible to shorten the generation interval. Dairy
cattle breeding programmes have widely adopted genomic selection since it
was first implemented in 2008 (Hayes ef al., 2009). Compared with progeny
testing schemes in dairy cattle, genomic selection has been shown to increase
the annual genetic gain by up to around 100%, mainly due to shorter
generation interval (Schaeffer, 2006; Hayes et al., 2009). It also enhances
use of reproductive technologies, such as MOET and OPU (Thomasen et al.,
2016).

17
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Figure 1. Illustration of the concept of genomic selection, which involves a reference
population with both genotype and phenotype data and a pool of selection candidates
with genotype data. Information on breeding values (BV) is used to choose parents from
the selection candidate pool.

Genomic evaluation is a large research field within animal breeding that aims
to improve the accuracy of GEBV while overcoming computational and bias
problems (e.g. Legarra et al., 2009; Christensen & Lund, 2010; Misztal et
al., 2020). Different methods have been developed to combine genomic
information with pedigree data and phenotypes, often classified into multi-
step and single-step approaches. In multi-step approaches, SNP effects are
estimated based on phenotypes or de-regressed proofs. GEBV are then
composed of an index with parent average, direct genomic value and a
deduction of parent average to eliminate double counting. Single-step
methods combine genomic and pedigree relationships to automatically create
an index with all sources of information (Misztal et al., 2020).

Analysis of SNP marker data for dairy cattle has enabled new discoveries
on the functional role of single nucleotide variations. One of these
discoveries is the occurrence of missing genotypes within populations. This
suggests that, if absent, a certain haplotype (which may comprise several
adjacent SNPs) is a recessive deleterious (lethal) allele. Such alleles have
previously been difficult to detect, except as reduced fertility of a specific
bull or daughter group (because the conceptus often dies early in utero).

18



Reducing the chance of producing offspring that are homozygous for
recessive genetic defects is beneficial for farm finances (Pryce ef al., 2012)
and also for animal health and welfare (EFFAB, 2020). Moreover, SNP
arrays can include desirable monogenic traits such as polledness. Cattle
dehorning has been common practice for many years and is done for various
reasons, such as preventing injury to other cattle and increasing safety for
animal handlers. However, dehorning has been proven to cause changes in
animal behaviour, neuroendocrine responses and physiology, which may
indicate that it is a stressful and painful procedure (Stock et al., 2013). Since
2022, organic farms in the European Union need to obtain a permit if they
want to dehorn their cattle (EU Commission Regulation No. 889/2008; EU
(European Union), 2008). Another example of a monogenic trait is beta-
casein variant. Casein represents about 80% of bovine milk proteins, with
beta-casein comprising around 35% of casein protein (Indyk et al., 2021).
The most widespread variants of beta-casein in bovine milk are A1 and A2.
Animals that are homozygous for the A2 allele produce so-called A2 milk,
which is often advertised as a healthier alternative than regular cow milk,
although the human health advantages of drinking A2 milk are still under
debate (Summer et al., 2020). Despite this lack of confirmed benefits, some
countries are seeking to increase consumption of A2 milk and some dairies
pay extra for A2 milk (Bisutti ef al., 2022).

Use of SNP markers also offers new opportunities for measuring and
managing inbreeding at genomic level (VanRaden, 2008; de Cara et al.,
2013). There are two main types of genomic measures: SNP-based measures
(e.g. VanRaden, 2008) and runs of homozygosity (ROH) (e.g. Purfield et al.,
2012). Inbreeding leads to an increase in autozygosity throughout the
genome in the form of ROH. In a meta-analysis on the effects of inbreeding
in livestock, Doekes et al. (2021) concluded that genomic measures are better
than pedigree measures for indicating inbreeding depression, but did not find
any difference between SNP-based measures and ROH. However, those
authors highlighted the limited number of studies investigating ROH and
inbreeding depression, and the arbitrary definitions of ROH. In principle,
ROH would contribute to inbreeding depression if they contain recessive
deleterious alleles (Charlesworth & Willis, 2009). Long ROH reflect new
inbreeding and are expected to contain more deleterious alleles than short
ROH, due to purging and recombination through the generations (Stoffel et
al., 2021).

19



2.1 Mating plans

Selection and mating are two key aspects of animal breeding that influence
genetic improvement and variation in populations (Jansen & Wilton, 1985;
Weigel & Lin, 2000). Non-random mating has most likely been around in
animal breeding for as long as selection. Proper mating plans can help
breeders control inbreeding, which can be managed at two levels: (i)
population level, where the inbreeding rate can be limited to a desired level
while maximising the genetic gain by optimising the long-term contributions
of a selected number of breeding animals, and (ii) individual level, where
large inbreeding coefficients in offspring can be avoided to reduce the impact
of inbreeding depression (Pryce ef al., 2012; Liu et al., 2017). Farmers have
previously tried to control inbreeding by avoiding matings of genetically
related animals. However, as relationships within the breed increase, it
becomes difficult to avoid such matings without the aid of a computer.
Hence, mating programmes have become an important support tool for
livestock breeders, helping them to identify the best parental matings to
maximise genetic level and avoid mating between closely related
individuals, thus preventing excessive inbreeding (Carthy et al., 2019;
Bérodier et al., 2021). Various methods for calculation of genomic
relationships have been proposed, including SNP-by-SNP relationships as
described by e.g. VanRaden (2008). Further, methods using shared genomic
segments, as described by e.g. de Cara et al. (2013), aim to reduce the
number of ROH in the offspring.

The new genetic possibilities require updated methods that combine
relevant information based on their economic value when setting up mating
plans. Several studies have created economic scoring systems to rank each
potential mating (Pryce et al., 2012; Carthy et al., 2019; Bérodier et al.,
2021). The economic score often includes genetic level, expected inbreeding,
the probability of conceiving an offspring homozygous for a genetic defect
and semen price (Bérodier et al., 2021). The economic score is flexible and
can be adjusted to match economic conditions on a specific farm, such as a
price premium for A2 milk and/or polled animals. Using linear programming
to maximise the mean economic score of every herd, subject to necessary
constraints, is a fast and effective method (Carthy et al., 2019; Bérodier et
al., 2021). Linear programming has also been shown to outperform other
mating methods, such as sequential mate allocation (Sun et al., 2013; Carthy
et al., 2019; Bérodier et al., 2021).
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2.2 The net benefit of genotyping

Besides using the genomic information in mating plans, genotyping at herd
level can provide several other benefits for dairy farmers. For example, it can
help them select the best females for breeding and replacement or identify
females for embryo transfer or in vitro fertilisation (Newton & Berry, 2020).
The net benefit of genotyping females at herd level depends on many factors,
such as genotyping price, the accuracy difference between parent average
breeding values (PA) and GEBYV, the proportion of females kept as
replacement, parentage errors, age when first progeny is born, the standard
deviation of the breeding goal, the value of better mating advice through
genomic-assisted mating plans, and the value of identifying elite females and
combining genotyping with state-of-the-art reproductive technologies (e.g.
MOET, OPU and sexed semen) (Calus et al., 2015; Hjorte et al., 2015;
Newton & Berry, 2020). Hence, estimating the overall value of genotyping
is challenging because it is influenced by multiple factors that may vary
depending on country, region and herd. Several studies have tried to quantify
the net benefit of genotyping candidate females for replacement using
different methods and assumptions (Calus et al., 2015; Hjorte et al., 2015;
Newton & Berry, 2020). Hjorte ef al. (2015) found that in Denmark, Finland
and Sweden (DFS), genomic testing was profitable in most cases at a
genotyping price of €30 when combined with sexed semen and beef semen.
The price of genotyping varies slightly between the Nordic countries and is
currently around €25 in Sweden (Vixa) and around €20 in Denmark
(VikingDenmark).

2.3 Validation of genomically enhanced breeding values

To increase confidence in genomic technology among farmers, a clear
illustration of the validity of the relationship between genomic predictions
and future phenotypes is needed (Pryce et al., 2012). GEBV can be validated
in different ways. One way is cross-validation, which involves dividing the
available dataset into validation and training sets. By masking observations
of all individuals in the validation set and predicting the observations or
estimated breeding value (EBV) with a model based on individuals in the
training set only, the correlation between masked phenotypes or EBV and
predicted values for the validation individuals can be estimated. This
correlation then reflects the accuracy of prediction (de Roos et al., 2009). A
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disadvantage of validating GEBV against conventional EBV is that training
and validation sets are rarely strictly independent (Su et al., 2010). Thus Yao
et al. (2015) used genotypes and health data to predict future phenotypes,
taking correlations between predicted values and phenotypes as
measurements of accuracy. To illustrate the accuracy of GEBV compared
with PA, Weigel et al. (2015) divided cows into quartiles based on their
virgin heifer GEBV and sire predicted transmitting ability, and thereafter
calculated actual cow performances for each quartile.

2.4 Genotyping in the Nordic countries

The establishment of the Nordic Cattle Genetic Evaluation in 2002 enabled
greater cooperation between Al organisations in the Nordic countries. The
differences between the Nordic countries were small at that time, according
to a study on genotype x environment interactions by Kolmodin et a/. (2002),
and a joint breeding programme was established. Three breeds in the DFS
countries have genomic breeding schemes: Red Dairy Cattle (RDC),
Holstein and Jersey. Farmers in DFS quickly adopted the new technology
and 75% of all inseminations in 2007 were from progeny-tested bulls, but by
2017 this proportion had decreased to less than 5% (Hans Stalhammar,
Emeritus/Senior Researcher, VikingGenetics, personal communication, June
20, 2023). During the same period, the genetic improvement in the Nordic
Total Merit (NTM) index per year in the two major breeds (RDC and
Holstein) almost doubled (NAV, 2023).

Almost all progeny-tested bulls in DFS were genotyped some years after
the introduction of SNP genotyping. Genotyping of cows and virgin heifers
in DFS started on a large scale in 2012 with the VikingGenetics genotyping
project. Initially, the main objective was to include genotyped females in the
reference population and thereby increase the accuracy of GEBV. This was
especially important for RDC and Jersey, which had more limited reference
populations based on bulls than the Holstein breed. In 2022, around 107,500
females born in DFS were genomically tested (corresponding to
approximately 20-25% of purebred born females), compared with just under
25,000 females in 2014 (Ulrik Sander Nielsen, Senior Researcher, SEGES,
personal communication June 20, 2023) (Figure 2).
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Figure 2. Number of female Holstein, Nordic Red Dairy Cattle (RDC) and Jersey
genotyped per year in Denmark, Finland and Sweden in the period 2014-2022. Source:
Ulrik Sander Nielsen, Senior Researcher, SEGES, personal communication June 20,
2023.

2.5 Description of knowledge gaps

In DFS, GEBV has not been validated on phenotypes with validation results
published in scientific journals. This represents a knowledge gap in current
research, as validating breeding values on phenotypes can help farmers
understand how their animals’ breeding values work in practice, especially
when the validation is based on their own farm records. This could increase
confidence in genomic technology among farmers.

Use of genomic relationships for matings is a novel research topic in DFS.
Moreover, most international research to date has focused mainly on SNP-
by-SNP relationships (e.g. Bérodier et al., 2021; Carthy et al., 2019) and the
effects of using a segment-based relationship are not well studied, especially
for herd-level matings.

At present, there are more than 20 monogenic traits available for mating
programmes in DFS (A1 in Appendix 1), including recessive genetic defects,
polledness and casein traits. However, these traits have only been included
recently and farmers and advisors need guidance on how to handle them
when information is available for both males and females. Trait data on
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polledness and beta-casein status in females have been available since 2021
in DFS, but few Nordic or international studies have investigated mating
planning at herd level with both desired and undesired monogenic traits.

In some studies using real data, genomic information and linear
programming have been applied to mating programmes (Carthy et a/., 2019;
Bérodier et al., 2021). However, these studies have mainly focused on the
current breeding population and the immediate offspring, while the long-
term consequences of these mating strategies could not be evaluated. Dairy
cattle breeding is a long-term process with cumulative effects, and it is
important to understand the consequences of different breeding strategies
(Doublet et al., 2019).
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3. Aims of the thesis

The main aims of the work in this thesis were to compare the accuracy of
genomically enhanced breeding values (GEBV) with parent average
breeding values (PA) in prediction of cow performance and to provide
guidance on how to best incorporate genomic information into mating
programmes for Nordic dairy cattle. Specific objectives were:

» To compare the ability of virgin heifer genomically enhanced
breeding values and parent average breeding values to predict future
cow performance (Paper I)

» To evaluate the ability of different approaches for mating allocation
in order to maximise expected genetic level, while limiting parent
relatedness and minimising the probability of expression of genetic
defects in the next generation (Paper II)

» To assess the ability of different approaches for mating allocation
that also consider favourable monogenic traits (polledness and beta-
casein) (Paper III)

» To investigate the long-term impact of mating programmes using

genomic information on genetic gain, genetic diversity and
monogenic traits (Paper V)
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4. Summary of Papers I-IV

Approximately 85% of farms in DFS are enrolled in a national milk
recording scheme. This enables validation of GEBV with phenotype data on
a large scale. The aim in Paper I was to compare the ability of virgin heifer
GEBYV and PA in prediction of future cow performance.

New genetic insights at single nucleotide level can be used in mating
programmes. Single nucleotide polymorphism markers can give information
about major genes and genetic defects and also offer the possibility to reduce
genomic relationships between parents when making mating plans. The
objective in Papers II and III was to investigate the ability of different
approaches for mating allocation to maximise expected genetic level,
limiting parent relatedness, while also considering monogenic traits. In both
studies, all scenarios at herd level were investigated using real data and linear
programming was used to optimise different economic scores within each
herd. Paper II focused on RDC and evaluated the economic score for this
breed, considering genetic level, semen cost, the economic impact of
recessive genetic defects and five different measures of relationships (two
pedigree-based and three genomic-based). Paper III focused on Holstein
dairy cattle, with the economic score extended to also included polledness
and beta-casein. In Paper IV, which was inspired by the work in Papers II
and III, different scenarios were simulated and compared in order to
investigate the long-term impact of mating programmes using genomic
information and linear programming.
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4.1 Association of genomically enhanced and parent
average breeding values with cow performance in
Nordic Red Dairy Cattle (Paper I)

4.1.1 Materials and methods

The ability of virgin heifer GEBV and PA to predict future cow performance
was assessed in Paper 1. Twelve different traits in first parity were analysed,
including production, conformation, fertility and other functional traits.
Phenotype data were obtained from national milk recording schemes and
breeding values from the Nordic Cattle Genetic Evaluation (NAV, 2019).
Direct genomic breeding values were calculated using genomic best linear
unbiased prediction (BLUP) and combined with traditional breeding values,
using bivariate blending (Méntysaari & Strandén, 2010; Taskinen et al.,
2013). The data covered 14,862 RDC, 17,145 Holstein and 7,330 Jersey
genotyped virgin heifers born between 2013 and 2015 in DFS. Phenotypes
adjusted for systematic environmental effects were used as measures of cow
performance and were named according to the respective trait, e.g. cow
adjusted milk yield was denoted Milkag. Correlations between breeding
values and adjusted phenotypes were calculated using Statistical Analysis
Software (SAS) version 9.4 (SAS Institute Inc., Cary, NC). A 95%
confidence interval using Fisher’s Z transformation was applied to assess the
significance of differences between correlations. The PROC RANKS
procedure in SAS was used to rank cows into four quartiles across herds for
GEBV or PA.

4.1.2 Results and comments

For RDC and Holstein, all correlations between breeding values and adjusted
phenotypes were significantly stronger for GEBV than for PA (Table 1).
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Table 1. Relative change' (%) in correlation of genomically enhanced breeding values
(GEBV) and of parent average breeding values (PA) with cow adjusted (Adj) phenotypes
for Red Dairy Cattle (RDC), Holstein and Jersey, n/a = not applicable

Traits RDC Holstein Jersey
Milkagj +63% +49% +59%
Fatag; +46% +46% +60%
Proteinag +52% +44% +63%
SCSadj +63% +65% +67%
Clinical mastitisadj +62% +38% +13%?
IFLAg? +68% +64% +78%
Udderagj +42% +61% +71%
Feet and legsagj +73% +56% +32%?
Calving easeadj +77% +88% +37%>
Claw healthag; +74% +91% n/a
General healthag +194% +94% n/a
Survival 1-2aqj +71% +136% +11%?

1 Correlation with GEBV — Correlation with PA

Correlation with PA x 100.
2No significant difference between GEBV correlation and PA correlation (p<0.05).

3Interval from first to last service, in days.

For Jersey, GEBV correlations were significantly stronger for all traits
except clinical mastitis, calving ease and survival 1-2. The correlations with
adjusted phenotypes for the different traits were 42-194% higher for GEBV
than for PA in RDC, 38-136% higher for GEBV than for PA in Holstein, and
11-78% higher for GEBV than for PA in Jersey. However, it should be noted
that the large relative percentage change between PA and GEBV for
correlations was in many cases from initially low levels.

Traits with low heritability, such as interval from first to last
insemination, clinical mastitis, calving ease, claw health, and general health,
gained relatively more from inclusion of genomic information than did
highly heritable traits such as production.

One of the traits for which the correlations increased the most, cow
adjusted phenotype for interval from first to last service (IFLagj) increased
by over 64% for all three breeds when genomic information was included in
the breeding values instead of PA. For Jersey, the correlation between
breeding value and IFLagjincreased by 78% when genomic information was
included. Some selected results for quartiles of cows ranked by their GEBV
or PA across different herds are presented in Figure 3 and 4, which provide
clear illustrations of the increased accuracy of GEBV compared with PA and
the implications for milk yield or days between the first and last service.
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Figure 3. Results for 14,710 Red Dairy Cattle: Cow adjusted (Adj) phenotype for milk
yield between quartiles ranked on heifer fertility index, parent average breeding values
(PA) or genomically enhanced breeding values (GEBV).
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Figure 4. Results for 16,833 Holstein cows: Cow adjusted (Adj) phenotype for interval
from first to last service (IFLa4j) between quartiles ranked on heifer fertility index, parent
average breeding values (PA) or genomically enhanced breeding values (GEBV).
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The extracted virgin heifer GEBV and PA, estimated before on-farm
information was recorded, reflected information available to farmers at the
time of selection. The maximum age at which a breeding value for a heifer
was taken was 14 months, to reflect the breeding values at first insemination
for virgin heifers.

Based on the results, farmers in DFS can have confidence in using
genomic technology on their herds for selection decisions.

4.2 Mating allocation in Nordic Red Dairy Cattle using
genomic information (Paper Il)

4.2.1 Materials and methods

In Paper II, different scenarios for mating allocations in Nordic Red Dairy
Cattle using genomic information (Table 2) were compared. Linear
programming was used to optimise different economic scores within each
herd based on real data, considering genetic level, semen cost, the economic
impact of recessive genetic defects and genetic relationships. In total, 9,841
genotyped RDC females born in Denmark, Finland or Sweden in 2019 were
selected for mating allocations.

Two different pedigree relationship coefficients were used, one tracing
the pedigree three generations back from the parents of the potential mating
(ascen) and one based on all available pedigree information (aangen). Three
different genomic relationship coefficients were used, one SNP-by-SNP
genomic relationship and two based on shared genomic segments. The SNP-
by-SNP genomic relationship coefficient (gsnp) between animal i and j was
calculated according to VanRaden (2008):

_ Ym(Xim — 2pm)><(ij - ZPm)
gSNPij - 2¥mPm (1- Pm) (eq 1)

where xim and Xjm are the genotype scores of animal i and animal j at marker
m, coded: 0 = homozygote, 1 = heterozygote, and 2 = alternative
homozygote, and pm is the frequency of the alternative allele of marker m in
the founder population.

Because the founder population frequency was unknown, the allele
frequency of all 149,943 genotyped RDC animals available in Paper II was
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used, as is common practice in genomic evaluation (Wang et al., 2014). The
software SNP1101 was used to calculate gsnp (Sargolzaei, 2014).

The two genomic relationship coefficients based on shared genomic
segments (gSEGU.) were calculated following de Cara et al. (2013):

TrXZioq Zij=1 (Lseck(aibj))

2LauTo

9seci; = (eq.2)
where Lsgak is the length (in base pairs) of the kth shared segment measured
over homolog a of animal i and homolog b of animal j, and Layro is the total
length of the autosomes covered by the SNP in base pairs (bp). Two different
Lsegk values were used: 1 centimorgan (cM) (gsegi) and 4 cM (gskgs),
assuming 1 ¢cM = 1,000,000 bp (Gautier et al., 2007).

The lengths of segments were chosen to represent short and long segments,
as done in other studies (Zhang et al., 2015; Forutan et al., 2018; Makanjuola
et al.,2020). Phasing of genotypes was carried out in Beagle 4.1 with default
settings (Browning & Browning, 2007), and segments of minimum desired
length were extracted in RefineIBD (Browning & Browning, 2013).

For each potential mating between female i and bull j, an economic score
was calculated as done by Bérodier et al. (2021) and Pryce et al. (2012):

NTM;+ NTM;
——+ AF

; l.].) x prob (?) — Y1t p(aa), X v, — semen cost (eq. 3)

Score;; = (

where NTM; and NTM; are the value of Nordic Total Merit units in Euros (€)
for female i and bull j, A is the economic consequence of a 1% increase in
inbreeding, Fj;is the pedigree or genomic based co-ancestry (Relationship/2),
prob(?) is the probability of producing a female conceptus, n,is the number
of recessive genetic defects considered (Al in Appendix 1), p(aa): is the
probability of expression of genetic defect », v, is the economic cost
associated with recessive genetic defect r, and semen cost is the average
amount (€) spent on semen for a pregnancy.

The value of 1 index unit of NTM was set at €24.8, based on the value per
NTM unit and year (€9.2) and the average production lifetime (2.7 years)
(Fikse & Kargo, 2020). Only sexed semen was considered and the
probability of producing a female conceptus was assumed to be 0.9, which
is the minimum expected sexing rate for most sexing technologies (Burnell,
2019). The economic consequence of a 1% increase in inbreeding was set to
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€24.8. The carrier frequencies considered for genetic defects are shown in
Table 3 (for details, see Table Al in Appendix 1). The cost of an early
abortion (genetic defect at BTA12, PIRM/AHI1, AH2) was assumed to be
€80, based on the resulting longer calving interval (€30-40/month) and the
cost of extra insemination(s) (€30). The cost of a later abortion or an early
calf death was assumed to be €160 (genetic defect SMA, BH2, BTA23).
Prices for sexed semen set by VikingGenetics in 2020 were used, where a
semen dose for a bull with NTM of 30 or more cost €26, that for a bull with
NTM of 25-30 cost €22.5, and that for a bull with NTM of 20-25 cost €19
(Jakob Lykke Voergaard, product manager, VikingRed, VikingGenetics,
personal communication, January 11,2021). The semen price was multiplied
by 1.8, which is the average number of inseminations needed for a pregnancy
in RDC (Segrensen et al., 2018).

Table 2. Description of the mating scenarios considered for Nordic Red Dairy Cattle in
Paper 11

Economic score includes:
Nordic Total Relationship! Genetic

Scenario Merit, NTM defect
value

MaxNTM Yes No No
3Gen Yes a3Gen Yes
AllGen Yes AAllGen Yes
GSNP Yes ZSNP Yes
GSEG1 Yes ESEG1 Yes
GSEG4 Yes ZSEG4 Yes

All possible combinations of 9,841 females
Random

and 50 bulls

lasgen = pedigree relationships using three generations of ancestors, aaiGen = pedigree
relationships using all available pedigree information, gsne = genomic relationship calculated
according to VanRaden (2008), gseci (gsec4) = genomic segment-based relationship
according to de Cara et al. (2013) with a minimum segment length of 1 (4) centimorgan.

Mate allocation was programmed in R version 3.6.3 (R Core Team, 2020).
Linear programming optimisation was performed with the ‘Lp solve’
package in R (Berkelaar and others, 2020). The mating R script was provided
by Bérodier et al. (2021). The R script set constraints that were considered
in the linear programming optimisation. The constraints used in Paper II
were one mating per female and a threshold percentage for the maximum
number of females per bull and herd, for which two different levels were
evaluated (5% and 10%), following Bérodier ef al. (2021).
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Table 3. Descriptive statistics on the Nordic Red Dairy Cattle (RDC) females and bulls
selected for mating allocations in Paper II

Trait Females  Dataset BullVG!
Number of animals 9841 50
Average Nordic Total Merit (NTM) 10.7 28.4
Carriers of defect BTA12 (%) 14.7 12.0
Carriers of defect BTA23 (%) 1.1 0.0
Carriers of defect BH2 (%) 0.3 0.0
Carriers of defect PIRM/AH1 (%) 1.6 0.0
Carriers of defect AH2 (%) 1.2 0.0
Carriers of defect SMA (%) 0.30 0.0

IFifty genotyped RDC bulls from the Nordic breeding cooperative VikingGenetics.

4.2.2 Results and comments

The mean value of the relationship coefficients between all possible
combinations of females and males ranged from 0.009 to 0.188, and the
standard deviation ranged from 0.042 to 0.047 (Table 4). The correlations
between the genetic relationship coefficients were all 0.83 or higher. The
strongest correlation was between aaien and azgen (r=0.99), and the second
strongest was between gsegi and gsecs (r=0.98) (Table 5). There is a long
tradition of pedigree recording in the Nordic countries, and the strong
correlation found between pedigree and genomic relationships confirms the
good documentation of dairy pedigrees in DFS.

Table 4. Descriptive statistics on relationships (mean, standard deviation (SD), minimum
value (Min) and maximum value (Max)) between all possible combinations of 9,841
females and 50 bulls of Nordic Red Dairy Cattle analysed in Paper 11

Relationship' Mean SD Min Max
A3Gen 0.028 0.042 0 0.648
AAllGen 0.066 0.042 0.003 0.667
gsNP 0.009 0.047 -0.095 0.673
gSEG1 0.188 0.046 0.038 0.789
gSEG4 0.115 0.045 0.005 0.727

lasgen = pedigree relationships using three generations of ancestors, aaiGen = pedigree
relationships using all available pedigree information, gsne = genomic relationship calculated
according to VanRaden (2008), gseci (gsec4) = genomic segment-based relationship
according to de Cara et al. (2013) with a minimum segment length of 1 (4) centimorgan.
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Table 5. Correlations between the different relationship coefficients for all possible
combinations of 9,841 females and 50 bulls of Nordic Red Dairy Cattle analysed in Paper
1T

Relationship!  asgen  @AlGen gSNP ESEGI  ESEG4

A3Gen 1 0.99 0.88 0.83 0.87
AAlGen 1 0.88 0.85 0.88
gsNP 1 09 093
gSEGI 1 0.98

lasgen = pedigree relationships using three generations of ancestors, aaiGen = pedigree
relationships using all available pedigree information, gsne = genomic relationship calculated
according to VanRaden (2008), gseci (gsec4) = genomic segment-based relationship
according to de Cara et al. (2013) with a minimum segment length of 1 (4) centimorgan.

It was possible to maximise economic score with limited impact on the
average NTM level (Table 6 and 7). Including the cost of the known
recessive genetic defect (at BTA12) when optimising mating strategies
eliminated the risk of expression of that genetic defect, regardless of the
genetic relationship used. In scenario MaxNTM, the NTM level improved
compared with Random, but it resulted in higher average genetic relationship
coefficients than Random and did not reduce the probability of expression of
genetic defects.
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Including a genomic relationship in the economic score kept the other
genomic relationship averages at a low level. For example, with the
constraint 5% females per bull and herd, including gsnxe in the objective
function (scenario GSNP) resulted in gsegi of 0.148, compared with 0.143 in
scenario GSEG1 (Table 6). Using the pedigree relationships also reduced the
genomic relationships compared with scenarios Random and MaxNTM, but
not as much as using genomic relationships in the objective function.
Considering the example with the constraint 5% females per bull and herd,
and including gsne in the objective function (scenario GSNP), the pedigree
relationship scenarios resulted in gsggi of 0.167 for scenario 3Gen and 0.163
for AllGen. There were only minor differences between the scenarios with
genomic relationships in their ability to reduce pedigree relationships.
Including pedigree relationships in the economic scores consistently reduced
pedigree relationships more than genomic relationships. For example, all
scenarios optimising genomic relationships resulted in aancen of 0.050,
AllGen resulted in aangen of 0.043, and 3Gen resulted in aangen of 0.046
(Table 6).

The results obtained in Paper II also demonstrated the efficiency of linear
programming as a method for optimising mating plans, as it maximised the
economic score for all herds studied within seconds.

4.3 Mating allocations in Holstein combining genomic
information and linear programming optimisation at
herd level (Paper lll)

4.3.1 Material and methods

Paper III explored mating allocation in Holstein using genomic information
for 24,333 Holstein females born in DFS. Linear programming was used to
optimise economic scores within each herd in a similar way as in Paper II,
considering genetic level, genetic relationship, semen cost and the economic
impact of genetic defects and, for Holstein, also polledness and beta-casein.
Two datasets of bulls were used: the top 50 genotyped bulls on the Nordic
Total Merit scale, and the top 25 polled genotyped bulls on the Nordic Total
Merit scale.
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The five different genetic relationships were calculated in the same way
as in Paper II. The carrier frequencies considered for genetic defects are
shown in Table 8 (for details, see Table Al in Appendix 1).

Table 8. Descriptive statistics on the Holstein females and bulls selected for mating
allocations in Paper I1I

Females
289 Dataset Dataset

Trait herds Bull50 Bull25Polled
Number of animals 24,333 50 25
Average Nordic Total Merit (NTM) 12.10 33.93 27.17
Carriers of defect HH1 (%) 345 2.00 16.00
Carriers of defect HH3 (%) 3.62 4.00 0.00
Carriers of defect HH4 (%) 1.31 0.00 0.00
Carriers of defect HH6 (%) 0.30 0.00 0.00
Carriers of defect HH7 (%) 0.29 0.00 0.00
Carriers of defect Blad (%) 0.27 0.00 0.00
Carriers of defect RP1 (%) 0.63 0.00 0.00
Heterozygous polled (Pp) (%) 3.74 14.00 84.00
Homozygous polled (PP) (%) 0.10 0.00 16.00
Heterozygous Beta Casein (A1A2) (%) 37.11 30.00 44.00
Homozygous Beta Casein (A2A2) (%) 57.12 66.00 48.00

For each potential mating between female i and bull j, an economic score
was calculated as:

NTM; + NTM;

5 + AF;; + p(BetaC) X Vperqc ) X prob (?)

Score;; = (

Yor p(aa); X v, +p(P) X vp —semen cost (4)

This is similar to the equation used in Paper II (eq. 3) except for p(BetaC),
which is the probability of a homozygous offspring for beta-casein (A2A2),
vpis the value of a homozygous offspring for beta-casein (A2A2), p(P) is the
probability of a polled offspring and vpis the value of a polled offspring.

An index unit of NTM is reported to be worth €25.4 over the lifetime of a
Holstein female in DFS (Fikse & Kargo, 2020). In Paper 111, the economic
consequence of a 1% increase in inbreeding was set to €25.4. The cost of an
early abortion (caused by defects: HH1, HH3, HH4, HH6, HH7) was
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assumed to be €80, based on the resulting longer calving interval (€30-
40/month) and the cost of extra insemination(s) (€30) (Oskarsson &
Engelbrekts, 2015; Serensen et al., 2018). Bulls carrying genetic defects
BLAD and RP1 are not allowed in the breeding programme at
VikingGenetics, so no cost was estimated for these defects. Different
economic values (€0, €10, €50 and €100) for polledness and beta-casein
(A2A2) were tested (Table 9).

Table 9. Description of the mating scenarios considered for Holstein cattle in Paper I11

Economic score includes:

Beta-
Genetic Polled casein
. Relation- defect value value
Scenario ]
NTM ship value €) €
MaxNTM Yes No No 0 0
3Gen Yes a3Gen Yes 0 0
AllGen Yes AAllGen Yes 0 0
GSNP Yes ZSNP Yes 0 0
GSEGI Yes ZSEGI Yes 0 0
GSEG4 Yes ZSEG4 Yes 0 0
GSNPPolled10 Yes gsNp Yes 10 0
GSNPPolled50 Yes ZSNP Yes 50 0
GSNPPolled100 Yes ZSNP Yes 100 0
GSNPBetaC10 Yes ZSNP Yes 0 10
GSNPBetaC50 Yes ZSNP Yes 0 50
GSNPBetaC100 Yes ZSNP Yes 0 100
GSNPPolledBetaC10 Yes ZSNP Yes 10 10
GSNPPolledBetaC50 Yes ZSNP Yes 50 50
GSNPPolledBetaC100 Yes ZSNP Yes 100 100
Random All possible combinations of females and bulls.

Prices for sexed semen set by VikingGenetics in 2021 were used. Semen
price depends on the bull’s NTM and polledness status. In 2021, a dose of
semen from a horned bull with NTM >35, 33-34, 30-32 and <30 cost €26,
€23, €20 and €17, respectively. Semen of polled bulls (homozygous or
heterozygous for the polled allele) costs €3 more than semen of horned bulls
with the same NTM (Hanna Driscoll, Product manager Holstein,
VikingGenetics, personal communication January 19, 2022).
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SAS version 9.4 (SAS Institute Inc., Cary, NC) and R version 3.6.3 (R
Core Team, 2020) were used for statistical analysis. A chi-square test was
conducted in SAS to test for associations between polledness genotype and
HH1, HH3 or beta-casein genotype.

4.3.2 Results and comments

The results presented are for matings between the 24,333 females selected
for matings and the dataset Bull50, unless otherwise specified.

For all possible combinations of females and males, the mean value of the
relationship coefficient ranged from 0.010 to 0.269, and the standard
deviation ranged from 0.031 to 0.042 (Table 10). For all correlations between
different genetic relationship coefficients, the value of the correlation
coefficient was >0.69. The strongest correlation was between gsegi and gseas
(r=0.97). Further, all correlations between aaugen and genomic relationships
were of similar strength (0.75-0.76), while those between assn and the
genomic relationships showed a wider range of values (0.69-0.75) (Table
11). Hence, the correlations between genomic and pedigree relationship were
in general weaker that those obtained for RDC in Paper II. Pedigree depth is
similar in both breeds, so the difference is most likely linked to some other
factor/s. One possibility is that pedigree correctness is greater in RDC than
in Holstein, due to the less common exchange of RDC bulls and their
pedigrees worldwide, as most RDC animals are found within the Nordic
countries.

Table 10. Descriptive statistics on relationships (mean, standard deviation (SD),
minimum value (Min) and maximum value (Max)) between all possible combinations of

24,333 females and 50 bulls of the Holstein breed analysed in Paper III
Relationship

. Mean SD Min Max
coefficient
a3Gen 0.015 0.031 0 0.545
AAlIGen 0.132 0.031 0.035 0.647
ZSNP 0.010 0.040 -0.106 0.576
gSEGI 0.269 0.042 0.089 0.853
ESEG4 0.181 0.041 0.039 0.763

lasgen = pedigree relationships using three generations of ancestors, aaiGen = pedigree
relationships using all available pedigree information, gsne = genomic relationship calculated
according to VanRaden (2008), gseci (gsec4) = genomic segment-based relationship
according to de Cara et al. (2013) with a minimum segment length of 1 (4) centimorgan.
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Table 11. Correlations between the different relationship coefficients for all possible
combinations of 24,333 females and 50 bulls of the Holstein breed analysed in Paper II1

Relationship
Relationship' a3Gen AAliGen ZSNP gSEG1 ZSEG4
a3Gen 1 0.95 0.75 0.69 0.70
AAlIGen 1 0.76 0.75 0.76
ZSNP 1 0.88 0.87
gSEG1 1 0.97

lasgen = pedigree relationships using three generations of ancestors, aaiGen = pedigree
relationships using all available pedigree information, gsne = genomic relationship calculated
according to VanRaden (2008), gseci (gseG4) = genomic segment-based relationship
according to de Cara et al. (2013) with a minimum segment length of 1 (4) centimorgan.

As found for RDC in Paper II, it was possible to reduce genetic relationships
in Holstein cattle and eliminate expression of genetic defects with minimal
effect on the genetic level. The results also showed that it was possible to
increase the percentage of polled offspring substantially in one generation
when competitive bulls were available, without any significant negative
impact on other comparison criteria (Table 12 and 13). It was also possible
to increase the number of homozygous beta-casein (A2A2) offspring without
any negative impact on other comparison criteria (Table 14).

Bulls carrying the polled allele were less likely to be homozygous for
beta-casein (A2A2) and more likely to be carriers of the genetic defect HH1.
Hence, adding economic value to a monogenic trait in the economic score
used for mating allocations sometimes negatively impacted another
monogenic trait. Among the 24,333 mated Holstein females, polled females
(Pp and PP) were less likely to be homozygous for beta-casein (A2A2) (or
A2A2 females were less likely to carry the polled allele). For example, 58%
of the horned females, but only 44% of the heterozygous polled (Pp) females,
were homozygous for beta-casein (A2A2). The chi-square test showed a
strongly significant negative association between polled and beta-casein
genotype (p<0.0001) in the data. Adding economic value to both the
polledness trait and beta-casein (A2A2) in the economic score used for
mating allocations increased the expected number of polled offspring and
offspring homozygous for beta-casein (A2A2) compared with
GSNPPolled€0 (Table 15).
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Table 12. Results of four mating scenarios investigating extra economic value for the
polledness trait, based on 24,333 Holstein females. Available bulls were 50 Holstein
bulls marketed by VikingGenetics (Bull50). Maximum 5% females per bull and herd

GSNP

Comparison criterion Polled Polled Polled Polled
€0 €10 €50 €100

Average Nordic Total Merit (NTM) 2472 240 24.2 24.1

Average aancen between parents 0.121 0.121 0.121 0.122

Average gsne between parents -0.040  -0.040 -0.040  -0.039

At-risk matings (%) 0.00 0.00 0.00 0.00

Percentage of polled offspring 9.7 10.3 13.2 17.0

Percentage of homozygous A2A2

offspring 61.0 60.9 60.8 60.8

Table 13. Results of four mating scenarios investigating extra economic value for the
polledness trait, based on 24,333 Holstein females. Available bulls were 50 Holstein
bulls marketed by VikingGenetics (Bull50). Maximum 10% females per bull and herd

GSNP

Comparison criterion Polled Polled Polled Polled

€0 €10 €50 €100
Average Nordic Total Merit (NTM) 250 25.0 252 25.0
Average aancen between parents 0.121 0.121 0.121 0.122
Average gsne between parents -0.034  -0.034 -0.034 -0.034
At-risk matings (%) 0.00 0.00 0.00 0.00
Percentage of polled offspring 11.7 12.6 16.4 22,5
Percentage of homozygous A2A2
offspring 66.4 65.9 64.0 62.2
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Table 14. Results of four mating scenarios investigating extra economic value for beta-
casein (A2A2), based on 24,333 Holstein females. Available bulls were 50 Holstein bulls
marketed by VikingGenetics (Bull50). Maximum 10% females per bull and herd

GSNP

Comparison criterion BetaC BetaC BetaC BetaC

€0 €10 €50 €100
Average Nordic Total Merit (NTM) 252 252 252 251
Average aaiGen between parents 0.121 0.121 0.121 0.121
Average gsnp between parents -0.034  -0.034  -0.034  -0.033
At-risk matings (%) 0.00 0.00 0.00 0.00
Percentage of polled offspring 11.7 11.2 93 80
Percentage of homozygous A2A2
offspring 66.4 68.2 72.8 75.0

Table 15. Results of four mating scenarios investigating extra economic value for the
polledness trait and beta-casein (A2A2), based on 24,333 Holstein females. Available

bulls were 50 Holstein bulls marketed by VikingGenetics (Bull50). Maximum 10%
females per bull and herd

GSNP

Comparison criterion Polled  Polled ~ Polled  Polled

BetaC BetaC  BetaC  BetaC

€0 €10 €50 €100

Average Nordic Total Merit (NTM) 252 252 252 25.1
Average aancen between parents 0.121 0.121 0.121 0.122
Average gsnp between parents -0.034  -0.034  -0.033  -0.032
At-risk matings (%) 0.00  0.00 0.00 0.00
Percentage of polled offspring 11.7 12.2 14.1 18.5
Percentage of homozygous A2A2
offspring 66.4 67.7 70.4 71.8

When 25 polled bulls (21 Pp bulls, four PP bulls) were available for mating
allocations, it was possible to further increase the expected percentage of
polled offspring (Table 16). For example, when using BullPolled25 and a
constraint of 5% females per bull and herd, the expected percentage of polled
offspring was 60.1% in GSNPPolled100€, compared with 17.0% using
Bull50. Considering the same example, the average NTM level was 20.2
using BullPolled25, compared with 24.1 using Bull50 (Table 12). The
average genetic relationships using BullPolled25 were slightly higher than
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using Bull50 with the same constraints and economic scores. The expected
percentage of offspring homozygous for beta-casein (A2A2) was also lower.
Hence, using only semen from polled bulls, which might be necessary if
dehorning is banned, would be relatively costly.

Table 16. Results of four mating scenarios investigating extra economic value for the
polledness trait, based on 24,333 Holstein females. Available bulls were 25 polled
Holstein bulls marketed by VikingGenetics (BullPolled25). Maximum 5% females per
bull and herd

GSNP

Comparison criterion Polled Polled Polled  Polled

€0 €10 €50 €100
Average Nordic Total Merit (NTM) 20.2 20.2 20.2 20.2
Average aancen between parents 0.121 0.121 0.121 0.121
Average gsne between parents -0.034  -0.034 -0.034 -0.034
At-risk matings (%) 0.00 0.00 0.00 0.00
Percentage of polled offspring 59.5 59.7 60.0 60.1
Percentage of homozygous A2A2
offspring 543 543 543 54.3

4.4 Simulation of long-term impact of dairy cattle mating
programmes using genomic information (Paper V)

4.4.1 Material and methods

Paper IV examined the long-term impact of genomic mating allocations with
stochastic simulation, where the matings followed a similar approach as used
in Papers Il and I1I. The economic scores included genetic level, a favourable
monogenic trait (polledness), a recessive genetic defect and parent
relationships. One unknown recessive genetic defect was also monitored.
The AlphaSimR package version 1.3.4 (Gaynor et al., 2021) in R version
4.1.3 (R Core Team, 2020) was used to simulate a closed population under
selection with discrete generations. The genomes of the founder population
were created with the MaCS coalescent simulator, which was run within the
AlphaSimR package, using the “CATTLE” population history (MacLeod et
al., 2013). The founder population was generated once and was the same for
all scenarios and replicates. A total of 29 chromosomes with 6,000
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segregating sites per chromosome were simulated. The breeding goal trait
was constructed by adding an additive trait in AlphaSimR, which was
assigned 4,000 QTLs per chromosome. The breeding goal had a mean of 0
and a genetic standard deviation of 10. In addition, a SNP chip with 1,600
SNP per chromosome was constructed in AlphasimR.

Breeding animals were selected based on a breeding goal with accuracy
of approximately 0.7. A population of 8,000 females across 40 herds was
simulated, with 200 females in every generation selected for multiple
ovulation and embryo transfer (MOET). Each donor produced 20 offspring
(50:50 sex ratio). Of the 2,000 males produced via MOET, the 100 best were
selected as sires of the next generation. Following MOET, the donors and
the rest of the females were inseminated with sexed semen, and all offspring
were assumed to be females. Thus, approximately 10,000 females were
available for the next generation (sometimes less if one of the lethal genetic
defects was expressed), with the top 8,000 females selected for breeding.

The simulation spanned 30 generations, and each scenario was replicated
30 times. For the first 20 generations, random matings (with the randCross
function in AlphasimR) were performed among all selected animals. In the
last 10 generations, matings with sexed semen were assigned based on an
economic score that defined the scenario (see Table 17) and matings of the
donors were still assigned at random.

In generation 20, three SNP markers were selected to represent three
monogenic traits: one known (assumed) lethal recessive genetic defect with
an allele frequency of approximately 0.05 (range 0.04-0.06); one unknown
lethal recessive genetic defect with an allele frequency of approximately 0.09
(range 0.08-0.10), which served as a reference for risk management; and one
dominant trait with an allele frequency of 0.12 (range 0.11-0.13), which
represented polledness. It was assumed that conceptus/offspring
homozygous for the recessive genetic defects died and thus they were
excluded from breeding.

The scenarios considered were similar to those in Papers Il and I1I (Table
17). Linear programming was used as in Papers Il and III and the same
constraints were applied, i.e. one mating per female and a threshold
percentage for the maximum number of females per bull and herd of 5% or
10%.
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A difference from Papers Il and III was that when calculating gsp, the
founder population’s allele frequency was used instead of the allele
frequency of all genotyped animals.

Table 17. Description of the mating scenarios considered in the simulation study in Paper
v

Economic score includes:
Relation-  Genetic Polled

T™I! ship defect value
Mating scenario value €
MaxTMI Yes No No 0
Ped Yes aped Yes 0
GSNP Yes ZSNP Yes 0
PedPolled10 Yes aped Yes 10
PedPolled50 Yes aped Yes 50
PedPolled100 Yes aped Yes 100
GSNPPolled10 Yes gsNp Yes 10
GSNPPolled50 Yes ZSNP Yes 50
GSNPPolled100 Yes ZSNP Yes 100
Matings were randomly assigned with
Random equal number of offspring (females 1

offspring and bulls 80 offspring)

ITotal merit index.

In the last 10 generations of the simulation, the different scenarios were
compared by (i) genetic gain in total merit index (TMI) per generation; (ii)
rate of pedigree inbreeding; (iii) rate of genomic inbreeding per generation
from the diagonal of the VanRaden relationship matrix (excess
homozygosity relative to the base population); (iv) change in carrier
frequency per generation of the known and unknown recessive alleles; (v)
change in number/frequency of polled offspring per generation; (vi) number
of affected conceptuses in the last 10 generations of the known and unknown
genetic defects; (vii) number of bulls used per generation; and (viii) number
of bulls used per generation up to the maximum number of doses allowed for
the threshold level (5% and 10%) of females per bull and herd.

4.4.2 Results and comments

Inclusion of a genomic relationship in the economic score significantly
reduced the rate of increase for both pedigree and genomic inbreeding
compared with only maximising genetic level (MaxTMI), with a few
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exceptions (Table 18-Table 21). Incorporating a pedigree relationship into
the economic score slowed the rate of increase for both pedigree and genomic
inbreeding compared with MaxTMI, although there were more exceptions
regarding the level of significance. The scenario Random had lower rates of
inbreeding and genetic gain than most other scenarios. The rates of pedigree
inbreeding were similar when either genomic or pedigree relationship was
included in the economic score, but using the genomic relationship led to a
lower rate of genomic inbreeding (Table 21). The frequency of polled
offspring increased on average per generation when the value of polledness
was €50 or higher, as also found in Paper III, while it remained constant
when the value was lower. The largest change in frequency of polled
offspring per generation (0.037) occurred in one of the scenarios where the
value of polled was €100 (GSNPPolled100) using 10% females per bull and
herd (Table 21). The frequency of polled offspring increased faster over
generations with the 10% females per bull and herd constraint compared with
the 5% constraint. For example, in GSNPPolled100, the increase in
frequency of polled offspring was 0.037 when allowing up to 10% females
per bull and herd, compared with 0.028 when using the limitation of 5%
females per bull and herd (Table 21). Hence most of the results in Paper IV
were in line with those in Paper III.

There was great variation in the different monogenic traits monitored
across replicates and scenarios. In general, using fewer bulls resulted in
greater variation across replicates regarding the monogenetic traits. The
scenarios using 10% females per bull and herd showed the highest variation,
and the scenario Random the lowest (Figure 5). For example, the variation
was higher for 10% females per bull and herd (Figure 5), even though the
mean frequency was similar in both sets (Table 19-21). The scenario with a
limit of 5% females per bull was more similar to Random in terms of
variation than the scenario with a limit of 10% females per bull.
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The carrier frequency of both known and unknown recessive genetic defects
decreased on average over generations in all scenarios analysed in Paper V.
The number of conceptuses affected by the known recessive genetic defect
decreased when the cost of the genetic defect was included in the economic
scores. Using pedigree relationship with a cost of the recessive genetic defect
avoided almost all affected conceptuses in most scenarios and replicates. The
risk of mating two carriers was slightly higher when genomic relationship
was used instead of pedigree relationship with the cost of the recessive
genetic defect (Table 19-Table 21). Mating of two carriers of the same
genetic defect did not occur in Papers II and I11.
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5. General discussion

Genomic selection has brought about a revolution in dairy cattle breeding in
the past 15 years. Estimating the overall value of genotyping of females at
herd level is challenging, because it is influenced by multiple factors that
may vary depending on country, region and herd. Several studies have tried
to quantify the net benefit of genotyping candidate females for replacement
using different methods and assumptions (Calus e al., 2015; Weigel et al.,
2015; Newton & Berry, 2020). For DFS, Hjorte et al. (2015) showed that
genomic testing was profitable in most cases with a genotyping price of
around €30 when combined with sexed semen and beef semen. However,
even though the price is lower now (around €20-25), far from all female
calves are genotyped in DFS. In Paper I, the aim was to increase confidence
in genomic breeding values by showing that they can predict future cow
phenotypes better than parent average breeding values. An advantage of
using phenotypes for validation of breeding values is that it makes it easy for
farmers to understand how their animals’ breeding values work in practice,
when validation is against their own farm records. The correlations with
adjusted phenotypes were 38-136% higher for GEBV than for PA in Red
Dairy Cattle, 42-194% higher for GEBV than for PA in Holstein and 11-78%
higher for GEBV than for PA in Jersey. Hence, the conclusion from the work
in Paper I was that farmers in DFS can have confidence in using genomic
technology on their herds. A growing reference population enhances the
accuracy of GEBYV, thus most likely increasing the difference in accuracy
between GEBYV and PA since the study. Furthermore, the research field of
genomic evaluation is constantly working to improve the accuracy of GEBV
(Misztal et al., 2020).
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5.1 Economic scores and linear programming

Papers II-IV focused on how best to use genomic information when planning
matings. A decision was made to use economic scoring systems to rank each
potential mating, based on findings in previous studies (Carthy et al., 2019;
Bérodier et al., 2021). The economic score is flexible and can be adjusted to
match different economic conditions. It is also possible to include new
information as it becomes available, e.g. on new monogenetic traits. For
example, kappa-casein has been included in the SNP array since the analyses
in Paper III. Specific breeding values could also be included in the economic
scores, following e.g. the approach by Carthy et al. (2019), but this was not
done in this thesis. An advantage of using an economic score over other
methods, such as maximising genetic level with constraints on e.g. genetic
relationships as evaluated by Bérodier ef al. (2021), is that it avoids the risk
of some females not being mated if the constraints are too stringent, or of
obtaining a suboptimal solution concerning genetic relationships if the
constraints are too relaxed.

It was decided to use linear programming since it has been shown to
outperform sequential mating methods, because it uses simultaneous rather
than sequential solving to find the economically optimal matings for each
herd (Sun et al., 2013; Carthy et al., 2019; Bérodier ef al., 2021). It has also
been shown to be faster than other mating methods such as sequential solving
(Sun et al., 2013; Carthy et al., 2019). Therefore, the method is suitable for
implementation in software that can assist farmers or advisors in mating
decisions in real time, which was considered important in the work in this
thesis.

5.2 Including recessive genetic defects in the economic
score

The relatively high carrier frequency of the genetic defect at BTA12 in Red
Dairy Cattle served as a good example of how the method would handle a
recessive genetic defect with high carrier frequency (14.7% in females and
12% in available bulls). An economic score including a penalty for mating
two carriers effectively eliminated expression of genetic defects. It was more
profitable to use the carrier bull on a non-carrier female than on a carrier
female. Hence, the conclusion from the work in Paper II was that linear
programming can help avoid expression of genetic defects unless the
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possible matings are restricted, e.g. if only a few non-carrier bulls are
available and therefore a carrier bull has to be mated with a carrier female.
The same conclusion was drawn from the results for Holstein cattle obtained
in Paper III. However, in Paper IV it was found that the risk of expression of
the known recessive genetic defect increased slightly when the economic
score included a genomic relationship instead of a pedigree relationship. This
was mainly due to low genomic relationships that made it worthwhile to mate
two carriers, which was not observed in the studies in Papers II and II1. One
possible explanation for the latter is that too few different situations were
encountered in those studies, as the analyses in both only considered one or
two different bull sets and only looked one generation ahead (with no
replicates because those studies were based on real data). Most recessive
genetic defects examined in this thesis caused early embryonic loss, which
has lower economic consequences than other defects resulting in late-term
abortions or defective or dead calves. More severe defects should be assigned
a higher economic cost in the economic score. This would likely decrease
the probability of expression of the defect even more, as mating two carriers
would be more costly. The cost of €80 assumed in this thesis reduced the
frequency of mating between two carriers to almost zero, so a slightly higher
cost would most likely eliminate such matings.

In the study by Bérodier et al. (2021), expression of recessive genetic
defects could not be completely avoided when using linear programming and
similar constraints as in this thesis, most likely due to more restricted bull
usage in their study. For example, only eight bulls could be mated to heifers
due to restriction of calving ease, while restrictions on availability of semen
were also considered (Bérodier et al., 2021). An earlier study by Cole (2015)
used sequential solving rather than linear programming and found that more
conceptuses were affected by recessive genetic defects when using an
economic score (including pedigree relationship and penalty for genetic
defects) compared with random mating. That study also revealed a downside
of sequential solving which, unlike linear programming, cannot account for
the fact that the value of one mating is affected by other matings, which is
the case with a limited amount of permitted matings per bull and herd. For
example, linear programming accounts for the fact that a bull carrying a
recessive genetic defect brings the most value (for most cases) when it is
mated to a non-carrier female if there is a maximum number of
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inseminations. Hence, while linear programming can help avoid expression
of genetic defects, this is probably not possible with sequential solving.

5.3 Breeding for polledness and beta-casein

Papers III and IV focused on polledness, a trait which is high on the agenda
within Europe because organic farms in the EU now have to apply for a
permit if they want to dehorn cattle (EU Commission Regulation No.
889/2008). In the future, dehorning might be regulated further or even
banned, and not only in organic herds. The new EU regulation has increased
the demand for semen from bulls carrying the polled allele, and several
breeding companies have started marketing polled bulls more heavily
(Hanna Driscoll, Product manager Holstein, VikingGenetics, personal
communication May 24, 2023). The results in Papers III and IV showed that
farmers can achieve relatively rapid changes in the polled allele frequencies
with limited effect on genetic gain and rate of inbreeding. However, Paper
IIT also showed that in Holstein, using only polled bulls would be relatively
costly in terms of lower genetic level and higher inbreeding. Very few of the
top ranked bulls in Holstein are homozygous for the polled allele. Moreover,
it was found in Paper IV that the initial rapid increase in the frequency of
polled animals observed on introducing an economic score with extra value
for polledness was not always maintained in the following generations. One
possible explanation is that polled animals are more related and that mating
optimisation will prefer horned bulls in the next generations. Hence,
breeding for a monogenic trait, such as polledness, requires a long-term
perspective (as does animal breeding in general). This means that farmers
and breeding companies face a difficult task of adjusting to new rules that
vary in a relatively short time, whereas the time horizon of animal breeding
spans multiple generations, which often equates to decades in cattle
breeding.

In Paper IlI, beta-casein genotype of the animals was also studied, since
despite the lack of confirmed benefits, some countries are seeking to increase
consumption of A2 milk and some dairies pay extra for A2 milk (Bisutti et
al., 2022). 1t is still uncommon for farmers in DFS to breed to increase the
percentage of A2A2 offspring, and even more uncommon to breed for beta-
casein and polledness simultaneously. The results obtained in Paper III for
beta-casein and polledness illustrate the interactions that can occur when
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breeding for two favourable monogenic traits, since animals carrying the
polled allele were found to be less likely to be homozygous for beta-casein
(A2A2). It is likely that breeding for multiple monogenic traits will become
more common as knowledge about the cattle genome increases, and Paper
IIT provides a useful example of potential challenges that may arise. In
general, it is advisable to monitor available monogenic traits at herd and
population level to keep track of changes in allele frequencies.

5.4 Genetic relationships

The studies performed in this thesis also addressed the correlations between
the different measures of genetic relationships. The correlation between the
pedigree relationship and genomic relationship estimates was high in Red
Dairy Cattle, 0.83-0.88 for aszgen and 0.85-0.88 for aancen (Paper I1). However,
Carthy et al. (2019) reported a correlation of 0.57 between pedigree
relationships and genomic relationship, which is lower than the values in
Paper II and other studies (0.67-0.88) (VanRaden et al., 2011; Pryce et al.,
2012). Pryce et al. (2012) found a correlation of 0.67, 0.73, 0.84 and 0.87
when the number of generations of recorded ancestry was 2, 4, 6 and 8,
respectively, and concluded that pedigree depth plays a major role in the
strength of correlation between pedigree relationships and genomic
relationships. Lower correlations between pedigree relationship and genomic
relationship estimates were found for RDC in Paper III (0.69-0.75 for asgen,
0.75-0.76 for aangen). Pedigree depth in the study by Pryce et al. (2012) was
similar to that in Paper II, so the difference is most likely attributable to some
other factor(s). One possibility is that the pedigree correctness is better in
RDC than in Holstein, due to the less common exchange of RDC bulls and
their pedigrees worldwide, as RDC are generally found within the Nordic
countries. It is also important to highlight that for some populations, the
effectiveness of pedigree relationships may have been overestimated in
Paper IV because a perfect pedigree in terms of completeness and correctness
was available. With lower pedigree correctness, the relative benefits of using
genomic relationships would likely be greater. However, the results may still
be applicable for RDC, since in Paper II there were equally strong
correlations between pedigree and genomic relationships as in the
simulations in Paper IV.
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There are several arguments for using genomic estimates of relationship
and inbreeding instead of pedigree. First, genomic estimates do not rely on
pedigree data, which can be incorrect or have limited depth (Carthy et al.,
2019; Makanjuola et al., 2020). The data used in this thesis were corrected
for possible mismatches when received from the Nordic Cattle Genetic
Evaluation. Hence, the benefit that genomic information brings in the form
of assigning the right parents to an animal was not explored. Approximately
5% of genotyped animals in Sweden have at least one parent incorrectly
assigned (Lina Baudin, expert in breeding routines, Véixa personal
communication, March 5, 2021). Second, even if the pedigree data are
correct and complete, genomic relationships are still more accurate because
they consider the fact that the genome is transmitted in chromosomes, and
not as infinite unlinked loci (Hill & Weir, 2011). Third, the assumption of
50% probability of an allele being selected is not true in a population under
selection (Forutan et al., 2018). Therefore use of genomic estimates of
relationship is recommended in modern mating programmes.

In general, genomic relationships were good at keeping each other low
when included in an economic score used for mating allocations, and the best
approach would be to implement one of these instead of pedigree
relationships. A segment-based relationship was used in this thesis, with the
aim of reducing the number of runs of homozygosity (ROH) in the potential
offspring. In principle, ROH are enriched for deleterious alleles that mainly
cause inbreeding depression (Charlesworth & Willis, 2009). Long ROH
reflect new inbreeding and are expected to contain more deleterious alleles
than short ROH, due to purging and recombination through the generations
(Stoffel et al., 2021). According to Pryce ef al. (2014), long regions (>3 Mb)
are associated with inbreeding depression for milk yield in Holstein and
Jersey cattle. However, Zhang et al. (2015) found significantly higher
enrichment of deleterious variants in short (<0.1-3 Mb) compared with long
(>3 Mb) regions in the Holstein, RDC and Jersey cattle. Hence, the optimal
segment length for use in segment-based relationships remains to be
determined. However, this thesis showed that gsegi and gseas keep each other
low when included in an economic score, so the difference is most likely
marginal for the outcome of the mating allocations. One could also speculate
that in the future, inbreeding may be targeted at specific regions and
chromosomes, beyond genetic defects. This could then be included in an
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economic score to avoid inbreeding in a more precise way if the effects of
inbreeding are not equal along all chromosomes and regions.

Papers III and IV focused on SNP-by-SNP genomic relationship
coefficient (gsnp), which could be argued to be closest to implementation
since it is often used in genomic evaluations and therefore is already
calculated and ready for use. It also is the fastest genomic relationship to
calculate and, as observed in this thesis, it is relatively good at keeping the
segment-based relationships low, making it an efficient implementation
alternative. However, computation time aside, a segment-based relationship
based on current research should be considered, because it is most likely
better in prediction of inbreeding depression (Doekes et al., 2021). In
general, more studies on this topic are needed, particularly from a Nordic
perspective, in order to identify the relationship that best predicts inbreeding
depression in the three major dairy cattle breeds.

5.5 Short- and long-term effects of mating programmes

Many of the results in Papers II and III were maintained over several
generations in Paper IV. For example, compared with only maximising
genetic level, including any genetic relationship in the economic score
lowered the rate of increase in pedigree and genomic inbreeding, with
minimal effect on genetic gain. In addition, including the cost of a recessive
genetic defect in the score helped reduce the risk of expression. As discussed
earlier, the risk of expression of the known recessive genetic defect increased
slightly when the economic score included a genomic relationship instead of
a pedigree relationship. However, genomic relationships resulted in more
bulls being used, which was favourable for the rate of genomic inbreeding
and performed equally well concerning the rate of pedigree inbreeding.
Paper IV also provided new insights into the constraint on bull usage,
where using 5% instead of 10% females per bull and herd reduced the rate
of inbreeding. Using more bulls, which resulted in a lower rate of inbreeding,
reduced the variation in carrier frequency for the genetic defects, which
lowered the probability of mating two carriers of an unknown genetic defect
in some generations when carriers were widely used in previous generations.
Hence, to minimise the risk of unknown recessive genetic defects, the
constraint of 5% females per bull and herd is the best option. Exceeding 10%
females per bull and herd cannot be recommended, as that constraint gave
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higher variation in carrier frequencies than using 5%. However, if farmers
want to achieve rapid changes in the frequency of polled offspring, this could
be slightly more likely with 10% females per bull and herd compared with
5%, at the risk of also increasing the frequency of (unknown) genetic defects.

5.6 Final remarks

The results presented in this thesis are largely generalisable, i.e. breeders of
other livestock species could adopt the mating scenarios analysed here, but
they would need to be adapted to each specific situation. Further, including
genomic relationships and information about genetic defects, as done in the
mating studies in this thesis, requires data on both female and male
genotypes. An economic score could be developed for crossbred animals
where the focus is to maximise heterosis instead of minimising parent
relatedness. Ungenotyped animals were not considered in this thesis, but one
option for these could be to impute their genotype, as done by Carthy et al.
(2019) using the method described by Gengler et al. (2007). Sun et al. (2013)
suggest use of the H matrix in single-step genomic evaluation.

It is important to mention that this thesis did not fully examine all benefits
of genotyping and it is important to bear in mind that the value of genotyping
is likely to increase as new applications emerge, such as product or animal
traceability through the food chain (Newton & Berry, 2020). Genomic
selection also makes it possible to select for novel traits with high accuracy,
without the farmer having to measure the trait in their herd (Henryon et al.,
2014).

In conclusion, the results presented in this thesis can increase farmers’
confidence in GEBV. Genomic mating plans were also assessed, both in a
long-term and short-term perspective. It was shown that optimising
economic score with linear programming can help avoid expression of
genetic defects and increase the level of favourable traits like polledness and
beta-casein (genotype A2A2). A recent study in which I participated showed
that farmers in Sweden are positive to the use of modern breeding tools like
genotyping, sexed semen and beef semen (Clasen et al., 2021). This thesis
highlighted the benefits of genotyping for planning matings and will
hopefully encourage more farmers to genotype their herds. The mating
method used is relatively easy to implement, flexible and ready for future
applications when more is known about the cattle genome.
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6. Final conclusions

>

Virgin heifer genomically enhanced breeding values predicted cow
performance significantly better than did parent average breeding
values for the vast majority of traits analysed in Holstein, Jersey and
Red Dairy Cattle.

Linear programming maximised the economic score for all herds
studied within seconds, provided that data on genetic relationships
were available, which means that it is a suitable method for
implementation in mating software to be used by advisors and
farmers.

In Red Dairy Cattle and Holstein, it was possible to reduce genetic
relatedness between parents with minimal effect on genetic level.
Including the cost of known recessive genetic defects entirely
eliminated the risk of expression of these defects.

There were strong correlations between measures of genomic and
pedigree relationships for dairy cattle in Denmark, Finland and
Sweden.

It was possible to reduce genomic relationships between parents by
including pedigree measures in the economic score, but it was best

done by including genomic measures.

Genomic relationships studied were good at keeping each other low
when included in an economic score used for mating allocations.
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In Holstein, it was possible to increase the percentage of polled and
beta-casein homozygous (A2A2) offspring substantially in one
generation when competitive bulls were available, without any
significant negative effect on other mating criteria.

Using only semen from polled bulls, which might be necessary if
dehorning is banned, considerably affected the genetic level in
Holstein.

In Holstein, animals carrying the polled allele were less likely to be
homozygous for beta-casein (A2A2) and more likely to be carriers
of the genetic defect HH1.

Long-term simulations revealed that, compared with only
maximising genetic level, including genomic or pedigree
relationship in the economic score lowered the rate of pedigree and
genomic inbreeding, with minimal effect on genetic gain.

Using genomic relationships in the economic score resulted in more
bulls being used, which was favourable for lowering the rate of
genomic inbreeding and performed equally well to using pedigree
relationships in terms of the rate of pedigree inbreeding.

A 5% females per bull and herd constraint lowered the variation in
carrier frequency for genetic defects, which minimised the risk of
mating two carriers of an unknown genetic defect in future
generations after widespread use of carriers in previous generations.
However, allowing 10% females per bull could accelerate the
increase in frequency of the polled allele.



7. Practical recommendations

The current cost of genotyping (around €20-25 per genotype in the Nordic
countries) makes it economically justifiable to genotype females for
management of breeding stock. Genotyping can be combined with sexed and
beef semen and/or selling or culling surplus heifers, as suggested by the
literature (Hjorte et al., 2015; Newton & Berry, 2020). Paper I showed that
dairy farmers in the Nordic countries can make better selection decisions
based on genomically enhanced breeding values than on parent average
breeding values.

An economic score that is easy to customise should be developed. As new
monogenic traits are identified, the economic score should incorporate these.
Moreover, the economic score should reflect the specific needs and
preferences of each herd. For instance, as demonstrated in this thesis, the
polled trait may have a higher value for organic herds. Therefore, the first
step in applying the method presented here is to define the economic score
for the target herd and then set the constraints, e.g. number of females per
bull.

SNP-by-SNP genomic relationship coefficient (gsne) was the fastest
genomic relationship to calculate and was relatively powerful, keeping the
segment-based relationships low, making it an efficient implementation
option. However, segment-based relationships might be preferable if they
can better predict inbreeding depression in future studies. This would entail
a trade-off with the increased computation time required for segment-based
methods. Papers II and III demonstrated that using a genomic relationship
can reduce the expected genomic inbreeding in the next generation by ~1%
compared with using a pedigree relationship, which would correspond to a
value of approximately €25 per mating and potentially cover the cost of
genomic testing. However, further studies are needed to investigate the
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different types of genomic relationships and their implications for the
economic performance of dairy farms. Use of a genomic relationship can be
recommended if both female and bull are genotyped, as current research
suggests that it is a better predictor of inbreeding depression than a pedigree
relationship. In this thesis, the largest difference in inbreeding was observed
when switching from a pedigree to any genomic relationship, rather than
fine-tuning the genomic relationship. Therefore, using any genomic
relationship for mating decisions and updating it as new research becomes
available can be recommended.

When breeding for multiple monogenic traits, it is important that different
outcomes of mating allocations are easily comparable. It was shown in Paper
IIT that animals carrying the polled allele had a lower probability of being
homozygous for beta-casein (A2A2 genotype) and a higher probability of
being carriers of the genetic defect HH1. Therefore, assigning an economic
value to a monogenic trait in the economic score used for mating allocations
could have a negative impact on another monogenic trait. Hence, it is
advisable to monitor the comparison criteria used in this thesis. The carrier
frequency in female candidates could provide valuable information for
farmers and advisors before making mating decisions in practice, as it could
indicate how different defects should be weighted in a specific herd. As
demonstrated in Paper I, the overall frequency of most defects could be low
among all females, but the carrier frequencies could vary considerably in a
specific herd.

It is important to note that the use of genomic relationships slightly
increased the risk of conceptuses affected by the known recessive defect
examined in Paper IV compared with pedigree relationships. Such matings
are not advisable in practice and may be against the law. This could also be
true for specific bull traits, e.g. some bulls with traits that give difficult
calvings should not be used for heifers. This is important to consider in
practical implementations and should be relatively easy to include in linear
programming optimisation.

Another recommendation is to have a constraint on bull usage, as done in
this thesis. To minimise the risk of unknown recessive genetic defects, using
the 5% females per herd and bull option would be the best choice. Exceeding
10% females per bull and herd is not recommended, to avoid higher variation
in carrier frequencies. However, if farmers want to achieve rapid changes in
the frequency of polled offspring, there could be some benefits of using 10%
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females per bull and herd. In that case, it is important to be aware of the risk
of increasing the frequency of (unknown) genetic defects.

Most farms in the Nordic countries use a special ear tag that collects a
tissue sample at the same time as the animal’s identification is inserted into
the ear. This method requires minimal extra work and allows for early
sampling and decision making. The farmers also benefit from the pedigree
verification, which provides a more accurate pedigree and helps to avoid
unnecessary inbreeding when planning matings. However, this aspect was
not addressed in Papers II-IV, which might have underestimated the
advantage of genomic data over pedigree data, as the pedigree errors on
genotyped animals were already corrected in the data.

This thesis demonstrated the potential of female genotyping at herd level
for enhancing dairy cattle breeding. Genotyping can offer valuable
information for estimating genomic breeding values, optimising mating
programmes and selecting for novel traits. The cost of genotyping (currently
€20-25 per genotype) may have reached a plateau in terms of possible
reductions. However, the value of genotyping is likely to increase as new
applications emerge, such as product or animal traceability through the food
chain (Newton & Berry, 2020). Therefore, based on the results in this thesis
and other literature, genotyping heifers can be profitable if farmers use the
genomic results to improve selection and mating strategies.
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8. Future research

A possible direction for future research is to develop an economic score for
crossbred animals that accounts for heterosis effects. Currently, around 10%
of cows in the Nordic countries are crossbred and this percentage may
increase in the future. However, there is a lack of research on how to
incorporate heterosis into economic scores for crossbred animals. Another
area of interest is economic score development for beef on dairy matings.

The optimal segment length when considering genomic relationships is
unclear. In general, more studies are needed on the economic consequences
of inbreeding and monogenic traits in Nordic production systems. Future
studies should also seek to identify chromosomal regions linked to
inbreeding depression in dairy cattle and incorporate these into the economic
score in order to prevent inbreeding.

It is important to develop tools that can support farmers in their decision
to start genotyping based on their specific farm characteristics. Farmers may
have different motives and constraints for adopting genotyping technology.
Future research should develop tools that help farmers evaluate the potential
benefits and costs of genotyping based on their specific farm characteristics.

Economic scores could be further extended by incorporating more
monogenic traits, such as kappa-casein, which was added to the SNP array
following the work in this thesis. The effects of including specific breeding
values in the economic score, e.g. following the approach of Carthy et al.
(2019), should also be analysed.

More surveys are needed to identify the factors influencing farmers’
adoption of genotyping technology. Farmers may face various barriers or
challenges when adopting genotyping technology, such as lack of awareness,
knowledge, skills, trust or resources.
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Another possible direction for future research is to explore economic
scores for mating programmes targeting breeding animals (e.g. MOET
mating) and how it interacts with OCS. This could help breeding companies
optimise their selection decisions and allocate resources more efficiently.
Future research should also investigate the use of MOET in commercial
herds without the constraint of one mating per female applied in this thesis.

Finally, there are many more scenarios that are yet to be studied in a
follow-up to Paper IV. These include more or different monogenic traits,
with higher or lower carrier frequencies. Further, associations between
monogenetic traits, e.g. as found between polled and beta-casein in Paper 111,
or associations with the breeding goal should be included. In addition, future
studies should assess more active selection for monogenic traits in the MOET
programme.
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Popular science summary

Breeding work in dairy cattle is important for improving the productivity and
profitability of the dairy sector. Traditionally, the main goal of breeding dairy
cattle was to improve milk yield, but other desirable traits such as health and
fertility have now become important breeding objectives. Recent research
has also sought to include traits related to sustainability and climate impact,
e.g. methane emissions.

In 2008, a new breeding technique called genomic selection became
available for use in dairy cattle breeding. It applies information from the
DNA of cows to predict how good they are in terms of different traits, such
as milk yield, health, fertility and sustainability. Genomic selection is useful
because it can better tell how good a cow or bull is before they have their
own offspring, rather than only looking at information from their parents.

In the early days, DNA testing was expensive and was only used for
candidate bulls for artificial insemination. Over time, however, the cost of
genotyping has decreased significantly and more and more farmers are now
genotyping their heifers. The female test results can be used to identify the
best females for replacement and those to inseminate with sexed semen in
order to obtain female calves with the highest breeding value. The genomic
test results can also be used to decide which female to mate with which bull.
For instance, DNA test results can be used to estimate genomic relationships
between females and bulls. Genomic relationships are suggested to be more
accurate than those relying on pedigree information because they are based
on actual DNA and do not rely on pedigree data, which can be incorrectly
recorded or incomplete. In addition, DNA testing gives insights into single-
gene traits that can be considered in mating choices. Examples of single-gene
traits are cows with no horns (polled) or special milk quality traits like
caseins.
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This doctoral thesis focused on how genomic information can be used at
herd level, mainly considering better mating plans. The first study compared
genomic breeding values and parent average breeding values for young
females in terms of their ability to predict cow performance later in life.
Twelve different traits in first parity were analysed, including production,
conformation, fertility and other functional traits. The results for all traits
showed that genomic breeding values can predict future cow performance
significantly more accurately than parent average breeding values.

A second study investigated mating plan optimisation for Red Dairy
Cattle at herd level based on economic score for different mating options
within each herd, considering genetic level, semen cost, the economic impact
of recessive genetic defects, and genomic and pedigree relationships. The
mating results showed that it was possible to reduce genetic relatedness
between parents with minimal effect on genetic level. Including the cost of
known recessive genetic defects eliminated expression of genetic defects. It
was possible to reduce genomic relationships between parents with pedigree
measures, but it was best done with genomic measures.

A third study analysed mating plan optimisation in the Holstein dairy
breed and also included two favourable single-gene traits, polledness
(absence of horn) and beta-casein. Beta-casein is one of the main proteins in
milk and the genetic trait mainly has two variants in cattle (Al and A2).
Cows that carry two copies of the A2 variant produce A2 milk, which is often
advertised as a healthier alternative than regular cow milk. However, the
human health advantages of drinking A2 milk are still under debate. The
results obtained for Holstein cattle were similar to those obtained for Red
Dairy Cattle as regards genetic relationships and defects. In addition, it was
possible to increase the frequency of polled and beta-casein (A2A2)
offspring without negatively impacting other criteria.

A final simulation study investigated the long-term impact of genomic
mating allocations. The matings followed a similar approach as in the
previous studies and were optimised on genetic level, a favourable single-
gene trait (polledness), a recessive genetic defect and parent relationships.
An (assumed) unknown recessive genetic defect was also monitored.
Compared with only maximising genetic level, including any genetic
relationship in the economic score lowered the rate of increase in pedigree
and genomic inbreeding, with minimal effect on genetic gain. Including the

78



cost of a recessive genetic defect in the score helped reduce the risk of
expression of that defect. Furthermore, including an economic value for
polledness in the economic score increased the frequency of the polled allele
in the population, without negatively impacting other comparison criteria.
Using more bulls, which helped lower the rate of inbreeding, was favourable
regarding the number of animals that were carriers of genetic defects, which
reduced the risk of expression in future generations.

One possible direction for future research is to develop economic scores
for crossbred dairy cows that take into account the benefits of heterosis.
Currently, around 10% of dairy cows in Denmark, Sweden and Finland are
crossbred, and this percentage may increase in the future. In addition, future
studies should investigate how to calculate genomic relationships in the best
way possible. There are many methods available, but it is unclear which is
best for different situations and breeds. This is especially important for the
Jersey breed and for Nordic Red Dairy Cattle, for which research is limited
to the Nordic countries.
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Popularvetenskaplig sammanfattning

Mjolkkoavel ér viktigt for att forbéttra produktivitet och 16nsamhet inom
mjolksektorn. Historiskt var huvudmalet med mjolkkoavel att forbattra
mjolkavkastningen, men de senaste decennierna har andra Onskvirda
egenskaper sdsom fruktsamhet och hilsa fatt allt storre fokus. Pa senare tid
fokuserar forskningen pa att inkludera nya egenskaper som relaterar till
milj6- och klimatpaverkan.

Ar 2008 borjade en ny avelsteknik vid namn genomisk selektion att
implementeras av avelsforetagen. Den anvénder information fran kornas
DNA for att forutsiga hur bra de ar for olika egenskaper, sdsom
mjolkavkastning, hélsa, fruktsamhet och hallbarhet. Genomisk selektion ar
anvandbart inom mjolkkoavel eftersom den kan ge en battre bild av hur bra
en kviga kommer att bli, eller hur bra en tjur 4r innan den far egna avkommor
jamfort med att bara titta p& djurens stamtavla.

Nar tekniken implementerades var det relativt dyrt att DN A-testa djur och
det var framst tjurar som testades som var kandidater till att bli semintjurar.
Sedan dess har kostnaden sjunkit betydligt och idag (ar 2023) kostar det cirka
250 kr att ta ett DNA-test. Detta gor det intressant att testa d&ven kvigor och
allt fler lantbrukare DN A-testar hela sin besittning. Resultaten kan anvéndas
till att vélja ut vilka kvigor som ska insemineras med konssorterad sperma sé
att man &r sdker pé att f& en kvigkalv av sina bésta djur. Dessutom kan DNA-
testresultaten anvéndas till att berdkna sldktskap mellan hondjur och tjur pa
ett béttre sétt och ddrmed undvika onddig inavel. Genomiska sléktskap anses
vara sdkrare dn de som baseras pa stamtavlan eftersom de tittar pa faktiskt
DNA och inte forlitar sig pa stamtavlan som kan innehélla fel eller vara
ofullstandig. Dessutom kan DNA-testen ge insikter om egenskaper som styrs
av enskilda gener som kan beaktas vid valet av vilken tjur som ska anvindas
till vilket hondjur (parningsplanering). Exempel pd sddana egenskaper &r
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vissa genetiska defekter, djur som saknar horn (kulliga) eller specifika
mjolkkvalitetsegenskaper sdsom kaseiner.

Denna doktorsavhandling underséker hur DNA-information kan
anvindas pa& beséttningsnivd, frimst med hénsyn till Dbéttre
parningsplanering. [ den forsta studien jaimforde vi kvigors genomiska
avelsvdrden med avelsvérden baserat pd enbart stamtavla vad géller forméga
att forutséga kornas egenskaper senare i livet. Syftet med denna studie var
att Oka fortroendet for genomiska avelsviarden bland lantbrukare. Vi
analyserade 12 olika egenskaper, inklusive mjolkavkastning, exterior,
fruktsamhet och hilsoegenskaper. Genomiska avelsvarden forutsidg framtida
egenskaper betydligt battre jamfort med avelsviarden baserade pa stamtavla.

I den andra studien optimerade vi parningar for nordiska roda raser med
hjilp av ekonomiska podngsummor dir vi tog hénsyn till genetisk niva,
slaktskap, och sannolikhet for att genetiska defekter kommer till uttryck.
Resultaten visade att vi kunde minska slidktskapet mellan fordldrar med
minimal paverkan p& genetisk nivd. Nér kostnaden for recessiva genetiska
defekter ingick i optimeringen forsvann risken for bararparningar. Med andra
ord var det aldrig ekonomiskt fordelaktigt att inseminera ett hondjur som var
bérare av en recessiv genetisk defekt med en tjur som var birare av samma
genetiska defekt. Ett ldngre kalvningsintervall och en extra inseminering
kostar mer dn vad en optimal parning for 6vriga faktorer kan kompensera
for.

I den tredje artikeln undersokte vi parningplanering for en annan ras
(holstein) och inkluderade &ven positiva egenskaper sasom kullighet
och Beta-kasein. Resultaten dverstimde vil med den andra artikeln vad det
giller sliaktskap och genetiska defekter. Dessutom var det mojligt att dka
andelen kulliga och dubbelbérare av varianten av Beta-kasein (A2A2) utan
att ndmnvirt paverka de dvriga jimforelsekriterierna.

Slutligen undersokte vi vilka effekter genomisk parningsplanering har pa
lang sikt. Denna artikel byggde pé de tva tidigare parningsartiklarna. Vi
inkluderade genetisk nivé, kullighet, en recessiv genetisk defekt och
slaktskap pa liknande sétt, dessutom foljde vi en okénd genetisk defekt for
att undersoka risker beroende pa vilka parningsbeslut som togs. Bland annat
sa visade resultaten att jimfort med att bara maximera genetisk niva s& kunde
vi genom att inkludera sliktskap i den ekonomiska podngsumman minska
inavelstakten och minska risken att kénda genetiska defekter kommer till
uttryck. Vi kunde ocksé oka andelen kulliga kor utan storre paverkan pé
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Ovriga jamforelsekriterier. Att anvénda fler tjurar var fordelaktigt i
forhallande till inavelsdkning och minskad risk for okdnda genetiska defeker
skulle bli vanligt forekommande eller komma till uttryck.

Framtida studier skulle kunna underséka mojligheten for ekonomiska
podansummor for korsningsdjur. I dagsldget (ar 2023) &r cirka 10% av korna
korsningar i Danmark, Finland och Sverige och det dr mojligt att det kommer
oOka i framtiden. Det krévs ocksé mer forskning om de olika sétten att berdkna
genomiska sliktskap och hur bra de &r pa att forutséga inavel och dess
effekter. Detta ar sdrskild viktigt for rasen jersey och de nordiska réda
raserna for vilka forskningen ar begransad till néstan enbart Norden.
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Appendix 1.

Table Al. Monogenic traits available for mating programmes in Denmark, Finland and

Sweden

Monogenic trait

OMIA
CODE

Phenotype

Bovine Leukocyte
Adhesion
Deficiency
(BLAD)

Complex Vertebral
Malformation
(CVM)

Holstein Haplotype 1
(HH1)

Holstein Haplotype 2
(HH2)

Holstein Haplotype 4
(HH4)

Holstein Haplotype 6
(HH6)

Holstein Haplotype 7
(HH7)

Spinal muscular
atrophy (SMA)

Arthrogryposis
multiplex
congenita (AMC)

Ptosis Intellectual
disability,
Retarded growth,
and Mortality
(PIRM/AH1)

000595-9913

001340-9913

000001-9913

001824-9913

001826-9913

002194-9913

001830-9913

000939-9913

002022-9913

001934-9913

Extreme susceptibility to infection and early
mortality in homozygous offspring

Stillborn calf

Early abortion of homozygous conceptus
Early abortion of homozygous conceptus
Early abortion of homozygous conceptus
Early abortion of homozygous conceptus
Early abortion of homozygous conceptus
Calves become weak and have problems

standing, progressively worsen until they die
Stillborn calf or calf death shortly after birth

Early abortion, PIRM/AHI are located very
closely and are Expected to be the same
disease
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Monogenic trait

OMIA
CODE

Phenotype

Ayrshire Haplotype
2 (AH2)

Brown Swiss
Haplotype 2 (BH2)

Bos Taurus
Autosome 12
(BTA12)

Bos Taurus
Autosome 23
(BTA23)

Jersey Haplotype 1
(JH1)

Progressive retinal
degeneration
(RP1)

Polledness

Beta-casein

Kappa-casein

002134-9913

001934-9913

001901-9913

001991-9913

001697-9913

000866-9913

000483-9913

002033-9913

002400-9913

Early abortion of homozygous conceptus
Stillborn calf or calf death shortly after birth

Early abortion of homozygous conceptus

Stillborn calf

Embryonic death

Progressive blindness in homozygous
offspring

Absence of horns in offspring carrying at
least one copy of the polled allele (Celtic and
Friesian allele considered)

A cow produces so-called ”A2 milk” if she
has two copies of the A2 allele

Milk protein that influences the amount of
clotting that occurs, six possible genotypes
(AA, AB, AE, BB, BE, EE). Milk from cows
with BB genotype clots more quickly and
produces the highest cheese yield, cows with
EE genotype produce milk that does not clot
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ABSTRACT

This study compared the abilities of virgin heifer
genomically enhanced breeding values (GEBV) and
parent average breeding values (PA) to predict future
cow performance. To increase confidence in genomic
technology among farmers, a clear demonstration of the
relationship between genomic predictions and future
phenotypes is needed. We analyzed 12 different traits
in first parity, including production, conformation, fer-
tility, and other functional traits. Phenotype data were
obtained from national milk recording schemes and
breeding values from the Nordic Cattle Genetic Evalu-
ation. Direct genomic breeding values were calculated
using genomic BLUP and combined with traditional
breeding values, using bivariate blending. The data
covered 14,862 Red Dairy Cattle, 17,145 Holstein, and
7,330 Jersey genotyped virgin heifers born between
2013 and 2015 in Denmark, Finland, and Sweden. Phe-
notypes adjusted for systematic environmental effects
were used as measures of cow performance. Two meth-
ods were used to compared virgin heifer GEBV and
PA regarding their ability to predict future cow per-
formance: (1) correlations between breeding values and
adjusted phenotypes, (2) ranking cows into 4 quartiles
for their virgin heifer GEBV or PA, and calculating
actual cow performance for each quartile. We showed
that virgin heifer GEBV predicted cow performance
significantly better than PA for the vast majority of
analyzed traits. The correlations with adjusted pheno-
types were 38 to 136% higher for GEBV than for PA
in Red Dairy Cattle, 42 to 194% higher for GEBV in
Holstein, and 11 to 78% higher for GEBV in Jersey.
The relative change between GEBV bottom and top
quartiles compared with that between PA bottom and
top quartiles ranged from 9 to 261% for RDC, 42 to
138% for Holstein, and 4 to 90% for Jersey. Hence,
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farmers in Denmark, Finland, and Sweden can have
confidence in using genomic technology on their herds.
Key words: genomic breeding value, genotyping, dairy
cow, validation

INTRODUCTION

To increase confidence in genomic technology among
farmers, a clear illustration of the relationship between
genomic predictions and future phenotypes is needed
(Pryce and Hayes, 2012). In the early years of genomic
selection, mainly bulls were tested, but genotyping of
virgin heifers has become more interesting as the costs
decrease (Calus et al., 2015; Hjorto et al., 2015; Ettema
et al., 2017). At herd level, genomic test results can
be used to (1) find the best females for breeding and
replacement, (2) identify females for embryo transfer or
in vitro fertilization, (3) correct parentage assignment,
(4) control monogenic traits, and (5) avoid inbreeding
through genomic-assisted mating plans (Pryce et al.,
2012).

Genomically enhanced breeding values (GEBV)) can
be validated in different ways. Cross-validation includes
dividing the available data set into validation and train-
ing sets. By masking observations of all individuals in
the validation set and predicting the observations or
EBV with a model based on individuals in the training
set only, the correlation between masked phenotypes or
EBV and predicted values for the validation individu-
als can be estimated. This correlation then reflects the
accuracy of prediction (de Roos et al., 2009). A disad-
vantage of validating GEBV against conventional EBV
is that training and validation sets are rarely strictly
independent (Su et al., 2010). Yao et al. (2015) used
genotypes and health data to predict future pheno-
types, taking correlations between predicted values and
phenotypes as measurements of accuracy. To illustrate
the accuracy of GEBV compared with parent average
breeding values (PA), Weigel et al. (2015) divided cows
into quartiles based on their virgin heifer GEBV and
sire PTA, and thereafter calculated actual cow perfor-
mances for each quartile.

6383



Bengtsson et al.: VALIDATION OF GENOMIC BREEDING VALUES

Establishment of the Nordic Cattle Genetic Evalua-
tion in 2002 has led to intensified cooperation between
Al organizations in Denmark, Finland, and Sweden
(DFS). Because the differences across the Nordic coun-
tries were small, according to a study on genotype X
environment interactions by Kolmodin et al. (2002), a
joint breeding program was established. The current
breeding goal combines breeding values for 60 traits
into 14 main breeding values, including health, repro-
duction, production, and conformation.

Genotyping of cows and virgin heifers in DF'S started
on a large scale in 2012 with the VikingGenetics geno-
typing project. Three breeds in the DFS countries have
genomic breeding schemes: Red Dairy Cattle (RDC),
Holstein, and Jersey. Initially, the main purpose was to
include genotyped females in the reference population
and thereby increase the accuracy of GEBV. This was
especially important for RDC and Jersey, which had
more limited reference populations based on bulls than
did the Holstein breed. In 2018, close to 12% of females
born in DFS were genomically tested, compared with
approximately 2% in 2012, and growth potential for
genomic testing remains. To date, over 250,000 females
have been genotyped, and phenotypic information
from over 100,000 of these animals has been recorded
(Nielsen et al., 2019).

Approximately 85% of farms in DFS are enrolled
in the national milk recording schemes. This enables
validation of GEBV with phenotype data on a large
scale, with a design having the desirable property that
the validation population is strictly independent of the
training population. The purpose of this study was to
compare the abilities of virgin heifer GEBV and PA
to predict future cow performance. To our knowledge,
this has not previously been done on a large scale in

Table 1. Detailed definitions of the traits studied
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3 breeds across countries. This could be an important
step to convince farmers that genomic breeding values
are valuable for use on their herds for selection deci-
sions.

MATERIALS AND METHODS
Data

Phenotype data were collected from the DFS milk
recording schemes for the 3 breeds (RDC, Holstein, and
Jersey). Observations from the first lactation of ani-
mals born from 2013 to 2015 were used in the analysis.
To be included in the study, all animals were required
to have a 305-d milk yield record. The total numbers
of genotyped females in the study period with a 305-d
milk yield record were 20,274 RDC, 23,910 Holstein,
and 9,312 Jersey. We analyzed 12 traits in first parity: 3
milk production traits (milk yield, fat yield, and protein
yield), 2 udder health traits (SCS and occurrence of
clinical mastitis), 1 fertility trait (interval, in days, from
first to last service, IFL), 2 conformation traits (udder,
and feet and legs), 1 calving trait (calving ease, CE),
1 survival trait (survival to second calving, survival
1-2), 1 claw health (CH) trait, and 1 general health
(GH) trait. Detailed trait definitions can be found in
Table 1. For Jersey, it was not possible to analyze CH
or GH, because for those traits the genomic evaluation
was still under development during the study period.

Female GEBV and PA were obtained from the Nor-
dic Cattle Genetic Evaluation (NAV, 2019). Detailed
descriptions of all breeding values can be found in
Table 2. Heritability in first lactation of traits used
in the Nordic Cattle Genetic Evaluation can be found
in Table 3, and in Table 4 average model reliabilities

Trait Phenotype definition (first lactation)

Milk yield 305-d kg of milk yield

Fat yield 305-d kg of fat yield

Protein yield 305-d kg of protein yield

SCS SCC transformed to logarithmic scale
Clinical mastitis" Clinical mastitis up to 300 d

IFL Interval in days from first to last service
Udder Total udder conformation score

Feet and legs
Calving ease (maternal)

Total feet and legs conformation score

Claw health'

First calving, recorded in 4 categories: (1) easy calving without help, (2) easy calving with help, (3) difficult
calving without veterinarian help, and (4
Records from first to second calving or up to 430 d after calving in first lactation. Claw disorders included were

) difficult calving with veterinarian help

sole ulcer, sole hemorrhage, heel horn erosion, digital dermatitis, interdigital dermatitis, verrucose dermatitis,
interdigital hyperplasia, double sole, white line separation, and corkscrew claw

General health'

Includes retained placenta, hormonal reproductive disorders, infective reproductive disorders, ketosis, milk fever,

other metabolic diseases, other feed-related disorders, other diseases, and feet and leg problems

Survival 1-2° Survival from first to second calving

"Defined as 1 if the animal had at least one treatment, 0 otherwise.
“Defined as 1 if the animal survived, 0 otherwise.
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Table 2. Detailed definitions of breeding values (NAV, 2019)

Breeding value

Breeding value definition

Milk

Fat

Protein
Udder health
Fertility

Udder

Feet and legs

Calving (maternal)

Milk production in the first 3 lactations

Fat production in the first 3 lactations

Protein production in the first 3 lactations

Based on records of clinical mastitis and SCC in the first 3 lactations and udder depth from first lactation. SCC and
udder conformation are used as indicator traits

Based on number of services, interval from calving to first service, interval from first to last service, non-return rate,
heat strength, and conception rate. Includes records as virgin heifer to the third lactation

Linear traits combined into a group describing udder conformation. Based on the linear traits udder attachment,
rear udder height, rear udder width, udder cleft/support, udder depth, teat length, teat thickness, teat placement
(front), teat placement (back), and udder balance. Based on data from the first 3 lactations

Linear traits combined into a group describing feet and leg conformation. Includes the linear conformation traits
rear legs (side view), rear legs (rear view), hock quality, bone quality, and foot angle. Based on data from the first 3
lactations

Including calving ease and calf survival in the first 24 h. Calving is recorded in 4 categories, as for the phenotype

trait (Table 1). Calf survival is defined as 1 if the calf survived, 0 otherwise. Includes records from first to fifth

calving
Claw health
(Table 1)
General health

Includes records from the first 3 lactations. Claw disorders included were as defined in the phenotype definition

Genetic resistance to reproductive, digestive, and feet and leg problems. Includes the same records as the phenotype

definition (Table 1). Based on data from the first 3 lactations

Longevity .
actation

Describes the genetic ability to survive. Including days from first to the fifth lactation, with a maximum of 365 d per

for genotyped animals can be found. Breeding values
from 36 evaluations performed between August 2014
and February 2017 were used in this study. The GEBV
and PA used were based on the breeding values esti-
mated closest in time to when the animal reached 1 yr
of age. Eleven different GEBV and PA were used: milk,
fat, protein, udder health, fertility, udder, feet and
leg, calving (maternal), claw health, general health,
and longevity. These breeding values correspond to
the phenotypes listed in Table 1 but are not defined
in exactly the same way. Breeding values were based
on multiple lactations, whereas phenotypes were from
the first lactation only. The breeding values studied

Table 3. Heritability in first lactation of traits used in the Nordic
cattle genetic evaluation (NAV, 2019)"

Trait RDC Holstein Jersey
Milk 0.41 0.43 0.44

Fat 0.35 0.36 0.35
Protein 0.41 0.35 0.38

SCC 0.12 0.13 0.11
Clinical mastitis 0.04 0.05 0.04

IFL 0.03 0.03 0.03

Udder 0.25 0.25 0.25

Feet and legs 0.20 0.20 0.20
Calving ease 0.04 0.06 0.02

Claw health® 0.001-0.040 0.004-0.070 0.000-0.070
General health” 0.003-0.01 0.004-0.034 0.004-0.013
Survival 1-2° 0.04 0.05 0.05

'RDC = Red Dairy Cattle; IFL = interval from first to last service,
in days.

*The interval represents the range of heritability for the included sub-
traits (Table 1).

*Heritability for survival from first to second calving.
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are also combinations of several underlying component
traits (e.g., the fertility breeding value also includes
information on the interval in days between calving
and first service). We calculated GEBV using bivariate
blending of direct genomic values and traditional EBV
(Méntysaari and Strandén, 2010; Taskinen et al., 2013).
In September 2015, the calculation of direct genomic
breeding values changed from GBLUP to SNPBLUP
(Nielsen et al., 2016), which was shown to give compa-
rable results (Koivula et al., 2012). Detailed breeding
value calculations can be found in NAV (2019).

To prevent virgin heifer reproductive performance
from influencing the fertility breeding values used in
this study, breeding values estimated after 14 mo of
age were not included. For the same reason, animals
genotyped after 14 mo were excluded. At the beginning
of the VikingGenetics genotyping project, it was com-
mon to genotype animals up to the second lactation.

Table 4. Average model reliabilities (%) published for genotyped
animals, 1 to 2 yr old, born in 2017 [Gert Pedersen Aamand, Executive
Director, Nordic Cattle Genetic Evaluation (NAV, Aarhus, Denmark),
personal communication, June 26, 2019]; RDC = Red Dairy Cattle

Breeding value RDC Holstein Jersey
Yield 74 7 71
Udder health 66 74 63
Fertility 59 4 55
Udder 66 73 64
Feet and legs 66 66 57
Calving 54 68 43
Claw health 51 59 46
General health 50 58 45
Longevity 49 66 44
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Consequently, most of the animals removed were born
in 2013, which was the first year analyzed in this study.
However, in the last 2 years studied, 2014 and 2015,
most animals were genotyped as virgin heifers and
were therefore included in the study. The number of
genotyped animals also increased over the study period.
Hence, most of the animals studied were born in 2014
and 2015. The numbers of genotyped animals in the
birth year cohort studied (2013 to 2015), genotyped
before 14 mo of age and with a 305-d milk yield record,
were 14,862 RDC from 900 herds, 17,145 Holstein from
1,960 herds, and 7,330 Jersey from 235 herds.

Statistical Analysis

To obtain adjusted phenotypes for use in analysis of
the predictive ability of breeding values, a larger phe-
notype data set was analyzed using Statistical Analysis
Software (SAS) version 9.4 (SAS Institute Inc., Cary,
NC). This analysis included all animals in the milk
recording scheme born from 2008 to 2016, which, in
total, comprised 997,797 RDC, 2,322,514 Holstein,
and 240,946 Jersey. The adjusted phenotypes—that
is, residual effects estimated using PROC HP MIXED
with the linear model [1] described below—were named
according to the respective trait; for example, adjusted
milk yield was named Milk,y;. A separate analysis was
performed for each breed.

The following linear model was used for all traits:

Vijetmn = B+ HYy; + YMCyy + CCAy, + € [1]

where yij,, is the observed phenotypic value in first
lactation; 1 is mean of the population; HYj; is the fixed
class effect of herd i and calving year j (2008 through
2018); YMCjy is the fixed class effect of calving year j,
month k (1 through 12), and country 1 (Denmark, Fin-
land, or Sweden); CCAy, is the fixed class effect of
country 1 and calving age in months as heifer m (18 to

36); and €y, s the random residual, ~ ND(O, of)

We used HY;; + YMC; as contemporary groups due
to small average herd size, making it difficult to use
herd-year-month or herd-year-season. Country was not
included in the model for Jersey, because all Jersey cows
studied were located in Denmark. For further analyses,
the PROC MEANS and PROC FREQ procedures in
SAS were used for descriptive statistics.

Because breeding values were obtained from several
routine evaluations separated in time, they were not
directly comparable due to rolling base population.
Linear regression analysis was used to adjust for ge-
netic trends over time. In PROC REG, the regression
coefficient was estimated between breeding values in a
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given evaluation and the corresponding breeding values
in the last evaluation (February 2017). The linear re-
gression model used was

vi = by + b X + ey, 2]

where y; is a breeding value in the last evaluation (Feb-
ruary 2017); by is the intercept; b, is the regression co-
efficient on the corresponding breeding value (X) in a
breeding evaluation performed from August 2014 to
January 2017; and e; is the random residual,

~ ND (0,03). Breeding values were then expressed on

the scale of the last evaluation, using the estimated
regression parameters from Model [2] using PROC
SCORE.

PROC CORR was used to calculate the correlation
between breeding values (PA or GEBV) and adjusted
phenotypes for each of the breeds. A 95% confidence
interval using Fisher’s 7 transformation was used to
assess the significance of the difference between correla-
tions. The PROC RANKS procedure was used to rank
cows into 4 quartiles across herds for GEBV or PA.

RESULTS

For RDC and Holstein, all correlations between
breeding values and adjusted phenotypes were signifi-
cantly stronger for GEBV than for PA (Table 5). For
Jersey, GEBV correlations were significantly stronger
for all traits except clinical mastitis, CE, and survival
1-2. The correlations with adjusted phenotypes were
42 to 194% higher for GEBV than for PA in RDC,
38 to 136% higher for GEBV in Holstein, and 11 to
78% higher for GEBV in Jersey for the different traits
(Table 5). All correlations between PA and adjusted
phenotypes were significantly different from zero. The
highest correlation found in this study was between
milk GEBV and Milk,g; for Jersey (0.51). One of the
traits for which the correlations increased the most,
IFL,y; increased by over 64% for all 3 breeds when ge-
nomic information was included in the breeding values.
For Jersey, the correlation between breeding value and
IFL,; increased by 78% when genomic information was
included.

The relative change between the GEBV bottom and
top quartile (AGEBYV) compared with that between
the PA bottom and top quartile (APA), ranged from
9 to 261% for RDC, 42 to 138% for Holstein, and 4 to
90% for Jersey (Table 6). However, it should be noted
that the large relative percentage change between PA
and GEBV for both quartiles and correlations was, in
many cases, from initially low levels.
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'Negative correlations are desirable for SCS, mastitis, interval in days from first to last service (IFL), calving ease, claw health, and general health.

, relative change in percent between GEBV correlation and PA correlation.

Correlation with PA
*Significant difference between GEBV correlation and PA correlation (P < 0.05).

Correlation with GEBV — Correlation with PA

2 Relative change

DISCUSSION

An advantage of using phenotypes for validation of
breeding values is that it makes it easy for farmers to
understand how their animals’ breeding values work
in practice, when validation is against their own farm
records. The use of phenotypes in this study was facili-
tated by the high rate of participation in the national
milk recording schemes in the DFS countries. The ex-
tracted virgin heifer GEBV and PA, estimated before
on-farm information was recorded, reflected informa-
tion available to farmers at the time of selection. The
maximum age at which a breeding value for a heifer
was taken was 14 mo, to reflect the breeding values at
first insemination for virgin heifers. For example, at
that age the farmer can combine genomic selection with
decisions about sexed and beef semen, as suggested in
other studies (Hjorto et al., 2015; Ettema et al., 2017).

Many of the breeding values used in the present
study are combinations of several underlying compo-
nent traits. For example, the udder health breeding
value includes data on clinical mastitis, SCC, udder at-
tachment, and udder depth. Furthermore, most of the
breeding values are based on the first 3 lactations and
not only the first lactation, whereas the phenotypes
studied were only from the first lactation. These 2 fac-
tors most likely resulted in somewhat weaker relation-
ships between breeding values and phenotypes than
if sub-trait breeding values for the first lactation had
been used. However, those breeding values were not
available for this study nor for the farmers in the stud-
ied period. Nevertheless, these factors probably had a
limited influence on the relative change between GEBV
and PA, which was the focus in this study.

We chose to use linear models for all traits, to repre-
sent current practice in the Nordic genetic evaluation.
However, some traits could be claimed to be theoreti-
cally less well suited for a linear model, such as clinical
mastitis, survival 1-2, and CE. Therefore, we tried dif-
ferent models to fit the data (binary distribution, Pois-
son distribution) in preliminary analyses for the Jersey
breed, but the results were similar to those obtained
using linear models.

The highest correlations obtained in this study were
between production traits and breeding values. This
could be expected, as production traits have the highest
heritability and reliability of the traits studied (Tables
3 and 4). Mathematically, the correlation between the
true breeding value and phenotype is equal to h, and
the proportion of variance explained by the breeding
value is h®. However, we did not have the true breed-
ing values in this study, and therefore the expected
(squared) correlation equals the product of heritability
and reliability.
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Table 6. Differences in averages of adjusted (Adj) phenotypes between cows in bottom and top quartiles for virgin heifer parent average
breeding values (APA), genomically enhanced breeding values (AGEBV), and relative change in percent, respectively, for Red Dairy Cattle
(RDC), Holstein, and Jersey; for trait definitions, see Table 1; n/a = not applicable

RDC Holstein Jersey

Relative Relative Relative

change® change2 change®
Trait" APA  AGEBV (%) APA  AGEBV (%) APA  AGEBV (%)
Milk,g; (kg) 708 1,171 65 1,061 1,512 42 738 1,156 57
Fat oy (kg) 28 41 45 33 48 47 28 42 54
Protein,g (kg) 20 31 57 27 38 44 22 34 55
SCS g 0.1 0.15 55 0.11 0.19 71 0.09 0.16 71
Mastitisg; (score 0 or 1) 0.02 0.03 19 0.02 0.04 52 0.08 0.08 4
TFL g (d) 7.7 12.3 60 9.1 16.1 76 7.3 12.2 68
Udder,y; (points) 2.5 3.5 39 2.7 4.4 62 1.7 3.3 90
Feet and legsyg; (points) 2 3.6 78 1.5 2.5 66 2.3 3.1 35
Calving case,g; (score 1-4) 0.04 0.08 97 0.07 0.12 71 0.04 0.06 51
Claw health,g; (0 or 1) 0.05 0.11 111 0.07 0.14 99 n/a n/a n/a
General health g (0 or 1) 0.01 0.03 261 0.03 0.05 76 n/a n/a n/a
Survival 1-2,4; (0 or 1) 0.03 0.03 9 0.02 0.05 138 0.04 0.04 17
'IFL = interval from first to last service, in days.

AGEBV — APA

2 Relative change =

quartile. APA

The correlations with adjusted phenotypes were over
40% stronger for all production traits and breeds when
genomic information was used compared with PA. The
highest correlation found in this study was between
milk GEBV and Milk,y; for Jersey. The reliability of
the yield breeding values differed least from each other
(Table 4), where the heritability for RDC was slightly
lower than for Holstein and Jersey (Table 3). The
Nordic RDC is the most genetically diverse of the 3
breeds studied, as it is a mixture of Swedish Red, Dan-
ish Red, and Finnish Ayrshire and also includes genes
from Norwegian Red, Canadian Ayrshire, American
Brown Swiss, and Red Holstein Friesian (NAV, 2019).
Hence, less linkage disequilibrium between markers and
quantitative trait loci could explain the lower correla-
tions for RDC. The difference between top and bottom
quartiles in adjusted phenotypes when using GEBV
instead of PA (AGEBV — APA; Table 6) for Milk,;
was lower than that reported by Weigel et al. (2015).
For Holstein, the difference in our study was +450 kg
with genomic information, compared with +1,104 kg
in Weigel et al. (2015). However, only sire PTA (rather
than PA) values were used in their study, and the re-
sults were only from 411 cows. Additionally, differences
in production level and phenotypic variance most likely
occurred between our study and that of Weigel et al.
(2015).

In general, traits with low heritability in the present
study, such as IFL, clinical mastitis, CE, CH, and GH,
gained relatively more in accuracy from using genomic
information than did highly heritable traits such as
production. The same pattern has been reported by
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, relative change in percent between GEBV bottom and top quartile compared with PA bottom and top

other studies (Garcia-Ruiz et al., 2016; Wiggans et al.,
2017).

In our study, IFLsy; was one of the traits for which
correlations increased the most when genomic informa-
tion was included in the breeding values (over 60%
for all 3 breeds). It has been established that IFL has
the strongest correlation with fertility breeding value
(NAV, 2019). For Jersey, the correlation between breed-
ing value and IFL,y; increased by 78% when genomic
information was included. Looking at the quartiles for
IFL, the difference between AGEBV and APA was 4.6
to 7.0 d in favor of GEBV (Table 6). Consequently,
virgin heifer GEBV was more effective than PA in iden-
tifying cows with poor and good fertility.

Our results also confirmed that GEBV can help in
choosing animals with better udder health. The correla-
tion between SCS,q; and GEBV increased by over 55%
compared with SCS,q; and PA for all 3 breeds. The
udder health trait with the highest heritability is SCS
(Table 3), and one could expect a stronger correlation
compared with clinical mastitis. Weigel et al. (2015)
found that SCS showed almost no difference between
quartiles for PA, even though their study had greater
differences between quartiles for genomic values. In
the present study, we also found significant differences
for correlations between Clinical Mastitis,q; and udder
health breeding values for Holstein and RDC but not
for Jersey. However, the Jersey correlation between
PA udder health and Mastitis,q; was relatively strong,
which indicates that the conventional evaluation works
well for this trait, possibly owing to higher clinical
mastitis frequency among Jersey cows than among



Bengtsson et al.: VALIDATION OF GENOMIC BREEDING VALUES

Holstein and RDC cows (Appendix Tables Al and
A2). In the genotyped data set, the clinical mastitis
frequency for Jersey was 17%, compared with 7% for
Holstein and 6% for RDC. This was also reflected in
the differences between quartiles, where both APA and
AGEBYV differences were larger for Jersey. However, we
found no differences between PA and GEBV in their
ability to predict the future adjusted phenotype for
Jersey (Table 6). The low clinical mastitis frequencies
for RDC and Holstein made it more difficult to detect
differences between GEBV and PA. The correlations
between breeding values for udder health and clinical
mastitis are stronger in the second and third lactations
(NAV, 2019). It would have been interesting to study
the second and third lactations, but for most animals
these had not been completed at the time of this study.

For RDC and Holstein, we discovered significantly
stronger correlations between calving GEBV and
CE,q; than between calving PA and CE,q. However,
with fewer genotyped heifers and some animals lacking
CE information, it was not possible to draw a similar
conclusion for Jersey. Analysis also revealed fewer calv-
ing problems for Jersey, for which the score was on
average 1.06 in the genotyped group, compared with
1.24 for RDC and 1.23 for Holstein (Appendix Tables
A1 and A2). Further, heritability and GEBV reliability
were also lower for the calving trait in Jersey compared
with Holstein and RDC (Tables 3 and 4), which might
explain why it was not possible to detect significant
differences between GEBV correlation and PA correla-
tion. The difference between quartiles was also smaller
for Jersey (+0.02) compared with RDC (+0.04) and
Holstein (+0.05) when genomic information was in-
cluded in the breeding value (Table 6).

Phenotypes for both conformation traits were sig-
nificantly more strongly correlated with conformation
GEBV than with conformation PA. On examining the
difference between conformation quartiles (Table 6), it
was also possible to see that the prediction improved
when genomic information was included. The difference
between the top and bottom 25% (AGEBV — APA)
increased by between 0.8 and 1.6 scoring points for feet
and leg conformation, and between 1.0 and 1.7 scoring
points for udder conformation, when genomic informa-
tion was used (Table 6). Thus, GEBV can be more
effective than PA in predicting future conformation.

We also disovered a lack of phenotypes for the CH
trait (Table 5), which might have affected the results
for that trait. Nevertheless, for both RDC and Holstein,
the correlations between CH GEBV and CH,4 were
significantly stronger than the correlations between CH
PA and CH,g;. For Jersey, it was not possible to com-
pare GEBV and PA regarding their ability to predict

Journal of Dairy Science Vol. 103 No. 7, 2020

6389

future cow claw health, because the genomic evaluation
for CH in that breed was only established in 2018.

For both Holstein and RDC, the correlations between
general health GEBV and GH,q were significantly
stronger than the correlations between general health
PA and GH,g;. The correlations between GH breeding
value and GH,y increased by 99% for Holstein and
194% for RDC when using genomic selection. From the
quartile differences (4-0.02) for both Holstein and RDC,
the benefit of using genomic selection was not equally
clear. The heritability of the GH trait is low, and the
trait is influenced by the environment to a large extent
(Table 3). For GH, the genomic evaluation for Jersey
was under development at the time of the study.

For RDC and Holstein, significantly stronger correla-
tions occurred between longevity GEBV and Survival
1-244; than between longevity PA and Survival 1-2,;.
For Jersey, we found no differences between the abili-
ties of GEBV and PA to predict future survival per-
formance. Further, looking at differences between the
quartiles (AGEBV — APA) for Holstein (40.03), Jer-
sey (£0) and RDC (£0), it was not possible to see the
benefit of genomic selection for RDC and Jersey (Table
6). The reliability of survival GEBV was also lower for
Jersey than for Holstein and RDC (Table 4). Survival is
strongly affected by farmer decisions, the environment,
and other functional and health traits (Kargo et al.,
2014), which also could explain the results. It would
have been interesting to study survival in later lacta-
tions. The longevity breeding value includes data to the
end of the fifth lactation, and the correlations between
longevity breeding value and survival are stronger in
later lactations (NAV, 2019).

CONCLUSIONS

We showed that virgin heifer GEBV predicted cow
performance significantly better than did PA for the
vast majority of analyzed traits in Red Dairy Cattle,
Jersey, and Holstein. Thus, farmers in Denmark, Fin-
land, and Sweden can have confidence in using genomic
technology on their herds for selection decisions. Traits
with low heritability, such as interval from first to
last insemination, clinical mastitis, calving ease, claw
health, and general health, gained relatively more from
inclusion of genomic information than did highly heri-
table traits such as production.
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Table Al. First-lactation descriptive statistics [average, SD, and number of animals (N)] for all animals born in 2013, 2014, and 2015 in

Denmark, Finland, and Sweden

Red Dairy Cattle Holstein Jersey

Trait! Mean SD N Mean SD N Mean SD N

Milk yield (kg) 8,022 1,432 217,245 8,984 1,660 601,353 6,263 1,126 61,105
Fat yield (kg) 355 63 210,289 363 63 592,887 371 61 61,100
Protein yield (kg) 288 50 210,295 308 53 592,914 259 43 61,105
SCS 0.68 0.42 200,178 0.67 0.37 553,293 0.8 0.37 57,807
Clinical mastitis (score 0 or 1) 0.06 0.24 182,038 0.09 0.29 495,373 0.16 0.37 52,458
IFL (d) 45.86 61.72 177,969 44.36 61.7 491,602 43.17 61.42 53,503
Udder (points) 79.79 5.34 96,273 80.06 5.28 244,125 80 5.53 38,496
Feet and legs (points) 80.02 5.34 96,288 80.18 4.99 244,144 80.07 5.5 38,496
Calving ease (maternal; score 1-4) 1.24 0.52 139,956 1.23 0.5 471,599 1.06 0.32 55,967
Claw health (0 or 1) 0.51 0.5 45,466 0.64 0.48 144,002 0.51 0.5 13,225
General health (0 or 1) 0.12 0.32 185,577 0.16 0.36 519,512 0.15 0.36 54,258
Survival 1-2 (0 or 1) 0.66 0.47 212,226 0.69 0.46 588,990 0.73 0.44 60,921

"TFL = interval from first to last service.

Table A2. First-lactation descriptive statistics [average, SD, and number of animals (N)] for all animals genotyped and qualified for analysis

born in 2013, 2014, and 2015 in Denmark, Finland, and Sweden

Red Dairy Cattle Holstein Jersey

Trait" Mean SD N Mean SD N Mean SD N

Milk yield (kg) 8,473 1,312 14,710 9,452 1,579 17,039 6,451 1,024 7,069
Fat yield (kg) 374 56 14,571 383 58 16,801 384 55 7,048
Protein yield (kg) 306 45 14,583 329 51 16,902 269 40 7,060
SCS 0.64 0.40 12,834 0.61 0.35 16,667 0.76 0.36 6,734
Clinical mastitis (score 0 or 1) 0.06 024 12,834 0.07 027 14,463 0.17 0.36 6,447
IFL (d) 42.03 58.53 14,549 39.87 57.92 16,833 40.36 59.85 6,451
Udder (points) 80.33 520 11,917 81.46 4.85 13412 80.72 525 6,192
Feet and legs (points) 80.12 526 11,917 81.06 4.71 13,413 80.80 521 6,192
Calving ease (maternal; score 1-4) 1.22 0.5 11,521 1.23 0.50 16,891 1.07 0.33 6,691
Claw health (0 or 1) 0.54 0.50 4,129 0.59 0.49 4,829 0.55 0.49 1,096
General health (0 or 1) 0.15 0.35 13,885 0.14 0.35 15,748 0.15 0.35 6,626
Survival 1-2 (0 or 1) 0.69 0.46 14,694 0.71 0.45 17,029 0.75 0.43 7,053

'TFL = interval from first to last service.

Journal of Dairy Science Vol. 103 No. 7, 2020












4 SCIEN,

A J. Dairy Sci. 105:1281-1297

ey S https://doi.org/10.3168/jds.2021-20849
Js

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Mating allocations in Nordic Red Dairy Cattle using genomic information

C. Bengtsson,"?* ® H. Stalhammar,' © J. R. Thomasen,’
"VikingGenetics, VikingGenetics Sweden AB, 53294 Skara, Sweden

S. Eriksson,?® W. F. Fikse,® © and E. Strandberg?

2Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 75007 Uppsala, Sweden

3Vixa Sverige, Vaxa Sverige, Box 288, 75105 Uppsala, Sweden

ABSTRACT

In this study, we compared mating allocations in
Nordic Red Dairy Cattle using genomic information.
We used linear programming to optimize different
economic scores within each herd, considering genetic
level, semen cost, the economic impact of recessive
genetic defects, and genetic relationships. We selected
9,841 genotyped females born in Denmark, Finland,
or Sweden in 2019 for mating allocations. We used 2
different pedigree relationship coefficients, the first
tracing the pedigree 3 generations back from the par-
ents of the potential mating and the second based on
all available pedigree information. We used 3 differ-
ent genomic relationship coefficients, 1 SNP-by-SNP
genomic relationship and 2 based on shared genomic
segments. We found high correlations (>0.83) between
the pedigree and genomic relationship measures. The
mating results showed that it was possible to reduce
the different genetic relationships between parents with
minimal effect on genetic level. Including the cost of
known recessive genetic defects eliminated expression
of genetic defects. It was possible to reduce genomic
relationships between parents with pedigree measures,
but it was best done with genomic measures. Linear
programming maximized the economic score for all
herds studied within seconds, which means that it is
suitable for implementation in mating software to be
used by advisors and farmers.

Key  words: genomic relationships, pedigree
relationships, mating program, linear programming

INTRODUCTION

Mating programs are an important support tool for
livestock breeders, helping them to identify the best
parental matings to maximize genetic level and avoid
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mating between closely related individuals, preventing
excessive inbreeding (Carthy et al., 2019; Bérodier et
al., 2021). New genetic insights at single nucleotide level
can be used in mating programs. Single nucleotide poly-
morphism markers can give information about major
genes and genetic defects. Minimizing the probability
of obtaining offspring homozygous for a lethal recessive
genetic defect is of economic importance for farmers
(Pryce et al., 2012). Further, the EFFAB (European
Forum of Farm Animal Breeders, Brussels, Belgium)
code of good practice states that breeding organiza-
tions should improve health and welfare by reducing
the incidence of genetic defects (EFFAB, 2020).

SNP markers also offer the possibility to reduce
genomic relationships between parents when making
mating plans. Various methods have been proposed for
calculation of genomic relationships, including SNP-by-
SNP relationships as described by, for example, Van-
Raden (2008). Further, methods using shared genomic
segments, as described by, for example, de Cara et al.
(2013), aim to reduce the number of runs of homozy-
gosity (ROH) in the offspring. Genomic estimates of
relationships are suggested to be more accurate than
pedigree information because they do not rely on pedi-
gree completeness or correctness (Pryce et al., 2012;
Sun et al., 2013; Carthy et al., 2019) and also because
pedigree relationships incorrectly assume infinite, un-
linked loci (Hill and Weir, 2011). Furthermore, genomic
estimates of relationships can differentiate between
animals with the same pedigree relationship that have
inherited partly different genetic variants from their
parents.

At population level, various genomic relationships
have been compared previously with pedigree measures
using optimum contribution selection (OCS; Sones-
son et al., 2012; Henryon et al., 2019; Meuwissen et
al., 2020). Sonesson et al. (2012) concluded that ge-
nomic selection needs genomic control of inbreeding. In
contrast, using pedigree relationships in OCS, rather
than genomic relationships, has been shown to achieve
more true genetic gain in the long term (Henryon et
al., 2019). Further, Meuwissen et al. (2020) illustrated
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that different relationship matrices are preferred when
aiming for maintain heterozygosity or when controlling
genetic drift, where the latter prevents genetic defects
from drifting to high frequencies and random drift of
functional traits.

Several known recessive genetic defects in Nordic
Red Dairy Cattle (RDC) are included in the SNP
chip currently used for genotyping, and additional
genetic defects are included as they are detected. At
the beginning of 2020, the carrier status of 6 genetic
defects in RDC was automatically provided with the
genomic test. Besides reducing genetic relationships,
other relevant information (e.g., genetic level, semen
cost, the economic impact of recessive genetic defects)
has to be considered when making mating plans. An
economic score for each potential mating, which com-
bines and weighs all economically relevant information,
has been proposed (Pryce et al., 2012; Carthy et al.,
2019; Bérodier et al., 2021). Using linear programming
to maximize every herd’s mean economic score, subject
to necessary constraints, is a fast and effective method
(Carthy et al., 2019; Bérodier et al., 2021). Further,
linear programming has been shown to outperform
other mating methods such as sequential mate alloca-
tion (Sun et al., 2013; Carthy et al., 2019; Bérodier et
al., 2021).

There are several mating programs available in the
Nordic countries, but to our knowledge none takes into
account genomic relationships to plan matings. In total
numbers, RDC is the second most common dairy breed
in the Nordic countries Sweden, Finland, and Denmark,
with approximately 200,000 cows in the milk record-
ing scheme. Nordic Red Dairy Cattle are a mixture of
Swedish Red, Danish Red, and Finnish Ayrshire, and
historically also contain genes from Norwegian Red,
Canadian Ayrshire, American Brown Swiss, and Red
Holstein-Friesian (NAV, 2019). Genotyping of RDC
started on a large scale in 2012, with the VikingGenet-

1282

ics genotyping project. From 2012 to 2020, more than
100,000 RDC females and 20,000 RDC males were
genotyped. Approximately 20% of the RDC females
born in 2019 were genotyped.

Our objective in this study was to investigate the
ability of different approaches for mating allocation to
maximize expected genetic level, limiting parent rela-
tionship and minimizing the probability of expression of
genetic defects, in the next generation. We investigated
all scenarios at herd level with real data. We used lin-
ear programming to optimize different economic scores
within each herd, considering genetic level, semen cost,
the economic impact of recessive genetic defects, and
5 different measures of relationships (2 pedigree based
and 3 genomic based).

MATERIALS AND METHODS

Breeding values, pedigree data, SNP data, and data
on the carrier status of genetic defects were obtained
from the Nordic Cattle Genetic Evaluation (NAV,
2019).

Genotype Data

The SNP information for all genotyped RDC animals
born between 2011 and 2020 in Denmark, Finland, and
Sweden was available. Nordic Cattle Genetic Evalua-
tion uses the Illumina 50k chip (Illumina Inc.) as the
standard for genomic prediction, and genotypes from
lower-density chips were imputed by NAV to 50k with
FImpute software (Sargolzaei et al., 2014). From late
2018 onward, most of the animals were genotyped with
a EuroG MD beadchip (Borchersen, 2019). In total, the
data included genotypes from 149,943 animals (28,337
males and 121,606 females).

In RDC, several known recessive genetic defects are
segregating (Wu et al., 2020). Genotype information for

Table 1. Known recessive genetic defects, and their effect if homozygous, available with a genomic test for Nordic Red Dairy Cattle

Recessive genetic defect Effect if homozygous

BTA12
OMIA 0019019913

BTA23
OMIA 0019919913

Brown Swiss haplotype 2 (BH2)
OMIA 001939-9913

Ptosis intellectual disability, retarded
growth, and mortality (PIRM/AH1)
OMIA 001934-9913

Ayrshire haplotype 2 (AH2)
OMIA 002134-9913

Spinal muscular atrophy (SMA)

OMIA 000939-9913 1-12 (Krebs et al., 2007)

Early abortion, between the first and fifth month of gestation (Kadri et al., 2014)
Stillborn calf (Sahana et al., 2016)
Stillborn calf or calf death shortly after birth (Schwarzenbacher et al., 2016)

Early abortion within 100 d of gestation. Inhibited growth if calves are born. PIRM/AH1 are
located very close together and are expected to be the same disease (Guarini et al., 2019).

Early abortion within 56 d of gestation (Guarini et al., 2019)

Calves become weak and have problems standing, progressively worsen until they die; seen in wk

Journal of Dairy Science Vol. 105 No. 2, 2022
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Table 2. Descriptive statistics on the Nordic Red Dairy Cattle females and bulls selected for mating allocations'

Trait Females Data set BullVG Data set BullAll
Number of animals 9,841 50 50
Average Nordic total merit (NTM) 10.7 28.4 25.2
Carriers of defect BTA12 (%) 14.7 12.0 14.0
Carriers of defect BTA23 (%) 1.1 0.0 2.0
Carriers of defect BH2 (%) 0.3 0.0 0.0
Carriers of defect PIRM/AH1 (%) 1.6 0.0 0.0
Carriers of defect AH2 (%) 1.2 0.0 0.0
Carriers of defect SMA (%) 0.30 0.0 0.0

"BullVG = 50 genotyped RDC bulls from the Nordic breeding cooperative VikingGenetics; BullAll = 50 geno-
typed RDC bulls born between January 2017 and August 2019.

a total of 6 genetic defects (Table 1) has been derived
by SEGES (Skejby, Denmark) for NAV from SNPs in
the EuroG MD beadchip.

Breeding Values

Genomic breeding values from the NAV evaluation
performed in May 2020 were used in this study. The
total merit index used was Nordic total merit (NTM),
which at the time of this study was composed of 15
subindices, including yield index, youngstock survival,
longevity, growth, udder health, udder, feet and legs,
frame, hoof health, milkability, daughter fertility, gen-
eral health, temperament, calving maternal, and calving
direct. Nordic total merit is expressed in standardized
units with a mean of 0 and a genetic standard deviation
of 10 (NAV, 2019).

Data Selection

Females. We selected 9,841 genotyped females born
in Denmark, Finland, or Sweden in 2019 for mating
allocations (Table 2). In late 2018, a new SNP array
for genotyping was introduced in these countries, which
included the 6 known genetic defects listed in Table 1.
Hence, 2019 was the first year with complete informa-
tion about the 6 genetic defects we considered in our
mating allocations. All females included belonged to
herds with 20 or more genotyped females in 2019. In
total, 234 herds were represented, with an average of

42 genotyped females per herd (the smallest number
of genotyped females in a herd was 20 and the larg-
est was 244). Descriptive herd statistics on the carrier
frequency of the different genetic defects can be found
in Table 3.

Bulls. We used 2 data sets on bulls (Table 2), which
were potential mates of the 9,841 selected females. The
first bull data set (BullVG) included 50 genotyped
RDC bulls from the Nordic breeding cooperative Vi-
kingGenetics. These bulls were born between January
2017 and August 2019. Since it became possible, RDC
bulls have been subjected to additional tests for the
6 genetic defects considered here, enabling us to use
older bulls than females in our mating allocations. At
VikingGenetics, the program EVA (Berg et al., 2006) is
used for OCS using pedigree relationships (Jakob Lykke
Voergaard, product manager, VikingRed, VikingGenet-
ics, personal communication, January 11, 2021). The
bulls we chose as potential mates in this study were the
top available RDC bulls based on the NTM scale for
which semen was marketed. There were 32 sires of the
bulls in BullVG. In total, 6 of the 50 bulls were carriers
of the recessive genetic defect at BTA12. None of the
other genetic defects in Table 1 was present in BullVG.
The highest-ranked carrier bull of the genetic defect at
BTA12 was number 13 on the NTM scale.

The second bull data set (BullAll) also consisted of
50 genotyped RDC bulls born between January 2017
and August 2019. We removed the requirement to use
only marketed semen, to eliminate any pre-selection

Table 3. Herd descriptive statistics (n = 234) of the carrier frequency (proportion of heterozygotes) of the 6

known genetic defects in Nordic Red Dairy Cattle'

Heading BTA12 BTA23 BH2 PIRM/AH1 AH2 SMA
Mean (%) 15.0 13 0.3 18 14 0.3
Min (%) 0.0 0.0 0.0 0.0 0.0 0.0
Max (%) 36.0 95 95 17.4 21.0 6.2
First quartile (%) 10.2 0.0 0.0 3.0 0.0 0.0
Third quartile (%) 19.2 2.2 0.0 0.0 2.0 0.0

'"Mean = mean of all herds carrier frequency; Min = minimum percent of carriers in any herds; Max = maxi-

mum percent of carriers in any herds.
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for the breeding program based on bull carrier status.
Further, we selected 50 bulls in a row on the NTM
ranking so that a carrier of genetic defect at BTA12
would be ranked number 3 and that the bull data set
in total would contain a higher carrier frequency. There
were 33 sires of the 50 bulls in BullAll. In BullAll, 7
bulls were carriers of genetic defect at BTA12 and one
was a carrier of genetic defect at BTA23 (Table 2). The
carrier of genetic defect at BTA23 was number 19 on
the NTM ranking.

Relationship Measures

Pedigree Relationships. We used 2 different
pedigree relationship coefficients. To reflect the current
Nordic mating programs, which use limited number of
generations when calculating relationships, the first re-
lationship coefficient traced the pedigree 3 generations
back from the parents of the potential mating (azgen)-
The second pedigree relationship coefficient was based
on all available pedigree information (asngen). The
discrete generation equivalent (Woolliams and Maéan-
tysaari, 1995) for the mated animals was 18.0 and the
equivalent complete generations (Maignel et al., 1996)
was 12.6. The 5-generation pedigree completeness for
genotyped animals was 99.4%.

The pedigree file contained 48,434,951 animals. For
most cases, the pedigree for genotyped animals was
already corrected for mismatches by NAV. We found
only 7 genotyped animals with mismatching parents,
and they were excluded from further analyses. The
pedigree relationship coefficients were estimated in Re-
laX2 software (Strandén and Vuori, 2006), which uses
an algorithm modified from Meuwissen and Luo (1992).

Genomic Relationships. We used 3 different
genomic relationship coefficients, one SNP-by-SNP
genomic relationship and 2 based on shared genomic
segments. The SNP-by-SNP genomic relationship coef-
ficient (gsnp) between animals ¢ and j was calculated
according to VanRaden (2008):

Zm(zim _2pm)><(mjm _2pm)
2> py (L=p,)

9snp; =

)

where 1, and z;, are the genotype scores of animal i
and animal j at marker m, coded: 0 = homozygote, 1
= heterozygote, and 2 = alternative homozygote, and
P is the frequency of the alternative allele of marker
m in the founder population. Because we did not know
the founder population frequency, we instead used the
allele frequency of all 149,943 genotyped RDC animals
available for this study, as is common practice for ge-
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nomic evaluation (Wang et al., 2014). We used the soft-
ware SNP1101 to calculate the SNP-by-SNP genomic
relationship coefficients (Sargolzaei, 2014).

The 2 genomic relationship coefficients based on
shared genomic segments were calculated following de
Cara et al. (2013):

Zkz zizlz;:l[LSEGk <a’bf >]

2LA uro

)

9spa,; =

where Lgpg is the length (in base pairs) of the kth
shared segment measured over homolog @ of animal ¢
and homolog b of animal j, and L4170 is the total length
of the autosomes covered by the SNP in base pairs.

The 2 segment-based genomic relationship coef-
ficients were based on different minimum lengths of
segments: 1 ¢cM (gspg:) and 4 ¢M (gspqs), assuming 1
c¢M = 1,000,000 bp (Gautier et al., 2007). The lengths
of segments were chosen to represent short and long
segments, similarly to other studies (Zhang et al., 2015;
Forutan et al., 2018; Makanjuola et al., 2020; Marti-
kainen et al., 2020). Phasing of genotypes was done in
Beagle 4.1 with default settings (Browning and Brown-
ing, 2007), and segments of minimum desired length
were extracted in RefineIBD with the default setting
except for the logarithm of the odds (LOD) score (base
10 log of the likelihood ratio), where we used LOD =
0.1 (Browning and Browning, 2013). The LOD score is
used to prune out shared segments that are not com-
mon in the population. Hence, default LOD = 3.0 in
RefinelBD was considered too high for our purposes, as
in a recent study (Olsen et al., 2020).

Economic Score

For each potential mating between female ¢ and bull
J, we calculated an economic score as done by Bérodier
et al. (2021) and Pryce et al. (2012):

Scareij =

NTM; +NTM,
#+)\F}j x prob (Fem)

n?“
— E p(aa) X v, — semen cost,
T
r=1

where NTM; and NTM; are the value of Nordic total
merit units in euros (€) for female i and bull j, A is the
economic consequence of a 1% increase in inbreeding,
F; is the pedigree or genomic based co-ancestry (re-
lationship/2), prob(Fem) is the probability of produc-
ing a female conceptus, n, is the number of recessive
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genetic defects considered, p(aa), is the probability of
expression of a genetic defect r, v, is the economic cost
associated with the recessive genetic defect r, and se-
men cost is the average amount (€) spent on semen for
a pregnancy.

The value of 1 index unit of NTM was approximated
to be €24.8, based on the value per NTM unit and
year (€9.2) the average and production lifetime (2.7
yr; Fikse and Kargo, 2020). We only considered sexed
semen and assumed a 0.9 probability of producing a fe-
male conceptus, which is the minimum expected sexing
rate for most sexing technologies (Burnell, 2019). Sexed
semen is gaining popularity in the Nordic countries
and is combined with the use of beef semen to get the
number of heifers needed for the next generation. It is
expected that most of the semen sold by VikingGenet-
ics in future will be sexed dairy semen and beef semen
(Jakob Lykke Voergaard, product manager, VikingRed,
VikingGenetics, personal communication, January 11,
2021).

The economic consequence of a 1% increase in in-
breeding was set to €24.8. The current version of the
Swedish mating program “Genvégen” uses a penalty of
1 NTM unit per 1% increase in inbreeding, which would
mean €24.8 (Lina Baudin, expert in breeding routines,
Vixa Sverige, personal communication, March 5, 2021).
To our knowledge, no such values have been calculated
specifically for the RDC breed, and therefore in a sen-
sitivity analysis we set the economic consequence of
a 1% increase in inbreeding to €10.0, €24.8, or €40.0.
The analysis was performed with BullVG and scenarios
maximizing economic scores, including all available
information and a maximum of 5% females per bull
and herd.

The costs associated with genetic defects were based
on economic effects of health disorders estimated by
Oskarsson and Engelbrekts (2015) and the economic
assumptions behind the NTM (Sgrensen et al., 2018).
We assumed the cost of an early abortion (genetic de-
fect at BTA12, PIRM/AHI, AH2) to be €80, based on
the resulting longer calving interval (€30-€40/mo) and
the cost of extra insemination(s) (€30). We assumed
the cost of a later abortion or an early calf death to be
€160 (genetic defect SMA, BH2, and at BTA23).

We used the prices for sexed semen set by VikingGe-
netics in 2020, where a semen dose for a bull with a
NTM of 30 or more cost €26, with a NTM of 25 to
30 cost €22.5, and with a NTM of 20 to 25 cost €19
(Jakob Lykke Voergaard, product manager, VikingRed,
VikingGenetics, personal communication, January 11,
2021). We multiplied the semen price by 1.8, which
is the average number of inseminations needed for a
pregnancy in RDC (Sgrensen et al., 2018).
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Mating Scenarios

In addition to the economic scores that included all
available information described above, we investigated
mating scenarios without the penalty for genetic de-
fects. In addition, we investigated scenarios that only
aimed to reduce the genetic relationships. Detailed
information about the mating scenarios can be found
in Table 4.

Mate Allocation

Mate allocation was programmed in R version 3.6.3
(R Core Team, 2020). Linear programming optimiza-
tion was performed with the ‘Lp_solve’ package in
R (Berkelaar et al., 2020). The mating R script was
provided by Bérodier et al. (2021). The R script set up
constraints that were considered in the linear program-
ming optimization. We used the constraints: one mat-
ing per female and a threshold percentage for the maxi-
mum number of females per bull and herd, for which
we evaluated 2 different levels, 5% and 10%, similarly
to Bérodier et al. (2021). The threshold for the number
of females per bull and herd was in line with current
recommendations given by Swedish breeding advisors.

The planned matings achieved from each scenario
were compared by (1) average NTM; (2) average ge-
netic relationships (a3gen; Aancens Ssxps Eseats Espas); (3)
the probability of expression of genetic defects, includ-
ing genetic defect at BTA12, using bull set BullVG,
and including genetic defects at BTA12 and BTA23
using bull set BullAll; (4) the average cost of semen for
a pregnancy, calculated in the same way as in the eco-
nomic score; (5) the total number of bulls used; (6) the
number of bulls used to the maximum number of doses
based on the threshold (5% and 10%) of females per
bull and herd; (7) average pedigree relationship among
all planned matings, calculated similarly to ajge,; and
(8) predicted carrier frequency of genetic defect at
BTA12 using BullVG, and predicted carrier frequency
of genetic defects at BTA12 and BTA23 using BullAll
calculated as 50% of the cases when a parent was a
carrier divided by the total number of matings. The
predicted carrier frequency in the next generation did
not include homozygotes for the genetic defects, which
were included in the probability of expression of genetic
defects.

Statistical Analysis

SAS software version 9.4 (SAS Institute Inc.) and
R version 3.6.3 (R Core Team, 2020) were used for
statistical analysis.
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RESULTS

All results are presented for the selected females and
bulls in BullVG, unless otherwise specified.

Genetic Relationship Coefficients

The mean value of the relationship coefficients be-
tween all possible combinations of females and males
ranged from 0.009 to 0.188, and the standard deviation
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ranged from 0.042 to 0.047 (Table 5). The correlations
between the genetic relationship coefficients were all
0.83 or higher. The strongest correlation was between
aancen and g, (r = 0.99), and the second strongest
was between ggrg; and gspas (r = 0.98). The strongest
correlation between pedigree and genomic relationships
was between ayjge, and gsggs (r = 0.88; Table 6). The
coefficients of regression on a,yq., were close to 1, high-
est, for asqe, and ggnp and somewhat lower for ggpg; and
gspas (Figure 1).

Table 4. Description of the 15 different mating scenarios considered

Economic score includes

Nordic total Genetic defect Sexed Semen Linear programming

Scenario merit, NTM Relationship® value semen cost objective®
MaxNTM Yes No No Yes Yes Max
3Gen Yes A3Gen Yes Yes Yes Max
AllGen Yes AAlGen Yes Yes Yes Max
GSNP Yes snp Yes Yes Yes Max
GSEG1 Yes 2SEG1 Yes Yes Yes Max
GSEG4 Yes 8sEG4 Yes Yes Yes Max
3Gen_NoDefect Yes A3Gen No Yes Yes Max
AllGen_NoDefect Yes AAlNGen No Yes Yes Max
GSNP_NoDefect Yes Zsnp No Yes Yes Max
GSEG1_NoDefect Yes 8sEal No Yes Yes Max
GSEG4_NoDefect Yes 2SEGH No Yes Yes Max
3Gen_Min No A3Gen No Yes No Min
AllGen_Min No AANGen No Yes No Min
GSNP_Min No 8snp No Yes No Min
GSEG1_Min No 2SEG1 No Yes No Min
GSEG4_Min No 8sEG4 No Yes No Min
Random All possible combinations of 9,841 females and 50 bulls

"MaxNTM: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, and semen cost.
3Gen: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost, a pedigree
relationship including 3 generations of ancestors (asge,), and penalty for genetic defects. AllGen: mating scenario where mates were selected
based on maximizing an economic score including NTM, sexed semen, semen cost, a pedigree relationship including all available ancestors
(aanGen), and penalty for genetic defects. GSNP: mating scenario where mates were selected based on maximizing an economic score includ-
ing NTM, sexed semen, semen cost, a genomic relationship calculated according to VanRaden (2008) (gsnp), and penalty for genetic defects.
GSEG1: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost, a genomic
relationship based on shared genomic segment calculated according to de Cara et al. (2013) with a minimum genomic segment length of 1 ¢M
(gsrc1), and penalty for genetic defects. GSEG4: mating scenario where mates were selected based on maximizing an economic score including
NTM, sexed semen, semen cost, and a genomic relationship based on shared genomic segment calculated according to de Cara et al. (2013)
with a minimum genomic segment length of 4 ¢M (ggrgy), and penalty for genetic defects. 3Gen_NoDefect: mating scenario where mates were
selected based on maximizing an economic score including NTM, sexed semen, semen cost, and a pedigree relationship including 3 generations
of ancestors (asge,). AllGen_NoDefect: mating scenario where mates were selected based on maximizing an economic score including NTM,
sexed semen, semen cost, and a pedigree relationship including all available ancestors (ayyge,). GSNP_NoDefect: mating scenario where mates
were selected based on maximizing an economic score including NTM, sexed semen, semen cost, and a genomic relationship calculated according
to VanRaden (2008) (gsxp). GSEG1_NoDefect: mating scenario where mates were selected based on maximizing an economic score including
NTM, sexed semen, semen cost, and a genomic relationship based on shared genomic segment calculated according to de Cara et al. (2013) with
a minimum genomic segment length of 1 ¢M (gsgei). GSEG4_NoDefect: mating scenario where mates were selected based on maximizing an
economic score including NTM, sexed semen, semen cost, and a genomic relationship based on shared genomic segment calculated according to
de Cara et al. (2013) with a minimum genomic segment length of 4 ¢M (gsggs). 3Gen_Min: mating scenario where mates were selected based on
minimizing an economic score including a pedigree relationship including 3 generations of ancestors. AllGen_Min: mating scenario where mates
were selected based on minimizing an economic score including a pedigree relationship including all available ancestors. GSNP_Min: mating
scenario where mates were selected based on minimizing an economic score including a genomic relationship calculated according to VanRaden
(2008). GSEG1_Min: mating scenario where mates were selected based on minimizing an economic score, including a genomic relationship based
on shared genomic segment calculated according to de Cara et al. (2013) with a minimum genomic segment length of 1 ¢cM. GSEG4_Min: mating
scenario where mates were selected based on minimizing an economic score including a genomic relationship based on shared genomic segment
calculated according to de Cara et al. (2013) with a minimum genomic segment length of 4 cM.

%30 = pedigree relationships using 3 generations of ancestors; ayyge, = pedigree relationships using all available pedigree information; ggyp =
genomic relationship calculated according to VanRaden (2008); gspa1 (8seqi) = genomic segment-based relationship according to de Cara et al.
(2013) with a minimum segment length of 1 (4) cM.

*The objective of linear programming is to maximize (Max) or minimize (Min) the economic score.
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Table 5. Descriptive statistics on relationships [mean, SD, minimum
value (Min), and maximum value (Max)|] between all possible
combinations of 9,841 females and 50 bulls'

Relationship Mean SD Min Max
A3Gen 0.028 0.042 0 0.648
AAlGen 0.066 0.042 0.003 0.667
8sNp 0.009 0.047 —0.095 0.673
8secl 0.188 0.046 0.038 0.789
SSEG4 0.115 0.045 0.005 0.727
'agqen = pedigree relationships using 3 generations of ancestors; a,jge

= pedigree relationships using all available pedigree information; ggxp
= genomic relationship calculated according to VanRaden (2008);
gswa1 (8spes) = genomic segment-based relationship according to de
Cara et al. (2013) with a minimum segment length of 1 (4) ¢cM.

Mate Allocation

Using BullVG. It was possible to maximize eco-
nomic score with limited impact on the average NTM
level (Table 7). Including the cost of the known re-
cessive genetic defect (at BTA12) when optimizing
mating strategies eliminated the risk of expression of
the genetic defect, regardless of which genetic relation-
ship was used. In MaxNTM (mating scenario where
mates were selected based on maximizing an economic
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Table 6. Correlations between the different relationship coefficients
for all possible combinations of 9,841 females and 50 bulls'

Relationship A3Gen AAlGen 8snp 8sEG1 8SEG4
A3Gen 1 0.99 0.88 0.83 0.87
AAllGen 1 0.88 0.85 0.88
8snp 1 0.9 0.93
8sEG1 1 0.98
'agqen = pedigree relationships using 3 generations of ancestors; ayygen

= pedigree relationships using all available pedigree information, ggxp
= genomic relationship calculated according to VanRaden (2008);
gswa1 (8spes) = genomic segment-based relationship according to de
Cara et al. (2013) with a minimum segment length of 1 (4) ¢cM.

score including NTM, sexed semen, and semen cost),
the NTM level improved compared with Random (all
possible combinations of 9,841 females and 50 bulls),
but it resulted in higher average genetic relationship
coefficients than Random and did not reduce the prob-
ability of expression of genetic defects.

Including a genomic relationship in the economic
score also kept the other genomic relationship averages
at a low level. For example, with the constraint 5%
females per bull and herd, including ggyp in the objec-
tive function (scenario GSNP) resulted in a ggpg; of

a
0.8 = 0.8 =
a3gen = —0.0376+0.997an6en gsnp = —0.0566 +0.996axGen
0.7 0.7 .
06 0.6
05 0.5
gﬁ 0.4 % 0.4
© 03 © 03
02 0.2
0.1 0.1
0.0 0.0
-0.1 -0.1
0.0 0.1 02 03 0.4 0.5 06 07 0.0 0.1 0.2 0.3 04 05 0.6 0.7
BAiGen 3AlGen
4
0.8 = . 0.8 -
gsect = 0.126+0.939%ap6en Osecs = 0.0526 +0.943a,6en .
0.7 0.7
086 0.6
0.5 0.5
3 04 3 04
I3 I3
o 0.3 o 0.3
0.2 0.2
0.1 0.1
0.0 0.0
-0.1 -0.1
0.0 0.1 02 03 0.4 0.5 06 07 0.0 0.1 0.2 0.3 04 05 0.6 0.7
BAlGen 3aIGen

Figure 1. (a) Relationship coefficients estimated from pedigree data with 3 generations of ancestors (asg.), (b) relationship coefficients es-

timated from SNP data (gsyp; VanRaden, 2008), (c) relationship coefficients estimated from shared genomic

egments with a minimum segment

length of 1 ¢M (gspe1), and (d) minimum length of 4 ¢M (gspey; de Cara et al., 2013), all plotted against relationship coefficients estimated from
pedigree data using all available ancestors (axjge). The diagrams include relationships for all possible combinations of 9,841 Nordic Red Dairy

Cattle females and 50 bulls.
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0.148, compared with 0.143 with GSEG1 (Table 7). Us-
ing the pedigree relationships also reduced the genomic
relationships compared with Random and MaxNTM,
but not as much as using genomic relationships in the
objective function. Considering the example with the
constraint 5% females per bull and herd, and includ-
ing ggyp in the objective function (scenario GSNP), the
pedigree relationship scenarios resulted in a ggpg; of
0.167 for 3Gen and 0.163 for AllGen. There were only
minor differences between the scenarios with genomic
relationships in their ability to reduce pedigree relation-
ships. Including pedigree relationships in the economic
scores consistently reduced pedigree relationships more
than genomic relationships. For example, all scenarios
optimizing genomic relationships resulted in ajyge, of
0.050, AllGen resulted in ajge, of 0.043, and 3Gen
resulted in ayyce, of 0.046 (Table 7).

Using BullAll. For the bull set BullAll, including
the costs of the known recessive genetic defects (at
BTA12 and BTA23) when optimizing mating strategies
entirely eliminated the risk of expression of a genetic
defect, regardless of which genetic relationship was
used in the objective function (Table 8).

Bull Usage. The number of bulls used in the scenar-
ios considering genomic relationships was always higher
than in the scenarios considering pedigree relationships.
Furthermore, fewer bulls were used for the maximum
number of permitted inseminations considering genom-
ic relationships compared with scenarios considering
pedigree relationships with the same constraints. Minor
differences were observed in the average pedigree rela-
tionship between all planned matings using the same
threshold for females per bull and herd.

Predicted Carrier Frequency in the Next Generation

The predicted carrier frequency in the next gen-
eration was half the carrier frequencies in Table 2 for
the genetic defects not present in bull set BullVG (at
BTA23, BH2, PIRM/AH1, AH2, SMA) and bull set
BullAll (BH2, PIRM/AHI, AH2, SMA). Further, the
predicted carrier frequencies of known genetic defects
in the next generation depended on the proportion of
carrier bull used. Using a maximum of 10% females
per bull and herd resulted in considerably lower carrier
frequencies in the next generation (Table 7). In this
case, the best carrier bull was ranked number 13 on the
NTM scale and that bull was rarely chosen in any of
the mating allocations. However, when using a maxi-
mum constraint of 5% females per bull and herd, the
predicted carrier frequency in the next generation was
higher than with a maximum constraint of 10% females
per bull and herd. The bull ranked number 13 and the
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other lower-ranked bulls on the NTM scale were then
required to be used due to the constraint. When using
bull set BullAll, more carrier bulls were ranked high on
the NTM scale. Hence, it resulted in higher predicted
carrier frequency in the next generation as a conse-
quence of carrier bulls being selected more often (Table
8) than when using bull set BullVG (Table 7).

Alternative Scenarios

Results for scenarios excluding genetic defects from
the objective function showed a probability of expres-
sion of genetic defect without the penalty for defects
in the economic score (Table 9). Including gspq; re-
sulted in the lowest probability of expression of genetic
defects. There were only minor changes for the other
result parameters compared with when the penalty was
included.

Results for scenarios minimizing parents’ genetic
relationships showed a lower average NTM level than
the other scenarios, because they were not optimized
with respect to NTM (Table 10). Furthermore, the
average angen between planned matings was improved
(e.g., 0.083 in AllGen_Min to 0.089 in MaxNTM). In
MaxNTM, the average ajnge, relationship was 0.070
(Table 9). Compared with scenarios maximizing eco-
nomic scores, including all information except the de-
fect penalty (Table 9), the genetic relationships could
be reduced slightly more. For example, in AllGen_No-
Defect, the ayjqe, relationship was 0.043 (Table 9) and
in AllGen_Min it was 0.040 (Table 10). Similarly, in
GSNP_NoDefect ggyp was —0.038 and in GSNP_Min
it was —0.044. Further, in the scenarios aimed at
only minimizing the parents’ genetic relationship,
we observed a probability of expression of a genetic
defect. AllGen_Min and GSEG4_Min resulted in a
0.2% probability of expression of a genetic defect and
GSEG1_Min in 0.1% probability, compared with 0.4%
probability in Random and MaxNTM.

Effect of Constraints Used in Mate Allocation

Changing the maximum number of females per bull
and herd from 5% to 10% resulted in a higher NTM,
and the increase was greater for BullVG (1.2-1.4 NTM
units) than for BullAll (0-0.2 NTM units; Table 7-8),
owing to more variation in NTM level in BullVG than
in BullAll. Lower variation in NTM level led to genetic
relationships being more decisive in mating optimiza-
tion, which in turn led to fewer bulls being used to
their maximum number of inseminations based on the
constraints 5% and 10% females per bull and herd. For
example, in 3Gen, using the constraint 5% females per
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Table 9. Comparison of outcome of planned matings of 9,841 females for 6 mating scenarios in Nordic Red Dairy Cattle using various
comparison criteria'?

Scenarios without penalty for defects

Max 3Gen_No AllGen_No GSNP_No GSEG1_No GSEG4_No

Comparison criterion NTM Defect Defect Defect Defect Defect
Average Nordic total merit (NTM) 20.8 20.8 20.8 20.8 20.7 20.8
Average ayc,, between parents 0.033 0.007 0.009 0.014 0.014 0.014
Average aznqe, between parents 0.070 0.046 0.043 0.050 0.050 0.050
Average gonp between parents 0.014 —0.012 —0.016 —0.038 —0.034 —0.033
Average gspa; between parents 0.191 0.167 0.163 0.148 0.143 0.146
Average ggpgy between parents 0.119 0.094 0.091 0.078 0.075 0.074
Probability of expression of genetic defect (%) 0.4 04 0.4 0.4 0.2 0.3
Average cost of semen for a pregnancy (€) 43.6 43.6 43.6 43.5 43.5 43.5
Number of bulls used 39 46 45 50 48 47
Number of bulls used to a maximum 20 18 16 10 12 13
Average age, between planned matings 0.089 0.089 0.088 0.088 0.088 0.088
Predicted BTA12 carrier frequency in the 12.9 13.0 12.8 13.1 12.6 12.8

next generation (%)

'Fifty marketed bulls from VikingGenetics were available for matings (BullVG). Maximum percentage of females per bull and herd set to 5%.

?Average NTM level, 5 different genetic relationships, the probability of expression of genetic defect (at BTA12), the average cost of semen for
a pregnancy, the number of bulls used, the number of bulls used to a maximum number of doses based on the 5% of females per bull and herd,
average pedigree relationship between all planned matings, and predicted genetic defect at BTA12 carrier frequency in the next generation.
MaxNTM: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, and semen cost.
3Gen_NoDefect: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost,
and a pedigree relationship including 3 generations of ancestors (asce,). AllGen_NoDefect: mating scenario where mates were selected based on
maximizing an economic score including NTM, sexed semen, semen cost, and a pedigree relationship including all available ancestors (asjge)-
GSNP_NoDefect: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost,
and a genomic relationship calculated according to VanRaden (2008) (gsnp). GSEG1_NoDefect: mating scenario where mates were selected
based on maximizing an economic score including NTM, sexed semen, semen cost, and a genomic relationship based on shared genomic segment
calculated according to de Cara et al. (2013) with a minimum genomic segment length of 1 ¢M (gspa;). GSEG4_NoDefect: mating scenario
where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost, and a genomic relationship based
on shared genomic segment calculated according to de Cara et al. (2013) with a minimum genomic segment length of 4 ¢cM (gsga4)-

Table 10. Comparison of outcome of planned matings of 9,841 females for 6 mating scenarios in Nordic Red Dairy Cattle using various
comparison criteria

Scenarios minimizing relationships

Max 3Gen AllGen GSNP GSEG1 GSEG4
Comparison criterion NTM _Min _Min _Min _Min _Min
Average Nordic total merit (NTM) 20.8 19.2 19.6 19.5 19.7 19.7
Average ayc,, between parents 0.033 0.004 0.007 0.013 0.013 0.013
Average ayjq., between parents 0.070 0.044 0.040 0.050 0.049 0.049
Average ggxp between parents 0.014 —0.015 —0.019 —0.044 —0.036 —0.036
Average gsp; between parents 0.191 0.167 0.160 0.145 0.137 0.140
Average ggpay between parents 0.119 0.094 0.088 0.075 0.071 0.068
Probability of expression of genetic defect (%) 0.4 0.4 0.2 0.4 0.1 0.2
Average cost of semen for a pregnancy (€) 43.6 41.6 41.7 41.9 42.2 42.1
Number of bulls used 39 50 49 50 50 50
Number of bulls used to a maximum 20 2 0 0 1 0
Average ay)g., between all planned matings 0.089 0.084 0.083 0.083 0.084 0.083
Predicted BTA12 carrier frequency in the next generation (%) 12.9 12.9 10.1 13.5 104 11.0

'Fifty marketed bulls from VikingGenetics were available for matings (BullVG). Maximum percentage of females per bull and herd set to 5%.
*Average NTM level, 5 different genetic relationships, the probability of expression of genetic defect (at BTA12), the average cost of semen for
a pregnancy, the number of bulls used, the number of bulls used to a maximum number of doses based on the 5% of females per bull and herd,
average pedigree relationship between all planned matings, and predicted genetic defect at BTA12 carrier frequency in the next generation.
MaxNTM: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, and semen cost.
3Gen_Min: mating scenario where mates were selected based on minimizing an economic score including a pedigree relationship including 3
generations of ancestors (azqe,). AllGen_Min: mating scenario where mates were selected based on minimizing an economic score including a
pedigree relationship including all available ancestors (asnge,). GSNP_Min: mating scenario where mates were selected based on minimizing an
economic score including a genomic relationship calculated according to VanRaden (2008) (gSNP). GSEG1_Min: mating scenario where mates
were selected based on minimizing an economic score, including a genomic relationship based on shared genomic segment calculated according
to de Cara et al. (2013) with a minimum genomic segment length of 1 ¢M (gspa;). GSEG4_Min: mating scenario where mates were selected
based on minimizing an economic score including a genomic relationship based on shared genomic segment calculated according to de Cara et
al. (2013) with a minimum genomic segment length of 4 ¢M (gspay)-
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bull and herd resulted in 18 bulls being used to the
maximum when using BullVG (Table 7), and 8 bulls
being used to the maximum when using BullAll (Table
8). Furthermore, changing the maximum number of
females per bull and herd from 5% to 10% increased
the average a,jq., among planned matings. The thresh-
old for the maximum number of females per bull and
herd thus seems to be most influential for a,yq., among
planned matings, and we saw only minor differences
between scenarios with the same threshold.

The total cost of semen for a pregnancy increased
on changing the maximum number of females per
bull and herd from 5% to 10%, because it was more
profitable to use bulls from the highest price category
more extensively. In general, there were minor differ-
ences between scenarios in total cost of semen with the
same constraints. Some differences occurred with these
constraints if many bulls had NTM close to the price
category borders. For example, in BullAll, allowing a
maximum of 10% females per bull and herd meant that
many bulls had NTM close to 25, which was the price
category border.

Sensitivity Analysis

Changing the economic consequence of a 1% increase
in inbreeding from €10.0 to €40.0 did not change the
average asge, (0.07) or ayygen (0.043), whereas ggp
changed slightly from —0.039 using €40.0 to —0.036
using €10.0, average ggpq; changed from 0.141 using
€40.0 to 0.145 using €10.0, and gspqy changed from
0.072 using €40.0 and 0.075 using €10.0. The average
NTM level was kept between 20.6 and 20.8, and no risk
of expression of a known genetic defect.

DISCUSSION

The results we present here show that it is possible
to reduce genetic relationships between RDC parents in
herds with minimal effect on the genetic level. Includ-
ing the cost of known recessive genetic defects when
optimizing mating strategies eliminated expression of
known genetic defects, regardless of the genetic relation-
ship used. There is a long tradition of recording in the
Nordic countries, and the strong correlation between
pedigree and genomic relationships that we estimated
confirms that dairy pedigrees are well documented
in the Nordic countries. The results of the sensitivity
analysis showed that the mating results are robust in
the inbreeding penalty range tested. Furthermore, the
genetic relationship was reduced only slightly more
when using an economic score designed to only reduce
the different genetic relationships than when using an
economic score including all available information.
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Genetic Relationships

The correlation between the pedigree relationship
and genomic relationship estimates was high, >0.83
for asge,, and >0.85 for ayyge, (Table 6). Carthy et al.
(2019) reported a 0.57 correlation between pedigree
relationships and genomic relationship, which is lower
than in other studies (0.67-0.88; VanRaden et al., 2011;
Pryce et al., 2012). Pryce et al. (2012) concluded that
pedigree depth plays a major role for the strength of
correlation between pedigree relationships and genomic
relationships. They found that when the number of
generations of recorded ancestry was 2, 4, 6, and 8,
this corresponded to a correlation of 0.67, 0.73, 0.84,
and 0.87, respectively. Similarly to our study, they also
found that the reduction in genetic relationship was
dependent on the way genetic relationships were evalu-
ated. For example, including genomic relationships in
an economic score was superior to including pedigree
relationships when the goal was to reduce a genomic
relationship (Pryce et al., 2012).

Compared with other common dairy cattle breeds,
the estimated average genetic relationship between par-
ents was low in the present study. The average pedigree
relationship coefficient was approximately half that
found by Bérodier et al. (2021) for the Montbéliarde
breed, with slightly less pedigree information available
(9.7-10.0 equivalent complete generations compared
with 12.6 in our study). Carthy et al. (2019) found
an average pedigree relationship for Holstein-Friesian
in their mating replicates of 6.24%, which is higher
than in all our scenarios including genetic relationships
(Tables 7-9). However, in Carthy et al. (2019), the only
information given was that animals were traced back at
least 5 generations, where possible, but with no further
information about pedigree completeness and therefore
it is hard to compare their values with our study. Our
average genomic relationship coefficients were also low
compared with those in Makanjuola et al. (2020), who
investigated genetic relationships in North American
Jersey and Holstein. Using a segment length of 1,000,000
bp, similar to us, their fgpg co-ancestry of 15.84% for
Holstein and 23.46% for Jersey should correspond to
half our ggpg; value, which for all potential mating with
bulls in the set BullVG was 9.44% (gspa1/2) (Table 5).
The low genetic relationship in RDC can be explained
by the different breeds included over time in the RDC
breeding program, which has included a mixture of
Swedish Red, Danish Red, and Finnish Ayrshire, plus
some genes from Norwegian Red, Canadian Ayrshire,
American Brown Swiss, and Red Holstein-Friesian
(NAV, 2019). We noticed that the mating program fa-
vored bulls with a high percentage of breeds other than
Swedish Red, Danish Red, and Finnish Ayrshire. All
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bulls we mated qualified for the joint Nordic breeding
program (VikingRed), where proportions of up to 25%
of other breeds are allowed (Jakob Lykke Voergaard,
product manager, VikingRed, VikingGenetics, personal
communication, January 11, 2021). However, some na-
tional herdbooks require a lower percentage of other
breeds [e.g., the Swedish Red herdbook (Swedish Red
Cattle Association, Horby, Sweden)]. Hence, a higher
average relationship coefficient might be obtained with
more strict selection of bulls with regard to breed per-
centages.

Using Genomic or Pedigree Relationships

An argument for using genomic estimates of inbreed-
ing and relationships is that they do not rely on pedi-
gree data, which can have limited depth or be incorrect
(Carthy et al., 2019; Makanjuola et al., 2020; Béro-
dier et al., 2021). Nordic Cattle Genetic Evaluation
had corrected the pedigree in most cases for possible
mismatches using genomic information. Hence, we did
not fully reveal the benefit that a genomic relationship
brings in terms of assigning the right parents to an
animal. In Sweden approximately 5% of genotyped ani-
mals have at least one parent incorrectly reported (Lina
Baudin, expert in breeding routines, Vaxa Sverige,
personal communication, March 5, 2021). Further, if a
population is under selection, the assumption of 50%
chance of each allele being selected is not true. In com-
bination, this leads to pedigree inbreeding often under-
estimating true inbreeding (as identical by descent from
a given base population) compared with ROH-based
inbreeding (Forutan et al., 2018). Furthermore, even if
pedigree is correct and deep, genomic relationships are
more accurate because they consider correctly that ge-
nome is transmitted in chromosomes and not as infinite
unlinked loci (Hill and Weir, 2011).

Our goal using segment-based relationships was to
reduce the number of ROH in the potential offspring.
ROH are suggested to be a good predictor of inbreed-
ing depression in Finnish Ayrshire (Martikainen et al.,
2017, 2020), and also in humans (Szpiech et al., 2013).
In theory, ROH are enriched for deleterious alleles that
mainly cause inbreeding depression (Charlesworth and
Willis, 2009). In general, long ROH, reflecting new in-
breeding, should contain more deleterious alleles than
short ROH due to purging and recombination along
with generations (Stoffel et al., 2021). Regions affect-
ing milk and fertility lie between 1 and 14 Mb (Mar-
tikainen et al., 2020). In addition, Martikainen et al.
(2017) found that pedigree inbreeding did not indicate
inbreeding depression for fertility, but inbreeding based
on ROH did. Further, longer regions of ROH (>3 Mb)
in Holstein and Jersey have been found to be associated
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with inbreeding depression in milk (Pryce et al., 2014).
However, Zhang et al. (2015) found that enrichment
of deleterious variants was significantly higher in short
(<0.1 to 3 Mb) compared with long (>3 Mb) regions in
RDC, Holstein, and Jersey. Hence, it is not clear what
segment length is optimal for use in segment-based
relationships.

The scales of the different genetic relationship coef-
ficients used differed (Table 5). In particular the means
were different, but there were also some differences in
the standard deviations. Hence, the relationships were
difficult to compare directly. However, in general, ge-
nomic relationships were better at reducing pedigree re-
lationships than pedigree relationships were at reducing
genomic relationships (see e.g., Table 7). For example,
the economic score 3Gen resulted in an average asqen
of 0.007 and the score GSEGI resulted in an average
asgen Of 0.014, compared with asg., of 0.028 in Ran-
dom. Hence, the relative difference in change [(0.028
— 0.014)/(0.028 — 0.007)] was 67%. Furthermore,
using GSEG1 reduced ggpg; compared with Random
from 0.188 to 0.143, and 3Gen reduced ggpq; to 0.167,
that is, the relative difference [(0.188 — 0.167)/(0.188
— 0.143)] was 47%. Furthermore, there were only minor
differences for genomic relationships in their ability to
reduce pedigree relationships. Hence, using any of the
genomic relationships could be an overall better and
safer option than using pedigree relationships in keep-
ing all average relationships studied low.

In our study, ayyge, was better than asq,, at reduc-
ing the average genomic relationships (see e.g., Table
7), suggesting that the Nordic breeding organizations
should use more generations when calculating pedigree
relationships for nongenotyped animals if they want
to control genomic relationships. This finding was ex-
pected since the depth of the pedigree plays a major
role for the strength of correlation between pedigree
relationships and genomic relationships in dairy cattle
(Pryce et al., 2012) and similar results have also been
reported in chicken (Wang et al., 2014). Furthermore,
the use of any genomic relationship worked well to keep
other genomic relationships low in this study, which
was expected based on the strong correlations between
the different genomic relationships (Table 6).

At the population level using OCS, Henryon et al.
(2019) suggested that pedigree relationships realize
more long-term true genetic gain than genomic rela-
tionships. However, Meuwissen et al. (2020) concluded
that the choice of relationship matrix depends on which
objective it should serve. Genomic relationships based
on ROH resulted in allele frequency changes toward 0.5,
which is clearly unfavorable if the focus is managing
genetic defects. Furthermore, using genomic relation-
ships based on VanRaden (2008) resulted in low drift,
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but at the cost of a high rate of increase in homozygos-
ity. A genomic relationship based on linkage analysis,
which requires both pedigree and marker information,
achieved the highest genetic gain per unit of inbreeding
and kept the drift-based inbreeding within the target
rate (Meuwissen et al., 2020). A downside with our
study is that we only looked one generation ahead, in-
stead of many generations as in OCS studies. Further,
farmers are most likely to be mainly interested in their
own herd’s genetic level and have to rely on breeding
organizations to offer bulls with different pedigrees, so
that inbreeding depression and mating of carriers of
yet unknown defects can be avoided. We were unable
to draw any conclusions on which estimate of genetic
relationship is best for mating plans with regard to
producing offspring with low inbreeding depression and
avoiding expression of unknown recessive genetic de-
fects, balanced with high genetic gain. More studies are
needed to identify the different types of genetic rela-
tionships and their future economic impact for farmers.

Recessive Genetic Defects

Carrier frequencies of the recessive genetic defects
were lower in the mated bulls than in the females
(Table 2). The strategy applied in VikingGenetics is to
only select a carrier bull if it is genetically superior or
has a valuable pedigree for preserving genetic diversity
(Jakob Lykke Voergaard, product manager, VikingRed,
VikingGenetics, personal communication, January 11,
2021). We observed higher frequencies of genetic defects
at BTA12 and BTA23 when we removed the require-
ment to have marketed semen, and we tried to reflect
this with the bull set BullAll (Table 8). An economic
score including a penalty for mating 2 carriers effective-
ly eliminated expression of genetic defects. It was more
profitable to use the carrier bull on a noncarrier female
than on a carrier female. Linear programming can help
avoid expression of genetic defects unless the possible
matings are restricted (e.g., if only a few noncarrier
bulls are available and therefore a carrier bull has to
be mated with a carrier female). Bérodier et al. (2021)
considered known recessive genetic defects similar to
this study and found that linear programming was
better than random and sequential mating in reducing
the number of genetic defects expressed. However, they
could not completely avoid the expression of recessive
genetic defects, most likely due to a more restricted
bull usage compared with our study. For example, only
8 bulls could be mated to heifers due to restriction
of calving ease, and they also included restrictions on
availability of semen which we did not consider.

It is worth highlighting that even though the overall
frequency (Table 2) was low among all females for all
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defects except genetic defect at BTAI12, the carrier
frequencies in some herds were much higher than in
other herds (Table 3). The carrier frequency in female
candidates could be valuable information for farmers
and advisors before deciding on matings in practice, by
indicating how different defects should be considered in
a specific herd.

We observed higher carrier frequencies in the next
generation for the genetic defect at BTA23 using Bul-
1A1l (Table 8) than in the mated females (Table 2). In
general, we saw no clear pattern in the economic score
that performed best regarding the carrier frequency in
the next generation. Further, we believe that the carrier
frequency in the next generation is situation specific
for the available bull sets, with regard to the NTM
ranking of the carrier bulls, constraints, and genetic
relationship. Note that higher carrier frequencies in
the next generation could be expected if many bulls
carrying defect alleles were represented at the top of
the total merit ranking. In reality, this is not expected
to occur with the current bull selection strategy at
VikingGenetics. However, it could occur if bulls to be
used in a herd were selected without consideration of
their carrier status.

No Penalty for Genetic Defects

In scenario GSEG1_NoDefect, the probability of
expression of genetic defect at BTA12 was less than
in scenarios AllGen_NoDefect, 3Gen_NoDefect, and
GSNP_NoDefect (Table 9), and slightly lower than
in scenario GSEG4_NoDefect. According to Wu et
al. (2020), the genetic defect at BTA12 region is ap-
proximately 2.6 Mb and would not be captured in
gspas- This might explain why we saw a slightly higher
probability of expression of genetic defect at BTA12 in
GSEG4_NoDefect compared with GSEGI1_NoDefect.
Further, in the scenarios aiming to minimize the differ-
ent genetic relationships, GSEG1_Min had the lowest
probability of expression of genetic defect at BTA12,
but AllGen_Min and GSEG4_Min also reduced the
probability of expression of genetic defect at BTA12
compared with Random and MaxNTM. Hence, it seems
that minimizing some genetic relationships also helped
lower, or at least did not increase, the probability of
expression of genetic defect at BTA12.

Economic Assumptions

In the absence of estimates of RDC inbreeding de-
pression, we used the penalty of €24.8 per 1% increase
in inbreeding, which corresponded to the current ver-
sion of the Swedish mating program penalty of 1 NTM
unit per 1% increase in inbreeding. This value is in line
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with that estimated for Holstein of US$25 (about €20)
(Cole, 2015) or US$24 (Smith et al., 1998). Pryce et al.
(2012) used a range up to AU$20 (about €13). When
the penalty for 1% increase in inbreeding was increased
to €40 or decreased to €10 in our sensitivity analysis,
only minor changes in the different average relation-
ships were observed. Furthermore, the average NTM
level was kept at the same level, and no expression of
known genetic defects was observed. Hence, the mat-
ing results seemed not to be sensitive in the inbreeding
penalty range tested.

Regarding the economic assumption for the recessive
genetic defects, no economic costs have been specifi-
cally calculated for the defects considered in our study.
Our value of €80 for an early abortion was in line with
Segelke et al. (2016), who estimated a cost of €70, and
Bérodier et al. (2021) who estimated €75. We assumed
the cost of a later abortion or an early calf death to
be €160 (genetic defect SMA, BH2, and at BTA23).
Oskarsson and Engelbrekts (2015) estimated the cost
to be €100 to €150 in Sweden, and NTM calculations
estimate the cost to be €200 to €340 (Sgrensen et al.,
2018). Cole (2015) estimated a stillbirth cost of US$150.

There are also most likely differences between farms
within each country, such as costs associated with ge-
netic defects. The economic score is a relatively simple
calculation that demands little computer power, and it
could be adjusted to match economic conditions on a
specific farm.

Implementation Opportunities

Many studies have pointed out that linear program-
ming outperforms sequential mating methods because it
uses simultaneous rather than sequential solving to find
the economically optimal matings for each herd (Sun
et al., 2013; Carthy et al., 2019; Bérodier et al., 2021).
Therefore, we decided to focus on linear programming
and different economic scores and not compare differ-
ent mating methods. Once the relationships (and NTM
and genetic defects) had been calculated, linear pro-
gramming on a regular laptop maximized the economic
score for all herds studied within seconds. This means
that the method is suitable for implementing in mating
software to be used by advisors and farmers. The most
time-consuming calculation of the whole procedure for
mating planning was phasing genotypes and extracting
the genomic segments, and today this has to be done
on a more powerful computer. Genotype phasing and
estimating allele frequencies also require information
from more than a single farm. This should thus be done
at central level and the genetic relationship coefficients
should then be made available for downloading to the
mating program. Here, ggnp used allele frequencies in
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the current population, which are easy to obtain and
often used in genomic evaluation. Further, geyp was
the fastest genomic relationship to calculate and it was
powerful at keeping both ggpq; and ggpgs low, making
it an efficient implementation option. However, a seg-
ment-based relationships should be considered if future
studies show they better predict inbreeding depression.

We mated all animals in a herd at a specific time,
which would not be the case in a real situation because
mating planning is usually performed more than once
annually for each herd. For example, in Sweden, mating
planning is typically performed 3 to 6 times/yr (Thure
Bjerketorp, responsible for breeding advisors, Vaxa
Sverige, personal communication, July 27, 2021). How-
ever, we were also only able to study animals born in
2019, because older animals were missing information
about genetic defects. Hence, in reality there would be
more animals from several birth years to mate, and the
number of animals we considered will most likely be in
line with a typical mating planning. However, mating
planning on a subset of the herd, a third at a time, say,
can be expected to be somewhat suboptimal.

The mating scenarios presented here could also be
adopted by other breeds or other livestock species.
However, we believe the detailed planning at the indi-
vidual level is quite unique for dairy cattle, at least at
the commercial herd level. Further, including genomic
relationships and information about genetic defects,
similar to this study, requires genotypes of both females
and males. An economic score could also be developed
for crossbred animals where the focus is to maximize
heterosis instead of minimizing parent relationships.
In this study, we did not consider ungenotyped ani-
mals. Other studies have proposed methods to impute
ungenotyped animals [e.g., Carthy et al. (2019) used
the method proposed by Gengler et al. (2007)], or one
could use the combined genomic and pedigree rela-
tionship matrix H that is used in single-step genomic
evaluations, as suggested by Sun et al. (2013).

CONCLUSIONS

We studied mating allocations in RDC and found that
it was possible to reduce genetic relationships between
parents with minimal effect on genetic level. Includ-
ing the cost of known recessive genetic defects entirely
eliminated the risk of expression of the 6 known genetic
defects. It was possible to reduce genomic relationships
between parents with pedigree measures, but it was
best done with genomic measures. More studies are
needed to identify the different types of genetic rela-
tionships and their future economic impact for farmers.
Linear programming maximized the economic score for
all herds studied within seconds, which means that the
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method is suitable for implementing in mating software
to be used by advisors and farmers.
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ABSTRACT

In this study, we explored mating allocation in Hol-
stein using genomic information for 24,333 Holstein fe-
males born in Denmark, Finland, and Sweden. We used
2 data sets of bulls: the top 50 genotyped bulls and
the top 25 polled genotyped bulls on the Nordic total
merit scale. We used linear programming to optimize
economic scores within each herd, considering genetic
level, genetic relationship, semen cost, the economic
impact of genetic defects, polledness, and 3-casein. We
found that it was possible to reduce genetic relation-
ships and eliminate expression of genetic defects with
minimal effect on the genetic level in total merit index.
Compared with maximizing only Nordic total merit in-
dex, the relative frequency of polled offspring increased
from 13.5 to 22.5%, and that of offspring homozygous
for B-casein (A2A2) from 66.7 to 75.0% in one genera-
tion, without any substantial negative impact on other
comparison criteria. Using only semen from polled
bulls, which might become necessary if dehorning is
banned, considerably reduced the genetic level. We also
found that animals carrying the polled allele were less
likely to be homozygous for 3-casein (A2A2) and more
likely to be carriers of the genetic defect HH1. Hence,
adding economic value to a monogenic trait in the
economic score used for mating allocation sometimes
negatively affected another monogenetic trait. We rec-
ommend that the comparison criteria used in this study
be monitored in a modern genomic mating program.
Key words: mating allocation, polledness, Nordic
total merit, 3-casein (A2A2)

INTRODUCTION

Historically, mating programs at the herd level aim
to maximize genetic value while minimizing expected

Received October 19, 2022.
Accepted December 19, 2022.
*Corresponding author: chben@vikinggenetics.com

inbreeding using pedigree information (Weigel and Lin,
2000). Genotyping provides breeders with new insights
at the single nucleotide level that can be used in mating
programs. For instance, SNP markers offer the possi-
bility to calculate genomic relationships between po-
tential parents. Genomic estimates of relationships are
expected to be more accurate than when using pedigree
information, because they do not rely on pedigree com-
pleteness or correctness. Genomic relationships can also
differentiate between animals with the same pedigree
that inherit partly different genetic variants from their
parents (VanRaden, 2008; de Cara et al., 2013). In ad-
dition, SNP markers provide information about certain
known monogenic traits such as defects, as well as some
desired traits.

Holstein is the most common cattle breed in Den-
mark, Finland, and Sweden (DFS), with approximate-
ly 600,000 milk-recorded cows. Genotyping of females
has attracted great interest in DFS in the past decade,
and today approximately 25% of all females born are
genotyped. However, current (2022) mating programs
in the Nordic countries still use pedigree relationship
information and ban at-risk matings for recessive ge-
netic defects. The SNP array (Borchersen, 2019) cur-
rently used for genotyping in DFS includes 7 Holstein
recessive genetic defects, polledness, and (3-CN status.
Minimizing the risk of obtaining offspring homozygous
for recessive genetic defects has an economic value for
farmers (Pryce et al., 2012) and is also important for
animal health and welfare (EFFAB, 2020).

Other types of monogenic traits, such as horn status,
also influence animal welfare. For decades, dehorning
of cattle has been common practice. Dehorning is per-
formed for several reasons, including reduced risk of
injury to other cattle and improved safety for animal
keepers. However, dehorning has been shown to cause
behavioral, neuroendocrine, and physiological changes,
indicating it to be a stressful and painful experience
(Stock et al., 2013). Since 2022, organic farms in the
European Union have to seek a permit if they want
to dehorn their cattle (EU Commission Regulation No
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889/2008; EU, 2008). The cost of dehorning in DFS
is estimated to be between €2.7 and €7.3 per head,
considering veterinary costs, gas/electricity, and extra
labor (Sgrensen et al., 2018). However, this estimate
does not consider the current situation, in which de-
horning is strictly regulated in organic herds in the
European Union.

Another example of a monogenic trait of economic
importance is 3-casein variant. Animals that are ho-
mozygotic for the A2 allele produce so-called A2 milk,
which is often marketed as a healthier option than
regular cow milk, although the human health benefits
of consuming A2 milk are still being debated (Summer
et al., 2020). Despite this lack of confirmed benefits,
some countries are seeking to increase consumption of
A2 milk and some dairies pay extra for A2 milk (Bisutti
et al., 2022).

The new genetic insights and possibilities available
require new methods that combine relevant informa-
tion based on their economic value when setting up
mating plans. Several studies have created economic
scoring systems to rank each potential mating (Carthy
et al., 2019; Bérodier et al., 2021; Bengtsson et al.,
2022). The economic score often includes genetic level,
expected inbreeding, the probability of conceiving an
offspring homozygous for a genetic defect, and semen
price (Bérodier et al., 2021; Bengtsson et al., 2022).
The economic score is flexible and can be adjusted to
match economic conditions on a specific farm, such as
a price premium for A2 milk or polled animals. Using
linear programming to maximize every herd’s mean
economic score, subject to necessary constraints, is a
fast and effective method (Carthy et al., 2019; Bérodier
et al., 2021). Linear programming has also been shown
to outperform other mating methods, such as sequen-
tial mate allocation (Sun et al., 2013; Carthy et al.,
2019; Bérodier et al., 2021).

Our objective in this study was to investigate the
ability of different approaches for mating allocation in
DFS Holstein, considering polledness, 3-CN, and sev-
eral recessive genetic defects. We also optimized the
mating allocations on total merit index while limiting
parent relationships. We investigated all mating alloca-
tions at the herd level with real data and used linear
programming to optimize different economic scores
within each herd.

MATERIALS AND METHODS

Breeding values, pedigree data, SNP data, and data
on monogenic traits were obtained from the Nordic
Cattle Genetic Evaluation (NAV) database (NAV,
2019). No ethical approval was needed for this study
because no animal procedures were performed.

Journal of Dairy Science Vol. 106 No. 5, 2023
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Genotype Data

Single nucleotide polymorphism information was
available for all genotyped Holstein animals born be-
tween 2011 and 2020 in Denmark, Finland, and Swe-
den. The NAV database uses the Illumina 50k chip
(Ilumina Inc.) as standard for genomic prediction, and
all lower-density chips are imputed by NAV to that
format using Flmpute (Sargolzaei et al., 2014). The
EuroG MD beadchip (Borchersen, 2019) has been used
since late 2018. In total, genotypes for 261,198 animals
(225,298 females and 35,900 males) were available.

Total Merit

We used Nordic Total Merit (NTM) values from
the NAV breeding evaluation performed in May 2020,
which are expressed in standardized units with a mean
of 0 and genetic standard deviation of 10. At the time
of data extraction, NTM was composed of 15 sub-indi-
ces, covering yield index, longevity, growth, youngstock
survival, udder health, udder, feet and legs, frame, hoof
health, milkability, daughter fertility, general health,
temperament, calving direct, and calving maternal
(NAV, 2019).

Data Selection

Females. We selected 289 herds that had genotyped
more than 40 Holstein females born in 2019. In total,
24,333 Holstein females were available for mating allo-
cations. The EuroG MD beadchip (Borchersen, 2019),
used since late 2018, includes information about all
monogenic traits considered in this study (Table 1).

Bulls. We used 2 data sets of bulls, Bull50 and Bull-
25Polled (Table 2). The main bull data set (Bull50)
included the top 50 genotyped bulls on the NTM
scale, available from the Nordic breeding cooperative
VikingGenetics. The data set Bull25Polled included
the top 25 genotyped polled bulls on the NTM scale,
also available from VikingGenetics, comprising 21 het-
erozygous polled (Pp) bulls and 4 homozygous polled
bulls (PP). Bulls in both data sets were born between
January 2017 and August 2019. At VikingGenetics, the
program EVA (Berg et al., 2006) is used for optimum
contribution selection to select breeding animals using
pedigree relationships (Hanna Driscoll, product manag-
er Holstein, VikingGenetics; personal communication,
January 19, 2022).

Relationship Measures

Pedigree Relationships. Two pedigree relation-
ships were calculated. The first relationship coefficient
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Table 1. Description of monogenic traits considered in this study, code used in the Online Mendelian Inheritance in Animals (OMIA) database,
and the effect in conceptus or offspring, available with a genomic test in Holstein

Monogenic trait OMIA code

Description

000001-9913
001824-9913
001826-9913
002194-9913
001830-9913
000595-9913

Holstein Haplotype 1 (HH1)
Holstein Haplotype 3 (HH3)
Holstein Haplotype 4 (HH4)
Holstein Haplotype 6 (HHG6)
Holstein Haplotype 7 (HHT)
Bovine leukocyte adhesion deficiency (BLAD)

000866-9913
000483-9913

Progressive retinal degeneration (RP1)
Polledness

B-CN 002033-9913

Early abortion of homozygous conceptus
Early abortion of homozygous conceptus
Early abortion of homozygous conceptus®
Early abortion of homozygous conceptus®

Early abortion of homozygous conceptus®

Extreme susceptibility to infection and early mortality in
homozygous offspring

Progressive blindness in homozygous offspring’

Absence of horns in offspring carrying at least one copy of the
polled allele (Celtic and Friesian allele considered)

A cow produces so-called A2 milk if she has 2 copies of the A2
allele

1
2

'Adams et al. (2016).
“Daetwyler et al. (2014).
*Fritz et al. (2013).
*Schuster et al. (1992).
"Bradley et al. (1982).
“Medugorac et al. (2012).
"Gallinat et al. (2013).

traced the pedigree 3 generations back from the parents
of the potential mating (asgen), reflecting the current
Nordic mating programs. The second pedigree relation-
ship coefficient was based on all available pedigree
information (aangen)-

For most cases, the pedigree for genotyped animals
had already been corrected for mismatches by NAV.
We found 143 genotyped animals with missing or mis-
matching parents, which were excluded from further
analyses. The discrete generation equivalent (Wool-
liams and Méantysaari, 1995) for the mated animals
was 16.0, and the equivalent for complete generations
(Maignel et al., 1996) was 12.7. The 5-generation pedi-
gree completeness for mated animals was 99.4%.

Genomic Relationships. Three genomic relation-
ship coefficients were used, one SNP-by-SNP genomic

relationship and 2 based on shared genomic segments.
The SNP-by-SNP genomic relationship coefficient
(gsnp) was calculated according to VanRaden (2008),
using the software SNP1101 (Sargolzaei, 2014), as fol-
lows:

Em(zim _2pm)x(zm _2pm)
23 1, (1=p,)

9svp; =

)

where z;, and z;, are the genotype scores of animal i
and animal j at marker m, coded as 0 = homozygote, 1
= heterozygote, and 2 = alternative homozygote; and
P is the frequency of the alternative allele of marker
m in the founder population. Because we did not know
the founder population frequency, the allele frequency

Table 2. Descriptive statistics on the Holstein females and bulls selected for mating allocations

Data set
Females

Trait 289 herds Bull50 Bull25Polled
Number of animals 24,333 50 25
Average Nordic Total Merit (NTM) 12.10 33.93 27.17
Carriers of defect HH1 (%) 3.45 2.00 16.00
Carriers of defect HH3 (%) 3.62 4.00 0.00
Carriers of defect HH4 (%) 1.31 0.00 0.00
Carriers of defect HH6 (%) 0.30 0.00 0.00
Carriers of defect HH7 (%) 0.29 0.00 0.00
Carriers of defect BLAD (%) 0.27 0.00 0.00
Carriers of defect RP1 (%) 0.63 0.00 0.00
Heterozygous polled (Pp) (%) 3.74 14.00 84.00
Homozygous polled (PP) (%) 0.10 0.00 16.00
Heterozygous fB-casein (A1A2) (%) 37.11 30.00 44.00
Homozygous B-casein (A2A2) (%) 57.12 66.00 48.00
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of all genotyped Holstein was used. Using observed al-
lele frequency instead of founder population frequency
is an approximation often used for genomic evaluation
(Wang et al., 2014).

The 2 genomic relationship coefficients based on
shared genomic segments (gsge) were calculated fol-
lowing de Cara et al. (2013):

EkE :1:12:]‘:1 {LSEGk (aib] )]

)

9sEa,
Y 2Ly 70

where Lgpg, is the length (in bp) of the kth shared
segment measured over homolog a of animal 7 and ho-
molog b of animal j, and L, 70 is the total length of the
autosomes covered by the SNP (in bp).

The 2 segment-based genomic relationship coef-
ficients were based on different minimum lengths of
segments: 1 ¢cM (gsgg1) and 4 cM (gsggs), assuming
1 ¢cM = 1,000,000 bp (Gautier et al., 2007). These
segment lengths were chosen to represent short and
long segments, similarly to other studies (Zhang et al.,
2015; Martikainen et al., 2017; Forutan et al., 2018;
Makanjuola et al., 2020). Phasing of genotypes was
performed in Beagle 4.1 with default settings (Brown-
ing and Browning, 2007), and segments of minimum
chosen length were extracted in RefineIBD with the
default setting except for the logarithm of odds (LOD)
score (base 10 log of the likelihood ratio), where we
used LOD = 0.1 (Browning and Browning, 2013). The
LOD score is used to prune out shared segments that
are not common in the population. Hence, default
LOD = 3.0 in RefineIBD was considered too high for
our purposes, as reported in a recent study (Olsen et
al., 2020).

Mate Allocation

Mate allocation was programmed in R version 3.6.3
(https://www.r-project.org/), using the “Lp_solve”
package (Berkelaar, 2020). A mating linear program-
ming problem has several integer properties. However,
linear programming can be used instead of integer pro-
gramming because the coefficient matrix has a struc-
ture that guarantees integer solutions if the right hand
side of the equation are integers (Jansen and Wilton,
1985). Lp_solve is a mixed integer linear programming
solver, and hence is suitable for the mating linear pro-
gramming problem. A mating R script was provided
by Bérodier et al. (2021) and modified to allow it to
handle favorable monogenic traits. The R script set up
constraints considered in linear programming optimiza-
tion. We used the following constraints: 1 mating per
female and a threshold percentage for the maximum
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number of females per bull and herd, for which we
evaluated 2 levels, 5% and 10%, similarly to Bérodier
et al. (2021). The threshold for the number of females
per bull and herd was in line with current recommenda-
tions in DFS.

Economic Score

For each potential mating between female i and bull
j, we calculated an economic score:

NTM, +NTM

Scoreu = J +>\F,J +p(BetaC)>< V BetaC

x prob (Fem) — ip(aa)r x v, +p(P)
r=1

X Vp —semen cost,

where NTM; and NTM; are the values in euros (€) of
the Nordic Total Merit units for female 7 and bull 7, X
is the economic consequence of a 1% increase in in-
breeding, F;; is the pedigree- or genome-based co-ances-
try (relationship/2), p(BetaC) is the probability of a
homozygous offspring for 3-CN (A2A2), vp,c is the
value of a homozygous offspring for 3-CN (A2A2),
prob (Fem) is the probability of producing a female con-
ceptus, n, is the number of recessive genetic defects
considered, p(aa), is the probability of expression of
genetic defect r, v, is the economic cost associated with
recessive genetic defect r, p(P) is the probability of a
polled offspring, vp is the value of a polled offspring,
and semen cost is the average amount (€) spent on se-
men for a pregnancy.

An index unit of NTM is worth €25.4 over the life-
time of a Holstein female in DFS (Fikse and Kargo,
2020). We considered sexed semen with 0.9 probability
of producing a female conceptus (Burnell, 2019). The
economic consequence of a 1% increase in inbreeding
was set to €25.4. The Swedish mating program “Gen-
vagen” uses a penalty of 1 NTM unit per 1% increase
in inbreeding, which would correspond to €25.4 (Lina
Baudin, expert in breeding routines, Véxa Sverige; per-
sonal communication, March 5, 2021). This is in line
with other studies citing US$25 (about €25; Cole, 2015)
and US$24 (Smith et al., 1998).

We assumed the cost of an early abortion (HHI,
HH3, HH4, HH6, HH7; Table 1) to be €80, based on
the resulting longer calving interval (€30-€40/month)
and the cost of extra insemination(s) (€30; Oskarsson
and Engelbrekts, 2015; Sgrensen et al., 2018). Bulls
carrying BLAD and RP1 are not allowed in the breed-
ing program at VikingGenetics, so we did not estimate
any cost for them. We tested different economic val-
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Table 3. Description of the mating scenarios considered"

Economic score includes

Genetic Polled (3-casein
Scenario NTM Relationship defect value value (€) value (€)
MaxNTM Yes No No 0 0
3Gen Yes A3Gen Yes 0 0
AllGen Yes AAlGen Yes 0 0
GSNP Yes 2sNp Yes 0 0
GSEG1 Yes gsEal Yes 0 0
GSEG4 Yes ey Yes 0 0
GSNPPolled10 Yes Zsnp Yes 10 0
GSNPPolled50 Yes 2sNp Yes 50 0
GSNPPolled100 Yes Zsnp Yes 100 0
GSNPBetaC10 Yes ZsNp Yes 0 10
GSNPBetaC50 Yes Zsnp Yes 0 50
GSNPBetaC100 Yes ZBsNp Yes 0 100
GSNPPolledBetaC10 Yes Zsnp Yes 10 10
GSNPPolledBetaC50 Yes 8sNp Yes 50 50
GSNPPolledBetaC100 Yes Zsnp Yes 100 100
Random All possible combinations of females and bulls

'MaxNTM = mating scenario where mates were selected based on maximizing an economic score including
Nordic Total Merit (NTM), sexed semen, and semen cost; 3Gen = mating scenario where mates were selected
based on maximizing an economic score including NTM, sexed semen, semen cost, a pedigree relationship
including 3 generations of ancestors (asg.,), and a penalty for genetic defects; AllGen = mating scenario
where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost,
a pedigree relationship including all available ancestors (aange), and a penalty for genetic defects; GSNP =
mating scenario where mates were selected based on maximizing an economic score including NTM, sexed
semen, semen cost, a genomic relationship calculated according to VanRaden (2008) (gsyp), and a penalty for
genetic defects; GSEG1 = mating scenario where mates were selected based on maximizing an economic score
including NTM, sexed semen, semen cost, a genomic relationship based on shared genomic segment calculated
according to de Cara et al. (2013) with a minimum genomic segment length of 1 ¢M (gspai), and a penalty
for genetic defects; GSEG4 = mating scenario where mates were selected based on maximizing an economic
score including NTM, sexed semen, semen cost, and a genomic relationship based on shared genomic segment
calculated according to de Cara et al. (2013) with a minimum genomic segment length of 4 ¢cM (gspq), and a
penalty for genetic defects; Polled €0, €10, €50, €100 = economic value of a polled offspring, added to the eco-
nomic score GSNP; BetaC €0, €10, €50, €100 = economic value of an offspring homozygous for 3-CN (A2A2),
added to the economic score GSNP; Polled BetaC €0, €10, €50, €100 = economic value of a polled offspring

and offspring homozygous for 3-CN (A2A2), added to the economic score GSNP.

ues (€0, €10, €50, and €100) for polledness and 3-CN
(A2A2).

We used the prices for sexed semen set by VikingGe-
netics in 2021. The semen price depends on the bull’s
NTM and polledness status. A dose of semen from a
horned bull with NTM >35, 33 to 34, 30 to 32, and <30
costs €26, €23, €20, and €17, respectively. Semen of
polled bulls (homozygous or heterozygous for the polled
allele) costs €3 more than semen of horned bulls with
the same NTM (Hanna Driscoll, product manager Hol-
stein, VikingGenetics; personal communication, Janu-
ary 19, 2022). Detailed information about the mating
scenarios can be found in Table 3. Sexed semen and
semen cost were considered in all scenarios. The objec-
tive in linear programming was always to maximize the
economic score.

Mating Allocation

The suggested planned matings were compared by
(1) average NTM; (2) average genetic relationships
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(A3Gens Aancen, Esxps 8sEGL; 8seaa); (3) at-risk matings, as
a percentage of matings of 2 carriers of the same reces-
sive genetic defects (the most common defects, HH1
and HH3); (4) average cost of semen for a pregnancy,
calculated in the same way as in the economic score;
(5) total number of bulls used; (6) number of bulls
used to the maximum number of doses allowed on the
threshold (5 and 10%) of females per bull and herd; and
(7) predicted carrier frequency of HH1 and HH3 in the
next generation (%), calculated from the proportion of
matings with a carrier (assuming a 50% probability of
the defect allele being inherited from a carrier parent);
(8) predicted percentage of polled offspring; and (9)
predicted percentage of offspring homozygous for 3-CN
(A2A2) in the next generation.

Statistical Analysis

We used SAS software version 9.4 (SAS Institute
Inc.) and R version 3.6.3 (https://www.r-project.org/) for
statistical analysis. A chi-squared test was conducted
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Table 4. Descriptive statistics on relationships (mean, SD, minimum
and maximum values) between all possible combinations of 24,333
females and 50 bulls
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Table 5. Correlation between the different relationship coefficients for
all possible combinations of 24,333 females and 50 bulls'

Relationship
Relationship
coefficient! Mean SD Minimum Maximum Relationship A3cen AAlGen Zsnp e £s8G4
A3Gen 0.015 0.031 0 0.545 A3Gen 1 0.95 0.75 0.69 0.70
2A1Gen 0.132 0.031 0.035 0.647 A7lGen 1 0.76 0.75 0.76
2snp 0.010 0.040 —0.106 0.576 gsnp 1 0.88 0.87
8sEG1 0.269 0.042 0.089 0.853 g3EG1 1 0.97
2SEGH 0.181 0.041 0.039 0.763 I - - - - - -
: - - - - - - - Coefficients: ayq,, = pedigree relationships using 3 generations of an-
Coefficients: ayq., = pedigree relationships using 3 generations of an-  cestors, ayyg., = pedigree relationships using all available pedigree
cestors, ayyce, = pedigree relationships using all available pedigree information, ggp = genomic relationship calculated according to

information, ggyp = genomic relationship calculated according to
VanRaden (2008), gspei (gsecs) = genomic segment-based relationship
according to de Cara et al. (2013) with a minimum segment length of
1 (4) cM.

in SAS to test association between polledness genotype
and HH1, HH3, or 3-CN genotype.

RESULTS

The presented mating results are between the 24,333
females selected for matings and data set Bull50, unless
otherwise specified.

Genetic Relationship Coefficients

For all possible combinations of females and males,
the mean value of the relationship coefficient ranged
from 0.010 to 0.269, and the standard deviation ranged
from 0.031 to 0.042 (Table 4). For all correlations
between different genetic relationship coefficients, the
value of correlation coefficient was >0.69. The stron-
gest correlation was between ggpe; and gspey (r = 0.97).
Further, all correlations between a,jge, and genomic
relationships were of similar strength (0.75-0.76),
whereas those between asq., and the genomic relation-
ships showed a wider range (0.69-0.75; Table 5). The
coefficients of regression from genomic relationship
coefficients on ajpge, were all close to 1. They were
highest for ggpg, and ggpgs, and somewhat lower for
a3cen and genp (Figure 1).

Mate Allocation

Using Bull50. In scenario MaxNTM, the NTM
level improved compared with scenario Random (Table
6), but the genetic relationship did not decrease. In-
cluding the cost of the known recessive genetic defects
when optimizing mating strategies avoided at-risk mat-
ings (mating of 2 animals carrying the same recessive
genetic defect). In 3Gen, Allgen, GSNP, GSEGI, and
GSEG4, all genetic relationships were decreased com-
pared with Random and MaxNTM. Including pedigree

Journal of Dairy Science Vol. 106 No. 5, 2023

VanRaden (2008), gspci (gsecs) = genomic segment-based relationship
according to de Cara et al. (2013) with a minimum segment length of
1 (4) cM.

relationships in the economic score decreased genomic
relationships compared with Random and MaxNTM,
but they were further decreased when using a genomic
relationship.

The number of bulls used in the scenarios considering
genomic relationships was generally higher (49 to 50)
than in the scenarios considering pedigree relationships
(32 to 36) and the difference was even larger when
allowing 10% females per bull. Furthermore, fewer
bulls were used for the maximum number of permit-
ted inseminations considering genomic relationships
compared with scenarios considering pedigree relation-
ships with the same constraints. We observed a lower
percentage of polled offspring when more bulls were
used; for example, 15.7% in scenario 3Gen compared
with 7.5% in GSEGA4.

Including an extra economic value for the polledness
trait in the economic score used for mating allocations
increased the expected percentage of polled offspring
in the next generation (Table 7). For example, when
using a constraint of 5% females per bull and herd,
the expected percentage of polled offspring increased
from 9.7% in GSNP to 17.0% in GSNPPolled€100. In
general, the other mating parameters were minimally
affected when adding economic value to the polledness
trait, with the same constraints. However, when using
a constraint of 10% females per bull, we observed a
decline in the expected percentage of 3-CN (A2A2) off-
spring: 66.4% in GSNPPolled€0 and 62.2% in GSNP-
Polled€100.

Including an economic value for 3-CN (A2A2) in the
economic score used for mating allocations increased
the expected percentage of offspring homozygous for
B-CN (A2A2), with a minor effect on the average NTM
level and genetic relationships (Table 8). The highest
percentage of offspring homozygous for 3-CN (A2A2)
was observed in Beta-C€100 (75.0%) with a constraint
of 10% females per herd and bull. We observed a de-
cline in the expected percentage of polled offspring
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when adding economic value to 3-CN (A2A2) in the
economic score.

Adding economic value to both the polledness trait
and 3-CN (A2A2) in the economic score used for mat-
ing allocations increased the expected number of polled
offspring and offspring homozygous for 3-CN (A2A2)
compared with GSNPPolled€0 (Table 9). Using both
constraints of 5% and 10% females per herd and bull,
a simultaneous increase in the 2 traits occurred as the
economic value increased.

Using BullPolled25. When 25 polled bulls (21 Pp
bulls, 4 PP bulls) were available for mating allocations,
it was possible to further increase the expected percent-
age of polled offspring (Table 10). For example, when
using BullPolled25 and a constraint of 5% females per
herd and bull, the expected percentage of polled off-
spring was 60.1% in GSNPPolled100€, compared with
17.0% using Bull50. Considering the same example,
the average NTM level was 20.2 using BullPolled25
compared with 24.1 using Bull50. The average genetic
relationships using BullPolled25 were slightly higher
than those using Bull50 with the same constraints and
economic scores. The expected percentage of offspring
homozygous for 3-CN (A2A2) was lower and the pre-
dicted HH1 carrier frequency was higher, for BullPo-
lled25 compared with Bull50.

Association Between Monogenic Traits

Among the 24,333 mated females, polled females (Pp
and PP) were less likely to be homozygous for 3-CN
(A2A2) (or A2A2 females were less likely to carry the
polled allele; Figure 2). For example, 58% of the horned
females but only 44% of the heterozygous polled (Pp)
females were homozygous for 3-CN (A2A2). The chi-
squared test showed a significant unfavorable associa-
tion between polled and 3-CN genotype (P < 0.0001) in
the data. Polled females were also more likely to be HH1
carriers (or HHI carriers were more likely to be polled).
For example, 23% of the heterozygous polled females
were carriers of HH1, whereas only 3% of the horned
animals were carriers (Figure 3). The chi-squared test
showed a significant unfavorable association between
polledness and HH1 genotype (P < 0.0001) in the study
data. We observed no association between polledness
and HH3 genotype (results not shown).

DISCUSSION

We explored mating allocations in Holstein dairy
cattle, taking into account genomic information. The
results showed that it was possible to reduce genetic re-
lationships and eliminate expression of genetic defects
with minimal effect on the genetic level, as we found
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previously in a study on Red Dairy Cattle (Bengts-
son et al., 2022). The results also showed that it was
possible to increase the percentage of polled offspring
substantially in one generation when competitive bulls
were available, without any significant negative effect
on other comparison criteria. It was also possible to
increase the number of homozygous 3-CN (A2A2) off-
spring without any negative effect on other comparison
criteria. Using only semen from polled bulls, which might
be necessary if dehorning is banned, had a substantial
impact at the genetic level. We also found that animals
in this study carrying the polled allele were less likely
to be homozygous for 3-CN (A2A2) and more likely to
be carriers of the genetic defect HH1. Hence, adding
economic value to a monogenic trait in the economic
score used for mating allocations sometimes negatively
affected another monogenetic trait. Therefore, it may
be necessary to monitor comparison criteria, as used in
this study, in a modern genomic mating program.

Breeding for the Polledness Trait

Polled calves can easily be achieved by mating all
females to homozygous (PP) bulls. However, no ho-
mozygous polled bulls were available in Bull50. Other
authors have highlighted the absence of competitive
homozygous polled bulls (Spurlock et al., 2014; Mueller
et al., 2019). The reason for the difference in genetic
level is not clear. Other authors have hypothesized that
it could be due to lack of selection emphasis on produc-
tion traits of polled bulls. Alternatively, it could be
due to pleiotropic effects of chromosomal segments, or
genes linked to the polled locus could contribute to a
poorer genetic level for production traits (Spurlock et
al., 2014). At the population level, it has been shown to
take somewhere between 10 and 25 generations to get
most bulls homozygous polled, from a starting allele
frequency of 0.03 (Scheper et al., 2016), which is be-
tween the polled allele frequency of the mated females
and bulls in this study. The large difference in number
of generations required depends on many factors, in-
cluding available tools such as level of genotyping and
the goal of genetic gain and inbreeding. Hence, 100%
homozygous (PP) bulls cannot be expected in the DFS
Holstein population in the near future.

In this study, the economic value for the polledness
trait had to be higher than €50 before we observed a
fundamental change in the expected number of polled
offspring (Table 7). We observed a lower percentage
of polled offspring when more bulls were used; for ex-
ample, 15.7% in 3Gen compared with 7.5% in GSEG4.
This was because heterozygous polled bulls were more
commonly ranked in the top half of the Bull50 data set
than in the bottom half. The high ranking of hetero-
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zygous polled bulls on the NTM scale was surprising
compared with the findings of Spurlock et al. (2014)
and Mueller et al. (2019), where polled bulls were not
competitive on net merit. We believe that the high rank-
ing of heterozygous polled bulls is mainly a coincidence.
However, it sets the Nordic Holstein in a good position
to spread the polled allele without compromising on
genetic level. When using BullPolled25, the frequency
of polled offspring further increased to 60.9% in GSNP-
polled€100, using a constraint of 10% females per herd
and bull. However, the NTM level was lower using Bull-
Polled25 compared with using Bull50. We also observed
a negative effect on the number of offspring homozy-
gous for 3-CN (A2A2) and more carriers of the genetic
defect HH1 in the next generation. Hence, the benefit
of having more polled animals should be weighed care-
fully against the negative effect that this might have on
other comparison criteria.

Some of the homozygous polled bulls in BullPolled25
were not used to their maximum allowed usage, mainly
because their genetic level was too low (Table 10). For
example, using a constraint of 10% females per herd
and bull, the number of polled offspring did not in-
crease compared with using the 5% females per herd
bull constraint, even if the homozygous polled bulls
were allowed to be used more. Hence, the highest eco-
nomic value for polledness (€100) considered in this
study was not enough for the homozygous polled bulls
to be used to their maximum allowed usage.

Using BullPolled25, the predicted number of carri-
ers of the genetic defect HH1 increased substantially
in the next generation compared with the number of
HH1 carriers among the mated females (Table 10).
Hence, as we observed for the mated females (Figure
3), the top polled bulls on the NTM scale seemed more
likely to be HH1 carriers. We believe it is unlikely that
only polled bulls would be used for the whole Nordic
Holstein population; thus, the increase in the number
of HH1 carriers would be smaller in practice. Breeding
companies could also limit the usage of polled carriers
of HH1, for example, by stopping selling polled carriers
of HH1 after fewer doses than usual. Despite the higher
percentage of bulls carrying HH1, at-risk mating could
be avoided. We argue that these scenarios show the
importance of monitoring genetic defects at the popula-
tion level because, even if at-risk matings were avoided,
there could be a risk of genetic defects increasing in
frequency.

Breeding for the B-Casein Trait

It was possible to increase the percentage of offspring
homozygous for 3-CN (A2A2) with a minor effect on
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the average NTM level and genetic relationships (Table
8). The A2 allele has been associated with a positive
effect on milk yield traits (Freyer et al., 1999). Olen-
ski et al. (2010) found a positive effect on milk and
protein yield, but a negative effect on fat percentage.
Our results confirm that the A2A2 bulls were at a com-
petitive NTM level. The highest expected percentage of
offspring homozygous for 3-CN (A2A2) was observed
in Beta-C€100 (75.0%), achieved with 10% females per
herd and bull constraint, compared with 61.2% in the
Random, 3-CN, and Polledness scenarios. This differ-
ence was because homozygous animals are required to
achieve the desired milk type for B-CN, whereas only
one polled allele is needed to achieve the preferred phe-
notype for polledness. Hence, achieving 100% desired
milk type for 3-CN in one generation by only using
3-CN (A2A2) bulls is impossible if the A1 allele is still
segregating, as in the Nordic Holstein female popula-
tion.

Breeding for Both Polledness and B-Casein

The expected number of polled offspring declined
when adding value to 3-CN (A2A2) in the economic
score. Hence, bulls that were A2A2 were less likely to
carry the polled allele (or polled bulls were less likely to
be A2A2). This was also the case for the mated females
(Figure 2). To our knowledge, no other study has inves-
tigated this. However, when giving both polledness and
3-CN an economic value in the economic score, it was
possible to increase the number of polled offspring and
offspring homozygous for 3-CN (A2A2) simultaneously,
with little effect on NTM (Table 9).

Other Mating Studies

A few recent studies have used linear programming
for genomic mating allocation (Carthy et al., 2019;
Bérodier et al., 2021; Bengtsson et al., 2022). Carthy
et al. (2019) only included genetic level and a genetic
relationship in their economic score, whereas Béro-
dier et al. (2021) and Bengtsson et al. (2022) used an
economic score similar to our scenarios 3Gen, Allgen,
GSNP, GSEGI, and GSEG4. Bérodier et al. (2021)
found that linear programming was better than random
and sequential mating in reducing the number of re-
cessive genetic defects expressed. However, they could
not completely avoid the expression of recessive genetic
defects due to restrictions in the matings. For example,
only 8 bulls could be mated to heifers due to restrictions
for calving ease. Bengtsson et al. (2022) found that at-
risk mating could be avoided if the economic value for
recessive genetic defects were included in the economic
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Polledness and Beta-Casein genotype of females
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Figure 2. Polledness (pp = horned, Pp = heterozygous polled, PP = homozygous polled) and 3-CN genotype (A1A1, A1A2, and A2A2)
among the 24,333 mated Holstein females. A cow homozygous for the A2 allele produces so-called A2 milk.

score, which is similar to our findings in 3Gen, Allgen,
GSNP, GSEG1, and GSEG4 scenarios (Table 6). There
were also higher genetic defect carrier frequencies, up
to 14% among females and available bulls, in Bengtsson
et al. (2022). Hence, we argue that linear programming
can help avoid the expression of genetic defects unless
possible matings are restricted (only a few noncarrier
bulls are available and a carrier female has to be mated
with a carrier bull).

m Noncarrier (HH1)

Genetic Relationships

We found correlations between pedigree relationship
and genomic relationship estimates of >0.69 for asge,
and >0.75 for ajyge, which were within the range re-
ported in other studies (0.57-0.88; VanRaden et al.,
2011; Pryce et al., 2012; Carthy et al., 2019; Bengtsson
et al., 2022). Pedigree depth is important for a strong
correlation between pedigree and genomic relationships

Carrier (HH1)

Polledness and HH1 genotype of females

120
100
80
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40
20

97

Percent
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77

23

pp

Pp PP

Polled status

Figure 3. Polledness (pp = horned, Pp = heterozygous polled, PP = homozygous polled) and carrier status for the HH1 genotype among
the 24,333 mated Holstein females. A conceptus homozygous for the HH1 allele results in an early abortion.
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(Pryce et al., 2012). This was evident in our study,
where we found stronger correlations between ajngen
and genomic relationship than between asq., and ge-
nomic relationship. In our previous study in Red Dairy
Cattle (Bengtsson et al., 2022), we found stronger cor-
relations (>0.83) between pedigree and genomic rela-
tionship estimates than were found for Holstein in this
study. Pedigree depth was similar to that in Bengtsson
et al. (2022), so the difference is most likely linked to
some other factor(s). One possibility is that the pedi-
gree correctness is greater in Red Dairy Cattle than in
Holstein due to the less common exchange of bulls and
their pedigrees worldwide for Red Dairy Cattle, where
most animals are kept within the Nordic countries.

There are several arguments for using genomic esti-
mates of relationship and inbreeding instead of pedi-
gree. First, they do not rely on pedigree data, which
can be incorrect or have limited depth (Carthy et al.,
2019; Makanjuola et al., 2020). Our data were corrected
for possible mismatches by the Nordic Cattle Genetic
Evaluation, and hence we did not explore the benefit
that genomic information brings in the form of assign-
ing the right parents to an animal. Approximately 5%
of genotyped animals in Sweden have at least one par-
ent incorrectly assigned (Lina Baudin, expert in breed-
ing routines, Vaxa Sverige; personal communication,
March 5, 2021). Second, even if the pedigree data are
correct and complete, genomic relationships are still
more accurate because they consider the fact that the
genome is transmitted in chromosomes and not as infi-
nite unlinked loci (Hill and Weir, 2011). Third, the as-
sumption of 50% probability of an allele being selected
is not true in a population under selection (Forutan
et al., 2018). Hence, we argue that genomic estimates
should be prioritized in a modern mating program.

In general, genomic relationships were good at keeping
each other low when included in an economic score used
for mating allocations, and the largest benefit would be
to implement one of these instead of pedigree relation-
ships. Using a segment-based relationship, we aimed
to reduce the number of runs of homozygosity (ROH)
in the potential offspring. In a meta-analysis on the
effects of inbreeding in livestock, Doekes et al. (2021)
showed that genomic measures were a better indicator
of inbreeding depression than pedigree measures, but
found no differences between SNP-based measures and
ROH. However, those authors highlighted the limited
number of studies investigating ROH and inbreeding
depression and scale and arbitrary definitions of ROH.
In principle, ROH are enriched for deleterious alleles
that mainly cause inbreeding depression (Charlesworth
and Willis, 2009). Long ROH reflect new inbreeding
and are expected to contain more deleterious alleles
than short ROH, due to purging and recombination
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through the generations (Stoffel et al., 2021). Pryce
et al. (2014) found that long regions (>3 Mb) were
associated with inbreeding depression for milk yield
in Holstein and Jersey cattle. However, Zhang et al.
(2015) found that enrichment of deleterious variants
was significantly higher in short (<0.1 to 3 Mb) than
in long (>3 Mb) regions in the Holstein, Red Dairy
Cattle, and Jersey. Hence, the optimal segment length
for use in segment-based relationships remains to be
determined. However, we showed that gspa; and gspay
kept each other low when included in an economic
score, so the difference is most likely marginal for the
outcome of the mating allocations.

The number of bulls used in the scenarios considering
genomic relationships was, in general, higher than in
the scenarios considering pedigree relationships (Table
6). We believe that the primary explanation for this
is that genomic relationships can capture variations
not detected by the pedigree, which makes some of the
lower ranked bulls on the NTM scale being used more.

Economic Assumptions

The cost of dehorning in DFS is estimated to range
between €2.7 and €7.3 per animal, considering veteri-
nary costs, gas/electricity, and extra labor (Sgrensen et
al., 2018). Thompson et al. (2017) estimated the cost
of dehorning in the United States to be between $6 and
$25 per head. However, such calculations do not con-
sider the current situation, where dehorning is strictly
regulated in organic herds in the European Union. If
dehorning is completely banned, farmers may be more
or less forced to breed polled animals. Consequently, it
is difficult to place an economic value on the polledness
trait. We tackled that problem by testing a large range
of economic values of the polledness trait. In addition,
we used only polled bulls in BullPolled25, to represent
a situation where farmers are forced to breed polled
animals.

In some countries, demand for and the price of A2
milk have increased (Bisutti et al., 2022). For a farmer
aiming to produce A2 milk, a female not carrying 2 cop-
ies of the A2 allele might be substantially less valuable
than a female that does. The exact value for A2 milk
is difficult to quantify, and most likely varies between
farms. In DF'S, the demand for A2 milk is still limited,
to our knowledge. Hence, we believe it is uncommon
for farmers in DFS to breed to increase the percentage
of A2A2 offspring, and even more uncommon to breed
for 3-CN and more polled animals simultaneously.
However, our results for 3-CN and polledness illustrate
the interactions that can occur when breeding for 2
favorable monogenic traits. It is also likely that new
monogenic traits (e.g., k-casein) will be added to the
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SNP array (Chessa et al., 2020) or unknown monogenic
traits may be discovered. The methods used in this
study could also be adopted by other breeds or live-
stock species where other monogenic traits may be of
economic importance.

The defects we considered in mating allocations all
cause early abortions. Our value of €80 for an early
abortion was in line with Segelke et al. (2016), who
estimated a cost of €70, and Bérodier et al. (2021), who
estimated a cost of €75. There are differences between
countries in the cost of an insemination (Sgrensen et
al., 2018). The economic score could be made more
farm-specific by adjusting the calculation to match the
conditions on a specific farm.

We used a penalty of €25.4 per 1% increase in in-
breeding, which is in line with the US$25 (about €20)
used by Cole (2015) and US$24 used by Smith et al.
(1998). Pryce et al. (2012) used a range up to AU$20
(about €13), whereas Bengtsson et al. (2022) tested €10
to €40 and found that mating results were not sensitive
in that range. Hence, even if the cost for inbreeding in
Nordic Holstein is still unknown, €25.4 appears to be a
reasonable estimate.

Implementation Opportunities

We decided to use linear programming in this study
because it has been shown to outperform other mating
methods such as sequential solving (Sun et al., 2013;
Carthy et al., 2019). When data on genetic relation-
ships, NTM, and monogenic traits were available,
linear programming using a regular laptop maximized
the economic score within seconds for the herds stud-
ied. Hence, the method is suitable for implementation
in mating software that farmers or advisors can use.
Genotype phasing and extracting the genomic segments
was the most time-consuming calculation, and required
a more powerful computer. Further, estimating allele
frequencies and genotype phasing require information
from more than one farm. Therefore, we suggest that
this be done at a central level, like today’s breeding
value estimation, and that genetic relationships could
then be made available for downloading to the mating
program. In this study, ggyp was the fastest genomic
relationship to calculate and it was relatively good at
keeping the segment-based relationships low, making
it an efficient implementation alternative. However,
computation time aside, a segment-based relationship
should be considered, because it is most likely better in
prediction of inbreeding depression.

In this study, we optimized matings with a within-
herd focus and only looked one generation ahead.
Future studies should address how this type of mat-
ing allocation would affect a population over several
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generations. Matings optimal at the herd level are not
necessarily optimal for the population. Hence, the mat-
ing allocation suggested in this study should not be
seen as a replacement for optimum contribution selec-
tion for breeding organizations.

Breeders of other livestock species could also adopt
the mating scenarios presented here, but they would
need to be adopted to each specific situation. Further,
including genomic relationships and information about
genetic defects, as in this study, requires genotypes
from both females and males. An economic score could
also be developed for crossbred animals where the focus
is to maximize heterosis instead of minimizing parent
relationships. In this study, we did not consider ungeno-
typed animals. An option for ungenotyped animals
could be to impute their genotype, as done by Carthy
et al. (2019) using the method described by Gengler
et al. (2007). Sun et al. (2013) suggested use of the
H matrix in single-step genomic evaluation. However,
farmers who do not genotype their females might have
to avoid using carrier bulls to completely avoid at-risk
mating for known genetic defects.

CONCLUSIONS

We explored mating allocations at the herd level
with real data and found that it was possible to re-
duce genetic relationships and eliminate expression of
genetic defects with minimal effect on the genetic level
for NTM. It was also possible to increase the percent-
age of polled and B-CN homozygous (A2A2) offspring
substantially in one generation when competitive bulls
were available, without any significant negative effect
on other mating criteria. Compared with maximizing
only NTM index, the frequency of polled offspring
increased from 13.5 to 22.5%, and that of offspring
homozygous for 3-CN (A2A2) from 66.7 to 75.0%, in
one generation, without any substantial negative effect
on other comparison criteria. Using only semen from
polled bulls, which might be necessary if dehorning
is banned, considerably affected the genetic level. We
also found that animals in the data set carrying the
polled allele were less likely to be homozygous for 3-CN
(A2A2) and more likely to be carriers of the genetic de-
fect HH1. Based on this, we recommend monitoring of
the comparison criteria used in this study in a modern
genomic mating program.
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