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Abstract 

Genotyping of dairy cattle can benefit farmers by increasing the accuracy of 
breeding values and improving mating plans at herd level. Validation studies on 
breeding values in this thesis revealed that for the vast majority of traits analysed in 
Holstein, Jersey and Nordic Red Dairy Cattle, genomically enhanced breeding 
values for virgin heifers were able to predict cow performance significantly more 
accurately than parent average breeding values. Linear programming was used to 
optimise matings based on economic scores for Red Dairy Cattle and Holstein, 
considering genetic level, semen cost, recessive genetic defects, and genetic 
relationship. For Holstein, we also studied polledness and beta-casein genotype. The 
mating results for Red Dairy Cattle showed that it was possible to reduce genetic 
relatedness between parents and eliminate expression of genetic defects with 
minimal effect on genetic level. Similar results were achieved for Holstein cattle, in 
which it was also possible to increase the frequency of polled and beta-casein 
genotype A2A2 offspring without negatively impacting other comparison criteria. 
Evaluation of the long-term impact of genomic mating allocations in a simulation 
study revealed that planning matings with genomic information at herd level 
involves important risk management decisions, e.g. a trade-off between using fewer 
bulls to increase the polled allele frequency more quickly and using more bulls to 
reduce the rate of inbreeding and the variation in carrier frequency for genetic 
defects. 

Keywords: genomic relationship, pedigree relationship, mating program, linear 
programming, genomic breeding value, genotyping, dairy cow 
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Sammanfattning 

I denna avhandling undersökte vi fördelarna med genomisk analys av mjölkkor, i 
form av högre säkerhet för genomiska avelsvärden och förbättrad parningsplanering. 
Vi validerade avelsvärden och fann att genomiska avelsvärden förutsåg kvigornas 
framtida egenskaper betydligt bättre än härstamningsindex för majoriteten av 
analyserade egenskaper hos nordiska röda raser, holstein och jersey. Vi använde 
linjär programmering för att optimera parningar med hjälp av ekonomiska 
poängsummor för nordiska röda raser och holstein, och tog hänsyn till genetisk nivå, 
seminkostnad, recessiva genetiska defekter och genetiskt släktskap. För holstein 
undersökte vi även anlag för kullighet och Beta-kasein-genotyp. Parningsresultaten 
för nordiska röda raser visade att det var möjligt att minska genetiskt släktskap 
mellan föräldrar och eliminera uttryck av genetiska defekter med minimal påverkan 
på genetisk nivå. För holstein fann vi liknande resultat och det var också möjligt att 
öka andelen som var kulliga och hade önskad Beta-kasein-genotyp utan att negativt 
påverka andra jämförelsekriterier. Slutligen undersökte vi de långsiktiga effekterna 
av genomiska parningar genom en simuleringsstudie. Resultaten visade att parningar 
med genomisk information på besättningsnivå innebär viktiga riskhanteringsbeslut, 
såsom avvägningen mellan att använda färre tjurar för att snabbare öka frekvensen 
av hornlöshet och att använda fler tjurar för att minska inavelstakten och variationen 
i bärarfrekvens för genetiska defekter. 

Nyckelord: Genomiskt släktskap, släktskap baserat på stamtavla, parningsprogram, 
linjärprogrammering, genomiska avelsvärden, DNA-analys, mjölkko, 
valideringsstudie 
  

Användning av genomisk information vid 
parningsplanering av mjölkkor på 
besättningsnivå 



To dairy farmers around the world: this thesis is dedicated to you amazing 
and passionate people who produce nutritious foods for humanity. You 
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AI Artificial insemination  

BLUP Best linear unbiased prediction 

DFS Denmark, Finland and Sweden 

EBV Estimated breeding value 

GEBV Genomically enhanced breeding value 

NTM Nordic Total Merit index 

MOET Multiple ovulation and embryo transfer 

OCS Optimum contribution selection 

OPU Ovum pick-up 

PA Parent average breeding value 

QTL Quantitative trait locus/loci 

RDC Red Dairy Cattle 

ROH Runs of homozygosity 

SNP Single nucleotide polymorphism 

TMI Total merit index 
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Breeding work on dairy cattle has helped to improve the productivity and 
profitability of the dairy sector. In the past, such work focused on milk yield, 
but health and fertility have now become important breeding objectives 
(Oltenacu & Broom, 2010). Recent animal breeding research has also 
included traits related to sustainability and climate impact, e.g. efficiency, 
methane emissions and resilience (Løvendahl et al., 2018; Bengtsson et al., 
2022). 

A technological breakthrough that has transformed dairy cattle breeding 
in the past 15 years is the development of genomic selection (Meuwissen et 
al., 2001; Schaeffer, 2006). It offers many advantages for dairy cattle 
breeding, such as higher accuracy of breeding values for young animals 
(which enables shorter generation intervals) and enhanced use of 
reproductive technologies such as multiple ovulation and embryo transfer 
(MOET) and ovum pick-up (OPU) (Thomasen et al., 2016). Genomic 
selection makes it more cost-effective to breed for novel traits, as it reduces 
the need for large daughter groups from each bull (Henryon et al., 2014). 

Genotyping, which was once costly and used mainly for artificial 
insemination (AI) bulls or candidates, has now become more affordable and 
accessible for female selection and management. At present (2023 values), 
the average cost of genotyping per animal is around €20-25, making it a 
worthwhile investment for dairy farmers if the results are used actively 
(Hjortø et al., 2015; Newton & Berry, 2020). At herd level, genomic 
selection is often combined with sexed dairy bull semen and beef bull semen, 
where the best heifers are inseminated with dairy bull semen and older cows 
are inseminated with beef bull semen (Hjortø et al., 2015; Clasen et al., 
2021). Genomic data can also help with mating plans. For instance, single 
nucleotide polymorphisms (SNPs) can be used to estimate genomic 

1. Introduction 
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relationships and monogenic traits can be detected and considered in mating 
choices (Carthy et al., 2019; Bérodier et al., 2021). This thesis explored how 
to use genomic data effectively at herd level, particularly when planning 
matings. 
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Genomic selection is a method that predicts phenotypic traits based on many 
genetic markers that cover the whole genome, as all quantitative trait loci 
(QTL) are assumed to be in linkage disequilibrium with at least one marker. 
Genetic markers are DNA sequences that vary between individuals and can 
be detected by different technologies, such as SNP arrays or whole genome 
sequencing. The estimated marker effects are then used to calculate 
genomically enhanced breeding values (GEBV) for selection of candidates 
of interest (Meuwissen et al., 2001; Schaeffer, 2006; Rajora, 2019). In 
practice, this is achieved by first estimating the combined genetic effects for 
each individual of a reference population and then using the information 
obtained to infer GEBV for the selection candidates (Figure 1).  

By enabling higher breeding value accuracies for young animals, 
genomic selection makes it possible to shorten the generation interval. Dairy 
cattle breeding programmes have widely adopted genomic selection since it 
was first implemented in 2008 (Hayes et al., 2009). Compared with progeny 
testing schemes in dairy cattle, genomic selection has been shown to increase 
the annual genetic gain by up to around 100%, mainly due to shorter 
generation interval (Schaeffer, 2006; Hayes et al., 2009). It also enhances 
use of reproductive technologies, such as MOET and OPU (Thomasen et al., 
2016).  

 

2. Background – Dairy cattle breeding in the 
genomic era 
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Figure 1. Illustration of the concept of genomic selection, which involves a reference 
population with both genotype and phenotype data and a pool of selection candidates 
with genotype data. Information on breeding values (BV) is used to choose parents from 
the selection candidate pool. 

Genomic evaluation is a large research field within animal breeding that aims 
to improve the accuracy of GEBV while overcoming computational and bias 
problems (e.g. Legarra et al., 2009; Christensen & Lund, 2010; Misztal et 
al., 2020). Different methods have been developed to combine genomic 
information with pedigree data and phenotypes, often classified into multi-
step and single-step approaches. In multi-step approaches, SNP effects are 
estimated based on phenotypes or de-regressed proofs. GEBV are then 
composed of an index with parent average, direct genomic value and a 
deduction of parent average to eliminate double counting. Single-step 
methods combine genomic and pedigree relationships to automatically create 
an index with all sources of information (Misztal et al., 2020). 

Analysis of SNP marker data for dairy cattle has enabled new discoveries 
on the functional role of single nucleotide variations. One of these 
discoveries is the occurrence of missing genotypes within populations. This 
suggests that, if absent, a certain haplotype (which may comprise several 
adjacent SNPs) is a recessive deleterious (lethal) allele. Such alleles have 
previously been difficult to detect, except as reduced fertility of a specific 
bull or daughter group (because the conceptus often dies early in utero). 
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Reducing the chance of producing offspring that are homozygous for 
recessive genetic defects is beneficial for farm finances (Pryce et al., 2012) 
and also for animal health and welfare (EFFAB, 2020). Moreover, SNP 
arrays can include desirable monogenic traits such as polledness. Cattle 
dehorning has been common practice for many years and is done for various 
reasons, such as preventing injury to other cattle and increasing safety for 
animal handlers. However, dehorning has been proven to cause changes in 
animal behaviour, neuroendocrine responses and physiology, which may 
indicate that it is a stressful and painful procedure (Stock et al., 2013). Since 
2022, organic farms in the European Union need to obtain a permit if they 
want to dehorn their cattle (EU Commission Regulation No. 889/2008; EU 
(European Union), 2008). Another example of a monogenic trait is beta-
casein variant. Casein represents about 80% of bovine milk proteins, with 
beta-casein comprising around 35% of casein protein (Indyk et al., 2021). 
The most widespread variants of beta-casein in bovine milk are A1 and A2. 
Animals that are homozygous for the A2 allele produce so-called A2 milk, 
which is often advertised as a healthier alternative than regular cow milk, 
although the human health advantages of drinking A2 milk are still under 
debate (Summer et al., 2020). Despite this lack of confirmed benefits, some 
countries are seeking to increase consumption of A2 milk and some dairies 
pay extra for A2 milk (Bisutti et al., 2022). 

Use of SNP markers also offers new opportunities for measuring and 
managing inbreeding at genomic level (VanRaden, 2008; de Cara et al., 
2013). There are two main types of genomic measures: SNP-based measures 
(e.g. VanRaden, 2008) and runs of homozygosity (ROH) (e.g. Purfield et al., 
2012). Inbreeding leads to an increase in autozygosity throughout the 
genome in the form of ROH. In a meta-analysis on the effects of inbreeding 
in livestock, Doekes et al. (2021) concluded that genomic measures are better 
than pedigree measures for indicating inbreeding depression, but  did not find 
any difference between SNP-based measures and ROH. However, those 
authors highlighted the limited number of studies investigating ROH and 
inbreeding depression, and the arbitrary definitions of ROH. In principle, 
ROH would contribute to inbreeding depression if they contain recessive 
deleterious alleles (Charlesworth & Willis, 2009). Long ROH reflect new 
inbreeding and are expected to contain more deleterious alleles than short 
ROH, due to purging and recombination through the generations (Stoffel et 
al., 2021). 
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2.1 Mating plans 
Selection and mating are two key aspects of animal breeding that influence 
genetic improvement and variation in populations (Jansen & Wilton, 1985; 
Weigel & Lin, 2000). Non-random mating has most likely been around in 
animal breeding for as long as selection. Proper mating plans can help 
breeders control inbreeding, which can be managed at two levels: (i) 
population level, where the inbreeding rate can be limited to a desired level 
while maximising the genetic gain by optimising the long-term contributions 
of a selected number of breeding animals, and (ii) individual level, where 
large inbreeding coefficients in offspring can be avoided to reduce the impact 
of inbreeding depression (Pryce et al., 2012; Liu et al., 2017). Farmers have 
previously tried to control inbreeding by avoiding matings of genetically 
related animals. However, as relationships within the breed increase, it 
becomes difficult to avoid such matings without the aid of a computer. 
Hence, mating programmes have become an important support tool for 
livestock breeders, helping them to identify the best parental matings to 
maximise genetic level and avoid mating between closely related 
individuals, thus preventing excessive inbreeding (Carthy et al., 2019; 
Bérodier et al., 2021). Various methods for calculation of genomic 
relationships have been proposed, including SNP-by-SNP relationships as 
described by e.g. VanRaden (2008). Further, methods using shared genomic 
segments, as described by e.g. de Cara et al. (2013), aim to reduce the 
number of ROH in the offspring. 

The new genetic possibilities require updated methods that combine 
relevant information based on their economic value when setting up mating 
plans. Several studies have created economic scoring systems to rank each 
potential mating (Pryce et al., 2012; Carthy et al., 2019; Bérodier et al., 
2021). The economic score often includes genetic level, expected inbreeding, 
the probability of conceiving an offspring homozygous for a genetic defect 
and semen price (Bérodier et al., 2021). The economic score is flexible and 
can be adjusted to match economic conditions on a specific farm, such as a 
price premium for A2 milk and/or polled animals. Using linear programming 
to maximise the mean economic score of every herd, subject to necessary 
constraints, is a fast and effective method (Carthy et al., 2019; Bérodier et 
al., 2021). Linear programming has also been shown to outperform other 
mating methods, such as sequential mate allocation (Sun et al., 2013; Carthy 
et al., 2019; Bérodier et al., 2021). 
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2.2 The net benefit of genotyping 
Besides using the genomic information in mating plans, genotyping at herd 
level can provide several other benefits for dairy farmers. For example, it can 
help them select the best females for breeding and replacement or identify 
females for embryo transfer or in vitro fertilisation (Newton & Berry, 2020). 
The net benefit of genotyping females at herd level depends on many factors, 
such as genotyping price, the accuracy difference between parent average 
breeding values (PA) and GEBV, the proportion of females kept as 
replacement, parentage errors, age when first progeny is born, the standard 
deviation of the breeding goal, the value of better mating advice through 
genomic-assisted mating plans, and the value of identifying elite females and 
combining genotyping with state-of-the-art reproductive technologies (e.g. 
MOET, OPU and sexed semen) (Calus et al., 2015; Hjortø et al., 2015; 
Newton & Berry, 2020). Hence, estimating the overall value of genotyping 
is challenging because it is influenced by multiple factors that may vary 
depending on country, region and herd. Several studies have tried to quantify 
the net benefit of genotyping candidate females for replacement using 
different methods and assumptions (Calus et al., 2015; Hjortø et al., 2015; 
Newton & Berry, 2020). Hjortø et al. (2015) found that in Denmark, Finland 
and Sweden (DFS), genomic testing was profitable in most cases at a 
genotyping price of €30 when combined with sexed semen and beef semen. 
The price of genotyping varies slightly between the Nordic countries and is 
currently around €25 in Sweden (Växa) and around €20 in Denmark 
(VikingDenmark). 

2.3 Validation of genomically enhanced breeding values 
To increase confidence in genomic technology among farmers, a clear 
illustration of the validity of the relationship between genomic predictions 
and future phenotypes is needed (Pryce et al., 2012). GEBV can be validated 
in different ways. One way is cross-validation, which involves dividing the 
available dataset into validation and training sets. By masking observations 
of all individuals in the validation set and predicting the observations or 
estimated breeding value (EBV) with a model based on individuals in the 
training set only, the correlation between masked phenotypes or EBV and 
predicted values for the validation individuals can be estimated. This 
correlation then reflects the accuracy of prediction (de Roos et al., 2009). A 
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disadvantage of validating GEBV against conventional EBV is that training 
and validation sets are rarely strictly independent (Su et al., 2010). Thus Yao 
et al. (2015) used genotypes and health data to predict future phenotypes, 
taking correlations between predicted values and phenotypes as 
measurements of accuracy. To illustrate the accuracy of GEBV compared 
with PA, Weigel et al. (2015) divided cows into quartiles based on their 
virgin heifer GEBV and sire predicted transmitting ability, and thereafter 
calculated actual cow performances for each quartile. 

2.4 Genotyping in the Nordic countries 
The establishment of the Nordic Cattle Genetic Evaluation in 2002 enabled 
greater cooperation between AI organisations in the Nordic countries. The 
differences between the Nordic countries were small at that time, according 
to a study on genotype × environment interactions by Kolmodin et al. (2002), 
and a joint breeding programme was established. Three breeds in the DFS 
countries have genomic breeding schemes: Red Dairy Cattle (RDC), 
Holstein and Jersey. Farmers in DFS quickly adopted the new technology 
and 75% of all inseminations in 2007 were from progeny-tested bulls, but by 
2017 this proportion had decreased to less than 5% (Hans Stålhammar, 
Emeritus/Senior Researcher, VikingGenetics, personal communication, June 
20, 2023). During the same period, the genetic improvement in the Nordic 
Total Merit (NTM) index per year in the two major breeds (RDC and 
Holstein) almost doubled (NAV, 2023). 

Almost all progeny-tested bulls in DFS were genotyped some years after 
the introduction of SNP genotyping. Genotyping of cows and virgin heifers 
in DFS started on a large scale in 2012 with the VikingGenetics genotyping 
project. Initially, the main objective was to include genotyped females in the 
reference population and thereby increase the accuracy of GEBV. This was 
especially important for RDC and Jersey, which had more limited reference 
populations based on bulls than the Holstein breed. In 2022, around 107,500 
females born in DFS were genomically tested (corresponding to 
approximately 20-25% of purebred born females), compared with just under 
25,000 females in 2014 (Ulrik Sander Nielsen, Senior Researcher, SEGES, 
personal communication June 20, 2023) (Figure 2).  
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Figure 2. Number of female Holstein, Nordic Red Dairy Cattle (RDC) and Jersey  
genotyped per year in Denmark, Finland and Sweden in the period 2014-2022. Source: 
Ulrik Sander Nielsen, Senior Researcher, SEGES, personal communication June 20, 
2023. 

2.5 Description of knowledge gaps 
In DFS, GEBV has not been validated on phenotypes with validation results 
published in scientific journals. This represents a knowledge gap in current 
research, as validating breeding values on phenotypes can help farmers 
understand how their animals’ breeding values work in practice, especially 
when the validation is based on their own farm records. This could increase 
confidence in genomic technology among farmers.  

Use of genomic relationships for matings is a novel research topic in DFS. 
Moreover, most international research to date has focused mainly on SNP-
by-SNP relationships (e.g. Bérodier et al., 2021; Carthy et al., 2019) and the 
effects of using a segment-based relationship are not well studied, especially 
for herd-level matings. 

At present, there are more than 20 monogenic traits available for mating 
programmes in DFS (A1 in Appendix 1), including recessive genetic defects, 
polledness and casein traits. However, these traits have only been included 
recently and farmers and advisors need guidance on how to handle them 
when information is available for both males and females. Trait data on 
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polledness and beta-casein status in females have been available since 2021 
in DFS, but few Nordic or international studies have investigated mating 
planning at herd level with both desired and undesired monogenic traits.  

In some studies using real data, genomic information and linear 
programming have been applied to mating programmes (Carthy et al., 2019; 
Bérodier et al., 2021). However, these studies have mainly focused on the 
current breeding population and the immediate offspring, while the long-
term consequences of these mating strategies could not be evaluated. Dairy 
cattle breeding is a long-term process with cumulative effects, and it is 
important to understand the consequences of different breeding strategies 
(Doublet et al., 2019).   
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The main aims of the work in this thesis were to compare the accuracy of 
genomically enhanced breeding values (GEBV) with parent average 
breeding values (PA) in prediction of cow performance and to provide 
guidance on how to best incorporate genomic information into mating 
programmes for Nordic dairy cattle. Specific objectives were: 
 
 To compare the ability of virgin heifer genomically enhanced 

breeding values and parent average breeding values to predict future 
cow performance (Paper I) 
 

 To evaluate the ability of different approaches for mating allocation 
in order to maximise expected genetic level, while limiting parent 
relatedness and minimising the probability of expression of genetic 
defects in the next generation (Paper II) 
 

 To assess the ability of different approaches for mating allocation 
that also consider favourable monogenic traits (polledness and beta-
casein) (Paper III) 
 

 To investigate the long-term impact of mating programmes using 
genomic information on genetic gain, genetic diversity and 
monogenic traits (Paper IV) 

 
 
  

3. Aims of the thesis 
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Approximately 85% of farms in DFS are enrolled in a national milk 
recording scheme. This enables validation of GEBV with phenotype data on 
a large scale. The aim in Paper I was to compare the ability of virgin heifer 
GEBV and PA in prediction of future cow performance.  

New genetic insights at single nucleotide level can be used in mating 
programmes. Single nucleotide polymorphism markers can give information 
about major genes and genetic defects and also offer the possibility to reduce 
genomic relationships between parents when making mating plans. The 
objective in Papers II and III was to investigate the ability of different 
approaches for mating allocation to maximise expected genetic level, 
limiting parent relatedness, while also considering monogenic traits. In both 
studies, all scenarios at herd level were investigated using real data and linear 
programming was used to optimise different economic scores within each 
herd. Paper II focused on RDC and evaluated the economic score for this 
breed, considering genetic level, semen cost, the economic impact of 
recessive genetic defects and five different measures of relationships (two 
pedigree-based and three genomic-based). Paper III focused on Holstein 
dairy cattle, with the economic score extended to also included polledness 
and beta-casein. In Paper IV, which was inspired by the work in Papers II 
and III, different scenarios were simulated and compared in order to 
investigate the long-term impact of mating programmes using genomic 
information and linear programming.  

 
 

4. Summary of Papers I-IV 
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4.1 Association of genomically enhanced and parent 
average breeding values with cow performance in 
Nordic Red Dairy Cattle (Paper I) 

4.1.1 Materials and methods 
The ability of virgin heifer GEBV and PA to predict future cow performance 
was assessed in Paper I. Twelve different traits in first parity were analysed, 
including production, conformation, fertility and other functional traits. 
Phenotype data were obtained from national milk recording schemes and 
breeding values from the Nordic Cattle Genetic Evaluation (NAV, 2019). 
Direct genomic breeding values were calculated using genomic best linear 
unbiased prediction (BLUP) and combined with traditional breeding values, 
using bivariate blending (Mäntysaari & Strandén, 2010; Taskinen et al., 
2013). The data covered 14,862 RDC, 17,145 Holstein and 7,330 Jersey 
genotyped virgin heifers born between 2013 and 2015 in DFS. Phenotypes 
adjusted for systematic environmental effects were used as measures of cow 
performance and were named according to the respective trait, e.g. cow 
adjusted milk yield was denoted MilkAdj. Correlations between breeding 
values and adjusted phenotypes were calculated using Statistical Analysis 
Software (SAS) version 9.4 (SAS Institute Inc., Cary, NC). A 95% 
confidence interval using Fisher’s Z transformation was applied to assess the 
significance of differences between correlations. The PROC RANKS 
procedure in SAS was used to rank cows into four quartiles across herds for 
GEBV or PA. 

4.1.2 Results and comments 
For RDC and Holstein, all correlations between breeding values and adjusted 
phenotypes were significantly stronger for GEBV than for PA (Table 1).  
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Table 1. Relative change1 (%) in correlation of genomically enhanced breeding values 
(GEBV) and of parent average breeding values (PA) with cow adjusted (Adj) phenotypes 
for Red Dairy Cattle (RDC), Holstein and Jersey, n/a = not applicable 

Traits RDC Holstein Jersey 

MilkAdj +63% +49% +59% 
FatAdj +46% +46% +60% 
ProteinAdj +52% +44% +63% 
SCSAdj +63% +65% +67% 
Clinical mastitisAdj +62% +38% +13%2 
IFLAdj3 +68% +64% +78% 
UdderAdj +42% +61% +71% 
Feet and legsAdj +73% +56% +32%2 
Calving easeAdj +77% +88% +37%2 
Claw healthAdj +74% +91% n/a 
General healthAdj +194% +94% n/a 
Survival 1-2Adj +71% +136% +11%2 

1 Correlation with GEBV − Correlation with PA
Correlation with PA

 x 100.  
2No significant difference between GEBV correlation and PA correlation (p<0.05).  
3Interval from first to last service, in days. 
 
For Jersey, GEBV correlations were significantly stronger for all traits 
except clinical mastitis, calving ease and survival 1-2. The correlations with 
adjusted phenotypes for the different traits were 42-194% higher for GEBV 
than for PA in RDC, 38-136% higher for GEBV than for PA in Holstein, and 
11-78% higher for GEBV than for PA in Jersey. However, it should be noted 
that the large relative percentage change between PA and GEBV for 
correlations was in many cases from initially low levels.  

Traits with low heritability, such as interval from first to last 
insemination, clinical mastitis, calving ease, claw health, and general health, 
gained relatively more from inclusion of genomic information than did 
highly heritable traits such as production. 

One of the traits for which the correlations increased the most, cow 
adjusted phenotype for interval from first to last service (IFLAdj) increased 
by over 64% for all three breeds when genomic information was included in 
the breeding values instead of PA. For Jersey, the correlation between 
breeding value and IFLAdj increased by 78% when genomic information was 
included. Some selected results for quartiles of cows ranked by their GEBV 
or PA across different herds are presented in Figure 3 and 4, which provide 
clear illustrations of the increased accuracy of GEBV compared with PA and 
the implications for milk yield or days between the first and last service.  
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Figure 3. Results for 14,710 Red Dairy Cattle: Cow adjusted (Adj) phenotype for milk 
yield between quartiles ranked on heifer fertility index, parent average breeding values 
(PA) or genomically enhanced breeding values (GEBV). 

 
Figure 4. Results for 16,833 Holstein cows: Cow adjusted (Adj) phenotype for interval 
from first to last service (IFLAdj) between quartiles ranked on heifer fertility index, parent 
average breeding values (PA) or genomically enhanced breeding values (GEBV). 
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The extracted virgin heifer GEBV and PA, estimated before on-farm 
information was recorded, reflected information available to farmers at the 
time of selection. The maximum age at which a breeding value for a heifer 
was taken was 14 months, to reflect the breeding values at first insemination 
for virgin heifers.  

Based on the results, farmers in DFS can have confidence in using 
genomic technology on their herds for selection decisions.  

4.2 Mating allocation in Nordic Red Dairy Cattle using 
genomic information (Paper II) 

4.2.1 Materials and methods 
In Paper II, different scenarios for mating allocations in Nordic Red Dairy 
Cattle using genomic information (Table 2) were compared. Linear 
programming was used to optimise different economic scores within each 
herd based on real data, considering genetic level, semen cost, the economic 
impact of recessive genetic defects and genetic relationships. In total, 9,841 
genotyped RDC females born in Denmark, Finland or Sweden in 2019 were 
selected for mating allocations.  

Two different pedigree relationship coefficients were used, one tracing 
the pedigree three generations back from the parents of the potential mating 
(a3Gen) and one based on all available pedigree information (aAllGen). Three 
different genomic relationship coefficients were used, one SNP-by-SNP 
genomic relationship and two based on shared genomic segments. The SNP-
by-SNP genomic relationship coefficient (gSNP) between animal i and j was 
calculated according to VanRaden (2008): 

                𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 =  
∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 2𝑝𝑝𝑖𝑖)×�𝑥𝑥𝑖𝑖𝑖𝑖 − 2𝑝𝑝𝑖𝑖� 𝑖𝑖

2∑ 𝑝𝑝𝑖𝑖 (1− 𝑖𝑖 𝑝𝑝𝑖𝑖)
                                      (eq. 1) 

where xim and xjm are the genotype scores of animal i and animal j at marker  
m, coded: 0 = homozygote, 1 = heterozygote, and 2 = alternative 
homozygote, and pm is the frequency of the alternative allele of marker m in 
the founder population.  

Because the founder population frequency was unknown, the allele 
frequency of all 149,943 genotyped RDC animals available in Paper II was 
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used, as is common practice in genomic evaluation (Wang et al., 2014). The 
software SNP1101 was used to calculate gSNP (Sargolzaei, 2014).  

The two genomic relationship coefficients based on shared genomic 
segments (𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖) were calculated following de Cara et al. (2013):     

                       𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 =  
∑ ∑  2

𝑎𝑎𝑖𝑖=1 ∑  2
𝑏𝑏𝑖𝑖=1 (𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖))  𝑆𝑆

2𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
                                       (eq. 2) 

where LSEGk is the length (in base pairs) of the kth shared segment measured 
over homolog a of animal i and homolog b of animal j, and LAUTO is the total 
length of the autosomes covered by the SNP in base pairs (bp). Two different 
LSEGk values were used: 1 centimorgan (cM) (gSEG1) and 4 cM (gSEG4), 
assuming 1 cM = 1,000,000 bp (Gautier et al., 2007).  

The lengths of segments were chosen to represent short and long segments, 
as done in other studies (Zhang et al., 2015; Forutan et al., 2018; Makanjuola 
et al., 2020). Phasing of genotypes was carried out in Beagle 4.1 with default 
settings (Browning & Browning, 2007), and segments of minimum desired 
length were extracted in RefineIBD (Browning & Browning, 2013). 

For each potential mating between female i and bull j, an economic score 
was calculated as done by Bérodier et al. (2021) and Pryce et al. (2012): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = �𝑆𝑆𝑁𝑁𝑁𝑁𝑖𝑖+ 𝑆𝑆𝑁𝑁𝑁𝑁𝑖𝑖 
2

+ λF𝑖𝑖𝑖𝑖 �  × prob (♀) −  ∑ p(aa)r 
nr
r=1 ×  v𝑟𝑟 − semen cost  (eq. 3) 

where NTMi and NTMj are the value of Nordic Total Merit units in Euros (€) 
for female i and bull j,  𝛌𝛌 is the economic consequence of a 1% increase in 
inbreeding, Fij is the pedigree or genomic based co-ancestry (Relationship/2), 
prob(♀) is the probability of producing a female conceptus, nr is the number 
of recessive genetic defects considered (A1 in Appendix 1), p(aa)r is the 
probability of expression of genetic defect r, vr is the economic cost 
associated with recessive genetic defect r, and semen cost is the average 
amount (€) spent on semen for a pregnancy.  

 
The value of 1 index unit of NTM was set at €24.8, based on the value per 
NTM unit and year (€9.2) and the average production lifetime (2.7 years) 
(Fikse & Kargo, 2020). Only sexed semen was considered and the 
probability of producing a female conceptus was assumed to be 0.9, which 
is the minimum expected sexing rate for most sexing technologies (Burnell, 
2019). The economic consequence of a 1% increase in inbreeding was set to 
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€24.8. The carrier frequencies considered for genetic defects are shown in 
Table 3 (for details, see Table A1 in Appendix 1). The cost of an early 
abortion (genetic defect at BTA12, PIRM/AH1, AH2) was assumed to be 
€80, based on the resulting longer calving interval (€30-40/month) and the 
cost of extra insemination(s) (€30). The cost of a later abortion or an early 
calf death was assumed to be €160 (genetic defect SMA, BH2, BTA23). 
Prices for sexed semen set by VikingGenetics in 2020 were used, where a 
semen dose for a bull with NTM of 30 or more cost €26, that for a bull with 
NTM of 25-30 cost €22.5, and that for a bull with NTM of 20-25 cost €19 
(Jakob Lykke Voergaard, product manager, VikingRed, VikingGenetics, 
personal communication, January 11, 2021). The semen price was multiplied 
by 1.8, which is the average number of inseminations needed for a pregnancy 
in RDC (Sørensen et al., 2018). 
Table 2. Description of the mating scenarios considered for Nordic Red Dairy Cattle in 
Paper II 

Scenario 

Economic score includes: 
Nordic Total 
Merit, NTM 

Relationship1 Genetic 
defect 
value 

MaxNTM Yes No No 
3Gen Yes a3Gen Yes 
AllGen Yes aAllGen Yes 
GSNP Yes gSNP Yes 
GSEG1 Yes gSEG1 Yes 
GSEG4 Yes gSEG4 Yes 

Random All possible combinations of 9,841 females 
and 50 bulls 

1a3Gen = pedigree relationships using three generations of ancestors, aAllGen = pedigree 
relationships using all available pedigree information, gSNP = genomic relationship calculated 
according to VanRaden (2008), gSEG1 (gSEG4) = genomic segment-based relationship 
according to de Cara et al. (2013) with a minimum segment length of 1 (4) centimorgan. 

 
Mate allocation was programmed in R version 3.6.3 (R Core Team, 2020). 
Linear programming optimisation was performed with the ‘Lp_solve’ 
package in R (Berkelaar and others, 2020). The mating R script was provided 
by Bérodier et al. (2021). The R script set constraints that were considered 
in the linear programming optimisation. The constraints used in Paper II 
were one mating per female and a threshold percentage for the maximum 
number of females per bull and herd, for which two different levels were 
evaluated (5% and 10%), following Bérodier et al. (2021). 
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Table 3. Descriptive statistics on the Nordic Red Dairy Cattle (RDC) females and bulls 
selected for mating allocations in Paper II 

Trait Females Dataset BullVG1  
Number of animals 9841 50 
Average Nordic Total Merit (NTM) 10.7 28.4 
Carriers of defect BTA12 (%) 14.7 12.0 
Carriers of defect BTA23 (%) 1.1 0.0 
Carriers of defect BH2 (%) 0.3 0.0 
Carriers of defect PIRM/AH1 (%) 1.6 0.0 
Carriers of defect AH2 (%) 1.2 0.0 
Carriers of defect SMA (%) 0.30 0.0 

1Fifty genotyped RDC bulls from the Nordic breeding cooperative VikingGenetics. 

4.2.2 Results and comments 
The mean value of the relationship coefficients between all possible 
combinations of females and males ranged from 0.009 to 0.188, and the 
standard deviation ranged from 0.042 to 0.047 (Table 4). The correlations 
between the genetic relationship coefficients were all 0.83 or higher. The 
strongest correlation was between aAllGen and a3Gen (r=0.99), and the second 
strongest was between gSEG1 and gSEG4 (r=0.98) (Table 5). There is a long 
tradition of pedigree recording in the Nordic countries, and the strong 
correlation found between pedigree and genomic relationships confirms the 
good documentation of dairy pedigrees in DFS. 
 

Table 4. Descriptive statistics on relationships (mean, standard deviation (SD), minimum 
value (Min) and maximum value (Max)) between all possible combinations of 9,841 
females and 50 bulls of Nordic Red Dairy Cattle analysed in Paper II 

Relationship1 Mean  SD Min  Max 
a3Gen 0.028 0.042 0 0.648 
aAllGen 0.066 0.042 0.003 0.667 
gSNP 0.009 0.047 -0.095 0.673 
gSEG1 0.188 0.046 0.038 0.789 
gSEG4 0.115 0.045 0.005 0.727 

1a3Gen = pedigree relationships using three generations of ancestors, aAllGen = pedigree 
relationships using all available pedigree information, gSNP = genomic relationship calculated 
according to VanRaden (2008), gSEG1 (gSEG4) = genomic segment-based relationship 
according to de Cara et al. (2013) with a minimum segment length of 1 (4) centimorgan. 



35 

Table 5. Correlations between the different relationship coefficients for all possible 
combinations of 9,841 females and 50 bulls of Nordic Red Dairy Cattle analysed in Paper 
II 

Relationship1 a3Gen aAllGen gSNP gSEG1 gSEG4 

a3Gen 1 0.99 0.88 0.83 0.87 

aAllGen  1 0.88 0.85 0.88 

gSNP   1 0.9 0.93 

gSEG1    1 0.98 
1a3Gen = pedigree relationships using three generations of ancestors, aAllGen = pedigree 
relationships using all available pedigree information, gSNP = genomic relationship calculated 
according to VanRaden (2008), gSEG1 (gSEG4) = genomic segment-based relationship 
according to de Cara et al. (2013) with a minimum segment length of 1 (4) centimorgan. 
 
It was possible to maximise economic score with limited impact on the 
average NTM level (Table 6 and 7). Including the cost of the known 
recessive genetic defect (at BTA12) when optimising mating strategies 
eliminated the risk of expression of that genetic defect, regardless of the 
genetic relationship used. In scenario MaxNTM, the NTM level improved 
compared with Random, but it resulted in higher average genetic relationship 
coefficients than Random and did not reduce the probability of expression of 
genetic defects.  
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Including a genomic relationship in the economic score kept the other 
genomic relationship averages at a low level. For example, with the 
constraint 5% females per bull and herd, including gSNP in the objective 
function (scenario GSNP) resulted in gSEG1 of 0.148, compared with 0.143 in 
scenario GSEG1 (Table 6). Using the pedigree relationships also reduced the 
genomic relationships compared with scenarios Random and MaxNTM, but 
not as much as using genomic relationships in the objective function. 
Considering the example with the constraint 5% females per bull and herd, 
and including gSNP in the objective function (scenario GSNP), the pedigree 
relationship scenarios resulted in gSEG1 of 0.167 for scenario 3Gen and 0.163 
for AllGen. There were only minor differences between the scenarios with 
genomic relationships in their ability to reduce pedigree relationships. 
Including pedigree relationships in the economic scores consistently reduced 
pedigree relationships more than genomic relationships. For example, all 
scenarios optimising genomic relationships resulted in aAllGen of 0.050, 
AllGen resulted in aAllGen of 0.043, and 3Gen resulted in aAllGen of 0.046 
(Table 6).  

The results obtained in Paper II also demonstrated the efficiency of linear 
programming as a method for optimising mating plans, as it maximised the 
economic score for all herds studied within seconds. 

4.3 Mating allocations in Holstein combining genomic 
information and linear programming optimisation at 
herd level (Paper III) 

4.3.1 Material and methods 
Paper III explored mating allocation in Holstein using genomic information 
for 24,333 Holstein females born in DFS. Linear programming was used to 
optimise economic scores within each herd in a similar way as in Paper II, 
considering genetic level, genetic relationship, semen cost and the economic 
impact of genetic defects and, for Holstein, also polledness and beta-casein. 
Two datasets of bulls were used: the top 50 genotyped bulls on the Nordic 
Total Merit scale, and the top 25 polled genotyped bulls on the Nordic Total 
Merit scale.  
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The five different genetic relationships were calculated in the same way 
as in Paper II. The carrier frequencies considered for genetic defects are 
shown in Table 8 (for details, see Table A1 in Appendix 1).  
Table 8. Descriptive statistics on the Holstein females and bulls selected for mating 
allocations in Paper III 

Trait 

Females 
289 

herds 
Dataset 
Bull50  

Dataset 
Bull25Polled 

Number of animals 24,333 50 25 
Average Nordic Total Merit (NTM) 12.10 33.93 27.17 
Carriers of defect HH1 (%) 3.45 2.00 16.00 
Carriers of defect HH3 (%) 3.62 4.00 0.00 
Carriers of defect HH4 (%) 1.31 0.00 0.00 
Carriers of defect HH6 (%) 0.30 0.00 0.00 
Carriers of defect HH7 (%) 0.29 0.00 0.00 
Carriers of defect Blad (%) 0.27 0.00 0.00 
Carriers of defect RP1 (%) 0.63 0.00 0.00 
Heterozygous polled (Pp) (%) 3.74 14.00 84.00 
Homozygous polled (PP) (%) 0.10 0.00 16.00 
Heterozygous Beta Casein (A1A2) (%) 37.11 30.00 44.00 
Homozygous Beta Casein (A2A2) (%) 57.12 66.00 48.00 

 
For each potential mating between female i and bull j, an economic score 
was calculated as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = �
𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 +  𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖  

2
+  λF𝑖𝑖𝑖𝑖  + p(BetaC) ×  v𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵  �  × prob (♀)

− 
 ∑ p(aa)r 

nr
r=1 ×  v𝑟𝑟 + p(P)  ×  v𝑆𝑆 − semen cost                                   (4) 

This is similar to the equation used in Paper II (eq. 3) except for p(BetaC), 
which is the probability of a homozygous offspring for beta-casein (A2A2), 
vP is the value of a homozygous offspring for beta-casein (A2A2), p(P) is the 
probability of a polled offspring and vP is the value of a polled offspring.  

 
An index unit of NTM is reported to be worth €25.4 over the lifetime of a 
Holstein female in DFS (Fikse & Kargo, 2020). In Paper III, the economic 
consequence of a 1% increase in inbreeding was set to €25.4. The cost of an 
early abortion (caused by defects: HH1, HH3, HH4, HH6, HH7) was 
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assumed to be €80, based on the resulting longer calving interval (€30-
40/month) and the cost of extra insemination(s) (€30) (Oskarsson & 
Engelbrekts, 2015; Sørensen et al., 2018). Bulls carrying genetic defects 
BLAD and RP1 are not allowed in the breeding programme at 
VikingGenetics, so no cost was estimated for these defects. Different 
economic values (€0, €10, €50 and €100) for polledness and beta-casein 
(A2A2) were tested (Table 9). 
Table 9. Description of the mating scenarios considered for Holstein cattle in Paper III 

 
 
 
Scenario 

Economic score includes: 
  
 
 

NTM 

 
 

Relation- 
ship 

 
Genetic  
defect  
value 

 
Polled  
value 
(€) 

Beta- 
casein  
value 
(€) 

MaxNTM Yes No No 0 0 
3Gen Yes a3Gen Yes 0 0 
AllGen Yes aAllGen Yes 0 0 
GSNP Yes gSNP Yes 0 0 
GSEG1 Yes gSEG1 Yes 0 0 
GSEG4 Yes gSEG4 Yes 0 0 
GSNPPolled10 Yes gSNP Yes 10 0 
GSNPPolled50 Yes gSNP Yes 50 0 
GSNPPolled100 Yes gSNP Yes 100 0 
GSNPBetaC10 Yes gSNP Yes 0 10 
GSNPBetaC50 Yes gSNP Yes 0 50 
GSNPBetaC100 Yes gSNP Yes 0 100 
GSNPPolledBetaC10 Yes gSNP Yes 10 10 
GSNPPolledBetaC50 Yes gSNP Yes 50 50 
GSNPPolledBetaC100 Yes gSNP Yes 100 100 
Random All possible combinations of females and bulls. 

 
Prices for sexed semen set by VikingGenetics in 2021 were used. Semen 
price depends on the bull’s NTM and polledness status. In 2021, a dose of 
semen from a horned bull with NTM >35, 33-34, 30-32 and <30 cost €26, 
€23, €20 and €17, respectively. Semen of polled bulls (homozygous or 
heterozygous for the polled allele) costs €3 more than semen of horned bulls 
with the same NTM (Hanna Driscoll, Product manager Holstein, 
VikingGenetics, personal communication January 19, 2022). 



41 

SAS version 9.4 (SAS Institute Inc., Cary, NC) and R version 3.6.3 (R 
Core Team, 2020) were used for statistical analysis. A chi-square test was 
conducted in SAS to test for associations between polledness genotype and 
HH1, HH3 or beta-casein genotype.  

4.3.2 Results and comments 
The results presented are for matings between the 24,333 females selected 
for matings and the dataset Bull50, unless otherwise specified.  

For all possible combinations of females and males, the mean value of the 
relationship coefficient ranged from 0.010 to 0.269, and the standard 
deviation ranged from 0.031 to 0.042 (Table 10). For all correlations between 
different genetic relationship coefficients, the value of the correlation 
coefficient was ≥0.69. The strongest correlation was between gSEG1 and gSEG4 
(r=0.97). Further, all correlations between aAllGen and genomic relationships 
were of similar strength (0.75-0.76), while those between a3gen and the 
genomic relationships showed a wider range of values (0.69-0.75) (Table 
11). Hence, the correlations between genomic and pedigree relationship were 
in general weaker that those obtained for RDC in Paper II. Pedigree depth is 
similar in both breeds, so the difference is most likely linked to some other 
factor/s. One possibility is that pedigree correctness is greater in RDC than 
in Holstein, due to the less common exchange of RDC bulls and their 
pedigrees worldwide, as most RDC animals are found within the Nordic 
countries. 
Table 10. Descriptive statistics on relationships (mean, standard deviation (SD), 
minimum value (Min) and maximum value (Max)) between all possible combinations of 
24,333 females and 50 bulls of the Holstein breed analysed in Paper III 

Relationship 
coefficient1 Mean  SD Min  Max 

a3Gen 0.015 0.031 0 0.545 
aAllGen 0.132 0.031 0.035 0.647 
gSNP 0.010 0.040 -0.106 0.576 
gSEG1 0.269 0.042 0.089 0.853 
gSEG4 0.181 0.041 0.039 0.763 

1a3Gen = pedigree relationships using three generations of ancestors, aAllGen = pedigree 
relationships using all available pedigree information, gSNP = genomic relationship calculated 
according to VanRaden (2008), gSEG1 (gSEG4) = genomic segment-based relationship 
according to de Cara et al. (2013) with a minimum segment length of 1 (4) centimorgan. 
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Table 11. Correlations between the different relationship coefficients for all possible 
combinations of 24,333 females and 50 bulls of the Holstein breed analysed in Paper III 

 Relationship 
Relationship1 a3Gen aAllGen gSNP gSEG1 gSEG4 
a3Gen 1 0.95 0.75 0.69 0.70 
aAllGen  1 0.76 0.75 0.76 
gSNP   1 0.88 0.87 
gSEG1    1 0.97 

1a3Gen = pedigree relationships using three generations of ancestors, aAllGen = pedigree 
relationships using all available pedigree information, gSNP = genomic relationship calculated 
according to VanRaden (2008), gSEG1 (gSEG4) = genomic segment-based relationship 
according to de Cara et al. (2013) with a minimum segment length of 1 (4) centimorgan. 

 
As found for RDC in Paper II, it was possible to reduce genetic relationships 
in Holstein cattle and eliminate expression of genetic defects with minimal 
effect on the genetic level. The results also showed that it was possible to 
increase the percentage of polled offspring substantially in one generation 
when competitive bulls were available, without any significant negative 
impact on other comparison criteria (Table 12 and 13). It was also possible 
to increase the number of homozygous beta-casein (A2A2) offspring without 
any negative impact on other comparison criteria (Table 14).  

Bulls carrying the polled allele were less likely to be homozygous for 
beta-casein (A2A2) and more likely to be carriers of the genetic defect HH1. 
Hence, adding economic value to a monogenic trait in the economic score 
used for mating allocations sometimes negatively impacted another 
monogenic trait. Among the 24,333 mated Holstein females, polled females 
(Pp and PP) were less likely to be homozygous for beta-casein (A2A2) (or 
A2A2 females were less likely to carry the polled allele). For example, 58% 
of the horned females, but only 44% of the heterozygous polled (Pp) females, 
were homozygous for beta-casein (A2A2). The chi-square test showed a 
strongly significant negative association between polled and beta-casein 
genotype (p<0.0001) in the data. Adding economic value to both the 
polledness trait and beta-casein (A2A2) in the economic score used for 
mating allocations increased the expected number of polled offspring and 
offspring homozygous for beta-casein (A2A2) compared with 
GSNPPolled€0 (Table 15).  
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Table 12. Results of four mating scenarios investigating extra economic value for the 
polledness trait, based on 24,333 Holstein females. Available bulls were 50 Holstein 
bulls marketed by VikingGenetics (Bull50). Maximum 5% females per bull and herd   

Comparison criterion 
GSNP 

Polled 
€0 

Polled 
€10 

Polled 
€50 

Polled 
€100 

Average Nordic Total Merit (NTM) 24.2 24.2 24.2 24.1 
Average aAllGen between parents 0.121 0.121 0.121 0.122 
Average gSNP between parents -0.040 -0.040 -0.040 -0.039 
At-risk matings (%) 0.00 0.00 0.00 0.00 
Percentage of polled offspring  9.7 10.3 13.2 17.0 
Percentage of homozygous A2A2 
offspring 61.0 60.9 60.8 60.8 

 

Table 13. Results of four mating scenarios investigating extra economic value for the 
polledness trait, based on 24,333 Holstein females. Available bulls were 50 Holstein 
bulls marketed by VikingGenetics (Bull50). Maximum 10% females per bull and herd   

Comparison criterion 
GSNP 

Polled 
€0 

Polled 
€10 

Polled 
€50 

Polled 
€100 

Average Nordic Total Merit (NTM) 25.2 25.2 25.2 25.0 
Average aAllGen between parents 0.121 0.121 0.121 0.122 
Average gSNP between parents -0.034 -0.034 -0.034 -0.034 
At-risk matings (%) 0.00 0.00 0.00 0.00 
Percentage of polled offspring  11.7 12.6 16.4 22.5 
Percentage of homozygous A2A2 
offspring 66.4 65.9 64.0 62.2 
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Table 14. Results of four mating scenarios investigating extra economic value for beta-
casein (A2A2), based on 24,333 Holstein females. Available bulls were 50 Holstein bulls 
marketed by VikingGenetics (Bull50). Maximum 10% females per bull and herd  

Comparison criterion 
GSNP 

BetaC 
€0 

BetaC 
€10 

BetaC 
€50 

BetaC 
€100 

Average Nordic Total Merit (NTM) 25.2 25.2 25.2 25.1 
Average aAllGen between parents 0.121 0.121 0.121 0.121 
Average gSNP between parents -0.034 -0.034 -0.034 -0.033 
At-risk matings (%) 0.00 0.00 0.00 0.00 
Percentage of polled offspring  11.7 11.2 9.3 8.0 
Percentage of homozygous A2A2 
offspring 66.4 68.2 72.8 75.0 

 

Table 15. Results of four mating scenarios investigating extra economic value for the 
polledness trait and beta-casein (A2A2), based on 24,333 Holstein females. Available 
bulls were 50 Holstein bulls marketed by VikingGenetics (Bull50). Maximum 10% 
females per bull and herd  

Comparison criterion 

GSNP 

Polled 
BetaC 

€0 

Polled 
BetaC 
€10 

Polled 
BetaC 
€50 

Polled 
BetaC 
€100 

Average Nordic Total Merit (NTM) 25.2 25.2 25.2 25.1 
Average aAllGen between parents 0.121 0.121 0.121 0.122 
Average gSNP between parents -0.034 -0.034 -0.033 -0.032 
At-risk matings (%) 0.00 0.00 0.00 0.00 
Percentage of polled offspring  11.7 12.2 14.1 18.5 
Percentage of homozygous A2A2 
offspring 66.4 67.7 70.4 71.8 

 
When 25 polled bulls (21 Pp bulls, four PP bulls) were available for mating 
allocations, it was possible to further increase the expected percentage of 
polled offspring (Table 16). For example, when using BullPolled25 and a 
constraint of 5% females per bull and herd, the expected percentage of polled 
offspring was 60.1% in GSNPPolled100€, compared with 17.0% using 
Bull50. Considering the same example, the average NTM level was 20.2 
using BullPolled25, compared with 24.1 using Bull50 (Table 12). The 
average genetic relationships using BullPolled25 were slightly higher than 
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using Bull50 with the same constraints and economic scores. The expected 
percentage of offspring homozygous for beta-casein (A2A2) was also lower. 
Hence, using only semen from polled bulls, which might be necessary if 
dehorning is banned, would be relatively costly.  

 
Table 16. Results of four mating scenarios investigating extra economic value for the 
polledness trait, based on 24,333 Holstein females. Available bulls were 25 polled 
Holstein bulls marketed by VikingGenetics (BullPolled25). Maximum 5% females per 
bull and herd  

Comparison criterion 
GSNP 

Polled 
€0 

Polled 
€10 

Polled 
€50 

Polled 
€100 

Average Nordic Total Merit (NTM) 20.2 20.2 20.2 20.2 
Average aAllGen between parents 0.121 0.121 0.121 0.121 
Average gSNP between parents -0.034 -0.034 -0.034 -0.034 
At-risk matings (%) 0.00 0.00 0.00 0.00 
Percentage of polled offspring  59.5 59.7 60.0 60.1 
Percentage of homozygous A2A2 
offspring 54.3 54.3 54.3 54.3 

4.4 Simulation of long-term impact of dairy cattle mating 
programmes using genomic information (Paper IV) 

4.4.1 Material and methods 
Paper IV examined the long-term impact of genomic mating allocations with 
stochastic simulation, where the matings followed a similar approach as used 
in Papers II and III. The economic scores included genetic level, a favourable 
monogenic trait (polledness), a recessive genetic defect and parent 
relationships. One unknown recessive genetic defect was also monitored. 
The AlphaSimR package version 1.3.4 (Gaynor et al., 2021) in R version 
4.1.3 (R Core Team, 2020) was used to simulate a closed population under 
selection with discrete generations. The genomes of the founder population 
were created with the MaCS coalescent simulator, which was run within the 
AlphaSimR package, using the “CATTLE” population history (MacLeod et 
al., 2013). The founder population was generated once and was the same for 
all scenarios and replicates. A total of 29 chromosomes with 6,000 
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segregating sites per chromosome were simulated. The breeding goal trait 
was constructed by adding an additive trait in AlphaSimR, which was 
assigned 4,000 QTLs per chromosome. The breeding goal had a mean of 0 
and a genetic standard deviation of 10. In addition, a SNP chip with 1,600 
SNP per chromosome was constructed in AlphasimR. 

Breeding animals were selected based on a breeding goal with accuracy 
of approximately 0.7. A population of 8,000 females across 40 herds was 
simulated, with 200 females in every generation selected for multiple 
ovulation and embryo transfer (MOET). Each donor produced 20 offspring 
(50:50 sex ratio). Of the 2,000 males produced via MOET, the 100 best were 
selected as sires of the next generation. Following MOET, the donors and 
the rest of the females were inseminated with sexed semen, and all offspring 
were assumed to be females. Thus, approximately 10,000 females were 
available for the next generation (sometimes less if one of the lethal genetic 
defects was expressed), with the top 8,000 females selected for breeding. 

The simulation spanned 30 generations, and each scenario was replicated 
30 times. For the first 20 generations, random matings (with the randCross 
function in AlphasimR) were performed among all selected animals. In the 
last 10 generations, matings with sexed semen were assigned based on an 
economic score that defined the scenario (see Table 17) and matings of the 
donors were still assigned at random.  

In generation 20, three SNP markers were selected to represent three 
monogenic traits: one known (assumed) lethal recessive genetic defect with 
an allele frequency of approximately 0.05 (range 0.04-0.06); one unknown 
lethal recessive genetic defect with an allele frequency of approximately 0.09 
(range 0.08-0.10), which served as a reference for risk management; and one 
dominant trait with an allele frequency of 0.12 (range 0.11-0.13), which 
represented polledness. It was assumed that conceptus/offspring 
homozygous for the recessive genetic defects died and thus they were 
excluded from breeding. 

The scenarios considered were similar to those in Papers II and III (Table 
17). Linear programming was used as in Papers II and III and the same 
constraints were applied, i.e. one mating per female and a threshold 
percentage for the maximum number of females per bull and herd of 5% or 
10%.  
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A difference from Papers II and III was that when calculating gSNP, the 
founder population’s allele frequency was used instead of the allele 
frequency of all genotyped animals. 

 
Table 17. Description of the mating scenarios considered in the simulation study in Paper 
IV 

 
 
 
Mating scenario 

Economic score includes: 

TMI1 
Relation- 

ship 
Genetic 
defect 
value 

Polled 
value 
(€) 

MaxTMI Yes No No 0 
Ped Yes aPed Yes 0 
GSNP Yes gSNP Yes 0 
PedPolled10 Yes aPed Yes 10 
PedPolled50 Yes aPed Yes 50 
PedPolled100 Yes aPed Yes 100 
GSNPPolled10 Yes gSNP Yes 10 
GSNPPolled50 Yes gSNP Yes 50 
GSNPPolled100 Yes gSNP Yes 100 

Random 
Matings were randomly assigned with 
equal number of offspring (females 1 

offspring and bulls 80 offspring) 
1Total merit index. 
 
In the last 10 generations of the simulation, the different scenarios were 
compared by (i) genetic gain in total merit index (TMI) per generation; (ii) 
rate of pedigree inbreeding; (iii) rate of genomic inbreeding per generation 
from the diagonal of the VanRaden relationship matrix (excess 
homozygosity relative to the base population); (iv) change in carrier 
frequency per generation of the known and unknown recessive alleles; (v) 
change in number/frequency of polled offspring per generation; (vi) number 
of affected conceptuses in the last 10 generations of the known and unknown 
genetic defects; (vii) number of bulls used per generation; and (viii) number 
of bulls used per generation up to the maximum number of doses allowed for 
the threshold level (5% and 10%) of females per bull and herd. 

4.4.2 Results and comments 
Inclusion of a genomic relationship in the economic score significantly 
reduced the rate of increase for both pedigree and genomic inbreeding 
compared with only maximising genetic level (MaxTMI), with a few 
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exceptions (Table 18-Table 21). Incorporating a pedigree relationship into 
the economic score slowed the rate of increase for both pedigree and genomic 
inbreeding compared with MaxTMI, although there were more exceptions 
regarding the level of significance. The scenario Random had lower rates of 
inbreeding and genetic gain than most other scenarios. The rates of pedigree 
inbreeding were similar when either genomic or pedigree relationship was 
included in the economic score, but using the genomic relationship led to a 
lower rate of genomic inbreeding (Table 21). The frequency of polled 
offspring increased on average per generation when the value of polledness 
was €50 or higher, as also found in Paper III, while it remained constant 
when the value was lower. The largest change in frequency of polled 
offspring per generation (0.037) occurred in one of the scenarios where the 
value of polled was €100 (GSNPPolled100) using 10% females per bull and 
herd (Table 21). The frequency of polled offspring increased faster over 
generations with the 10% females per bull and herd constraint compared with 
the 5% constraint. For example, in GSNPPolled100, the increase in 
frequency of polled offspring was 0.037 when allowing up to 10% females 
per bull and herd, compared with 0.028 when using the limitation of 5% 
females per bull and herd (Table 21). Hence most of the results in Paper IV 
were in line with those in Paper III. 

There was great variation in the different monogenic traits monitored 
across replicates and scenarios. In general, using fewer bulls resulted in 
greater variation across replicates regarding the monogenetic traits. The 
scenarios using 10% females per bull and herd showed the highest variation, 
and the scenario Random the lowest (Figure 5). For example, the variation 
was higher for 10% females per bull and herd (Figure 5), even though the 
mean frequency was similar in both sets (Table 19-21). The scenario with a 
limit of 5% females per bull was more similar to Random in terms of 
variation than the scenario with a limit of 10% females per bull. 
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The carrier frequency of both known and unknown recessive genetic defects 
decreased on average over generations in all scenarios analysed in Paper IV. 
The number of conceptuses affected by the known recessive genetic defect 
decreased when the cost of the genetic defect was included in the economic 
scores. Using pedigree relationship with a cost of the recessive genetic defect 
avoided almost all affected conceptuses in most scenarios and replicates. The 
risk of mating two carriers was slightly higher when genomic relationship 
was used instead of pedigree relationship with the cost of the recessive 
genetic defect (Table 19-Table 21). Mating of two carriers of the same 
genetic defect did not occur in Papers II and III.  
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Genomic selection has brought about a revolution in dairy cattle breeding in 
the past 15 years. Estimating the overall value of genotyping of females at 
herd level is challenging, because it is influenced by multiple factors that 
may vary depending on country, region and herd. Several studies have tried 
to quantify the net benefit of genotyping candidate females for replacement 
using different methods and assumptions (Calus et al., 2015; Weigel et al., 
2015; Newton & Berry, 2020). For DFS, Hjortø et al. (2015) showed that 
genomic testing was profitable in most cases with a genotyping price of 
around €30 when combined with sexed semen and beef semen. However, 
even though the price is lower now (around €20-25), far from all female 
calves are genotyped in DFS. In Paper I, the aim was to increase confidence 
in genomic breeding values by showing that they can predict future cow 
phenotypes better than parent average breeding values. An advantage of 
using phenotypes for validation of breeding values is that it makes it easy for 
farmers to understand how their animals’ breeding values work in practice, 
when validation is against their own farm records. The correlations with 
adjusted phenotypes were 38-136% higher for GEBV than for PA in Red 
Dairy Cattle, 42-194% higher for GEBV than for PA in Holstein and 11-78% 
higher for GEBV than for PA in Jersey. Hence, the conclusion from the work 
in Paper I was that farmers in DFS can have confidence in using genomic 
technology on their herds. A growing reference population enhances the 
accuracy of GEBV, thus most likely increasing the difference in accuracy 
between GEBV and PA since the study. Furthermore, the research field of 
genomic evaluation is constantly working to improve the accuracy of GEBV 
(Misztal et al., 2020). 

5. General discussion 
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5.1 Economic scores and linear programming 
Papers II-IV focused on how best to use genomic information when planning 
matings. A decision was made to use economic scoring systems to rank each 
potential mating, based on findings in previous studies (Carthy et al., 2019; 
Bérodier et al., 2021). The economic score is flexible and can be adjusted to 
match different economic conditions. It is also possible to include new 
information as it becomes available, e.g. on new monogenetic traits. For 
example, kappa-casein has been included in the SNP array since the analyses 
in Paper III. Specific breeding values could also be included in the economic 
scores, following e.g. the approach by Carthy et al. (2019), but this was not 
done in this thesis. An advantage of using an economic score over other 
methods, such as maximising genetic level with constraints on e.g. genetic 
relationships as evaluated by Bérodier et al. (2021), is that it avoids the risk 
of some females not being mated if the constraints are too stringent, or of 
obtaining a suboptimal solution concerning genetic relationships if the 
constraints are too relaxed.  

It was decided to use linear programming since it has been shown to 
outperform sequential mating methods, because it uses simultaneous rather 
than sequential solving to find the economically optimal matings for each 
herd (Sun et al., 2013; Carthy et al., 2019; Bérodier et al., 2021). It has also 
been shown to be faster than other mating methods such as sequential solving 
(Sun et al., 2013; Carthy et al., 2019). Therefore, the method is suitable for 
implementation in software that can assist farmers or advisors in mating 
decisions in real time, which was considered important in the work in this 
thesis. 

5.2 Including recessive genetic defects in the economic 
score 

The relatively high carrier frequency of the genetic defect at BTA12 in Red 
Dairy Cattle served as a good example of how the method would handle a 
recessive genetic defect with high carrier frequency (14.7% in females and 
12% in available bulls). An economic score including a penalty for mating 
two carriers effectively eliminated expression of genetic defects. It was more 
profitable to use the carrier bull on a non-carrier female than on a carrier 
female. Hence, the conclusion from the work in Paper II was that linear 
programming can help avoid expression of genetic defects unless the 
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possible matings are restricted, e.g. if only a few non-carrier bulls are 
available and therefore a carrier bull has to be mated with a carrier female. 
The same conclusion was drawn from the results for Holstein cattle obtained 
in Paper III. However, in Paper IV it was found that the risk of expression of 
the known recessive genetic defect increased slightly when the economic 
score included a genomic relationship instead of a pedigree relationship. This 
was mainly due to low genomic relationships that made it worthwhile to mate 
two carriers, which was not observed in the studies in Papers II and III. One 
possible explanation for the latter is that too few different situations were 
encountered in those studies, as the analyses in both only considered one or 
two different bull sets and only looked one generation ahead (with no 
replicates because those studies were based on real data). Most recessive 
genetic defects examined in this thesis caused early embryonic loss, which 
has lower economic consequences than other defects resulting in late-term 
abortions or defective or dead calves. More severe defects should be assigned 
a higher economic cost in the economic score. This would likely decrease 
the probability of expression of the defect even more, as mating two carriers 
would be more costly. The cost of €80 assumed in this thesis reduced the 
frequency of mating between two carriers to almost zero, so a slightly higher 
cost would most likely eliminate such matings. 

In the study by Bérodier et al. (2021), expression of recessive genetic 
defects could not be completely avoided when using linear programming and 
similar constraints as in this thesis, most likely due to more restricted bull 
usage in their study. For example, only eight bulls could be mated to heifers 
due to restriction of calving ease, while restrictions on availability of semen 
were also considered (Bérodier et al., 2021). An earlier study by Cole (2015) 
used sequential solving rather than linear programming and found that more 
conceptuses were affected by recessive genetic defects when using an 
economic score (including pedigree relationship and penalty for genetic 
defects) compared with random mating. That study also revealed a downside 
of sequential solving which, unlike linear programming, cannot account for 
the fact that the value of one mating is affected by other matings, which is 
the case with a limited amount of permitted matings per bull and herd. For 
example, linear programming accounts for the fact that a bull carrying a 
recessive genetic defect brings the most value (for most cases) when it is 
mated to a non-carrier female if there is a maximum number of 
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inseminations. Hence, while linear programming can help avoid expression 
of genetic defects, this is probably not possible with sequential solving.  

5.3 Breeding for polledness and beta-casein 
Papers III and IV focused on polledness, a trait which is high on the agenda 
within Europe because organic farms in the EU now have to apply for a 
permit if they want to dehorn cattle (EU Commission Regulation No. 
889/2008). In the future, dehorning might be regulated further or even 
banned, and not only in organic herds. The new EU regulation has increased 
the demand for semen from bulls carrying the polled allele, and several 
breeding companies have started marketing polled bulls more heavily 
(Hanna Driscoll, Product manager Holstein, VikingGenetics, personal 
communication May 24, 2023). The results in Papers III and IV showed that 
farmers can achieve relatively rapid changes in the polled allele frequencies 
with limited effect on genetic gain and rate of inbreeding. However, Paper 
III also showed that in Holstein, using only polled bulls would be relatively 
costly in terms of lower genetic level and higher inbreeding. Very few of the 
top ranked bulls in Holstein are homozygous for the polled allele. Moreover, 
it was found in Paper IV that the initial rapid increase in the frequency of 
polled animals observed on introducing an economic score with extra value 
for polledness was not always maintained in the following generations. One 
possible explanation is that polled animals are more related and that mating 
optimisation will prefer horned bulls in the next generations. Hence, 
breeding for a monogenic trait, such as polledness, requires a long-term 
perspective (as does animal breeding in general). This means that farmers 
and breeding companies face a difficult task of adjusting to new rules that 
vary in a relatively short time, whereas the time horizon of animal breeding 
spans multiple generations, which often equates to decades in cattle 
breeding. 

In Paper III, beta-casein genotype of the animals was also studied, since 
despite the lack of confirmed benefits, some countries are seeking to increase 
consumption of A2 milk and some dairies pay extra for A2 milk (Bisutti et 
al., 2022). It is still uncommon for farmers in DFS to breed to increase the 
percentage of A2A2 offspring, and even more uncommon to breed for beta-
casein and polledness simultaneously. The results obtained in Paper III for 
beta-casein and polledness illustrate the interactions that can occur when 
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breeding for two favourable monogenic traits, since animals carrying the 
polled allele were found to be less likely to be homozygous for beta-casein 
(A2A2). It is likely that breeding for multiple monogenic traits will become 
more common as knowledge about the cattle genome increases, and Paper 
III provides a useful example of potential challenges that may arise. In 
general, it is advisable to monitor available monogenic traits at herd and 
population level to keep track of changes in allele frequencies.  

5.4 Genetic relationships 
The studies performed in this thesis also addressed the correlations between 
the different measures of genetic relationships. The correlation between the 
pedigree relationship and genomic relationship estimates was high in Red 
Dairy Cattle, 0.83-0.88 for a3Gen and 0.85-0.88 for aAllGen (Paper II). However, 
Carthy et al. (2019) reported a correlation of 0.57 between pedigree 
relationships and genomic relationship, which is lower than the values in 
Paper II and other studies (0.67-0.88) (VanRaden et al., 2011; Pryce et al., 
2012). Pryce et al. (2012) found a correlation of 0.67, 0.73, 0.84 and 0.87 
when the number of generations of recorded ancestry was 2, 4, 6 and 8, 
respectively, and concluded that pedigree depth plays a major role in the 
strength of correlation between pedigree relationships and genomic 
relationships. Lower correlations between pedigree relationship and genomic 
relationship estimates were found for RDC in Paper III (0.69-0.75 for a3Gen, 
0.75-0.76 for aAllGen). Pedigree depth in the study by Pryce et al. (2012) was 
similar to that in Paper II, so the difference is most likely attributable to some 
other factor(s). One possibility is that the pedigree correctness is better in 
RDC than in Holstein, due to the less common exchange of RDC bulls and 
their pedigrees worldwide, as RDC are generally found within the Nordic 
countries. It is also important to highlight that for some populations, the 
effectiveness of pedigree relationships may have been overestimated in 
Paper IV because a perfect pedigree in terms of completeness and correctness 
was available. With lower pedigree correctness, the relative benefits of using 
genomic relationships would likely be greater. However, the results may still 
be applicable for RDC, since in Paper II there were equally strong 
correlations between pedigree and genomic relationships as in the 
simulations in Paper IV. 
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There are several arguments for using genomic estimates of relationship 
and inbreeding instead of pedigree. First, genomic estimates do not rely on 
pedigree data, which can be incorrect or have limited depth (Carthy et al., 
2019; Makanjuola et al., 2020). The data used in this thesis were corrected 
for possible mismatches when received from the Nordic Cattle Genetic 
Evaluation. Hence, the benefit that genomic information brings in the form 
of assigning the right parents to an animal was not explored. Approximately 
5% of genotyped animals in Sweden have at least one parent incorrectly 
assigned (Lina Baudin, expert in breeding routines, Växa personal 
communication, March 5, 2021). Second, even if the pedigree data are 
correct and complete, genomic relationships are still more accurate because 
they consider the fact that the genome is transmitted in chromosomes, and 
not as infinite unlinked loci (Hill & Weir, 2011). Third, the assumption of 
50% probability of an allele being selected is not true in a population under 
selection (Forutan et al., 2018). Therefore use of genomic estimates of 
relationship is recommended in modern mating programmes. 

In general, genomic relationships were good at keeping each other low 
when included in an economic score used for mating allocations, and the best 
approach would be to implement one of these instead of pedigree 
relationships. A segment-based relationship was used in this thesis, with the 
aim of reducing the number of runs of homozygosity (ROH) in the potential 
offspring. In principle, ROH are enriched for deleterious alleles that mainly 
cause inbreeding depression (Charlesworth & Willis, 2009). Long ROH 
reflect new inbreeding and are expected to contain more deleterious alleles 
than short ROH, due to purging and recombination through the generations 
(Stoffel et al., 2021). According to Pryce et al. (2014), long regions (>3 Mb) 
are associated with inbreeding depression for milk yield in Holstein and 
Jersey cattle. However, Zhang et al. (2015) found significantly higher  
enrichment of deleterious variants in short (<0.1-3 Mb) compared with long 
(>3 Mb) regions in the Holstein, RDC and Jersey cattle. Hence, the optimal 
segment length for use in segment-based relationships remains to be 
determined. However, this thesis showed that gSEG1 and gSEG4 keep each other 
low when included in an economic score, so the difference is most likely 
marginal for the outcome of the mating allocations. One could also speculate 
that in the future, inbreeding may be targeted at specific regions and 
chromosomes, beyond genetic defects. This could then be included in an 
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economic score to avoid inbreeding in a more precise way if the effects of 
inbreeding are not equal along all chromosomes and regions. 

Papers III and IV focused on SNP-by-SNP genomic relationship 
coefficient (gSNP), which could be argued to be closest to implementation 
since it is often used in genomic evaluations and therefore is already 
calculated and ready for use. It also is the fastest genomic relationship to 
calculate and, as observed in this thesis, it is relatively good at keeping the 
segment-based relationships low, making it an efficient implementation 
alternative. However, computation time aside, a segment-based relationship 
based on current research should be considered, because it is most likely 
better in prediction of inbreeding depression (Doekes et al., 2021). In 
general, more studies on this topic are needed, particularly from a Nordic 
perspective, in order to identify the relationship that best predicts inbreeding 
depression in the three major dairy cattle breeds. 

5.5 Short- and long-term effects of mating programmes 
Many of the results in Papers II and III were maintained over several 
generations in Paper IV. For example, compared with only maximising 
genetic level, including any genetic relationship in the economic score 
lowered the rate of increase in pedigree and genomic inbreeding, with 
minimal effect on genetic gain. In addition, including the cost of a recessive 
genetic defect in the score helped reduce the risk of expression. As discussed 
earlier, the risk of expression of the known recessive genetic defect increased 
slightly when the economic score included a genomic relationship instead of 
a pedigree relationship. However, genomic relationships resulted in more 
bulls being used, which was favourable for the rate of genomic inbreeding 
and performed equally well concerning the rate of pedigree inbreeding.  

Paper IV also provided new insights into the constraint on bull usage, 
where using 5% instead of 10% females per bull and herd reduced the rate 
of inbreeding. Using more bulls, which resulted in a lower rate of inbreeding, 
reduced the variation in carrier frequency for the genetic defects, which 
lowered the probability of mating two carriers of an unknown genetic defect 
in some generations when carriers were widely used in previous generations. 
Hence, to minimise the risk of unknown recessive genetic defects, the 
constraint of 5% females per bull and herd is the best option. Exceeding 10% 
females per bull and herd cannot be recommended, as that constraint gave 
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higher variation in carrier frequencies than using 5%. However, if farmers 
want to achieve rapid changes in the frequency of polled offspring, this could 
be slightly more likely with 10% females per bull and herd compared with 
5%, at the risk of also increasing the frequency of (unknown) genetic defects. 

5.6 Final remarks 
The results presented in this thesis are largely generalisable, i.e. breeders of 
other livestock species could adopt the mating scenarios analysed here, but 
they would need to be adapted to each specific situation. Further, including 
genomic relationships and information about genetic defects, as done in the 
mating studies in this thesis, requires data on both female and male 
genotypes. An economic score could be developed for crossbred animals 
where the focus is to maximise heterosis instead of minimising parent 
relatedness. Ungenotyped animals were not considered in this thesis, but  one 
option for these could be to impute their genotype, as done by Carthy et al. 
(2019) using the method described by Gengler et al. (2007). Sun et al. (2013) 
suggest use of the H matrix in single-step genomic evaluation.  

It is important to mention that this thesis did not fully examine all benefits 
of genotyping and it is important to bear in mind that the value of genotyping 
is likely to increase as new applications emerge, such as product or animal 
traceability through the food chain (Newton & Berry, 2020). Genomic 
selection also makes it possible to select for novel traits with high accuracy, 
without the farmer having to measure the trait in their herd (Henryon et al., 
2014).  

In conclusion, the results presented in this thesis can increase farmers’ 
confidence in GEBV. Genomic mating plans were also assessed, both in a 
long-term and short-term perspective. It was shown that optimising 
economic score with linear programming can help avoid expression of 
genetic defects and increase the level of favourable traits like polledness and 
beta-casein (genotype A2A2). A recent study in which I participated showed 
that farmers in Sweden are positive to the use of modern breeding tools like 
genotyping, sexed semen and beef semen (Clasen et al., 2021). This thesis 
highlighted the benefits of genotyping for planning matings and will 
hopefully encourage more farmers to genotype their herds. The mating 
method used is relatively easy to implement, flexible and ready for future 
applications when more is known about the cattle genome. 
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 Virgin heifer genomically enhanced breeding values predicted cow 
performance significantly better than did parent average breeding 
values for the vast majority of traits analysed in Holstein, Jersey and 
Red Dairy Cattle.  
 

 Linear programming maximised the economic score for all herds 
studied within seconds, provided that data on genetic relationships 
were available, which means that it is a suitable method for 
implementation in mating software to be used by advisors and 
farmers. 

 
 In Red Dairy Cattle and Holstein, it was possible to reduce genetic 

relatedness between parents with minimal effect on genetic level. 
Including the cost of known recessive genetic defects entirely 
eliminated the risk of expression of these defects.  

 
 There were strong correlations between measures of genomic and 

pedigree relationships for dairy cattle in Denmark, Finland and 
Sweden.  

 
 It was possible to reduce genomic relationships between parents by 

including pedigree measures in the economic score, but it was best 
done by including genomic measures. 

 
 Genomic relationships studied were good at keeping each other low 

when included in an economic score used for mating allocations. 
 

6. Final conclusions 
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 In Holstein, it was possible to increase the percentage of polled and 
beta-casein homozygous (A2A2) offspring substantially in one 
generation when competitive bulls were available, without any 
significant negative effect on other mating criteria.  

 
 Using only semen from polled bulls, which might be necessary if 

dehorning is banned, considerably affected the genetic level in 
Holstein.  

 
 In Holstein, animals carrying the polled allele were less likely to be 

homozygous for beta-casein (A2A2) and more likely to be carriers 
of the genetic defect HH1.  

 
 Long-term simulations revealed that, compared with only 

maximising genetic level, including genomic or pedigree 
relationship in the economic score lowered the rate of pedigree and 
genomic inbreeding, with minimal effect on genetic gain. 
 

 Using genomic relationships in the economic score resulted in more 
bulls being used, which was favourable for lowering the rate of 
genomic inbreeding and performed equally well to using pedigree 
relationships in terms of the rate of pedigree inbreeding. 
 

 A 5% females per bull and herd constraint lowered the variation in 
carrier frequency for genetic defects, which minimised the risk of 
mating two carriers of an unknown genetic defect in future 
generations after widespread use of carriers in previous generations. 
However, allowing 10% females per bull could accelerate the 
increase in frequency of the polled allele. 
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The current cost of genotyping (around €20-25 per genotype in the Nordic 
countries) makes it economically justifiable to genotype females for 
management of breeding stock. Genotyping can be combined with sexed and 
beef semen and/or selling or culling surplus heifers, as suggested by the 
literature (Hjortø et al., 2015; Newton & Berry, 2020). Paper I showed that 
dairy farmers in the Nordic countries can make better selection decisions 
based on genomically enhanced breeding values than on parent average 
breeding values. 

An economic score that is easy to customise should be developed. As new 
monogenic traits are identified, the economic score should incorporate these. 
Moreover, the economic score should reflect the specific needs and 
preferences of each herd. For instance, as demonstrated in this thesis, the 
polled trait may have a higher value for organic herds. Therefore, the first 
step in applying the method presented here is to define the economic score 
for the target herd and then set the constraints, e.g. number of females per 
bull.  

SNP-by-SNP genomic relationship coefficient (gSNP) was the fastest 
genomic relationship to calculate and was relatively powerful, keeping the 
segment-based relationships low, making it an efficient implementation 
option. However, segment-based relationships might be preferable if they 
can better predict inbreeding depression in future studies. This would entail 
a trade-off with the increased computation time required for segment-based 
methods. Papers II and III demonstrated that using a genomic relationship 
can reduce the expected genomic inbreeding in the next generation by ~1% 
compared with using a pedigree relationship, which would correspond to a 
value of approximately €25 per mating and potentially cover the cost of 
genomic testing. However, further studies are needed to investigate the 

7. Practical recommendations 
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different types of genomic relationships and their implications for the 
economic performance of dairy farms. Use of a genomic relationship can be 
recommended if both female and bull are genotyped, as current research 
suggests that it is a better predictor of inbreeding depression than a pedigree 
relationship. In this thesis, the largest difference in inbreeding was observed 
when switching from a pedigree to any genomic relationship, rather than 
fine-tuning the genomic relationship. Therefore, using any genomic 
relationship for mating decisions and updating it as new research becomes 
available can be recommended.  

When breeding for multiple monogenic traits, it is important that different 
outcomes of mating allocations are easily comparable. It was shown in Paper 
III that animals carrying the polled allele had a lower probability of being 
homozygous for beta-casein (A2A2 genotype) and a higher probability of 
being carriers of the genetic defect HH1. Therefore, assigning an economic 
value to a monogenic trait in the economic score used for mating allocations 
could have a negative impact on another monogenic trait. Hence, it is 
advisable to monitor the comparison criteria used in this thesis. The carrier 
frequency in female candidates could provide valuable information for 
farmers and advisors before making mating decisions in practice, as it could 
indicate how different defects should be weighted in a specific herd. As 
demonstrated in Paper II, the overall frequency of most defects could be low 
among all females, but the carrier frequencies could vary considerably in a 
specific herd.  

It is important to note that the use of genomic relationships slightly 
increased the risk of conceptuses affected by the known recessive defect 
examined in Paper IV compared with pedigree relationships. Such matings 
are not advisable in practice and may be against the law. This could also be 
true for specific bull traits, e.g. some bulls with traits that give difficult 
calvings should not be used for heifers. This is important to consider in 
practical implementations and should be relatively easy to include in linear 
programming optimisation.  

Another recommendation is to have a constraint on bull usage, as done in 
this thesis. To minimise the risk of unknown recessive genetic defects, using 
the 5% females per herd and bull option would be the best choice. Exceeding 
10% females per bull and herd is not recommended, to avoid higher variation 
in carrier frequencies. However, if farmers want to achieve rapid changes in 
the frequency of polled offspring, there could be some benefits of using 10% 
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females per bull and herd. In that case, it is important to be aware of the risk 
of increasing the frequency of (unknown) genetic defects.  

Most farms in the Nordic countries use a special ear tag that collects a 
tissue sample at the same time as the animal’s identification is inserted into 
the ear. This method requires minimal extra work and allows for early 
sampling and decision making. The farmers also benefit from the pedigree 
verification, which provides a more accurate pedigree and helps to avoid 
unnecessary inbreeding when planning matings. However, this aspect was 
not addressed in Papers II-IV, which might have underestimated the 
advantage of genomic data over pedigree data, as the pedigree errors on 
genotyped animals were already corrected in the data. 

This thesis demonstrated the potential of female genotyping at herd level 
for enhancing dairy cattle breeding. Genotyping can offer valuable 
information for estimating genomic breeding values, optimising mating 
programmes and selecting for novel traits. The cost of genotyping (currently 
€20-25 per genotype) may have reached a plateau in terms of possible 
reductions. However, the value of genotyping is likely to increase as new 
applications emerge, such as product or animal traceability through the food 
chain (Newton & Berry, 2020). Therefore, based on the results in this thesis 
and other literature, genotyping heifers can be profitable if farmers use the 
genomic results to improve selection and mating strategies. 
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A possible direction for future research is to develop an economic score for 
crossbred animals that accounts for heterosis effects. Currently, around 10% 
of cows in the Nordic countries are crossbred and this percentage may 
increase in the future. However, there is a lack of research on how to 
incorporate heterosis into economic scores for crossbred animals. Another 
area of interest is economic score development for beef on dairy matings. 

The optimal segment length when considering genomic relationships is 
unclear. In general, more studies are needed on the economic consequences 
of inbreeding and monogenic traits in Nordic production systems. Future 
studies should also seek to identify chromosomal regions linked to 
inbreeding depression in dairy cattle and incorporate these into the economic 
score in order to prevent inbreeding. 

It is important to develop tools that can support farmers in their decision 
to start genotyping based on their specific farm characteristics. Farmers may 
have different motives and constraints for adopting genotyping technology. 
Future research should develop tools that help farmers evaluate the potential 
benefits and costs of genotyping based on their specific farm characteristics. 

Economic scores could be further extended by incorporating more 
monogenic traits, such as kappa-casein, which was added to the SNP array 
following the work in this thesis. The effects of including specific breeding 
values in the economic score, e.g. following the approach of Carthy et al. 
(2019), should also be analysed. 

More surveys are needed to identify the factors influencing farmers’ 
adoption of genotyping technology. Farmers may face various barriers or 
challenges when adopting genotyping technology, such as lack of awareness, 
knowledge, skills, trust or resources.  

8. Future research 
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Another possible direction for future research is to explore economic 
scores for mating programmes targeting breeding animals (e.g. MOET 
mating) and how it interacts with OCS. This could help breeding companies 
optimise their selection decisions and allocate resources more efficiently. 
Future research should also investigate the use of MOET in commercial 
herds without the constraint of one mating per female applied in this thesis. 

Finally, there are many more scenarios that are yet to be studied in a 
follow-up to Paper IV. These include more or different monogenic traits, 
with higher or lower carrier frequencies. Further, associations between 
monogenetic traits, e.g. as found between polled and beta-casein in Paper III, 
or associations with the breeding goal should be included. In addition, future 
studies should assess more active selection for monogenic traits in the MOET 
programme. 
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Breeding work in dairy cattle is important for improving the productivity and 
profitability of the dairy sector. Traditionally, the main goal of breeding dairy 
cattle was to improve milk yield, but other desirable traits such as health and 
fertility have now become important breeding objectives. Recent research 
has also sought to include traits related to sustainability and climate impact, 
e.g. methane emissions.  

In 2008, a new breeding technique called genomic selection became 
available for use in dairy cattle breeding. It applies information from the 
DNA of cows to predict how good they are in terms of different traits, such 
as milk yield, health, fertility and sustainability. Genomic selection is useful 
because it can better tell how good a cow or bull is before they have their 
own offspring, rather than only looking at information from their parents.   

In the early days, DNA testing was expensive and was only used for 
candidate bulls for artificial insemination. Over time, however, the cost of 
genotyping has decreased significantly and more and more farmers are now 
genotyping their heifers. The female test results can be used to identify the 
best females for replacement and those to inseminate with sexed semen in 
order to obtain female calves with the highest breeding value. The genomic 
test results can also be used to decide which female to mate with which bull. 
For instance, DNA test results can be used to estimate genomic relationships 
between females and bulls. Genomic relationships are suggested to be more 
accurate than those relying on pedigree information because they are based 
on actual DNA and do not rely on pedigree data, which can be incorrectly 
recorded or incomplete. In addition, DNA testing gives insights into single-
gene traits that can be considered in mating choices. Examples of single-gene 
traits are cows with no horns (polled) or special milk quality traits like 
caseins.   

Popular science summary 
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This doctoral thesis focused on how genomic information can be used at 

herd level, mainly considering better mating plans. The first study compared 
genomic breeding values and parent average breeding values for young 
females in terms of their ability to predict cow performance later in life. 
Twelve different traits in first parity were analysed, including production, 
conformation, fertility and other functional traits. The results for all traits 
showed that genomic breeding values can predict future cow performance 
significantly more accurately than parent average breeding values.  

A second study investigated mating plan optimisation for Red Dairy 
Cattle at herd level based on economic score for different mating options 
within each herd, considering genetic level, semen cost, the economic impact 
of recessive genetic defects, and genomic and pedigree relationships. The 
mating results showed that it was possible to reduce genetic relatedness 
between parents with minimal effect on genetic level. Including the cost of 
known recessive genetic defects eliminated expression of genetic defects. It 
was possible to reduce genomic relationships between parents with pedigree 
measures, but it was best done with genomic measures.  

A third study analysed mating plan optimisation in the Holstein dairy 
breed and also included two favourable single-gene traits, polledness 
(absence of horn) and beta-casein. Beta-casein is one of the main proteins in 
milk and the genetic trait mainly has two variants in cattle (A1 and A2). 
Cows that carry two copies of the A2 variant produce A2 milk, which is often 
advertised as a healthier alternative than regular cow milk. However, the 
human health advantages of drinking A2 milk are still under debate.  The 
results obtained for Holstein cattle were similar to those obtained for Red 
Dairy Cattle as regards genetic relationships and defects. In addition, it was 
possible to increase the frequency of polled and beta-casein (A2A2) 
offspring without negatively impacting other criteria.  

A final simulation study investigated the long-term impact of genomic 
mating allocations. The matings followed a similar approach as in the 
previous studies and were optimised on genetic level, a favourable single-
gene trait (polledness), a recessive genetic defect and parent relationships. 
An (assumed) unknown recessive genetic defect was also monitored. 
Compared with only maximising genetic level, including any genetic 
relationship in the economic score lowered the rate of increase in pedigree 
and genomic inbreeding, with minimal effect on genetic gain. Including the 



79 

cost of a recessive genetic defect in the score helped reduce the risk of 
expression of that defect. Furthermore, including an economic value for 
polledness in the economic score increased the frequency of the polled allele 
in the population, without negatively impacting other comparison criteria. 
Using more bulls, which helped lower the rate of inbreeding, was favourable 
regarding the number of animals that were carriers of genetic defects, which 
reduced the risk of expression in future generations.   

One possible direction for future research is to develop economic scores 
for crossbred dairy cows that take into account the benefits of heterosis. 
Currently, around 10% of dairy cows in Denmark, Sweden and Finland are 
crossbred, and this percentage may increase in the future. In addition, future 
studies should investigate how to calculate genomic relationships in the best 
way possible. There are many methods available, but it is unclear which is 
best for different situations and breeds. This is especially important for the 
Jersey breed and for Nordic Red Dairy Cattle, for which research is limited 
to the Nordic countries. 
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Mjölkkoavel är viktigt för att förbättra produktivitet och lönsamhet inom 
mjölksektorn. Historiskt var huvudmålet med mjölkkoavel att förbättra 
mjölkavkastningen, men de senaste decennierna har andra önskvärda 
egenskaper såsom fruktsamhet och hälsa fått allt större fokus. På senare tid 
fokuserar forskningen på att inkludera nya egenskaper som relaterar till 
miljö- och klimatpåverkan.  

År 2008 började en ny avelsteknik vid namn genomisk selektion att 
implementeras av avelsföretagen. Den använder information från kornas 
DNA för att förutsäga hur bra de är för olika egenskaper, såsom 
mjölkavkastning, hälsa, fruktsamhet och hållbarhet. Genomisk selektion är 
användbart inom mjölkkoavel eftersom den kan ge en bättre bild av hur bra 
en kviga kommer att bli, eller hur bra en tjur är innan den får egna avkommor 
jämfört med att bara titta på djurens stamtavla.  

När tekniken implementerades var det relativt dyrt att DNA-testa djur och 
det var främst tjurar som testades som var kandidater till att bli semintjurar. 
Sedan dess har kostnaden sjunkit betydligt och idag (år 2023) kostar det cirka 
250 kr att ta ett DNA-test.  Detta gör det intressant att testa även kvigor och 
allt fler lantbrukare DNA-testar hela sin besättning. Resultaten kan användas 
till att välja ut vilka kvigor som ska insemineras med könssorterad sperma så 
att man är säker på att få en kvigkalv av sina bästa djur. Dessutom kan DNA-
testresultaten användas till att beräkna släktskap mellan hondjur och tjur på 
ett bättre sätt och därmed undvika onödig inavel. Genomiska släktskap anses 
vara säkrare än de som baseras på stamtavlan eftersom de tittar på faktiskt 
DNA och inte förlitar sig på stamtavlan som kan innehålla fel eller vara 
ofullständig. Dessutom kan DNA-testen ge insikter om egenskaper som styrs 
av enskilda gener som kan beaktas vid valet av vilken tjur som ska användas 
till vilket hondjur (parningsplanering). Exempel på sådana egenskaper är 

Populärvetenskaplig sammanfattning 
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vissa genetiska defekter, djur som saknar horn (kulliga) eller specifika 
mjölkkvalitetsegenskaper såsom kaseiner.  

Denna doktorsavhandling undersöker hur DNA-information kan 
användas på besättningsnivå, främst med hänsyn till bättre 
parningsplanering. I den första studien jämförde vi kvigors genomiska 
avelsvärden med avelsvärden baserat på enbart stamtavla vad gäller förmåga 
att förutsäga kornas egenskaper senare i livet. Syftet med denna studie var 
att öka förtroendet för genomiska avelsvärden bland lantbrukare. Vi 
analyserade 12 olika egenskaper, inklusive mjölkavkastning, exteriör, 
fruktsamhet och hälsoegenskaper. Genomiska avelsvärden förutsåg framtida 
egenskaper betydligt bättre jämfört med avelsvärden baserade på stamtavla.  

I den andra studien optimerade vi parningar för nordiska röda raser med 
hjälp av ekonomiska poängsummor där vi tog hänsyn till genetisk nivå, 
släktskap, och sannolikhet för att genetiska defekter kommer till uttryck. 
Resultaten visade att vi kunde minska släktskapet mellan föräldrar med 
minimal påverkan på genetisk nivå. När kostnaden för recessiva genetiska 
defekter ingick i optimeringen försvann risken för bärarparningar. Med andra 
ord var det aldrig ekonomiskt fördelaktigt att inseminera ett hondjur som var 
bärare av en recessiv genetisk defekt med en tjur som var bärare av samma 
genetiska defekt. Ett längre kalvningsintervall och en extra inseminering 
kostar mer än vad en optimal parning för övriga faktorer kan kompensera 
för. 

I den tredje artikeln undersökte vi parningplanering för en annan ras 
(holstein) och inkluderade även positiva egenskaper såsom kullighet 
och Beta-kasein. Resultaten överstämde väl med den andra artikeln vad det 
gäller släktskap och genetiska defekter. Dessutom var det möjligt att öka 
andelen kulliga och dubbelbärare av varianten av Beta-kasein (A2A2) utan 
att nämnvärt påverka de övriga jämförelsekriterierna.  

Slutligen undersökte vi vilka effekter genomisk parningsplanering har på 
lång sikt. Denna artikel byggde på de två tidigare parningsartiklarna. Vi 
inkluderade genetisk nivå, kullighet, en recessiv genetisk defekt och 
släktskap på liknande sätt, dessutom följde vi en okänd genetisk defekt för 
att undersöka risker beroende på vilka parningsbeslut som togs. Bland annat 
så visade resultaten att jämfört med att bara maximera genetisk nivå så kunde 
vi genom att inkludera släktskap i den ekonomiska poängsumman minska 
inavelstakten och minska risken att kända genetiska defekter kommer till 
uttryck. Vi kunde också öka andelen kulliga kor utan större påverkan på 
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övriga jämförelsekriterier. Att använda fler tjurar var fördelaktigt i 
förhållande till inavelsökning och minskad risk för okända genetiska defeker 
skulle bli vanligt förekommande eller komma till uttryck.  

Framtida studier skulle kunna undersöka möjligheten för ekonomiska 
poänsummor för korsningsdjur. I dagsläget (år 2023) är cirka 10% av korna 
korsningar i Danmark, Finland och Sverige och det är möjligt att det kommer 
öka i framtiden. Det krävs också mer forskning om de olika sätten att beräkna 
genomiska släktskap och hur bra de är på att förutsäga inavel och dess 
effekter. Detta är särskild viktigt för rasen jersey och de nordiska röda 
raserna för vilka forskningen är begränsad till nästan enbart Norden.  
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Table A1. Monogenic traits available for mating programmes in Denmark, Finland and 
Sweden    

Monogenic trait OMIA 
CODE 

Phenotype 

Bovine Leukocyte 
Adhesion 
Deficiency  
(BLAD) 

000595-9913 Extreme susceptibility to infection and early 
mortality in homozygous offspring 

Complex Vertebral 
Malformation 
(CVM) 

001340-9913 Stillborn calf  

Holstein Haplotype 1 
(HH1) 

000001-9913 Early abortion of homozygous conceptus 

Holstein Haplotype 2 
(HH2) 

001824-9913 Early abortion of homozygous conceptus 

Holstein Haplotype 4 
(HH4) 

001826-9913 Early abortion of homozygous conceptus 

Holstein Haplotype 6 
(HH6) 

002194-9913 Early abortion of homozygous conceptus 

Holstein Haplotype 7  
(HH7) 

001830-9913 Early abortion of homozygous conceptus 

Spinal muscular 
atrophy (SMA) 

000939-9913 Calves become weak and have problems 
standing, progressively worsen until they die 

Arthrogryposis 
multiplex 
congenita (AMC) 

002022-9913 Stillborn calf or calf death shortly after birth 

Ptosis Intellectual 
disability, 
Retarded growth, 
and Mortality  
(PIRM/AH1) 

001934-9913 Early abortion, PIRM/AH1 are located very 
closely and are Expected to be the same 
disease 

Appendix 1. 
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Monogenic trait OMIA 
CODE 

Phenotype 

Ayrshire Haplotype 
2 (AH2) 

002134-9913 Early abortion of homozygous conceptus 

Brown Swiss 
Haplotype 2 (BH2) 

001934-9913 Stillborn calf or calf death shortly after birth 

Bos Taurus 
Autosome 12 
(BTA12) 

001901-9913 Early abortion of homozygous conceptus 

Bos Taurus 
Autosome 23 
(BTA23) 

001991-9913 Stillborn calf  

Jersey Haplotype 1 
(JH1) 

001697-9913 Embryonic death 

Progressive retinal 
degeneration 
(RP1) 

000866-9913 Progressive blindness in homozygous 
offspring 

Polledness 000483-9913 Absence of horns in offspring carrying at 
least one copy of the polled allele (Celtic and 
Friesian allele considered) 

Beta-casein 002033-9913 A cow produces so-called ”A2 milk” if she 
has two copies of the A2 allele 

Kappa-casein  002400-9913 Milk protein that influences the amount of 
clotting that occurs, six possible genotypes 
(AA, AB, AE, BB, BE, EE). Milk from cows 
with BB genotype clots more quickly and 
produces the highest cheese yield, cows with 
EE genotype produce milk that does not clot 

 
 



Ι





6383

ABSTRACT

This study compared the abilities of virgin heifer 
genomically enhanced breeding values (GEBV) and 
parent average breeding values (PA) to predict future 
cow performance. To increase confidence in genomic 
technology among farmers, a clear demonstration of the 
relationship between genomic predictions and future 
phenotypes is needed. We analyzed 12 different traits 
in first parity, including production, conformation, fer-
tility, and other functional traits. Phenotype data were 
obtained from national milk recording schemes and 
breeding values from the Nordic Cattle Genetic Evalu-
ation. Direct genomic breeding values were calculated 
using genomic BLUP and combined with traditional 
breeding values, using bivariate blending. The data 
covered 14,862 Red Dairy Cattle, 17,145 Holstein, and 
7,330 Jersey genotyped virgin heifers born between 
2013 and 2015 in Denmark, Finland, and Sweden. Phe-
notypes adjusted for systematic environmental effects 
were used as measures of cow performance. Two meth-
ods were used to compared virgin heifer GEBV and 
PA regarding their ability to predict future cow per-
formance: (1) correlations between breeding values and 
adjusted phenotypes, (2) ranking cows into 4 quartiles 
for their virgin heifer GEBV or PA, and calculating 
actual cow performance for each quartile. We showed 
that virgin heifer GEBV predicted cow performance 
significantly better than PA for the vast majority of 
analyzed traits. The correlations with adjusted pheno-
types were 38 to 136% higher for GEBV than for PA 
in Red Dairy Cattle, 42 to 194% higher for GEBV in 
Holstein, and 11 to 78% higher for GEBV in Jersey. 
The relative change between GEBV bottom and top 
quartiles compared with that between PA bottom and 
top quartiles ranged from 9 to 261% for RDC, 42 to 
138% for Holstein, and 4 to 90% for Jersey. Hence, 

farmers in Denmark, Finland, and Sweden can have 
confidence in using genomic technology on their herds.
Key words: genomic breeding value, genotyping, dairy 
cow, validation

INTRODUCTION

To increase confidence in genomic technology among 
farmers, a clear illustration of the relationship between 
genomic predictions and future phenotypes is needed 
(Pryce and Hayes, 2012). In the early years of genomic 
selection, mainly bulls were tested, but genotyping of 
virgin heifers has become more interesting as the costs 
decrease (Calus et al., 2015; Hjortø et al., 2015; Ettema 
et al., 2017). At herd level, genomic test results can 
be used to (1) find the best females for breeding and 
replacement, (2) identify females for embryo transfer or 
in vitro fertilization, (3) correct parentage assignment, 
(4) control monogenic traits, and (5) avoid inbreeding 
through genomic-assisted mating plans (Pryce et al., 
2012).

Genomically enhanced breeding values (GEBV) can 
be validated in different ways. Cross-validation includes 
dividing the available data set into validation and train-
ing sets. By masking observations of all individuals in 
the validation set and predicting the observations or 
EBV with a model based on individuals in the training 
set only, the correlation between masked phenotypes or 
EBV and predicted values for the validation individu-
als can be estimated. This correlation then reflects the 
accuracy of prediction (de Roos et al., 2009). A disad-
vantage of validating GEBV against conventional EBV 
is that training and validation sets are rarely strictly 
independent (Su et al., 2010). Yao et al. (2015) used 
genotypes and health data to predict future pheno-
types, taking correlations between predicted values and 
phenotypes as measurements of accuracy. To illustrate 
the accuracy of GEBV compared with parent average 
breeding values (PA), Weigel et al. (2015) divided cows 
into quartiles based on their virgin heifer GEBV and 
sire PTA, and thereafter calculated actual cow perfor-
mances for each quartile.
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Establishment of the Nordic Cattle Genetic Evalua-
tion in 2002 has led to intensified cooperation between 
AI organizations in Denmark, Finland, and Sweden 
(DFS). Because the differences across the Nordic coun-
tries were small, according to a study on genotype × 
environment interactions by Kolmodin et al. (2002), a 
joint breeding program was established. The current 
breeding goal combines breeding values for 60 traits 
into 14 main breeding values, including health, repro-
duction, production, and conformation.

Genotyping of cows and virgin heifers in DFS started 
on a large scale in 2012 with the VikingGenetics geno-
typing project. Three breeds in the DFS countries have 
genomic breeding schemes: Red Dairy Cattle (RDC), 
Holstein, and Jersey. Initially, the main purpose was to 
include genotyped females in the reference population 
and thereby increase the accuracy of GEBV. This was 
especially important for RDC and Jersey, which had 
more limited reference populations based on bulls than 
did the Holstein breed. In 2018, close to 12% of females 
born in DFS were genomically tested, compared with 
approximately 2% in 2012, and growth potential for 
genomic testing remains. To date, over 250,000 females 
have been genotyped, and phenotypic information 
from over 100,000 of these animals has been recorded 
(Nielsen et al., 2019).

Approximately 85% of farms in DFS are enrolled 
in the national milk recording schemes. This enables 
validation of GEBV with phenotype data on a large 
scale, with a design having the desirable property that 
the validation population is strictly independent of the 
training population. The purpose of this study was to 
compare the abilities of virgin heifer GEBV and PA 
to predict future cow performance. To our knowledge, 
this has not previously been done on a large scale in 

3 breeds across countries. This could be an important 
step to convince farmers that genomic breeding values 
are valuable for use on their herds for selection deci-
sions.

MATERIALS AND METHODS

Data

Phenotype data were collected from the DFS milk 
recording schemes for the 3 breeds (RDC, Holstein, and 
Jersey). Observations from the first lactation of ani-
mals born from 2013 to 2015 were used in the analysis. 
To be included in the study, all animals were required 
to have a 305-d milk yield record. The total numbers 
of genotyped females in the study period with a 305-d 
milk yield record were 20,274 RDC, 23,910 Holstein, 
and 9,312 Jersey. We analyzed 12 traits in first parity: 3 
milk production traits (milk yield, fat yield, and protein 
yield), 2 udder health traits (SCS and occurrence of 
clinical mastitis), 1 fertility trait (interval, in days, from 
first to last service, IFL), 2 conformation traits (udder, 
and feet and legs), 1 calving trait (calving ease, CE), 
1 survival trait (survival to second calving, survival 
1–2), 1 claw health (CH) trait, and 1 general health 
(GH) trait. Detailed trait definitions can be found in 
Table 1. For Jersey, it was not possible to analyze CH 
or GH, because for those traits the genomic evaluation 
was still under development during the study period.

Female GEBV and PA were obtained from the Nor-
dic Cattle Genetic Evaluation (NAV, 2019). Detailed 
descriptions of all breeding values can be found in 
Table 2. Heritability in first lactation of traits used 
in the Nordic Cattle Genetic Evaluation can be found 
in Table 3, and in Table 4 average model reliabilities 

Bengtsson et al.: VALIDATION OF GENOMIC BREEDING VALUES

Table 1. Detailed definitions of the traits studied

Trait  Phenotype definition (first lactation)

Milk yield  305-d kg of milk yield
Fat yield  305-d kg of fat yield
Protein yield  305-d kg of protein yield
SCS  SCC transformed to logarithmic scale
Clinical mastitis1  Clinical mastitis up to 300 d
IFL  Interval in days from first to last service
Udder  Total udder conformation score
Feet and legs  Total feet and legs conformation score
Calving ease (maternal)  First calving, recorded in 4 categories: (1) easy calving without help, (2) easy calving with help, (3) difficult 

calving without veterinarian help, and (4) difficult calving with veterinarian help
Claw health1  Records from first to second calving or up to 430 d after calving in first lactation. Claw disorders included were 

sole ulcer, sole hemorrhage, heel horn erosion, digital dermatitis, interdigital dermatitis, verrucose dermatitis, 
interdigital hyperplasia, double sole, white line separation, and corkscrew claw

General health1  Includes retained placenta, hormonal reproductive disorders, infective reproductive disorders, ketosis, milk fever, 
other metabolic diseases, other feed-related disorders, other diseases, and feet and leg problems

Survival 1–22  Survival from first to second calving
1Defined as 1 if the animal had at least one treatment, 0 otherwise.
2Defined as 1 if the animal survived, 0 otherwise.
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for genotyped animals can be found. Breeding values 
from 36 evaluations performed between August 2014 
and February 2017 were used in this study. The GEBV 
and PA used were based on the breeding values esti-
mated closest in time to when the animal reached 1 yr 
of age. Eleven different GEBV and PA were used: milk, 
fat, protein, udder health, fertility, udder, feet and 
leg, calving (maternal), claw health, general health, 
and longevity. These breeding values correspond to 
the phenotypes listed in Table 1 but are not defined 
in exactly the same way. Breeding values were based 
on multiple lactations, whereas phenotypes were from 
the first lactation only. The breeding values studied 

are also combinations of several underlying component 
traits (e.g., the fertility breeding value also includes 
information on the interval in days between calving 
and first service). We calculated GEBV using bivariate 
blending of direct genomic values and traditional EBV 
(Mäntysaari and Strandén, 2010; Taskinen et al., 2013). 
In September 2015, the calculation of direct genomic 
breeding values changed from GBLUP to SNPBLUP 
(Nielsen et al., 2016), which was shown to give compa-
rable results (Koivula et al., 2012). Detailed breeding 
value calculations can be found in NAV (2019).

To prevent virgin heifer reproductive performance 
from influencing the fertility breeding values used in 
this study, breeding values estimated after 14 mo of 
age were not included. For the same reason, animals 
genotyped after 14 mo were excluded. At the beginning 
of the VikingGenetics genotyping project, it was com-
mon to genotype animals up to the second lactation. 

Bengtsson et al.: VALIDATION OF GENOMIC BREEDING VALUES

Table 2. Detailed definitions of breeding values (NAV, 2019)

Breeding value  Breeding value definition

Milk  Milk production in the first 3 lactations
Fat  Fat production in the first 3 lactations
Protein  Protein production in the first 3 lactations
Udder health  Based on records of clinical mastitis and SCC in the first 3 lactations and udder depth from first lactation. SCC and 

udder conformation are used as indicator traits
Fertility  Based on number of services, interval from calving to first service, interval from first to last service, non-return rate, 

heat strength, and conception rate. Includes records as virgin heifer to the third lactation
Udder  Linear traits combined into a group describing udder conformation. Based on the linear traits udder attachment, 

rear udder height, rear udder width, udder cleft/support, udder depth, teat length, teat thickness, teat placement 
(front), teat placement (back), and udder balance. Based on data from the first 3 lactations

Feet and legs  Linear traits combined into a group describing feet and leg conformation. Includes the linear conformation traits 
rear legs (side view), rear legs (rear view), hock quality, bone quality, and foot angle. Based on data from the first 3 
lactations

Calving (maternal)  Including calving ease and calf survival in the first 24 h. Calving is recorded in 4 categories, as for the phenotype 
trait (Table 1). Calf survival is defined as 1 if the calf survived, 0 otherwise. Includes records from first to fifth 
calving

Claw health  Includes records from the first 3 lactations. Claw disorders included were as defined in the phenotype definition 
(Table 1)

General health  Genetic resistance to reproductive, digestive, and feet and leg problems. Includes the same records as the phenotype 
definition (Table 1). Based on data from the first 3 lactations

Longevity  Describes the genetic ability to survive. Including days from first to the fifth lactation, with a maximum of 365 d per 
lactation

Table 3. Heritability in first lactation of traits used in the Nordic 
cattle genetic evaluation (NAV, 2019)1

Trait RDC Holstein Jersey

Milk 0.41 0.43 0.44
Fat 0.35 0.36 0.35
Protein 0.41 0.35 0.38
SCC 0.12 0.13 0.11
Clinical mastitis 0.04 0.05 0.04
IFL 0.03 0.03 0.03
Udder 0.25 0.25 0.25
Feet and legs 0.20 0.20 0.20
Calving ease 0.04 0.06 0.02
Claw health2 0.001–0.040 0.004–0.070 0.000–0.070
General health2 0.003–0.01 0.004–0.034 0.004–0.013
Survival 1–23 0.04 0.05 0.05
1RDC = Red Dairy Cattle; IFL = interval from first to last service, 
in days.
2The interval represents the range of heritability for the included sub-
traits (Table 1).
3Heritability for survival from first to second calving.

Table 4. Average model reliabilities (%) published for genotyped 
animals, 1 to 2 yr old, born in 2017 [Gert Pedersen Aamand, Executive 
Director, Nordic Cattle Genetic Evaluation (NAV, Aarhus, Denmark), 
personal communication, June 26, 2019]; RDC = Red Dairy Cattle

Breeding value RDC Holstein Jersey

Yield 74 77 71
Udder health 66 74 63
Fertility 59 74 55
Udder 66 73 64
Feet and legs 66 66 57
Calving 54 68 43
Claw health 51 59 46
General health 50 58 45
Longevity 49 66 44
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Consequently, most of the animals removed were born 
in 2013, which was the first year analyzed in this study. 
However, in the last 2 years studied, 2014 and 2015, 
most animals were genotyped as virgin heifers and 
were therefore included in the study. The number of 
genotyped animals also increased over the study period. 
Hence, most of the animals studied were born in 2014 
and 2015. The numbers of genotyped animals in the 
birth year cohort studied (2013 to 2015), genotyped 
before 14 mo of age and with a 305-d milk yield record, 
were 14,862 RDC from 900 herds, 17,145 Holstein from 
1,960 herds, and 7,330 Jersey from 235 herds.

Statistical Analysis

To obtain adjusted phenotypes for use in analysis of 
the predictive ability of breeding values, a larger phe-
notype data set was analyzed using Statistical Analysis 
Software (SAS) version 9.4 (SAS Institute Inc., Cary, 
NC). This analysis included all animals in the milk 
recording scheme born from 2008 to 2016, which, in 
total, comprised 997,797 RDC, 2,322,514 Holstein, 
and 240,946 Jersey. The adjusted phenotypes—that 
is, residual effects estimated using PROC HP MIXED 
with the linear model [1] described below—were named 
according to the respective trait; for example, adjusted 
milk yield was named MilkAdj. A separate analysis was 
performed for each breed. 

The following linear model was used for all traits:

 yijklmn = µ + HYij + YMCjkl + CCAlm + eijklmn, [1]

where yijklmn is the observed phenotypic value in first 
lactation; µ is mean of the population; HYij is the fixed 
class effect of herd i and calving year j (2008 through 
2018); YMCjkl is the fixed class effect of calving year j, 
month k (1 through 12), and country l (Denmark, Fin-
land, or Sweden); CCAlm is the fixed class effect of 
country l and calving age in months as heifer m (18 to 
36); and eijklmn is the random residual, ~ , .ND e0 2σ( )

We used HYij + YMCjkl as contemporary groups due 
to small average herd size, making it difficult to use 
herd-year-month or herd-year-season. Country was not 
included in the model for Jersey, because all Jersey cows 
studied were located in Denmark. For further analyses, 
the PROC MEANS and PROC FREQ procedures in 
SAS were used for descriptive statistics.

Because breeding values were obtained from several 
routine evaluations separated in time, they were not 
directly comparable due to rolling base population. 
Linear regression analysis was used to adjust for ge-
netic trends over time. In PROC REG, the regression 
coefficient was estimated between breeding values in a 

given evaluation and the corresponding breeding values 
in the last evaluation (February 2017). The linear re-
gression model used was

 yi = b0 + b1X + eij, [2]

where yi is a breeding value in the last evaluation (Feb-
ruary 2017); b0 is the intercept; b1 is the regression co-
efficient on the corresponding breeding value (X) in a 
breeding evaluation performed from August 2014 to 
January 2017; and eij is the random residual, 
~ , .ND e0 2σ( )  Breeding values were then expressed on 

the scale of the last evaluation, using the estimated 
regression parameters from Model [2] using PROC 
SCORE.

PROC CORR was used to calculate the correlation 
between breeding values (PA or GEBV) and adjusted 
phenotypes for each of the breeds. A 95% confidence 
interval using Fisher’s Z transformation was used to 
assess the significance of the difference between correla-
tions. The PROC RANKS procedure was used to rank 
cows into 4 quartiles across herds for GEBV or PA.

RESULTS

For RDC and Holstein, all correlations between 
breeding values and adjusted phenotypes were signifi-
cantly stronger for GEBV than for PA (Table 5). For 
Jersey, GEBV correlations were significantly stronger 
for all traits except clinical mastitis, CE, and survival 
1–2. The correlations with adjusted phenotypes were 
42 to 194% higher for GEBV than for PA in RDC, 
38 to 136% higher for GEBV in Holstein, and 11 to 
78% higher for GEBV in Jersey for the different traits 
(Table 5). All correlations between PA and adjusted 
phenotypes were significantly different from zero. The 
highest correlation found in this study was between 
milk GEBV and MilkAdj for Jersey (0.51). One of the 
traits for which the correlations increased the most, 
IFLAdj increased by over 64% for all 3 breeds when ge-
nomic information was included in the breeding values. 
For Jersey, the correlation between breeding value and 
IFLAdj increased by 78% when genomic information was 
included.

The relative change between the GEBV bottom and 
top quartile (∆GEBV) compared with that between 
the PA bottom and top quartile (∆PA), ranged from 
9 to 261% for RDC, 42 to 138% for Holstein, and 4 to 
90% for Jersey (Table 6). However, it should be noted 
that the large relative percentage change between PA 
and GEBV for both quartiles and correlations was, in 
many cases, from initially low levels.

Bengtsson et al.: VALIDATION OF GENOMIC BREEDING VALUES
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DISCUSSION

An advantage of using phenotypes for validation of 
breeding values is that it makes it easy for farmers to 
understand how their animals’ breeding values work 
in practice, when validation is against their own farm 
records. The use of phenotypes in this study was facili-
tated by the high rate of participation in the national 
milk recording schemes in the DFS countries. The ex-
tracted virgin heifer GEBV and PA, estimated before 
on-farm information was recorded, reflected informa-
tion available to farmers at the time of selection. The 
maximum age at which a breeding value for a heifer 
was taken was 14 mo, to reflect the breeding values at 
first insemination for virgin heifers. For example, at 
that age the farmer can combine genomic selection with 
decisions about sexed and beef semen, as suggested in 
other studies (Hjortø et al., 2015; Ettema et al., 2017).

Many of the breeding values used in the present 
study are combinations of several underlying compo-
nent traits. For example, the udder health breeding 
value includes data on clinical mastitis, SCC, udder at-
tachment, and udder depth. Furthermore, most of the 
breeding values are based on the first 3 lactations and 
not only the first lactation, whereas the phenotypes 
studied were only from the first lactation. These 2 fac-
tors most likely resulted in somewhat weaker relation-
ships between breeding values and phenotypes than 
if sub-trait breeding values for the first lactation had 
been used. However, those breeding values were not 
available for this study nor for the farmers in the stud-
ied period. Nevertheless, these factors probably had a 
limited influence on the relative change between GEBV 
and PA, which was the focus in this study.

We chose to use linear models for all traits, to repre-
sent current practice in the Nordic genetic evaluation. 
However, some traits could be claimed to be theoreti-
cally less well suited for a linear model, such as clinical 
mastitis, survival 1–2, and CE. Therefore, we tried dif-
ferent models to fit the data (binary distribution, Pois-
son distribution) in preliminary analyses for the Jersey 
breed, but the results were similar to those obtained 
using linear models.

The highest correlations obtained in this study were 
between production traits and breeding values. This 
could be expected, as production traits have the highest 
heritability and reliability of the traits studied (Tables 
3 and 4). Mathematically, the correlation between the 
true breeding value and phenotype is equal to h, and 
the proportion of variance explained by the breeding 
value is h2. However, we did not have the true breed-
ing values in this study, and therefore the expected 
(squared) correlation equals the product of heritability 
and reliability.

Bengtsson et al.: VALIDATION OF GENOMIC BREEDING VALUES
T
ab

le
 5

. 
E

st
im

at
ed

 c
or

re
la

ti
on

s 
an

d 
re

la
ti
ve

 c
ha

ng
e,

 i
n 

pe
rc

en
t,
 b

et
w

ee
n 

co
w

 a
dj

us
te

d 
(A

dj
) 

ph
en

ot
yp

es
 a

nd
 r

es
pe

ct
iv

e 
vi

rg
in

 h
ei

fe
r 

pa
re

nt
 a

ve
ra

ge
 b

re
ed

in
g 

va
lu

es
 (

PA
) 

an
d 

ge
no

m
ic

al
ly

 e
nh

an
ce

d 
br

ee
di

ng
 v

al
ue

s 
(G

E
B

V
) 

fo
r 

R
ed

 D
ai

ry
 C

at
tl
e 

(R
D

C
),

 H
ol

st
ei

n,
 a

nd
 J

er
se

y;
 N

 =
 n

um
be

r 
of

 c
ow

s 
w

it
h 

a 
ph

en
ot

yp
e;

 n
/a

 =
 n

ot
 a

pp
lic

ab
le

 

T
ra

it
 (

un
it
s)

R
D

C

 

H
ol

st
ei

n

 

Je
rs

ey

N

C
or

re
la

ti
on

R
el

at
iv

e 
ch

an
ge

2  
(%

)
N

C
or

re
la

ti
on

R
el

at
iv

e 
ch

an
ge

2  
(%

)
N

C
or

re
la

ti
on

R
el

at
iv

e 
ch

an
ge

2  
(%

)
PA

1
G

E
B

V
1

PA
1

G
E

B
V

1
PA

1
G

E
B

V
1

M
ilk

A
dj

14
,7

10
0.

25
0.

40
*

63
 

17
,0

39
0.

31
0.

45
*

49
 

7,
06

9
0.

32
0.

51
*

59
Fa

t A
dj

14
,5

71
0.

21
0.

31
*

46
 

16
,8

01
0.

25
0.

36
*

46
 

7,
04

8
0.

24
0.

40
*

60
P

ro
te

in
A

dj
14

,5
83

0.
23

0.
33

*
52

 
16

,9
02

0.
26

0.
38

*
44

 
7,

06
0

0.
23

0.
37

*
63

SC
S A

dj
12

,8
34

−
0.

10
−

0.
16

*
63

 
16

,6
67

−
0.

13
−

0.
21

*
65

 
6,

73
4

−
0.

10
−

0.
18

*
67

C
lin

ic
al

 m
as

ti
ti
s A

dj
12

,8
34

−
0.

04
−

0.
06

*
62

 
14

,4
63

−
0.

06
−

0.
09

*
38

 
6,

44
7

−
0.

09
−

0.
10

13
IF

L
A

dj
14

,5
49

−
0.

05
−

0.
09

*
68

 
16

,8
33

−
0.

06
−

0.
11

*
64

 
6,

45
1

−
0.

04
−

0.
08

*
78

U
dd

er
A

dj
11

,9
17

0.
20

0.
29

*
42

 
13

,4
12

0.
23

0.
37

*
61

 
6,

19
2

0.
15

0.
26

*
71

Fe
et

 a
nd

 l
eg

s A
dj

11
,9

17
0.

16
0.

29
*

73
 

13
,4

13
0.

14
0.

20
*

56
 

6,
19

2
0.

20
0.

26
*

32
C

al
vi

ng
 e

as
e A

dj
11

,5
21

−
0.

04
−

0.
07

*
77

 
16

,8
91

−
0.

05
−

0.
07

*
88

 
6,

69
1

−
0.

05
−

0.
07

37
C

la
w

 h
ea

lt
h A

dj
4,

12
9

−
0.

06
−

0.
10

*
74

 
4,

82
9

−
0.

06
−

0.
12

*
91

 
n/

a
n/

a
n/

a
n/

a
G

en
er

al
 h

ea
lt
h A

dj
13

,8
85

−
0.

02
−

0.
05

*
19

4
 

15
,7

48
−

0.
03

−
0.

06
*

94
 

n/
a

n/
a

n/
a

n/
a

Su
rv

iv
al

 1
–2

A
dj

14
,6

94
0.

03
0.

05
*

71
 

17
,0

29
0.

03
0.

06
*

13
6

 
7,

05
3

0.
03

0.
03

11
1 N

eg
at

iv
e 

co
rr

el
at

io
ns

 a
re

 d
es

ir
ab

le
 f
or

 S
C

S,
 m

as
ti
ti
s,

 i
nt

er
va

l 
in

 d
ay

s 
fr

om
 f
ir

st
 t

o 
la

st
 s

er
vi

ce
 (

IF
L
),

 c
al

vi
ng

 e
as

e,
 c

la
w

 h
ea

lt
h,

 a
nd

 g
en

er
al

 h
ea

lt
h.

2
R

el
at

iv
e 

ch
an

ge
C

or
re

la
ti

on
 w

it
h 

G
E

B
V

C
or

re
la

ti
on

 w
it
h 

P
A

C
=

−
oor

re
la

ti
on

 w
it

h 
P

A
,r

el
at

iv
e 

ch
an

ge
 i
n 

pe
rc

en
t 

be
tw

ee
n 

G
E

B
V

 c
or

re
la

ti
on

 a
nd

 P
A

 c
or

re
la

ti
on

.

*S
ig

ni
fic

an
t 

di
ff
er

en
ce

 b
et

w
ee

n 
G

E
B

V
 c

or
re

la
ti
on

 a
nd

 P
A

 c
or

re
la

ti
on

 (
P

 <
 0

.0
5)

.



6388

Journal of Dairy Science Vol. 103 No. 7, 2020

The correlations with adjusted phenotypes were over 
40% stronger for all production traits and breeds when 
genomic information was used compared with PA. The 
highest correlation found in this study was between 
milk GEBV and MilkAdj for Jersey. The reliability of 
the yield breeding values differed least from each other 
(Table 4), where the heritability for RDC was slightly 
lower than for Holstein and Jersey (Table 3). The 
Nordic RDC is the most genetically diverse of the 3 
breeds studied, as it is a mixture of Swedish Red, Dan-
ish Red, and Finnish Ayrshire and also includes genes 
from Norwegian Red, Canadian Ayrshire, American 
Brown Swiss, and Red Holstein Friesian (NAV, 2019). 
Hence, less linkage disequilibrium between markers and 
quantitative trait loci could explain the lower correla-
tions for RDC. The difference between top and bottom 
quartiles in adjusted phenotypes when using GEBV 
instead of PA (∆GEBV − ∆PA; Table 6) for MilkAdj 
was lower than that reported by Weigel et al. (2015). 
For Holstein, the difference in our study was +450 kg 
with genomic information, compared with +1,104 kg 
in Weigel et al. (2015). However, only sire PTA (rather 
than PA) values were used in their study, and the re-
sults were only from 411 cows. Additionally, differences 
in production level and phenotypic variance most likely 
occurred between our study and that of Weigel et al. 
(2015).

In general, traits with low heritability in the present 
study, such as IFL, clinical mastitis, CE, CH, and GH, 
gained relatively more in accuracy from using genomic 
information than did highly heritable traits such as 
production. The same pattern has been reported by 

other studies (García-Ruiz et al., 2016; Wiggans et al., 
2017).

In our study, IFLAdj was one of the traits for which 
correlations increased the most when genomic informa-
tion was included in the breeding values (over 60% 
for all 3 breeds). It has been established that IFL has 
the strongest correlation with fertility breeding value 
(NAV, 2019). For Jersey, the correlation between breed-
ing value and IFLAdj increased by 78% when genomic 
information was included. Looking at the quartiles for 
IFL, the difference between ∆GEBV and ∆PA was 4.6 
to 7.0 d in favor of GEBV (Table 6). Consequently, 
virgin heifer GEBV was more effective than PA in iden-
tifying cows with poor and good fertility.

Our results also confirmed that GEBV can help in 
choosing animals with better udder health. The correla-
tion between SCSAdj and GEBV increased by over 55% 
compared with SCSAdj and PA for all 3 breeds. The 
udder health trait with the highest heritability is SCS 
(Table 3), and one could expect a stronger correlation 
compared with clinical mastitis. Weigel et al. (2015) 
found that SCS showed almost no difference between 
quartiles for PA, even though their study had greater 
differences between quartiles for genomic values. In 
the present study, we also found significant differences 
for correlations between Clinical MastitisAdj and udder 
health breeding values for Holstein and RDC but not 
for Jersey. However, the Jersey correlation between 
PA udder health and MastitisAdj was relatively strong, 
which indicates that the conventional evaluation works 
well for this trait, possibly owing to higher clinical 
mastitis frequency among Jersey cows than among 
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Table 6. Differences in averages of adjusted (Adj) phenotypes between cows in bottom and top quartiles for virgin heifer parent average 
breeding values (∆PA), genomically enhanced breeding values (∆GEBV), and relative change in percent, respectively, for Red Dairy Cattle 
(RDC), Holstein, and Jersey; for trait definitions, see Table 1; n/a = not applicable

Trait1

RDC

 

Holstein

 

Jersey

∆PA ∆GEBV

Relative 
change2 

(%) ∆PA ∆GEBV

Relative 
change2 

(%) ∆PA ∆GEBV

Relative 
change2 

(%)

MilkAdj (kg) 708 1,171 65  1,061 1,512 42  738 1,156 57
FatAdj (kg) 28 41 45  33 48 47  28 42 54
ProteinAdj (kg) 20 31 57  27 38 44  22 34 55
SCSAdj 0.1 0.15 55  0.11 0.19 71  0.09 0.16 71
MastitisAdj (score 0 or 1) 0.02 0.03 19  0.02 0.04 52  0.08 0.08 4
IFLAdj (d) 7.7 12.3 60  9.1 16.1 76  7.3 12.2 68
UdderAdj (points) 2.5 3.5 39  2.7 4.4 62  1.7 3.3 90
Feet and legsAdj (points) 2 3.6 78  1.5 2.5 66  2.3 3.1 35
Calving easeAdj (score 1–4) 0.04 0.08 97  0.07 0.12 71  0.04 0.06 51
Claw healthAdj (0 or 1) 0.05 0.11 111  0.07 0.14 99  n/a n/a n/a
General healthAdj (0 or 1) 0.01 0.03 261  0.03 0.05 76  n/a n/a n/a
Survival 1–2Adj (0 or 1) 0.03 0.03 9  0.02 0.05 138  0.04 0.04 17
1IFL = interval from first to last service, in days.

2 Relative change
GEBV PA

PA
=

−∆ ∆
∆

, relative change in percent between GEBV bottom and top quartile compared with PA bottom and top 
quartile.
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Holstein and RDC cows (Appendix Tables A1 and 
A2). In the genotyped data set, the clinical mastitis 
frequency for Jersey was 17%, compared with 7% for 
Holstein and 6% for RDC. This was also reflected in 
the differences between quartiles, where both ∆PA and 
∆GEBV differences were larger for Jersey. However, we 
found no differences between PA and GEBV in their 
ability to predict the future adjusted phenotype for 
Jersey (Table 6). The low clinical mastitis frequencies 
for RDC and Holstein made it more difficult to detect 
differences between GEBV and PA. The correlations 
between breeding values for udder health and clinical 
mastitis are stronger in the second and third lactations 
(NAV, 2019). It would have been interesting to study 
the second and third lactations, but for most animals 
these had not been completed at the time of this study.

For RDC and Holstein, we discovered significantly 
stronger correlations between calving GEBV and 
CEAdj than between calving PA and CEAdj. However, 
with fewer genotyped heifers and some animals lacking 
CE information, it was not possible to draw a similar 
conclusion for Jersey. Analysis also revealed fewer calv-
ing problems for Jersey, for which the score was on 
average 1.06 in the genotyped group, compared with 
1.24 for RDC and 1.23 for Holstein (Appendix Tables 
A1 and A2). Further, heritability and GEBV reliability 
were also lower for the calving trait in Jersey compared 
with Holstein and RDC (Tables 3 and 4), which might 
explain why it was not possible to detect significant 
differences between GEBV correlation and PA correla-
tion. The difference between quartiles was also smaller 
for Jersey (+0.02) compared with RDC (+0.04) and 
Holstein (+0.05) when genomic information was in-
cluded in the breeding value (Table 6).

Phenotypes for both conformation traits were sig-
nificantly more strongly correlated with conformation 
GEBV than with conformation PA. On examining the 
difference between conformation quartiles (Table 6), it 
was also possible to see that the prediction improved 
when genomic information was included. The difference 
between the top and bottom 25% (∆GEBV − ∆PA) 
increased by between 0.8 and 1.6 scoring points for feet 
and leg conformation, and between 1.0 and 1.7 scoring 
points for udder conformation, when genomic informa-
tion was used (Table 6). Thus, GEBV can be more 
effective than PA in predicting future conformation.

We also disovered a lack of phenotypes for the CH 
trait (Table 5), which might have affected the results 
for that trait. Nevertheless, for both RDC and Holstein, 
the correlations between CH GEBV and CHAdj were 
significantly stronger than the correlations between CH 
PA and CHAdj. For Jersey, it was not possible to com-
pare GEBV and PA regarding their ability to predict 

future cow claw health, because the genomic evaluation 
for CH in that breed was only established in 2018.

For both Holstein and RDC, the correlations between 
general health GEBV and GHAdj were significantly 
stronger than the correlations between general health 
PA and GHAdj. The correlations between GH breeding 
value and GHAdj increased by 99% for Holstein and 
194% for RDC when using genomic selection. From the 
quartile differences (+0.02) for both Holstein and RDC, 
the benefit of using genomic selection was not equally 
clear. The heritability of the GH trait is low, and the 
trait is influenced by the environment to a large extent 
(Table 3). For GH, the genomic evaluation for Jersey 
was under development at the time of the study.

For RDC and Holstein, significantly stronger correla-
tions occurred between longevity GEBV and Survival 
1–2Adj than between longevity PA and Survival 1–2Adj. 
For Jersey, we found no differences between the abili-
ties of GEBV and PA to predict future survival per-
formance. Further, looking at differences between the 
quartiles (∆GEBV − ∆PA) for Holstein (+0.03), Jer-
sey (±0) and RDC (±0), it was not possible to see the 
benefit of genomic selection for RDC and Jersey (Table 
6). The reliability of survival GEBV was also lower for 
Jersey than for Holstein and RDC (Table 4). Survival is 
strongly affected by farmer decisions, the environment, 
and other functional and health traits (Kargo et al., 
2014), which also could explain the results. It would 
have been interesting to study survival in later lacta-
tions. The longevity breeding value includes data to the 
end of the fifth lactation, and the correlations between 
longevity breeding value and survival are stronger in 
later lactations (NAV, 2019).

CONCLUSIONS

We showed that virgin heifer GEBV predicted cow 
performance significantly better than did PA for the 
vast majority of analyzed traits in Red Dairy Cattle, 
Jersey, and Holstein. Thus, farmers in Denmark, Fin-
land, and Sweden can have confidence in using genomic 
technology on their herds for selection decisions. Traits 
with low heritability, such as interval from first to 
last insemination, clinical mastitis, calving ease, claw 
health, and general health, gained relatively more from 
inclusion of genomic information than did highly heri-
table traits such as production.
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APPENDIX

Table A1. First-lactation descriptive statistics [average, SD, and number of animals (N)] for all animals born in 2013, 2014, and 2015 in 
Denmark, Finland, and Sweden

Trait1

Red Dairy Cattle

 

Holstein

 

Jersey

Mean SD N Mean SD N Mean SD N

Milk yield (kg) 8,022 1,432 217,245  8,984 1,660 601,353  6,263 1,126 61,105
Fat yield (kg) 355 63 210,289  363 63 592,887  371 61 61,100
Protein yield (kg) 288 50 210,295  308 53 592,914  259 43 61,105
SCS 0.68 0.42 200,178  0.67 0.37 553,293  0.8 0.37 57,807
Clinical mastitis (score 0 or 1) 0.06 0.24 182,038  0.09 0.29 495,373  0.16 0.37 52,458
IFL (d) 45.86 61.72 177,969  44.36 61.7 491,602  43.17 61.42 53,503
Udder (points) 79.79 5.34 96,273  80.06 5.28 244,125  80 5.53 38,496
Feet and legs (points) 80.02 5.34 96,288  80.18 4.99 244,144  80.07 5.5 38,496
Calving ease (maternal; score 1–4) 1.24 0.52 139,956  1.23 0.5 471,599  1.06 0.32 55,967
Claw health (0 or 1) 0.51 0.5 45,466  0.64 0.48 144,002  0.51 0.5 13,225
General health (0 or 1) 0.12 0.32 185,577  0.16 0.36 519,512  0.15 0.36 54,258
Survival 1–2 (0 or 1) 0.66 0.47 212,226  0.69 0.46 588,990  0.73 0.44 60,921
1IFL = interval from first to last service.

Table A2. First-lactation descriptive statistics [average, SD, and number of animals (N)] for all animals genotyped and qualified for analysis 
born in 2013, 2014, and 2015 in Denmark, Finland, and Sweden

Trait1

Red Dairy Cattle

 

Holstein

 

Jersey

Mean SD N Mean SD N Mean SD N

Milk yield (kg) 8,473 1,312 14,710  9,452 1,579 17,039  6,451 1,024 7,069
Fat yield (kg) 374 56 14,571  383 58 16,801  384 55 7,048
Protein yield (kg) 306 45 14,583  329 51 16,902  269 40 7,060
SCS 0.64 0.40 12,834  0.61 0.35 16,667  0.76 0.36 6,734
Clinical mastitis (score 0 or 1) 0.06 0.24 12,834  0.07 0.27 14,463  0.17 0.36 6,447
IFL (d) 42.03 58.53 14,549  39.87 57.92 16,833  40.36 59.85 6,451
Udder (points) 80.33 5.20 11,917  81.46 4.85 13,412  80.72 5.25 6,192
Feet and legs (points) 80.12 5.26 11,917  81.06 4.71 13,413  80.80 5.21 6,192
Calving ease (maternal; score 1–4) 1.22 0.5 11,521  1.23 0.50 16,891  1.07 0.33 6,691
Claw health (0 or 1) 0.54 0.50 4,129  0.59 0.49 4,829  0.55 0.49 1,096
General health (0 or 1) 0.15 0.35 13,885  0.14 0.35 15,748  0.15 0.35 6,626
Survival 1–2 (0 or 1) 0.69 0.46 14,694  0.71 0.45 17,029  0.75 0.43 7,053
1IFL = interval from first to last service.
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ABSTRACT

In this study, we compared mating allocations in 
Nordic Red Dairy Cattle using genomic information. 
We used linear programming to optimize different 
economic scores within each herd, considering genetic 
level, semen cost, the economic impact of recessive 
genetic defects, and genetic relationships. We selected 
9,841 genotyped females born in Denmark, Finland, 
or Sweden in 2019 for mating allocations. We used 2 
different pedigree relationship coefficients, the first 
tracing the pedigree 3 generations back from the par-
ents of the potential mating and the second based on 
all available pedigree information. We used 3 differ-
ent genomic relationship coefficients, 1 SNP-by-SNP 
genomic relationship and 2 based on shared genomic 
segments. We found high correlations (≥0.83) between 
the pedigree and genomic relationship measures. The 
mating results showed that it was possible to reduce 
the different genetic relationships between parents with 
minimal effect on genetic level. Including the cost of 
known recessive genetic defects eliminated expression 
of genetic defects. It was possible to reduce genomic 
relationships between parents with pedigree measures, 
but it was best done with genomic measures. Linear 
programming maximized the economic score for all 
herds studied within seconds, which means that it is 
suitable for implementation in mating software to be 
used by advisors and farmers.
Key words: genomic relationships, pedigree 
relationships, mating program, linear programming

INTRODUCTION

Mating programs are an important support tool for 
livestock breeders, helping them to identify the best 
parental matings to maximize genetic level and avoid 

mating between closely related individuals, preventing 
excessive inbreeding (Carthy et al., 2019; Bérodier et 
al., 2021). New genetic insights at single nucleotide level 
can be used in mating programs. Single nucleotide poly-
morphism markers can give information about major 
genes and genetic defects. Minimizing the probability 
of obtaining offspring homozygous for a lethal recessive 
genetic defect is of economic importance for farmers 
(Pryce et al., 2012). Further, the EFFAB (European 
Forum of Farm Animal Breeders, Brussels, Belgium) 
code of good practice states that breeding organiza-
tions should improve health and welfare by reducing 
the incidence of genetic defects (EFFAB, 2020).

SNP markers also offer the possibility to reduce 
genomic relationships between parents when making 
mating plans. Various methods have been proposed for 
calculation of genomic relationships, including SNP-by-
SNP relationships as described by, for example, Van-
Raden (2008). Further, methods using shared genomic 
segments, as described by, for example, de Cara et al. 
(2013), aim to reduce the number of runs of homozy-
gosity (ROH) in the offspring. Genomic estimates of 
relationships are suggested to be more accurate than 
pedigree information because they do not rely on pedi-
gree completeness or correctness (Pryce et al., 2012; 
Sun et al., 2013; Carthy et al., 2019) and also because 
pedigree relationships incorrectly assume infinite, un-
linked loci (Hill and Weir, 2011). Furthermore, genomic 
estimates of relationships can differentiate between 
animals with the same pedigree relationship that have 
inherited partly different genetic variants from their 
parents.

At population level, various genomic relationships 
have been compared previously with pedigree measures 
using optimum contribution selection (OCS; Sones-
son et al., 2012; Henryon et al., 2019; Meuwissen et 
al., 2020). Sonesson et al. (2012) concluded that ge-
nomic selection needs genomic control of inbreeding. In 
contrast, using pedigree relationships in OCS, rather 
than genomic relationships, has been shown to achieve 
more true genetic gain in the long term (Henryon et 
al., 2019). Further, Meuwissen et al. (2020) illustrated 
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that different relationship matrices are preferred when 
aiming for maintain heterozygosity or when controlling 
genetic drift, where the latter prevents genetic defects 
from drifting to high frequencies and random drift of 
functional traits.

Several known recessive genetic defects in Nordic 
Red Dairy Cattle (RDC) are included in the SNP 
chip currently used for genotyping, and additional 
genetic defects are included as they are detected. At 
the beginning of 2020, the carrier status of 6 genetic 
defects in RDC was automatically provided with the 
genomic test. Besides reducing genetic relationships, 
other relevant information (e.g., genetic level, semen 
cost, the economic impact of recessive genetic defects) 
has to be considered when making mating plans. An 
economic score for each potential mating, which com-
bines and weighs all economically relevant information, 
has been proposed (Pryce et al., 2012; Carthy et al., 
2019; Bérodier et al., 2021). Using linear programming 
to maximize every herd’s mean economic score, subject 
to necessary constraints, is a fast and effective method 
(Carthy et al., 2019; Bérodier et al., 2021). Further, 
linear programming has been shown to outperform 
other mating methods such as sequential mate alloca-
tion (Sun et al., 2013; Carthy et al., 2019; Bérodier et 
al., 2021).

There are several mating programs available in the 
Nordic countries, but to our knowledge none takes into 
account genomic relationships to plan matings. In total 
numbers, RDC is the second most common dairy breed 
in the Nordic countries Sweden, Finland, and Denmark, 
with approximately 200,000 cows in the milk record-
ing scheme. Nordic Red Dairy Cattle are a mixture of 
Swedish Red, Danish Red, and Finnish Ayrshire, and 
historically also contain genes from Norwegian Red, 
Canadian Ayrshire, American Brown Swiss, and Red 
Holstein-Friesian (NAV, 2019). Genotyping of RDC 
started on a large scale in 2012, with the VikingGenet-

ics genotyping project. From 2012 to 2020, more than 
100,000 RDC females and 20,000 RDC males were 
genotyped. Approximately 20% of the RDC females 
born in 2019 were genotyped.

Our objective in this study was to investigate the 
ability of different approaches for mating allocation to 
maximize expected genetic level, limiting parent rela-
tionship and minimizing the probability of expression of 
genetic defects, in the next generation. We investigated 
all scenarios at herd level with real data. We used lin-
ear programming to optimize different economic scores 
within each herd, considering genetic level, semen cost, 
the economic impact of recessive genetic defects, and 
5 different measures of relationships (2 pedigree based 
and 3 genomic based).

MATERIALS AND METHODS

Breeding values, pedigree data, SNP data, and data 
on the carrier status of genetic defects were obtained 
from the Nordic Cattle Genetic Evaluation (NAV, 
2019).

Genotype Data

The SNP information for all genotyped RDC animals 
born between 2011 and 2020 in Denmark, Finland, and 
Sweden was available. Nordic Cattle Genetic Evalua-
tion uses the Illumina 50k chip (Illumina Inc.) as the 
standard for genomic prediction, and genotypes from 
lower-density chips were imputed by NAV to 50k with 
FImpute software (Sargolzaei et al., 2014). From late 
2018 onward, most of the animals were genotyped with 
a EuroG MD beadchip (Borchersen, 2019). In total, the 
data included genotypes from 149,943 animals (28,337 
males and 121,606 females).

In RDC, several known recessive genetic defects are 
segregating (Wu et al., 2020). Genotype information for 
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Table 1. Known recessive genetic defects, and their effect if homozygous, available with a genomic test for Nordic Red Dairy Cattle

Recessive genetic defect Effect if homozygous

BTA12 
 OMIA 001901–9913

Early abortion, between the first and fifth month of gestation (Kadri et al., 2014)

BTA23 
 OMIA 001991–9913

Stillborn calf (Sahana et al., 2016)

Brown Swiss haplotype 2 (BH2) 
 OMIA 001939–9913

Stillborn calf or calf death shortly after birth (Schwarzenbacher et al., 2016)

Ptosis intellectual disability, retarded 
 growth, and mortality (PIRM/AH1) 
 OMIA 001934–9913

Early abortion within 100 d of gestation. Inhibited growth if calves are born. PIRM/AH1 are 
located very close together and are expected to be the same disease (Guarini et al., 2019).

Ayrshire haplotype 2 (AH2) 
 OMIA 002134–9913

Early abortion within 56 d of gestation (Guarini et al., 2019)

Spinal muscular atrophy (SMA) 
 OMIA 000939–9913

Calves become weak and have problems standing, progressively worsen until they die; seen in wk 
1–12 (Krebs et al., 2007)
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a total of 6 genetic defects (Table 1) has been derived 
by SEGES (Skejby, Denmark) for NAV from SNPs in 
the EuroG MD beadchip.

Breeding Values

Genomic breeding values from the NAV evaluation 
performed in May 2020 were used in this study. The 
total merit index used was Nordic total merit (NTM), 
which at the time of this study was composed of 15 
subindices, including yield index, youngstock survival, 
longevity, growth, udder health, udder, feet and legs, 
frame, hoof health, milkability, daughter fertility, gen-
eral health, temperament, calving maternal, and calving 
direct. Nordic total merit is expressed in standardized 
units with a mean of 0 and a genetic standard deviation 
of 10 (NAV, 2019).

Data Selection

Females. We selected 9,841 genotyped females born 
in Denmark, Finland, or Sweden in 2019 for mating 
allocations (Table 2). In late 2018, a new SNP array 
for genotyping was introduced in these countries, which 
included the 6 known genetic defects listed in Table 1. 
Hence, 2019 was the first year with complete informa-
tion about the 6 genetic defects we considered in our 
mating allocations. All females included belonged to 
herds with 20 or more genotyped females in 2019. In 
total, 234 herds were represented, with an average of 

42 genotyped females per herd (the smallest number 
of genotyped females in a herd was 20 and the larg-
est was 244). Descriptive herd statistics on the carrier 
frequency of the different genetic defects can be found 
in Table 3.

Bulls. We used 2 data sets on bulls (Table 2), which 
were potential mates of the 9,841 selected females. The 
first bull data set (BullVG) included 50 genotyped 
RDC bulls from the Nordic breeding cooperative Vi-
kingGenetics. These bulls were born between January 
2017 and August 2019. Since it became possible, RDC 
bulls have been subjected to additional tests for the 
6 genetic defects considered here, enabling us to use 
older bulls than females in our mating allocations. At 
VikingGenetics, the program EVA (Berg et al., 2006) is 
used for OCS using pedigree relationships (Jakob Lykke 
Voergaard, product manager, VikingRed, VikingGenet-
ics, personal communication, January 11, 2021). The 
bulls we chose as potential mates in this study were the 
top available RDC bulls based on the NTM scale for 
which semen was marketed. There were 32 sires of the 
bulls in BullVG. In total, 6 of the 50 bulls were carriers 
of the recessive genetic defect at BTA12. None of the 
other genetic defects in Table 1 was present in BullVG. 
The highest-ranked carrier bull of the genetic defect at 
BTA12 was number 13 on the NTM scale.

The second bull data set (BullAll) also consisted of 
50 genotyped RDC bulls born between January 2017 
and August 2019. We removed the requirement to use 
only marketed semen, to eliminate any pre-selection 
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Table 2. Descriptive statistics on the Nordic Red Dairy Cattle females and bulls selected for mating allocations1

Trait Females Data set BullVG Data set BullAll

Number of animals 9,841 50 50
Average Nordic total merit (NTM) 10.7 28.4 25.2
Carriers of defect BTA12 (%) 14.7 12.0 14.0
Carriers of defect BTA23 (%) 1.1 0.0 2.0
Carriers of defect BH2 (%) 0.3 0.0 0.0
Carriers of defect PIRM/AH1 (%) 1.6 0.0 0.0
Carriers of defect AH2 (%) 1.2 0.0 0.0
Carriers of defect SMA (%) 0.30 0.0 0.0
1BullVG = 50 genotyped RDC bulls from the Nordic breeding cooperative VikingGenetics; BullAll = 50 geno-
typed RDC bulls born between January 2017 and August 2019.

Table 3. Herd descriptive statistics (n = 234) of the carrier frequency (proportion of heterozygotes) of the 6 
known genetic defects in Nordic Red Dairy Cattle1

Heading BTA12 BTA23 BH2 PIRM/AH1 AH2 SMA

Mean (%) 15.0 1.3 0.3 1.8 1.4 0.3
Min (%) 0.0 0.0 0.0 0.0 0.0 0.0
Max (%) 36.0 9.5 9.5 17.4 21.0 6.2
First quartile (%) 10.2 0.0 0.0 3.0 0.0 0.0
Third quartile (%) 19.2 2.2 0.0 0.0 2.0 0.0
1Mean = mean of all herds carrier frequency; Min = minimum percent of carriers in any herds; Max = maxi-
mum percent of carriers in any herds.
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for the breeding program based on bull carrier status. 
Further, we selected 50 bulls in a row on the NTM 
ranking so that a carrier of genetic defect at BTA12 
would be ranked number 3 and that the bull data set 
in total would contain a higher carrier frequency. There 
were 33 sires of the 50 bulls in BullAll. In BullAll, 7 
bulls were carriers of genetic defect at BTA12 and one 
was a carrier of genetic defect at BTA23 (Table 2). The 
carrier of genetic defect at BTA23 was number 19 on 
the NTM ranking.

Relationship Measures

Pedigree Relationships. We used 2 different 
pedigree relationship coefficients. To reflect the current 
Nordic mating programs, which use limited number of 
generations when calculating relationships, the first re-
lationship coefficient traced the pedigree 3 generations 
back from the parents of the potential mating (a3Gen). 
The second pedigree relationship coefficient was based 
on all available pedigree information (aAllGen). The 
discrete generation equivalent (Woolliams and Män-
tysaari, 1995) for the mated animals was 18.0 and the 
equivalent complete generations (Maignel et al., 1996) 
was 12.6. The 5-generation pedigree completeness for 
genotyped animals was 99.4%.

The pedigree file contained 48,434,951 animals. For 
most cases, the pedigree for genotyped animals was 
already corrected for mismatches by NAV. We found 
only 7 genotyped animals with mismatching parents, 
and they were excluded from further analyses. The 
pedigree relationship coefficients were estimated in Re-
laX2 software (Strandén and Vuori, 2006), which uses 
an algorithm modified from Meuwissen and Luo (1992).

Genomic Relationships. We used 3 different 
genomic relationship coefficients, one SNP-by-SNP 
genomic relationship and 2 based on shared genomic 
segments. The SNP-by-SNP genomic relationship coef-
ficient (gSNP) between animals i and j was calculated 
according to VanRaden (2008):

g
x p x p

p pSNP
m im m jm m

m m m
ij
=

−( )× −( )
−

∑
∑ ( )

,
2 2

2 1
 

where xim and xjm are the genotype scores of animal i 
and animal j at marker m, coded: 0 = homozygote, 1 
= heterozygote, and 2 = alternative homozygote, and 
pm is the frequency of the alternative allele of marker 
m in the founder population. Because we did not know 
the founder population frequency, we instead used the 
allele frequency of all 149,943 genotyped RDC animals 
available for this study, as is common practice for ge-

nomic evaluation (Wang et al., 2014). We used the soft-
ware SNP1101 to calculate the SNP-by-SNP genomic 
relationship coefficients (Sargolzaei, 2014).

The 2 genomic relationship coefficients based on 
shared genomic segments were calculated following de 
Cara et al. (2013):
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where LSEGk is the length (in base pairs) of the kth 
shared segment measured over homolog a of animal i 
and homolog b of animal j, and LAUTO is the total length 
of the autosomes covered by the SNP in base pairs.

The 2 segment-based genomic relationship coef-
ficients were based on different minimum lengths of 
segments: 1 cM (gSEG1) and 4 cM (gSEG4), assuming 1 
cM = 1,000,000 bp (Gautier et al., 2007). The lengths 
of segments were chosen to represent short and long 
segments, similarly to other studies (Zhang et al., 2015; 
Forutan et al., 2018; Makanjuola et al., 2020; Marti-
kainen et al., 2020). Phasing of genotypes was done in 
Beagle 4.1 with default settings (Browning and Brown-
ing, 2007), and segments of minimum desired length 
were extracted in RefineIBD with the default setting 
except for the logarithm of the odds (LOD) score (base 
10 log of the likelihood ratio), where we used LOD = 
0.1 (Browning and Browning, 2013). The LOD score is 
used to prune out shared segments that are not com-
mon in the population. Hence, default LOD = 3.0 in 
RefineIBD was considered too high for our purposes, as 
in a recent study (Olsen et al., 2020).

Economic Score

For each potential mating between female i and bull 
j, we calculated an economic score as done by Bérodier 
et al. (2021) and Pryce et al. (2012):
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where NTMi and NTMj are the value of Nordic total 
merit units in euros (€) for female i and bull j, λ is the 
economic consequence of a 1% increase in inbreeding, 
Fij is the pedigree or genomic based co-ancestry (re-
lationship/2), prob(Fem) is the probability of produc-
ing a female conceptus, nr is the number of recessive 

Bengtsson et al.: MATING ALLOCATIONS USING GENOMIC INFORMATION



Journal of Dairy Science Vol. 105 No. 2, 2022

1285

genetic defects considered, p(aa)r is the probability of 
expression of a genetic defect r, vr is the economic cost 
associated with the recessive genetic defect r, and se-
men cost is the average amount (€) spent on semen for 
a pregnancy.

The value of 1 index unit of NTM was approximated 
to be €24.8, based on the value per NTM unit and 
year (€9.2) the average and production lifetime (2.7 
yr; Fikse and Kargo, 2020). We only considered sexed 
semen and assumed a 0.9 probability of producing a fe-
male conceptus, which is the minimum expected sexing 
rate for most sexing technologies (Burnell, 2019). Sexed 
semen is gaining popularity in the Nordic countries 
and is combined with the use of beef semen to get the 
number of heifers needed for the next generation. It is 
expected that most of the semen sold by VikingGenet-
ics in future will be sexed dairy semen and beef semen 
(Jakob Lykke Voergaard, product manager, VikingRed, 
VikingGenetics, personal communication, January 11, 
2021).

The economic consequence of a 1% increase in in-
breeding was set to €24.8. The current version of the 
Swedish mating program “Genvägen” uses a penalty of 
1 NTM unit per 1% increase in inbreeding, which would 
mean €24.8 (Lina Baudin, expert in breeding routines, 
Växa Sverige, personal communication, March 5, 2021). 
To our knowledge, no such values have been calculated 
specifically for the RDC breed, and therefore in a sen-
sitivity analysis we set the economic consequence of 
a 1% increase in inbreeding to €10.0, €24.8, or €40.0. 
The analysis was performed with BullVG and scenarios 
maximizing economic scores, including all available 
information and a maximum of 5% females per bull 
and herd.

The costs associated with genetic defects were based 
on economic effects of health disorders estimated by 
Oskarsson and Engelbrekts (2015) and the economic 
assumptions behind the NTM (Sørensen et al., 2018). 
We assumed the cost of an early abortion (genetic de-
fect at BTA12, PIRM/AH1, AH2) to be €80, based on 
the resulting longer calving interval (€30–€40/mo) and 
the cost of extra insemination(s) (€30). We assumed 
the cost of a later abortion or an early calf death to be 
€160 (genetic defect SMA, BH2, and at BTA23).

We used the prices for sexed semen set by VikingGe-
netics in 2020, where a semen dose for a bull with a 
NTM of 30 or more cost €26, with a NTM of 25 to 
30 cost €22.5, and with a NTM of 20 to 25 cost €19 
(Jakob Lykke Voergaard, product manager, VikingRed, 
VikingGenetics, personal communication, January 11, 
2021). We multiplied the semen price by 1.8, which 
is the average number of inseminations needed for a 
pregnancy in RDC (Sørensen et al., 2018).

Mating Scenarios

In addition to the economic scores that included all 
available information described above, we investigated 
mating scenarios without the penalty for genetic de-
fects. In addition, we investigated scenarios that only 
aimed to reduce the genetic relationships. Detailed 
information about the mating scenarios can be found 
in Table 4.

Mate Allocation

Mate allocation was programmed in R version 3.6.3 
(R Core Team, 2020). Linear programming optimiza-
tion was performed with the ‘Lp_solve’ package in 
R (Berkelaar et al., 2020). The mating R script was 
provided by Bérodier et al. (2021). The R script set up 
constraints that were considered in the linear program-
ming optimization. We used the constraints: one mat-
ing per female and a threshold percentage for the maxi-
mum number of females per bull and herd, for which 
we evaluated 2 different levels, 5% and 10%, similarly 
to Bérodier et al. (2021). The threshold for the number 
of females per bull and herd was in line with current 
recommendations given by Swedish breeding advisors.

The planned matings achieved from each scenario 
were compared by (1) average NTM; (2) average ge-
netic relationships (a3Gen, aAllGen, gSNP, gSEG1, gSEG4); (3) 
the probability of expression of genetic defects, includ-
ing genetic defect at BTA12, using bull set BullVG, 
and including genetic defects at BTA12 and BTA23 
using bull set BullAll; (4) the average cost of semen for 
a pregnancy, calculated in the same way as in the eco-
nomic score; (5) the total number of bulls used; (6) the 
number of bulls used to the maximum number of doses 
based on the threshold (5% and 10%) of females per 
bull and herd; (7) average pedigree relationship among 
all planned matings, calculated similarly to aAllGen; and 
(8) predicted carrier frequency of genetic defect at 
BTA12 using BullVG, and predicted carrier frequency 
of genetic defects at BTA12 and BTA23 using BullAll, 
calculated as 50% of the cases when a parent was a 
carrier divided by the total number of matings. The 
predicted carrier frequency in the next generation did 
not include homozygotes for the genetic defects, which 
were included in the probability of expression of genetic 
defects.

Statistical Analysis

SAS software version 9.4 (SAS Institute Inc.) and 
R version 3.6.3 (R Core Team, 2020) were used for 
statistical analysis.
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RESULTS

All results are presented for the selected females and 
bulls in BullVG, unless otherwise specified.

Genetic Relationship Coefficients

The mean value of the relationship coefficients be-
tween all possible combinations of females and males 
ranged from 0.009 to 0.188, and the standard deviation 

ranged from 0.042 to 0.047 (Table 5). The correlations 
between the genetic relationship coefficients were all 
0.83 or higher. The strongest correlation was between 
aAllGen and a3Gen (r = 0.99), and the second strongest 
was between gSEG1 and gSEG4 (r = 0.98). The strongest 
correlation between pedigree and genomic relationships 
was between aAllGen and gSEG4 (r = 0.88; Table 6). The 
coefficients of regression on aAllGen were close to 1, high-
est for a3Gen and gSNP and somewhat lower for gSEG1 and 
gSEG4 (Figure 1).
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Table 4. Description of the 15 different mating scenarios considered

Scenario1  

Economic score includes

Nordic total 
merit, NTM  Relationship2  

Genetic defect 
value  

Sexed 
semen  

Semen 
cost  

Linear programming 
objective3

MaxNTM  Yes  No  No  Yes  Yes  Max
3Gen  Yes  a3Gen  Yes  Yes  Yes  Max
AllGen  Yes  aAllGen  Yes  Yes  Yes  Max
GSNP  Yes  gSNP  Yes  Yes  Yes  Max
GSEG1  Yes  gSEG1  Yes  Yes  Yes  Max
GSEG4  Yes  gSEG4  Yes  Yes  Yes  Max
3Gen_NoDefect  Yes  a3Gen  No  Yes  Yes  Max
AllGen_NoDefect  Yes  aAllGen  No  Yes  Yes  Max
GSNP_NoDefect  Yes  gSNP  No  Yes  Yes  Max
GSEG1_NoDefect  Yes  gSEG1  No  Yes  Yes  Max
GSEG4_NoDefect  Yes  gSEG4  No  Yes  Yes  Max
3Gen_Min  No  a3Gen  No  Yes  No  Min
AllGen_Min  No  aAllGen  No  Yes  No  Min
GSNP_Min  No  gSNP  No  Yes  No  Min
GSEG1_Min  No  gSEG1  No  Yes  No  Min
GSEG4_Min  No  gSEG4  No  Yes  No  Min
Random All possible combinations of 9,841 females and 50 bulls
1MaxNTM: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, and semen cost. 
3Gen: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost, a pedigree 
relationship including 3 generations of ancestors (a3Gen), and penalty for genetic defects. AllGen: mating scenario where mates were selected 
based on maximizing an economic score including NTM, sexed semen, semen cost, a pedigree relationship including all available ancestors 
(aAllGen), and penalty for genetic defects. GSNP: mating scenario where mates were selected based on maximizing an economic score includ-
ing NTM, sexed semen, semen cost, a genomic relationship calculated according to VanRaden (2008) (gSNP), and penalty for genetic defects. 
GSEG1: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost, a genomic 
relationship based on shared genomic segment calculated according to de Cara et al. (2013) with a minimum genomic segment length of 1 cM 
(gSEG1), and penalty for genetic defects. GSEG4: mating scenario where mates were selected based on maximizing an economic score including 
NTM, sexed semen, semen cost, and a genomic relationship based on shared genomic segment calculated according to de Cara et al. (2013) 
with a minimum genomic segment length of 4 cM (gSEG4), and penalty for genetic defects. 3Gen_NoDefect: mating scenario where mates were 
selected based on maximizing an economic score including NTM, sexed semen, semen cost, and a pedigree relationship including 3 generations 
of ancestors (a3Gen). AllGen_NoDefect: mating scenario where mates were selected based on maximizing an economic score including NTM, 
sexed semen, semen cost, and a pedigree relationship including all available ancestors (aAllGen). GSNP_NoDefect: mating scenario where mates 
were selected based on maximizing an economic score including NTM, sexed semen, semen cost, and a genomic relationship calculated according 
to VanRaden (2008) (gSNP). GSEG1_NoDefect: mating scenario where mates were selected based on maximizing an economic score including 
NTM, sexed semen, semen cost, and a genomic relationship based on shared genomic segment calculated according to de Cara et al. (2013) with 
a minimum genomic segment length of 1 cM (gSEG1). GSEG4_NoDefect: mating scenario where mates were selected based on maximizing an 
economic score including NTM, sexed semen, semen cost, and a genomic relationship based on shared genomic segment calculated according to 
de Cara et al. (2013) with a minimum genomic segment length of 4 cM (gSEG4). 3Gen_Min: mating scenario where mates were selected based on 
minimizing an economic score including a pedigree relationship including 3 generations of ancestors. AllGen_Min: mating scenario where mates 
were selected based on minimizing an economic score including a pedigree relationship including all available ancestors. GSNP_Min: mating 
scenario where mates were selected based on minimizing an economic score including a genomic relationship calculated according to VanRaden 
(2008). GSEG1_Min: mating scenario where mates were selected based on minimizing an economic score, including a genomic relationship based 
on shared genomic segment calculated according to de Cara et al. (2013) with a minimum genomic segment length of 1 cM. GSEG4_Min: mating 
scenario where mates were selected based on minimizing an economic score including a genomic relationship based on shared genomic segment 
calculated according to de Cara et al. (2013) with a minimum genomic segment length of 4 cM.
2a3Gen = pedigree relationships using 3 generations of ancestors; aAllGen = pedigree relationships using all available pedigree information; gSNP = 
genomic relationship calculated according to VanRaden (2008); gSEG1 (gSEG4) = genomic segment-based relationship according to de Cara et al. 
(2013) with a minimum segment length of 1 (4) cM.
3The objective of linear programming is to maximize (Max) or minimize (Min) the economic score.
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Mate Allocation

Using BullVG. It was possible to maximize eco-
nomic score with limited impact on the average NTM 
level (Table 7). Including the cost of the known re-
cessive genetic defect (at BTA12) when optimizing 
mating strategies eliminated the risk of expression of 
the genetic defect, regardless of which genetic relation-
ship was used. In MaxNTM (mating scenario where 
mates were selected based on maximizing an economic 

score including NTM, sexed semen, and semen cost), 
the NTM level improved compared with Random (all 
possible combinations of 9,841 females and 50 bulls), 
but it resulted in higher average genetic relationship 
coefficients than Random and did not reduce the prob-
ability of expression of genetic defects.

Including a genomic relationship in the economic 
score also kept the other genomic relationship averages 
at a low level. For example, with the constraint 5% 
females per bull and herd, including gSNP in the objec-
tive function (scenario GSNP) resulted in a gSEG1 of 
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Table 5. Descriptive statistics on relationships [mean, SD, minimum 
value (Min), and maximum value (Max)] between all possible 
combinations of 9,841 females and 50 bulls1

Relationship Mean SD Min Max

a3Gen 0.028 0.042 0 0.648
aAllGen 0.066 0.042 0.003 0.667
gSNP 0.009 0.047 −0.095 0.673
gSEG1 0.188 0.046 0.038 0.789
gSEG4 0.115 0.045 0.005 0.727
1a3Gen = pedigree relationships using 3 generations of ancestors; aAllGen 
= pedigree relationships using all available pedigree information; gSNP 
= genomic relationship calculated according to VanRaden (2008); 
gSEG1 (gSEG4) = genomic segment-based relationship according to de 
Cara et al. (2013) with a minimum segment length of 1 (4) cM.

Table 6. Correlations between the different relationship coefficients 
for all possible combinations of 9,841 females and 50 bulls1

Relationship a3Gen aAllGen gSNP gSEG1 gSEG4

a3Gen 1 0.99 0.88 0.83 0.87
aAllGen 1 0.88 0.85 0.88
gSNP 1 0.9 0.93
gSEG1 1 0.98
1a3Gen = pedigree relationships using 3 generations of ancestors; aAllGen 
= pedigree relationships using all available pedigree information, gSNP 
= genomic relationship calculated according to VanRaden (2008); 
gSEG1 (gSEG4) = genomic segment-based relationship according to de 
Cara et al. (2013) with a minimum segment length of 1 (4) cM.

Figure 1. (a) Relationship coefficients estimated from pedigree data with 3 generations of ancestors (a3Gen), (b) relationship coefficients es-
timated from SNP data (gSNP; VanRaden, 2008), (c) relationship coefficients estimated from shared genomic segments with a minimum segment 
length of 1 cM (gSEG1), and (d) minimum length of 4 cM (gSEG4; de Cara et al., 2013), all plotted against relationship coefficients estimated from 
pedigree data using all available ancestors (aAllGen). The diagrams include relationships for all possible combinations of 9,841 Nordic Red Dairy 
Cattle females and 50 bulls.
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0.148, compared with 0.143 with GSEG1 (Table 7). Us-
ing the pedigree relationships also reduced the genomic 
relationships compared with Random and MaxNTM, 
but not as much as using genomic relationships in the 
objective function. Considering the example with the 
constraint 5% females per bull and herd, and includ-
ing gSNP in the objective function (scenario GSNP), the 
pedigree relationship scenarios resulted in a gSEG1 of 
0.167 for 3Gen and 0.163 for AllGen. There were only 
minor differences between the scenarios with genomic 
relationships in their ability to reduce pedigree relation-
ships. Including pedigree relationships in the economic 
scores consistently reduced pedigree relationships more 
than genomic relationships. For example, all scenarios 
optimizing genomic relationships resulted in aAllGen of 
0.050, AllGen resulted in aAllGen of 0.043, and 3Gen 
resulted in aAllGen of 0.046 (Table 7).

Using BullAll. For the bull set BullAll, including 
the costs of the known recessive genetic defects (at 
BTA12 and BTA23) when optimizing mating strategies 
entirely eliminated the risk of expression of a genetic 
defect, regardless of which genetic relationship was 
used in the objective function (Table 8).

Bull Usage. The number of bulls used in the scenar-
ios considering genomic relationships was always higher 
than in the scenarios considering pedigree relationships. 
Furthermore, fewer bulls were used for the maximum 
number of permitted inseminations considering genom-
ic relationships compared with scenarios considering 
pedigree relationships with the same constraints. Minor 
differences were observed in the average pedigree rela-
tionship between all planned matings using the same 
threshold for females per bull and herd.

Predicted Carrier Frequency in the Next Generation

The predicted carrier frequency in the next gen-
eration was half the carrier frequencies in Table 2 for 
the genetic defects not present in bull set BullVG (at 
BTA23, BH2, PIRM/AH1, AH2, SMA) and bull set 
BullAll (BH2, PIRM/AH1, AH2, SMA). Further, the 
predicted carrier frequencies of known genetic defects 
in the next generation depended on the proportion of 
carrier bull used. Using a maximum of 10% females 
per bull and herd resulted in considerably lower carrier 
frequencies in the next generation (Table 7). In this 
case, the best carrier bull was ranked number 13 on the 
NTM scale and that bull was rarely chosen in any of 
the mating allocations. However, when using a maxi-
mum constraint of 5% females per bull and herd, the 
predicted carrier frequency in the next generation was 
higher than with a maximum constraint of 10% females 
per bull and herd. The bull ranked number 13 and the 

other lower-ranked bulls on the NTM scale were then 
required to be used due to the constraint. When using 
bull set BullAll, more carrier bulls were ranked high on 
the NTM scale. Hence, it resulted in higher predicted 
carrier frequency in the next generation as a conse-
quence of carrier bulls being selected more often (Table 
8) than when using bull set BullVG (Table 7).

Alternative Scenarios

Results for scenarios excluding genetic defects from 
the objective function showed a probability of expres-
sion of genetic defect without the penalty for defects 
in the economic score (Table 9). Including gSEG1 re-
sulted in the lowest probability of expression of genetic 
defects. There were only minor changes for the other 
result parameters compared with when the penalty was 
included.

Results for scenarios minimizing parents’ genetic 
relationships showed a lower average NTM level than 
the other scenarios, because they were not optimized 
with respect to NTM (Table 10). Furthermore, the 
average aAllGen between planned matings was improved 
(e.g., 0.083 in AllGen_Min to 0.089 in MaxNTM). In 
MaxNTM, the average aAllGen relationship was 0.070 
(Table 9). Compared with scenarios maximizing eco-
nomic scores, including all information except the de-
fect penalty (Table 9), the genetic relationships could 
be reduced slightly more. For example, in AllGen_No-
Defect, the aAllGen relationship was 0.043 (Table 9) and 
in AllGen_Min it was 0.040 (Table 10). Similarly, in 
GSNP_NoDefect gSNP was −0.038 and in GSNP_Min 
it was −0.044. Further, in the scenarios aimed at 
only minimizing the parents’ genetic relationship, 
we observed a probability of expression of a genetic 
defect. AllGen_Min and GSEG4_Min resulted in a 
0.2% probability of expression of a genetic defect and 
GSEG1_Min in 0.1% probability, compared with 0.4% 
probability in Random and MaxNTM.

Effect of Constraints Used in Mate Allocation

Changing the maximum number of females per bull 
and herd from 5% to 10% resulted in a higher NTM, 
and the increase was greater for BullVG (1.2–1.4 NTM 
units) than for BullAll (0–0.2 NTM units; Table 7–8), 
owing to more variation in NTM level in BullVG than 
in BullAll. Lower variation in NTM level led to genetic 
relationships being more decisive in mating optimiza-
tion, which in turn led to fewer bulls being used to 
their maximum number of inseminations based on the 
constraints 5% and 10% females per bull and herd. For 
example, in 3Gen, using the constraint 5% females per 
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Table 9. Comparison of outcome of planned matings of 9,841 females for 6 mating scenarios in Nordic Red Dairy Cattle using various 
comparison criteria1,2

Comparison criterion
Max 
NTM

Scenarios without penalty for defects

3Gen_No 
Defect

AllGen_No 
Defect

GSNP_No 
Defect

GSEG1_No 
Defect

GSEG4_No 
Defect

Average Nordic total merit (NTM) 20.8 20.8 20.8 20.8 20.7 20.8
Average a3Gen between parents 0.033 0.007 0.009 0.014 0.014 0.014
Average aAllGen between parents 0.070 0.046 0.043 0.050 0.050 0.050
Average gSNP between parents 0.014 −0.012 −0.016 −0.038 −0.034 −0.033
Average gSEG1 between parents 0.191 0.167 0.163 0.148 0.143 0.146
Average gSEG4 between parents 0.119 0.094 0.091 0.078 0.075 0.074
Probability of expression of genetic defect (%) 0.4 0.4 0.4 0.4 0.2 0.3
Average cost of semen for a pregnancy (€) 43.6 43.6 43.6 43.5 43.5 43.5
Number of bulls used 39 46 45 50 48 47
Number of bulls used to a maximum 20 18 16 10 12 13
Average aAllGen between planned matings 0.089 0.089 0.088 0.088 0.088 0.088
Predicted BTA12 carrier frequency in the 
 next generation (%)

12.9 13.0 12.8 13.1 12.6 12.8

1Fifty marketed bulls from VikingGenetics were available for matings (BullVG). Maximum percentage of females per bull and herd set to 5%.
2Average NTM level, 5 different genetic relationships, the probability of expression of genetic defect (at BTA12), the average cost of semen for 
a pregnancy, the number of bulls used, the number of bulls used to a maximum number of doses based on the 5% of females per bull and herd, 
average pedigree relationship between all planned matings, and predicted genetic defect at BTA12 carrier frequency in the next generation. 
MaxNTM: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, and semen cost. 
3Gen_NoDefect: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost, 
and a pedigree relationship including 3 generations of ancestors (a3Gen). AllGen_NoDefect: mating scenario where mates were selected based on 
maximizing an economic score including NTM, sexed semen, semen cost, and a pedigree relationship including all available ancestors (aAllGen). 
GSNP_NoDefect: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost, 
and a genomic relationship calculated according to VanRaden (2008) (gSNP). GSEG1_NoDefect: mating scenario where mates were selected 
based on maximizing an economic score including NTM, sexed semen, semen cost, and a genomic relationship based on shared genomic segment 
calculated according to de Cara et al. (2013) with a minimum genomic segment length of 1 cM (gSEG1). GSEG4_NoDefect: mating scenario 
where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost, and a genomic relationship based 
on shared genomic segment calculated according to de Cara et al. (2013) with a minimum genomic segment length of 4 cM (gSEG4).

Table 10. Comparison of outcome of planned matings of 9,841 females for 6 mating scenarios in Nordic Red Dairy Cattle using various 
comparison criteria1,2

Comparison criterion
Max 
NTM

Scenarios minimizing relationships

3Gen 
_Min

AllGen 
_Min

GSNP 
_Min

GSEG1 
_Min

GSEG4 
_Min

Average Nordic total merit (NTM) 20.8 19.2 19.6 19.5 19.7 19.7
Average a3Gen between parents 0.033 0.004 0.007 0.013 0.013 0.013
Average aAllGen between parents 0.070 0.044 0.040 0.050 0.049 0.049
Average gSNP between parents 0.014 −0.015 −0.019 −0.044 −0.036 −0.036
Average gSEG1 between parents 0.191 0.167 0.160 0.145 0.137 0.140
Average gSEG4 between parents 0.119 0.094 0.088 0.075 0.071 0.068
Probability of expression of genetic defect (%) 0.4 0.4 0.2 0.4 0.1 0.2
Average cost of semen for a pregnancy (€) 43.6 41.6 41.7 41.9 42.2 42.1
Number of bulls used 39 50 49 50 50 50
Number of bulls used to a maximum 20 2 0 0 1 0
Average aAllGen between all planned matings 0.089 0.084 0.083 0.083 0.084 0.083
Predicted BTA12 carrier frequency in the next generation (%) 12.9 12.9 10.1 13.5 10.4 11.0
1Fifty marketed bulls from VikingGenetics were available for matings (BullVG). Maximum percentage of females per bull and herd set to 5%.
2Average NTM level, 5 different genetic relationships, the probability of expression of genetic defect (at BTA12), the average cost of semen for 
a pregnancy, the number of bulls used, the number of bulls used to a maximum number of doses based on the 5% of females per bull and herd, 
average pedigree relationship between all planned matings, and predicted genetic defect at BTA12 carrier frequency in the next generation. 
MaxNTM: mating scenario where mates were selected based on maximizing an economic score including NTM, sexed semen, and semen cost. 
3Gen_Min: mating scenario where mates were selected based on minimizing an economic score including a pedigree relationship including 3 
generations of ancestors (a3Gen). AllGen_Min: mating scenario where mates were selected based on minimizing an economic score including a 
pedigree relationship including all available ancestors (aAllGen). GSNP_Min: mating scenario where mates were selected based on minimizing an 
economic score including a genomic relationship calculated according to VanRaden (2008) (gSNP). GSEG1_Min: mating scenario where mates 
were selected based on minimizing an economic score, including a genomic relationship based on shared genomic segment calculated according 
to de Cara et al. (2013) with a minimum genomic segment length of 1 cM (gSEG1). GSEG4_Min: mating scenario where mates were selected 
based on minimizing an economic score including a genomic relationship based on shared genomic segment calculated according to de Cara et 
al. (2013) with a minimum genomic segment length of 4 cM (gSEG4).
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bull and herd resulted in 18 bulls being used to the 
maximum when using BullVG (Table 7), and 8 bulls 
being used to the maximum when using BullAll (Table 
8). Furthermore, changing the maximum number of 
females per bull and herd from 5% to 10% increased 
the average aAllGen among planned matings. The thresh-
old for the maximum number of females per bull and 
herd thus seems to be most influential for aAllGen among 
planned matings, and we saw only minor differences 
between scenarios with the same threshold.

The total cost of semen for a pregnancy increased 
on changing the maximum number of females per 
bull and herd from 5% to 10%, because it was more 
profitable to use bulls from the highest price category 
more extensively. In general, there were minor differ-
ences between scenarios in total cost of semen with the 
same constraints. Some differences occurred with these 
constraints if many bulls had NTM close to the price 
category borders. For example, in BullAll, allowing a 
maximum of 10% females per bull and herd meant that 
many bulls had NTM close to 25, which was the price 
category border.

Sensitivity Analysis

Changing the economic consequence of a 1% increase 
in inbreeding from €10.0 to €40.0 did not change the 
average a3Gen (0.07) or aAllGen (0.043), whereas gSNP 
changed slightly from −0.039 using €40.0 to −0.036 
using €10.0, average gSEG1 changed from 0.141 using 
€40.0 to 0.145 using €10.0, and gSEG4 changed from 
0.072 using €40.0 and 0.075 using €10.0. The average 
NTM level was kept between 20.6 and 20.8, and no risk 
of expression of a known genetic defect.

DISCUSSION

The results we present here show that it is possible 
to reduce genetic relationships between RDC parents in 
herds with minimal effect on the genetic level. Includ-
ing the cost of known recessive genetic defects when 
optimizing mating strategies eliminated expression of 
known genetic defects, regardless of the genetic relation-
ship used. There is a long tradition of recording in the 
Nordic countries, and the strong correlation between 
pedigree and genomic relationships that we estimated 
confirms that dairy pedigrees are well documented 
in the Nordic countries. The results of the sensitivity 
analysis showed that the mating results are robust in 
the inbreeding penalty range tested. Furthermore, the 
genetic relationship was reduced only slightly more 
when using an economic score designed to only reduce 
the different genetic relationships than when using an 
economic score including all available information.

Genetic Relationships

The correlation between the pedigree relationship 
and genomic relationship estimates was high, ≥0.83 
for a3Gen, and ≥0.85 for aAllGen (Table 6). Carthy et al. 
(2019) reported a 0.57 correlation between pedigree 
relationships and genomic relationship, which is lower 
than in other studies (0.67–0.88; VanRaden et al., 2011; 
Pryce et al., 2012). Pryce et al. (2012) concluded that 
pedigree depth plays a major role for the strength of 
correlation between pedigree relationships and genomic 
relationships. They found that when the number of 
generations of recorded ancestry was 2, 4, 6, and 8, 
this corresponded to a correlation of 0.67, 0.73, 0.84, 
and 0.87, respectively. Similarly to our study, they also 
found that the reduction in genetic relationship was 
dependent on the way genetic relationships were evalu-
ated. For example, including genomic relationships in 
an economic score was superior to including pedigree 
relationships when the goal was to reduce a genomic 
relationship (Pryce et al., 2012).

Compared with other common dairy cattle breeds, 
the estimated average genetic relationship between par-
ents was low in the present study. The average pedigree 
relationship coefficient was approximately half that 
found by Bérodier et al. (2021) for the Montbéliarde 
breed, with slightly less pedigree information available 
(9.7–10.0 equivalent complete generations compared 
with 12.6 in our study). Carthy et al. (2019) found 
an average pedigree relationship for Holstein-Friesian 
in their mating replicates of 6.24%, which is higher 
than in all our scenarios including genetic relationships 
(Tables 7–9). However, in Carthy et al. (2019), the only 
information given was that animals were traced back at 
least 5 generations, where possible, but with no further 
information about pedigree completeness and therefore 
it is hard to compare their values with our study. Our 
average genomic relationship coefficients were also low 
compared with those in Makanjuola et al. (2020), who 
investigated genetic relationships in North American 
Jersey and Holstein. Using a segment length of 1,000,000 
bp, similar to us, their fSEG co-ancestry of 15.84% for 
Holstein and 23.46% for Jersey should correspond to 
half our gSEG1 value, which for all potential mating with 
bulls in the set BullVG was 9.44% (gSEG1/2) (Table 5). 
The low genetic relationship in RDC can be explained 
by the different breeds included over time in the RDC 
breeding program, which has included a mixture of 
Swedish Red, Danish Red, and Finnish Ayrshire, plus 
some genes from Norwegian Red, Canadian Ayrshire, 
American Brown Swiss, and Red Holstein-Friesian 
(NAV, 2019). We noticed that the mating program fa-
vored bulls with a high percentage of breeds other than 
Swedish Red, Danish Red, and Finnish Ayrshire. All 
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bulls we mated qualified for the joint Nordic breeding 
program (VikingRed), where proportions of up to 25% 
of other breeds are allowed (Jakob Lykke Voergaard, 
product manager, VikingRed, VikingGenetics, personal 
communication, January 11, 2021). However, some na-
tional herdbooks require a lower percentage of other 
breeds [e.g., the Swedish Red herdbook (Swedish Red 
Cattle Association, Hörby, Sweden)]. Hence, a higher 
average relationship coefficient might be obtained with 
more strict selection of bulls with regard to breed per-
centages.

Using Genomic or Pedigree Relationships

An argument for using genomic estimates of inbreed-
ing and relationships is that they do not rely on pedi-
gree data, which can have limited depth or be incorrect 
(Carthy et al., 2019; Makanjuola et al., 2020; Béro-
dier et al., 2021). Nordic Cattle Genetic Evaluation 
had corrected the pedigree in most cases for possible 
mismatches using genomic information. Hence, we did 
not fully reveal the benefit that a genomic relationship 
brings in terms of assigning the right parents to an 
animal. In Sweden approximately 5% of genotyped ani-
mals have at least one parent incorrectly reported (Lina 
Baudin, expert in breeding routines, Växa Sverige, 
personal communication, March 5, 2021). Further, if a 
population is under selection, the assumption of 50% 
chance of each allele being selected is not true. In com-
bination, this leads to pedigree inbreeding often under-
estimating true inbreeding (as identical by descent from 
a given base population) compared with ROH-based 
inbreeding (Forutan et al., 2018). Furthermore, even if 
pedigree is correct and deep, genomic relationships are 
more accurate because they consider correctly that ge-
nome is transmitted in chromosomes and not as infinite 
unlinked loci (Hill and Weir, 2011).

Our goal using segment-based relationships was to 
reduce the number of ROH in the potential offspring. 
ROH are suggested to be a good predictor of inbreed-
ing depression in Finnish Ayrshire (Martikainen et al., 
2017, 2020), and also in humans (Szpiech et al., 2013). 
In theory, ROH are enriched for deleterious alleles that 
mainly cause inbreeding depression (Charlesworth and 
Willis, 2009). In general, long ROH, reflecting new in-
breeding, should contain more deleterious alleles than 
short ROH due to purging and recombination along 
with generations (Stoffel et al., 2021). Regions affect-
ing milk and fertility lie between 1 and 14 Mb (Mar-
tikainen et al., 2020). In addition, Martikainen et al. 
(2017) found that pedigree inbreeding did not indicate 
inbreeding depression for fertility, but inbreeding based 
on ROH did. Further, longer regions of ROH (>3 Mb) 
in Holstein and Jersey have been found to be associated 

with inbreeding depression in milk (Pryce et al., 2014). 
However, Zhang et al. (2015) found that enrichment 
of deleterious variants was significantly higher in short 
(<0.1 to 3 Mb) compared with long (>3 Mb) regions in 
RDC, Holstein, and Jersey. Hence, it is not clear what 
segment length is optimal for use in segment-based 
relationships.

The scales of the different genetic relationship coef-
ficients used differed (Table 5). In particular the means 
were different, but there were also some differences in 
the standard deviations. Hence, the relationships were 
difficult to compare directly. However, in general, ge-
nomic relationships were better at reducing pedigree re-
lationships than pedigree relationships were at reducing 
genomic relationships (see e.g., Table 7). For example, 
the economic score 3Gen resulted in an average a3Gen 
of 0.007 and the score GSEG1 resulted in an average 
a3Gen of 0.014, compared with a3Gen of 0.028 in Ran-
dom. Hence, the relative difference in change [(0.028 
− 0.014)/(0.028 − 0.007)] was 67%. Furthermore,
using GSEG1 reduced gSEG1 compared with Random
from 0.188 to 0.143, and 3Gen reduced gSEG1 to 0.167,
that is, the relative difference [(0.188 − 0.167)/(0.188
− 0.143)] was 47%. Furthermore, there were only minor
differences for genomic relationships in their ability to
reduce pedigree relationships. Hence, using any of the
genomic relationships could be an overall better and
safer option than using pedigree relationships in keep-
ing all average relationships studied low.

In our study, aAllGen was better than a3Gen at reduc-
ing the average genomic relationships (see e.g., Table 
7), suggesting that the Nordic breeding organizations 
should use more generations when calculating pedigree 
relationships for nongenotyped animals if they want 
to control genomic relationships. This finding was ex-
pected since the depth of the pedigree plays a major 
role for the strength of correlation between pedigree 
relationships and genomic relationships in dairy cattle 
(Pryce et al., 2012) and similar results have also been 
reported in chicken (Wang et al., 2014). Furthermore, 
the use of any genomic relationship worked well to keep 
other genomic relationships low in this study, which 
was expected based on the strong correlations between 
the different genomic relationships (Table 6).

At the population level using OCS, Henryon et al. 
(2019) suggested that pedigree relationships realize 
more long-term true genetic gain than genomic rela-
tionships. However, Meuwissen et al. (2020) concluded 
that the choice of relationship matrix depends on which 
objective it should serve. Genomic relationships based 
on ROH resulted in allele frequency changes toward 0.5, 
which is clearly unfavorable if the focus is managing 
genetic defects. Furthermore, using genomic relation-
ships based on VanRaden (2008) resulted in low drift, 
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but at the cost of a high rate of increase in homozygos-
ity. A genomic relationship based on linkage analysis, 
which requires both pedigree and marker information, 
achieved the highest genetic gain per unit of inbreeding 
and kept the drift-based inbreeding within the target 
rate (Meuwissen et al., 2020). A downside with our 
study is that we only looked one generation ahead, in-
stead of many generations as in OCS studies. Further, 
farmers are most likely to be mainly interested in their 
own herd’s genetic level and have to rely on breeding 
organizations to offer bulls with different pedigrees, so 
that inbreeding depression and mating of carriers of 
yet unknown defects can be avoided. We were unable 
to draw any conclusions on which estimate of genetic 
relationship is best for mating plans with regard to 
producing offspring with low inbreeding depression and 
avoiding expression of unknown recessive genetic de-
fects, balanced with high genetic gain. More studies are 
needed to identify the different types of genetic rela-
tionships and their future economic impact for farmers.

Recessive Genetic Defects

Carrier frequencies of the recessive genetic defects 
were lower in the mated bulls than in the females 
(Table 2). The strategy applied in VikingGenetics is to 
only select a carrier bull if it is genetically superior or 
has a valuable pedigree for preserving genetic diversity 
(Jakob Lykke Voergaard, product manager, VikingRed, 
VikingGenetics, personal communication, January 11, 
2021). We observed higher frequencies of genetic defects 
at BTA12 and BTA23 when we removed the require-
ment to have marketed semen, and we tried to reflect 
this with the bull set BullAll (Table 8). An economic 
score including a penalty for mating 2 carriers effective-
ly eliminated expression of genetic defects. It was more 
profitable to use the carrier bull on a noncarrier female 
than on a carrier female. Linear programming can help 
avoid expression of genetic defects unless the possible 
matings are restricted (e.g., if only a few noncarrier 
bulls are available and therefore a carrier bull has to 
be mated with a carrier female). Bérodier et al. (2021) 
considered known recessive genetic defects similar to 
this study and found that linear programming was 
better than random and sequential mating in reducing 
the number of genetic defects expressed. However, they 
could not completely avoid the expression of recessive 
genetic defects, most likely due to a more restricted 
bull usage compared with our study. For example, only 
8 bulls could be mated to heifers due to restriction 
of calving ease, and they also included restrictions on 
availability of semen which we did not consider.

It is worth highlighting that even though the overall 
frequency (Table 2) was low among all females for all 

defects except genetic defect at BTA12, the carrier 
frequencies in some herds were much higher than in 
other herds (Table 3). The carrier frequency in female 
candidates could be valuable information for farmers 
and advisors before deciding on matings in practice, by 
indicating how different defects should be considered in 
a specific herd.

We observed higher carrier frequencies in the next 
generation for the genetic defect at BTA23 using Bul-
lAll (Table 8) than in the mated females (Table 2). In 
general, we saw no clear pattern in the economic score 
that performed best regarding the carrier frequency in 
the next generation. Further, we believe that the carrier 
frequency in the next generation is situation specific 
for the available bull sets, with regard to the NTM 
ranking of the carrier bulls, constraints, and genetic 
relationship. Note that higher carrier frequencies in 
the next generation could be expected if many bulls 
carrying defect alleles were represented at the top of 
the total merit ranking. In reality, this is not expected 
to occur with the current bull selection strategy at 
VikingGenetics. However, it could occur if bulls to be 
used in a herd were selected without consideration of 
their carrier status.

No Penalty for Genetic Defects

In scenario GSEG1_NoDefect, the probability of 
expression of genetic defect at BTA12 was less than 
in scenarios AllGen_NoDefect, 3Gen_NoDefect, and 
GSNP_NoDefect (Table 9), and slightly lower than 
in scenario GSEG4_NoDefect. According to Wu et 
al. (2020), the genetic defect at BTA12 region is ap-
proximately 2.6 Mb and would not be captured in 
gSEG4. This might explain why we saw a slightly higher 
probability of expression of genetic defect at BTA12 in 
GSEG4_NoDefect compared with GSEG1_NoDefect. 
Further, in the scenarios aiming to minimize the differ-
ent genetic relationships, GSEG1_Min had the lowest 
probability of expression of genetic defect at BTA12, 
but AllGen_Min and GSEG4_Min also reduced the 
probability of expression of genetic defect at BTA12 
compared with Random and MaxNTM. Hence, it seems 
that minimizing some genetic relationships also helped 
lower, or at least did not increase, the probability of 
expression of genetic defect at BTA12.

Economic Assumptions

In the absence of estimates of RDC inbreeding de-
pression, we used the penalty of €24.8 per 1% increase 
in inbreeding, which corresponded to the current ver-
sion of the Swedish mating program penalty of 1 NTM 
unit per 1% increase in inbreeding. This value is in line 
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with that estimated for Holstein of US$25 (about €20) 
(Cole, 2015) or US$24 (Smith et al., 1998). Pryce et al. 
(2012) used a range up to AU$20 (about €13). When 
the penalty for 1% increase in inbreeding was increased 
to €40 or decreased to €10 in our sensitivity analysis, 
only minor changes in the different average relation-
ships were observed. Furthermore, the average NTM 
level was kept at the same level, and no expression of 
known genetic defects was observed. Hence, the mat-
ing results seemed not to be sensitive in the inbreeding 
penalty range tested.

Regarding the economic assumption for the recessive 
genetic defects, no economic costs have been specifi-
cally calculated for the defects considered in our study. 
Our value of €80 for an early abortion was in line with 
Segelke et al. (2016), who estimated a cost of €70, and 
Bérodier et al. (2021) who estimated €75. We assumed 
the cost of a later abortion or an early calf death to 
be €160 (genetic defect SMA, BH2, and at BTA23). 
Oskarsson and Engelbrekts (2015) estimated the cost 
to be €100 to €150 in Sweden, and NTM calculations 
estimate the cost to be €200 to €340 (Sørensen et al., 
2018). Cole (2015) estimated a stillbirth cost of US$150.

There are also most likely differences between farms 
within each country, such as costs associated with ge-
netic defects. The economic score is a relatively simple 
calculation that demands little computer power, and it 
could be adjusted to match economic conditions on a 
specific farm.

Implementation Opportunities

Many studies have pointed out that linear program-
ming outperforms sequential mating methods because it 
uses simultaneous rather than sequential solving to find 
the economically optimal matings for each herd (Sun 
et al., 2013; Carthy et al., 2019; Bérodier et al., 2021). 
Therefore, we decided to focus on linear programming 
and different economic scores and not compare differ-
ent mating methods. Once the relationships (and NTM 
and genetic defects) had been calculated, linear pro-
gramming on a regular laptop maximized the economic 
score for all herds studied within seconds. This means 
that the method is suitable for implementing in mating 
software to be used by advisors and farmers. The most 
time-consuming calculation of the whole procedure for 
mating planning was phasing genotypes and extracting 
the genomic segments, and today this has to be done 
on a more powerful computer. Genotype phasing and 
estimating allele frequencies also require information 
from more than a single farm. This should thus be done 
at central level and the genetic relationship coefficients 
should then be made available for downloading to the 
mating program. Here, gSNP used allele frequencies in 

the current population, which are easy to obtain and 
often used in genomic evaluation. Further, gSNP was 
the fastest genomic relationship to calculate and it was 
powerful at keeping both gSEG1 and gSEG4 low, making 
it an efficient implementation option. However, a seg-
ment-based relationships should be considered if future 
studies show they better predict inbreeding depression.

We mated all animals in a herd at a specific time, 
which would not be the case in a real situation because 
mating planning is usually performed more than once 
annually for each herd. For example, in Sweden, mating 
planning is typically performed 3 to 6 times/yr (Thure 
Bjerketorp, responsible for breeding advisors, Växa 
Sverige, personal communication, July 27, 2021). How-
ever, we were also only able to study animals born in 
2019, because older animals were missing information 
about genetic defects. Hence, in reality there would be 
more animals from several birth years to mate, and the 
number of animals we considered will most likely be in 
line with a typical mating planning. However, mating 
planning on a subset of the herd, a third at a time, say, 
can be expected to be somewhat suboptimal.

The mating scenarios presented here could also be 
adopted by other breeds or other livestock species. 
However, we believe the detailed planning at the indi-
vidual level is quite unique for dairy cattle, at least at 
the commercial herd level. Further, including genomic 
relationships and information about genetic defects, 
similar to this study, requires genotypes of both females 
and males. An economic score could also be developed 
for crossbred animals where the focus is to maximize 
heterosis instead of minimizing parent relationships. 
In this study, we did not consider ungenotyped ani-
mals. Other studies have proposed methods to impute 
ungenotyped animals [e.g., Carthy et al. (2019) used 
the method proposed by Gengler et al. (2007)], or one 
could use the combined genomic and pedigree rela-
tionship matrix H that is used in single-step genomic 
evaluations, as suggested by Sun et al. (2013).

CONCLUSIONS

We studied mating allocations in RDC and found that 
it was possible to reduce genetic relationships between 
parents with minimal effect on genetic level. Includ-
ing the cost of known recessive genetic defects entirely 
eliminated the risk of expression of the 6 known genetic 
defects. It was possible to reduce genomic relationships 
between parents with pedigree measures, but it was 
best done with genomic measures. More studies are 
needed to identify the different types of genetic rela-
tionships and their future economic impact for farmers. 
Linear programming maximized the economic score for 
all herds studied within seconds, which means that the 
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method is suitable for implementing in mating software 
to be used by advisors and farmers.
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ABSTRACT

In this study, we explored mating allocation in Hol-
stein using genomic information for 24,333 Holstein fe-
males born in Denmark, Finland, and Sweden. We used 
2 data sets of bulls: the top 50 genotyped bulls and 
the top 25 polled genotyped bulls on the Nordic total 
merit scale. We used linear programming to optimize 
economic scores within each herd, considering genetic 
level, genetic relationship, semen cost, the economic 
impact of genetic defects, polledness, and β-casein. We 
found that it was possible to reduce genetic relation-
ships and eliminate expression of genetic defects with 
minimal effect on the genetic level in total merit index. 
Compared with maximizing only Nordic total merit in-
dex, the relative frequency of polled offspring increased 
from 13.5 to 22.5%, and that of offspring homozygous 
for β-casein (A2A2) from 66.7 to 75.0% in one genera-
tion, without any substantial negative impact on other 
comparison criteria. Using only semen from polled 
bulls, which might become necessary if dehorning is 
banned, considerably reduced the genetic level. We also 
found that animals carrying the polled allele were less 
likely to be homozygous for β-casein (A2A2) and more 
likely to be carriers of the genetic defect HH1. Hence, 
adding economic value to a monogenic trait in the 
economic score used for mating allocation sometimes 
negatively affected another monogenetic trait. We rec-
ommend that the comparison criteria used in this study 
be monitored in a modern genomic mating program.
Key words: mating allocation, polledness, Nordic 
total merit, β-casein (A2A2)

INTRODUCTION

Historically, mating programs at the herd level aim 
to maximize genetic value while minimizing expected 

inbreeding using pedigree information (Weigel and Lin, 
2000). Genotyping provides breeders with new insights 
at the single nucleotide level that can be used in mating 
programs. For instance, SNP markers offer the possi-
bility to calculate genomic relationships between po-
tential parents. Genomic estimates of relationships are 
expected to be more accurate than when using pedigree 
information, because they do not rely on pedigree com-
pleteness or correctness. Genomic relationships can also 
differentiate between animals with the same pedigree 
that inherit partly different genetic variants from their 
parents (VanRaden, 2008; de Cara et al., 2013). In ad-
dition, SNP markers provide information about certain 
known monogenic traits such as defects, as well as some 
desired traits.

Holstein is the most common cattle breed in Den-
mark, Finland, and Sweden (DFS), with approximate-
ly 600,000 milk-recorded cows. Genotyping of females 
has attracted great interest in DFS in the past decade, 
and today approximately 25% of all females born are 
genotyped. However, current (2022) mating programs 
in the Nordic countries still use pedigree relationship 
information and ban at-risk matings for recessive ge-
netic defects. The SNP array (Borchersen, 2019) cur-
rently used for genotyping in DFS includes 7 Holstein 
recessive genetic defects, polledness, and β-CN status. 
Minimizing the risk of obtaining offspring homozygous 
for recessive genetic defects has an economic value for 
farmers (Pryce et al., 2012) and is also important for 
animal health and welfare (EFFAB, 2020).

Other types of monogenic traits, such as horn status, 
also influence animal welfare. For decades, dehorning 
of cattle has been common practice. Dehorning is per-
formed for several reasons, including reduced risk of 
injury to other cattle and improved safety for animal 
keepers. However, dehorning has been shown to cause 
behavioral, neuroendocrine, and physiological changes, 
indicating it to be a stressful and painful experience 
(Stock et al., 2013). Since 2022, organic farms in the 
European Union have to seek a permit if they want 
to dehorn their cattle (EU Commission Regulation No 
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889/2008; EU, 2008). The cost of dehorning in DFS 
is estimated to be between €2.7 and €7.3 per head, 
considering veterinary costs, gas/electricity, and extra 
labor (Sørensen et al., 2018). However, this estimate 
does not consider the current situation, in which de-
horning is strictly regulated in organic herds in the 
European Union.

Another example of a monogenic trait of economic 
importance is β-casein variant. Animals that are ho-
mozygotic for the A2 allele produce so-called A2 milk, 
which is often marketed as a healthier option than 
regular cow milk, although the human health benefits 
of consuming A2 milk are still being debated (Summer 
et al., 2020). Despite this lack of confirmed benefits, 
some countries are seeking to increase consumption of 
A2 milk and some dairies pay extra for A2 milk (Bisutti 
et al., 2022).

The new genetic insights and possibilities available 
require new methods that combine relevant informa-
tion based on their economic value when setting up 
mating plans. Several studies have created economic 
scoring systems to rank each potential mating (Carthy 
et al., 2019; Bérodier et al., 2021; Bengtsson et al., 
2022). The economic score often includes genetic level, 
expected inbreeding, the probability of conceiving an 
offspring homozygous for a genetic defect, and semen 
price (Bérodier et al., 2021; Bengtsson et al., 2022). 
The economic score is flexible and can be adjusted to 
match economic conditions on a specific farm, such as 
a price premium for A2 milk or polled animals. Using 
linear programming to maximize every herd’s mean 
economic score, subject to necessary constraints, is a 
fast and effective method (Carthy et al., 2019; Bérodier 
et al., 2021). Linear programming has also been shown 
to outperform other mating methods, such as sequen-
tial mate allocation (Sun et al., 2013; Carthy et al., 
2019; Bérodier et al., 2021).

Our objective in this study was to investigate the 
ability of different approaches for mating allocation in 
DFS Holstein, considering polledness, β-CN, and sev-
eral recessive genetic defects. We also optimized the 
mating allocations on total merit index while limiting 
parent relationships. We investigated all mating alloca-
tions at the herd level with real data and used linear 
programming to optimize different economic scores 
within each herd.

MATERIALS AND METHODS

Breeding values, pedigree data, SNP data, and data 
on monogenic traits were obtained from the Nordic 
Cattle Genetic Evaluation (NAV) database (NAV, 
2019). No ethical approval was needed for this study 
because no animal procedures were performed.

Genotype Data

Single nucleotide polymorphism information was 
available for all genotyped Holstein animals born be-
tween 2011 and 2020 in Denmark, Finland, and Swe-
den. The NAV database uses the Illumina 50k chip 
(Illumina Inc.) as standard for genomic prediction, and 
all lower-density chips are imputed by NAV to that 
format using FImpute (Sargolzaei et al., 2014). The 
EuroG MD beadchip (Borchersen, 2019) has been used 
since late 2018. In total, genotypes for 261,198 animals 
(225,298 females and 35,900 males) were available.

Total Merit

We used Nordic Total Merit (NTM) values from 
the NAV breeding evaluation performed in May 2020, 
which are expressed in standardized units with a mean 
of 0 and genetic standard deviation of 10. At the time 
of data extraction, NTM was composed of 15 sub-indi-
ces, covering yield index, longevity, growth, youngstock 
survival, udder health, udder, feet and legs, frame, hoof 
health, milkability, daughter fertility, general health, 
temperament, calving direct, and calving maternal 
(NAV, 2019).

Data Selection

Females. We selected 289 herds that had genotyped 
more than 40 Holstein females born in 2019. In total, 
24,333 Holstein females were available for mating allo-
cations. The EuroG MD beadchip (Borchersen, 2019), 
used since late 2018, includes information about all 
monogenic traits considered in this study (Table 1).

Bulls. We used 2 data sets of bulls, Bull50 and Bull-
25Polled (Table 2). The main bull data set (Bull50) 
included the top 50 genotyped bulls on the NTM 
scale, available from the Nordic breeding cooperative 
VikingGenetics. The data set Bull25Polled included 
the top 25 genotyped polled bulls on the NTM scale, 
also available from VikingGenetics, comprising 21 het-
erozygous polled (Pp) bulls and 4 homozygous polled 
bulls (PP). Bulls in both data sets were born between 
January 2017 and August 2019. At VikingGenetics, the 
program EVA (Berg et al., 2006) is used for optimum 
contribution selection to select breeding animals using 
pedigree relationships (Hanna Driscoll, product manag-
er Holstein, VikingGenetics; personal communication, 
January 19, 2022).

Relationship Measures

Pedigree Relationships. Two pedigree relation-
ships were calculated. The first relationship coefficient 

Bengtsson et al.: MATING ALLOCATIONS USING GENOMIC INFORMATION



Journal of Dairy Science Vol. 106 No. 5, 2023

3361

traced the pedigree 3 generations back from the parents 
of the potential mating (a3Gen), reflecting the current 
Nordic mating programs. The second pedigree relation-
ship coefficient was based on all available pedigree 
information (aAllGen).

For most cases, the pedigree for genotyped animals 
had already been corrected for mismatches by NAV. 
We found 143 genotyped animals with missing or mis-
matching parents, which were excluded from further 
analyses. The discrete generation equivalent (Wool-
liams and Mäntysaari, 1995) for the mated animals 
was 16.0, and the equivalent for complete generations 
(Maignel et al., 1996) was 12.7. The 5-generation pedi-
gree completeness for mated animals was 99.4%.

Genomic Relationships. Three genomic relation-
ship coefficients were used, one SNP-by-SNP genomic 

relationship and 2 based on shared genomic segments. 
The SNP-by-SNP genomic relationship coefficient 
(gSNP) was calculated according to VanRaden (2008), 
using the software SNP1101 (Sargolzaei, 2014), as fol-
lows:

g
x p x p

p pSNP
m im m jm m

m m m
ij
=

−( )× −( )
−( )

,Σ
Σ

2 2

2 1
 

where xim and xjm are the genotype scores of animal i 
and animal j at marker m, coded as 0 = homozygote, 1 
= heterozygote, and 2 = alternative homozygote; and 
pm is the frequency of the alternative allele of marker 
m in the founder population. Because we did not know 
the founder population frequency, the allele frequency 
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Table 1. Description of monogenic traits considered in this study, code used in the Online Mendelian Inheritance in Animals (OMIA) database, 
and the effect in conceptus or offspring, available with a genomic test in Holstein

Monogenic trait OMIA code Description

Holstein Haplotype 1 (HH1) 000001-9913 Early abortion of homozygous conceptus1

Holstein Haplotype 3 (HH3) 001824-9913 Early abortion of homozygous conceptus2

Holstein Haplotype 4 (HH4) 001826-9913 Early abortion of homozygous conceptus3

Holstein Haplotype 6 (HH6) 002194-9913 Early abortion of homozygous conceptus3

Holstein Haplotype 7 (HH7) 001830-9913 Early abortion of homozygous conceptus3

Bovine leukocyte adhesion deficiency (BLAD) 000595-9913 Extreme susceptibility to infection and early mortality in 
homozygous offspring4

Progressive retinal degeneration (RP1) 000866-9913 Progressive blindness in homozygous offspring5

Polledness 000483-9913 Absence of horns in offspring carrying at least one copy of the 
polled allele (Celtic and Friesian allele considered)6

β-CN 002033-9913 A cow produces so-called A2 milk if she has 2 copies of the A2 
allele7

1Adams et al. (2016).
2Daetwyler et al. (2014).
3Fritz et al. (2013).
4Schuster et al. (1992).
5Bradley et al. (1982).
6Medugorac et al. (2012).
7Gallinat et al. (2013).

Table 2. Descriptive statistics on the Holstein females and bulls selected for mating allocations

Trait
Females 

289 herds

Data set

Bull50 Bull25Polled

Number of animals 24,333 50 25
Average Nordic Total Merit (NTM) 12.10 33.93 27.17
Carriers of defect HH1 (%) 3.45 2.00 16.00
Carriers of defect HH3 (%) 3.62 4.00 0.00
Carriers of defect HH4 (%) 1.31 0.00 0.00
Carriers of defect HH6 (%) 0.30 0.00 0.00
Carriers of defect HH7 (%) 0.29 0.00 0.00
Carriers of defect BLAD (%) 0.27 0.00 0.00
Carriers of defect RP1 (%) 0.63 0.00 0.00
Heterozygous polled (Pp) (%) 3.74 14.00 84.00
Homozygous polled (PP) (%) 0.10 0.00 16.00
Heterozygous β-casein (A1A2) (%) 37.11 30.00 44.00
Homozygous β-casein (A2A2) (%) 57.12 66.00 48.00
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of all genotyped Holstein was used. Using observed al-
lele frequency instead of founder population frequency 
is an approximation often used for genomic evaluation 
(Wang et al., 2014).

The 2 genomic relationship coefficients based on 
shared genomic segments (gSEG) were calculated fol-
lowing de Cara et al. (2013):

g
L a b

LSEG
k ai bj SEGk i j

AUTO
ij
=

( )



= = ,

Σ Σ Σ1
2

1
2

2
 

where LSEGk is the length (in bp) of the kth shared 
segment measured over homolog a of animal i and ho-
molog b of animal j, and LAUTO is the total length of the 
autosomes covered by the SNP (in bp).

The 2 segment-based genomic relationship coef-
ficients were based on different minimum lengths of 
segments: 1 cM (gSEG1) and 4 cM (gSEG4), assuming 
1 cM = 1,000,000 bp (Gautier et al., 2007). These 
segment lengths were chosen to represent short and 
long segments, similarly to other studies (Zhang et al., 
2015; Martikainen et al., 2017; Forutan et al., 2018; 
Makanjuola et al., 2020). Phasing of genotypes was 
performed in Beagle 4.1 with default settings (Brown-
ing and Browning, 2007), and segments of minimum 
chosen length were extracted in RefineIBD with the 
default setting except for the logarithm of odds (LOD) 
score (base 10 log of the likelihood ratio), where we 
used LOD = 0.1 (Browning and Browning, 2013). The 
LOD score is used to prune out shared segments that 
are not common in the population. Hence, default 
LOD = 3.0 in RefineIBD was considered too high for 
our purposes, as reported in a recent study (Olsen et 
al., 2020).

Mate Allocation

Mate allocation was programmed in R version 3.6.3 
(https: / / www .r -project .org/ ), using the “Lp_solve” 
package (Berkelaar, 2020). A mating linear program-
ming problem has several integer properties. However, 
linear programming can be used instead of integer pro-
gramming because the coefficient matrix has a struc-
ture that guarantees integer solutions if the right hand 
side of the equation are integers (Jansen and Wilton, 
1985). Lp_solve is a mixed integer linear programming 
solver, and hence is suitable for the mating linear pro-
gramming problem. A mating R script was provided 
by Bérodier et al. (2021) and modified to allow it to 
handle favorable monogenic traits. The R script set up 
constraints considered in linear programming optimiza-
tion. We used the following constraints: 1 mating per 
female and a threshold percentage for the maximum 

number of females per bull and herd, for which we 
evaluated 2 levels, 5% and 10%, similarly to Bérodier 
et al. (2021). The threshold for the number of females 
per bull and herd was in line with current recommenda-
tions in DFS.

Economic Score

For each potential mating between female i and bull 
j, we calculated an economic score:

Score
NTM NTM

pij
i j

ij BetaC=
+

+ + ( )×








2

λF BetaC v

× ( )− ( ) × + ( )

× −
=
∑ prob Fem aa v P

v semen cost,

n

P

r
r r

r

p p
1

where NTMi and NTMj are the values in euros (€) of 
the Nordic Total Merit units for female i and bull j, λ 
is the economic consequence of a 1% increase in in-
breeding, Fij is the pedigree- or genome-based co-ances-
try (relationship/2), p(BetaC) is the probability of a 
homozygous offspring for β-CN (A2A2), vBetaC  is the 
value of a homozygous offspring for β-CN (A2A2), 
prob  Fem( ) is the probability of producing a female con-
ceptus, nr is the number of recessive genetic defects 
considered, p(aa)r is the probability of expression of 
genetic defect r, vr is the economic cost associated with 
recessive genetic defect r, p(P) is the probability of a 
polled offspring, vP is the value of a polled offspring, 
and semen cost is the average amount (€) spent on se-
men for a pregnancy.

An index unit of NTM is worth €25.4 over the life-
time of a Holstein female in DFS (Fikse and Kargo, 
2020). We considered sexed semen with 0.9 probability 
of producing a female conceptus (Burnell, 2019). The 
economic consequence of a 1% increase in inbreeding 
was set to €25.4. The Swedish mating program “Gen-
vägen” uses a penalty of 1 NTM unit per 1% increase 
in inbreeding, which would correspond to €25.4 (Lina 
Baudin, expert in breeding routines, Växa Sverige; per-
sonal communication, March 5, 2021). This is in line 
with other studies citing US$25 (about €25; Cole, 2015) 
and US$24 (Smith et al., 1998).

We assumed the cost of an early abortion (HH1, 
HH3, HH4, HH6, HH7; Table 1) to be €80, based on 
the resulting longer calving interval (€30–€40/month) 
and the cost of extra insemination(s) (€30; Oskarsson 
and Engelbrekts, 2015; Sørensen et al., 2018). Bulls 
carrying BLAD and RP1 are not allowed in the breed-
ing program at VikingGenetics, so we did not estimate 
any cost for them. We tested different economic val-
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ues (€0, €10, €50, and €100) for polledness and β-CN 
(A2A2).

We used the prices for sexed semen set by VikingGe-
netics in 2021. The semen price depends on the bull’s 
NTM and polledness status. A dose of semen from a 
horned bull with NTM >35, 33 to 34, 30 to 32, and <30 
costs €26, €23, €20, and €17, respectively. Semen of 
polled bulls (homozygous or heterozygous for the polled 
allele) costs €3 more than semen of horned bulls with 
the same NTM (Hanna Driscoll, product manager Hol-
stein, VikingGenetics; personal communication, Janu-
ary 19, 2022). Detailed information about the mating 
scenarios can be found in Table 3. Sexed semen and 
semen cost were considered in all scenarios. The objec-
tive in linear programming was always to maximize the 
economic score.

Mating Allocation

The suggested planned matings were compared by 
(1) average NTM; (2) average genetic relationships

(a3Gen, aAllGen, gSNP, gSEG1, gSEG4); (3) at-risk matings, as 
a percentage of matings of 2 carriers of the same reces-
sive genetic defects (the most common defects, HH1 
and HH3); (4) average cost of semen for a pregnancy, 
calculated in the same way as in the economic score; 
(5) total number of bulls used; (6) number of bulls
used to the maximum number of doses allowed on the
threshold (5 and 10%) of females per bull and herd; and
(7) predicted carrier frequency of HH1 and HH3 in the
next generation (%), calculated from the proportion of
matings with a carrier (assuming a 50% probability of
the defect allele being inherited from a carrier parent);
(8) predicted percentage of polled offspring; and (9)
predicted percentage of offspring homozygous for β-CN
(A2A2) in the next generation.

Statistical Analysis

We used SAS software version 9.4 (SAS Institute 
Inc.) and R version 3.6.3 (https: / / www .r -project .org/ ) for 
statistical analysis. A chi-squared test was conducted 
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Table 3. Description of the mating scenarios considered1

Scenario

Economic score includes

NTM Relationship
Genetic 
defect value

Polled 
value (€)

β-casein 
value (€)

MaxNTM Yes No No 0 0
3Gen Yes a3Gen Yes 0 0
AllGen Yes aAllGen Yes 0 0
GSNP Yes gSNP Yes 0 0
GSEG1 Yes gSEG1 Yes 0 0
GSEG4 Yes gSEG4 Yes 0 0
GSNPPolled10 Yes gSNP Yes 10 0
GSNPPolled50 Yes gSNP Yes 50 0
GSNPPolled100 Yes gSNP Yes 100 0
GSNPBetaC10 Yes gSNP Yes 0 10
GSNPBetaC50 Yes gSNP Yes 0 50
GSNPBetaC100 Yes gSNP Yes 0 100
GSNPPolledBetaC10 Yes gSNP Yes 10 10
GSNPPolledBetaC50 Yes gSNP Yes 50 50
GSNPPolledBetaC100 Yes gSNP Yes 100 100
Random All possible combinations of females and bulls
1MaxNTM = mating scenario where mates were selected based on maximizing an economic score including 
Nordic Total Merit (NTM), sexed semen, and semen cost; 3Gen = mating scenario where mates were selected 
based on maximizing an economic score including NTM, sexed semen, semen cost, a pedigree relationship 
including 3 generations of ancestors (a3Gen), and a penalty for genetic defects; AllGen = mating scenario 
where mates were selected based on maximizing an economic score including NTM, sexed semen, semen cost, 
a pedigree relationship including all available ancestors (aAllGen), and a penalty for genetic defects; GSNP = 
mating scenario where mates were selected based on maximizing an economic score including NTM, sexed 
semen, semen cost, a genomic relationship calculated according to VanRaden (2008) (gSNP), and a penalty for 
genetic defects; GSEG1 = mating scenario where mates were selected based on maximizing an economic score 
including NTM, sexed semen, semen cost, a genomic relationship based on shared genomic segment calculated 
according to de Cara et al. (2013) with a minimum genomic segment length of 1 cM (gSEG1), and a penalty 
for genetic defects; GSEG4 = mating scenario where mates were selected based on maximizing an economic 
score including NTM, sexed semen, semen cost, and a genomic relationship based on shared genomic segment 
calculated according to de Cara et al. (2013) with a minimum genomic segment length of 4 cM (gSEG4), and a 
penalty for genetic defects; Polled €0, €10, €50, €100 = economic value of a polled offspring, added to the eco-
nomic score GSNP; BetaC €0, €10, €50, €100 = economic value of an offspring homozygous for β-CN (A2A2), 
added to the economic score GSNP; Polled BetaC €0, €10, €50, €100 = economic value of a polled offspring 
and offspring homozygous for β-CN (A2A2), added to the economic score GSNP.
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in SAS to test association between polledness genotype 
and HH1, HH3, or β-CN genotype.

RESULTS

The presented mating results are between the 24,333 
females selected for matings and data set Bull50, unless 
otherwise specified.

Genetic Relationship Coefficients

For all possible combinations of females and males, 
the mean value of the relationship coefficient ranged 
from 0.010 to 0.269, and the standard deviation ranged 
from 0.031 to 0.042 (Table 4). For all correlations 
between different genetic relationship coefficients, the 
value of correlation coefficient was ≥0.69. The stron-
gest correlation was between gSEG1 and gSEG4 (r = 0.97). 
Further, all correlations between aAllGen and genomic 
relationships were of similar strength (0.75–0.76), 
whereas those between a3Gen and the genomic relation-
ships showed a wider range (0.69–0.75; Table 5). The 
coefficients of regression from genomic relationship 
coefficients on aAllGen were all close to 1. They were 
highest for gSEG1 and gSEG4, and somewhat lower for 
a3Gen and gSNP (Figure 1).

Mate Allocation

Using Bull50. In scenario MaxNTM, the NTM 
level improved compared with scenario Random (Table 
6), but the genetic relationship did not decrease. In-
cluding the cost of the known recessive genetic defects 
when optimizing mating strategies avoided at-risk mat-
ings (mating of 2 animals carrying the same recessive 
genetic defect). In 3Gen, Allgen, GSNP, GSEG1, and 
GSEG4, all genetic relationships were decreased com-
pared with Random and MaxNTM. Including pedigree 

relationships in the economic score decreased genomic 
relationships compared with Random and MaxNTM, 
but they were further decreased when using a genomic 
relationship.

The number of bulls used in the scenarios considering 
genomic relationships was generally higher (49 to 50) 
than in the scenarios considering pedigree relationships 
(32 to 36) and the difference was even larger when 
allowing 10% females per bull. Furthermore, fewer 
bulls were used for the maximum number of permit-
ted inseminations considering genomic relationships 
compared with scenarios considering pedigree relation-
ships with the same constraints. We observed a lower 
percentage of polled offspring when more bulls were 
used; for example, 15.7% in scenario 3Gen compared 
with 7.5% in GSEG4.

Including an extra economic value for the polledness 
trait in the economic score used for mating allocations 
increased the expected percentage of polled offspring 
in the next generation (Table 7). For example, when 
using a constraint of 5% females per bull and herd, 
the expected percentage of polled offspring increased 
from 9.7% in GSNP to 17.0% in GSNPPolled€100. In 
general, the other mating parameters were minimally 
affected when adding economic value to the polledness 
trait, with the same constraints. However, when using 
a constraint of 10% females per bull, we observed a 
decline in the expected percentage of β-CN (A2A2) off-
spring: 66.4% in GSNPPolled€0 and 62.2% in GSNP-
Polled€100.

Including an economic value for β-CN (A2A2) in the 
economic score used for mating allocations increased 
the expected percentage of offspring homozygous for 
β-CN (A2A2), with a minor effect on the average NTM 
level and genetic relationships (Table 8). The highest 
percentage of offspring homozygous for β-CN (A2A2) 
was observed in Beta-C€100 (75.0%) with a constraint 
of 10% females per herd and bull. We observed a de-
cline in the expected percentage of polled offspring 
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Table 4. Descriptive statistics on relationships (mean, SD, minimum 
and maximum values) between all possible combinations of 24,333 
females and 50 bulls

Relationship 
coefficient1 Mean SD Minimum Maximum

a3Gen 0.015 0.031 0 0.545
aAllGen 0.132 0.031 0.035 0.647
gSNP 0.010 0.040 −0.106 0.576
gSEG1 0.269 0.042 0.089 0.853
gSEG4 0.181 0.041 0.039 0.763
1Coefficients: a3Gen = pedigree relationships using 3 generations of an-
cestors, aAllGen = pedigree relationships using all available pedigree 
information, gSNP = genomic relationship calculated according to 
VanRaden (2008), gSEG1 (gSEG4) = genomic segment-based relationship 
according to de Cara et al. (2013) with a minimum segment length of 
1 (4) cM.

Table 5. Correlation between the different relationship coefficients for 
all possible combinations of 24,333 females and 50 bulls1

Relationship

Relationship

a3Gen aAllGen gSNP gSEG1 gSEG4

a3Gen 1 0.95 0.75 0.69 0.70
aAllGen 1 0.76 0.75 0.76
gSNP 1 0.88 0.87
gSEG1 1 0.97
1Coefficients: a3Gen = pedigree relationships using 3 generations of an-
cestors, aAllGen = pedigree relationships using all available pedigree 
information, gSNP = genomic relationship calculated according to 
VanRaden (2008), gSEG1 (gSEG4) = genomic segment-based relationship 
according to de Cara et al. (2013) with a minimum segment length of 
1 (4) cM. 
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when adding economic value to β-CN (A2A2) in the 
economic score.

Adding economic value to both the polledness trait 
and β-CN (A2A2) in the economic score used for mat-
ing allocations increased the expected number of polled 
offspring and offspring homozygous for β-CN (A2A2) 
compared with GSNPPolled€0 (Table 9). Using both 
constraints of 5% and 10% females per herd and bull, 
a simultaneous increase in the 2 traits occurred as the 
economic value increased.

Using BullPolled25. When 25 polled bulls (21 Pp 
bulls, 4 PP bulls) were available for mating allocations, 
it was possible to further increase the expected percent-
age of polled offspring (Table 10). For example, when 
using BullPolled25 and a constraint of 5% females per 
herd and bull, the expected percentage of polled off-
spring was 60.1% in GSNPPolled100€, compared with 
17.0% using Bull50. Considering the same example, 
the average NTM level was 20.2 using BullPolled25 
compared with 24.1 using Bull50. The average genetic 
relationships using BullPolled25 were slightly higher 
than those using Bull50 with the same constraints and 
economic scores. The expected percentage of offspring 
homozygous for β-CN (A2A2) was lower and the pre-
dicted HH1 carrier frequency was higher, for BullPo-
lled25 compared with Bull50.

Association Between Monogenic Traits

Among the 24,333 mated females, polled females (Pp 
and PP) were less likely to be homozygous for β-CN 
(A2A2) (or A2A2 females were less likely to carry the 
polled allele; Figure 2). For example, 58% of the horned 
females but only 44% of the heterozygous polled (Pp) 
females were homozygous for β-CN (A2A2). The chi-
squared test showed a significant unfavorable associa-
tion between polled and β-CN genotype (P < 0.0001) in 
the data. Polled females were also more likely to be HH1 
carriers (or HH1 carriers were more likely to be polled). 
For example, 23% of the heterozygous polled females 
were carriers of HH1, whereas only 3% of the horned 
animals were carriers (Figure 3). The chi-squared test 
showed a significant unfavorable association between 
polledness and HH1 genotype (P < 0.0001) in the study 
data. We observed no association between polledness 
and HH3 genotype (results not shown).

DISCUSSION

We explored mating allocations in Holstein dairy 
cattle, taking into account genomic information. The 
results showed that it was possible to reduce genetic re-
lationships and eliminate expression of genetic defects 
with minimal effect on the genetic level, as we found 

previously in a study on Red Dairy Cattle (Bengts-
son et al., 2022). The results also showed that it was 
possible to increase the percentage of polled offspring 
substantially in one generation when competitive bulls 
were available, without any significant negative effect 
on other comparison criteria. It was also possible to 
increase the number of homozygous β-CN (A2A2) off-
spring without any negative effect on other comparison 
criteria. Using only semen from polled bulls, which might 
be necessary if dehorning is banned, had a substantial 
impact at the genetic level. We also found that animals 
in this study carrying the polled allele were less likely 
to be homozygous for β-CN (A2A2) and more likely to 
be carriers of the genetic defect HH1. Hence, adding 
economic value to a monogenic trait in the economic 
score used for mating allocations sometimes negatively 
affected another monogenetic trait. Therefore, it may 
be necessary to monitor comparison criteria, as used in 
this study, in a modern genomic mating program.

Breeding for the Polledness Trait

Polled calves can easily be achieved by mating all 
females to homozygous (PP) bulls. However, no ho-
mozygous polled bulls were available in Bull50. Other 
authors have highlighted the absence of competitive 
homozygous polled bulls (Spurlock et al., 2014; Mueller 
et al., 2019). The reason for the difference in genetic 
level is not clear. Other authors have hypothesized that 
it could be due to lack of selection emphasis on produc-
tion traits of polled bulls. Alternatively, it could be 
due to pleiotropic effects of chromosomal segments, or 
genes linked to the polled locus could contribute to a 
poorer genetic level for production traits (Spurlock et 
al., 2014). At the population level, it has been shown to 
take somewhere between 10 and 25 generations to get 
most bulls homozygous polled, from a starting allele 
frequency of 0.03 (Scheper et al., 2016), which is be-
tween the polled allele frequency of the mated females 
and bulls in this study. The large difference in number 
of generations required depends on many factors, in-
cluding available tools such as level of genotyping and 
the goal of genetic gain and inbreeding. Hence, 100% 
homozygous (PP) bulls cannot be expected in the DFS 
Holstein population in the near future.

In this study, the economic value for the polledness 
trait had to be higher than €50 before we observed a 
fundamental change in the expected number of polled 
offspring (Table 7). We observed a lower percentage 
of polled offspring when more bulls were used; for ex-
ample, 15.7% in 3Gen compared with 7.5% in GSEG4. 
This was because heterozygous polled bulls were more 
commonly ranked in the top half of the Bull50 data set 
than in the bottom half. The high ranking of hetero-

Bengtsson et al.: MATING ALLOCATIONS USING GENOMIC INFORMATION
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zygous polled bulls on the NTM scale was surprising 
compared with the findings of Spurlock et al. (2014) 
and Mueller et al. (2019), where polled bulls were not 
competitive on net merit. We believe that the high rank-
ing of heterozygous polled bulls is mainly a coincidence. 
However, it sets the Nordic Holstein in a good position 
to spread the polled allele without compromising on 
genetic level. When using BullPolled25, the frequency 
of polled offspring further increased to 60.9% in GSNP-
polled€100, using a constraint of 10% females per herd 
and bull. However, the NTM level was lower using Bull-
Polled25 compared with using Bull50. We also observed 
a negative effect on the number of offspring homozy-
gous for β-CN (A2A2) and more carriers of the genetic 
defect HH1 in the next generation. Hence, the benefit 
of having more polled animals should be weighed care-
fully against the negative effect that this might have on 
other comparison criteria.

Some of the homozygous polled bulls in BullPolled25 
were not used to their maximum allowed usage, mainly 
because their genetic level was too low (Table 10). For 
example, using a constraint of 10% females per herd 
and bull, the number of polled offspring did not in-
crease compared with using the 5% females per herd 
bull constraint, even if the homozygous polled bulls 
were allowed to be used more. Hence, the highest eco-
nomic value for polledness (€100) considered in this 
study was not enough for the homozygous polled bulls 
to be used to their maximum allowed usage.

Using BullPolled25, the predicted number of carri-
ers of the genetic defect HH1 increased substantially 
in the next generation compared with the number of 
HH1 carriers among the mated females (Table 10). 
Hence, as we observed for the mated females (Figure 
3), the top polled bulls on the NTM scale seemed more 
likely to be HH1 carriers. We believe it is unlikely that 
only polled bulls would be used for the whole Nordic 
Holstein population; thus, the increase in the number 
of HH1 carriers would be smaller in practice. Breeding 
companies could also limit the usage of polled carriers 
of HH1, for example, by stopping selling polled carriers 
of HH1 after fewer doses than usual. Despite the higher 
percentage of bulls carrying HH1, at-risk mating could 
be avoided. We argue that these scenarios show the 
importance of monitoring genetic defects at the popula-
tion level because, even if at-risk matings were avoided, 
there could be a risk of genetic defects increasing in 
frequency.

Breeding for the β-Casein Trait

It was possible to increase the percentage of offspring 
homozygous for β-CN (A2A2) with a minor effect on 

the average NTM level and genetic relationships (Table 
8). The A2 allele has been associated with a positive 
effect on milk yield traits (Freyer et al., 1999). Olen-
ski et al. (2010) found a positive effect on milk and 
protein yield, but a negative effect on fat percentage. 
Our results confirm that the A2A2 bulls were at a com-
petitive NTM level. The highest expected percentage of 
offspring homozygous for β-CN (A2A2) was observed 
in Beta-C€100 (75.0%), achieved with 10% females per 
herd and bull constraint, compared with 61.2% in the 
Random, β-CN, and Polledness scenarios. This differ-
ence was because homozygous animals are required to 
achieve the desired milk type for β-CN, whereas only 
one polled allele is needed to achieve the preferred phe-
notype for polledness. Hence, achieving 100% desired 
milk type for β-CN in one generation by only using 
β-CN (A2A2) bulls is impossible if the A1 allele is still 
segregating, as in the Nordic Holstein female popula-
tion.

Breeding for Both Polledness and β-Casein

The expected number of polled offspring declined 
when adding value to β-CN (A2A2) in the economic 
score. Hence, bulls that were A2A2 were less likely to 
carry the polled allele (or polled bulls were less likely to 
be A2A2). This was also the case for the mated females 
(Figure 2). To our knowledge, no other study has inves-
tigated this. However, when giving both polledness and 
β-CN an economic value in the economic score, it was 
possible to increase the number of polled offspring and 
offspring homozygous for β-CN (A2A2) simultaneously, 
with little effect on NTM (Table 9).

Other Mating Studies

A few recent studies have used linear programming 
for genomic mating allocation (Carthy et al., 2019; 
Bérodier et al., 2021; Bengtsson et al., 2022). Carthy 
et al. (2019) only included genetic level and a genetic 
relationship in their economic score, whereas Béro-
dier et al. (2021) and Bengtsson et al. (2022) used an 
economic score similar to our scenarios 3Gen, Allgen, 
GSNP, GSEG1, and GSEG4. Bérodier et al. (2021) 
found that linear programming was better than random 
and sequential mating in reducing the number of re-
cessive genetic defects expressed. However, they could 
not completely avoid the expression of recessive genetic 
defects due to restrictions in the matings. For example, 
only 8 bulls could be mated to heifers due to restrictions 
for calving ease. Bengtsson et al. (2022) found that at-
risk mating could be avoided if the economic value for 
recessive genetic defects were included in the economic 
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score, which is similar to our findings in 3Gen, Allgen, 
GSNP, GSEG1, and GSEG4 scenarios (Table 6). There 
were also higher genetic defect carrier frequencies, up 
to 14% among females and available bulls, in Bengtsson 
et al. (2022). Hence, we argue that linear programming 
can help avoid the expression of genetic defects unless 
possible matings are restricted (only a few noncarrier 
bulls are available and a carrier female has to be mated 
with a carrier bull).

Genetic Relationships

We found correlations between pedigree relationship 
and genomic relationship estimates of ≥0.69 for a3Gen 
and ≥0.75 for aAllGen, which were within the range re-
ported in other studies (0.57–0.88; VanRaden et al., 
2011; Pryce et al., 2012; Carthy et al., 2019; Bengtsson 
et al., 2022). Pedigree depth is important for a strong 
correlation between pedigree and genomic relationships 

Bengtsson et al.: MATING ALLOCATIONS USING GENOMIC INFORMATION

Figure 2. Polledness (pp = horned, Pp = heterozygous polled, PP = homozygous polled) and β-CN genotype (A1A1, A1A2, and A2A2) 
among the 24,333 mated Holstein females. A cow homozygous for the A2 allele produces so-called A2 milk.

Figure 3. Polledness (pp = horned, Pp = heterozygous polled, PP = homozygous polled) and carrier status for the HH1 genotype among 
the 24,333 mated Holstein females. A conceptus homozygous for the HH1 allele results in an early abortion.
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(Pryce et al., 2012). This was evident in our study, 
where we found stronger correlations between aAllGen 
and genomic relationship than between a3Gen and ge-
nomic relationship. In our previous study in Red Dairy 
Cattle (Bengtsson et al., 2022), we found stronger cor-
relations (≥0.83) between pedigree and genomic rela-
tionship estimates than were found for Holstein in this 
study. Pedigree depth was similar to that in Bengtsson 
et al. (2022), so the difference is most likely linked to 
some other factor(s). One possibility is that the pedi-
gree correctness is greater in Red Dairy Cattle than in 
Holstein due to the less common exchange of bulls and 
their pedigrees worldwide for Red Dairy Cattle, where 
most animals are kept within the Nordic countries.

There are several arguments for using genomic esti-
mates of relationship and inbreeding instead of pedi-
gree. First, they do not rely on pedigree data, which 
can be incorrect or have limited depth (Carthy et al., 
2019; Makanjuola et al., 2020). Our data were corrected 
for possible mismatches by the Nordic Cattle Genetic 
Evaluation, and hence we did not explore the benefit 
that genomic information brings in the form of assign-
ing the right parents to an animal. Approximately 5% 
of genotyped animals in Sweden have at least one par-
ent incorrectly assigned (Lina Baudin, expert in breed-
ing routines, Växa Sverige; personal communication, 
March 5, 2021). Second, even if the pedigree data are 
correct and complete, genomic relationships are still 
more accurate because they consider the fact that the 
genome is transmitted in chromosomes and not as infi-
nite unlinked loci (Hill and Weir, 2011). Third, the as-
sumption of 50% probability of an allele being selected 
is not true in a population under selection (Forutan 
et al., 2018). Hence, we argue that genomic estimates 
should be prioritized in a modern mating program.

In general, genomic relationships were good at keeping 
each other low when included in an economic score used 
for mating allocations, and the largest benefit would be 
to implement one of these instead of pedigree relation-
ships. Using a segment-based relationship, we aimed 
to reduce the number of runs of homozygosity (ROH) 
in the potential offspring. In a meta-analysis on the 
effects of inbreeding in livestock, Doekes et al. (2021) 
showed that genomic measures were a better indicator 
of inbreeding depression than pedigree measures, but 
found no differences between SNP-based measures and 
ROH. However, those authors highlighted the limited 
number of studies investigating ROH and inbreeding 
depression and scale and arbitrary definitions of ROH. 
In principle, ROH are enriched for deleterious alleles 
that mainly cause inbreeding depression (Charlesworth 
and Willis, 2009). Long ROH reflect new inbreeding 
and are expected to contain more deleterious alleles 
than short ROH, due to purging and recombination 

through the generations (Stoffel et al., 2021). Pryce 
et al. (2014) found that long regions (>3 Mb) were 
associated with inbreeding depression for milk yield 
in Holstein and Jersey cattle. However, Zhang et al. 
(2015) found that enrichment of deleterious variants 
was significantly higher in short (<0.1 to 3 Mb) than 
in long (>3 Mb) regions in the Holstein, Red Dairy 
Cattle, and Jersey. Hence, the optimal segment length 
for use in segment-based relationships remains to be 
determined. However, we showed that gSEG1 and gSEG4 
kept each other low when included in an economic 
score, so the difference is most likely marginal for the 
outcome of the mating allocations.

The number of bulls used in the scenarios considering 
genomic relationships was, in general, higher than in 
the scenarios considering pedigree relationships (Table 
6). We believe that the primary explanation for this 
is that genomic relationships can capture variations 
not detected by the pedigree, which makes some of the 
lower ranked bulls on the NTM scale being used more.

Economic Assumptions

The cost of dehorning in DFS is estimated to range 
between €2.7 and €7.3 per animal, considering veteri-
nary costs, gas/electricity, and extra labor (Sørensen et 
al., 2018). Thompson et al. (2017) estimated the cost 
of dehorning in the United States to be between $6 and 
$25 per head. However, such calculations do not con-
sider the current situation, where dehorning is strictly 
regulated in organic herds in the European Union. If 
dehorning is completely banned, farmers may be more 
or less forced to breed polled animals. Consequently, it 
is difficult to place an economic value on the polledness 
trait. We tackled that problem by testing a large range 
of economic values of the polledness trait. In addition, 
we used only polled bulls in BullPolled25, to represent 
a situation where farmers are forced to breed polled 
animals.

In some countries, demand for and the price of A2 
milk have increased (Bisutti et al., 2022). For a farmer 
aiming to produce A2 milk, a female not carrying 2 cop-
ies of the A2 allele might be substantially less valuable 
than a female that does. The exact value for A2 milk 
is difficult to quantify, and most likely varies between 
farms. In DFS, the demand for A2 milk is still limited, 
to our knowledge. Hence, we believe it is uncommon 
for farmers in DFS to breed to increase the percentage 
of A2A2 offspring, and even more uncommon to breed 
for β-CN and more polled animals simultaneously. 
However, our results for β-CN and polledness illustrate 
the interactions that can occur when breeding for 2 
favorable monogenic traits. It is also likely that new 
monogenic traits (e.g., κ-casein) will be added to the 
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SNP array (Chessa et al., 2020) or unknown monogenic 
traits may be discovered. The methods used in this 
study could also be adopted by other breeds or live-
stock species where other monogenic traits may be of 
economic importance.

The defects we considered in mating allocations all 
cause early abortions. Our value of €80 for an early 
abortion was in line with Segelke et al. (2016), who 
estimated a cost of €70, and Bérodier et al. (2021), who 
estimated a cost of €75. There are differences between 
countries in the cost of an insemination (Sørensen et 
al., 2018). The economic score could be made more 
farm-specific by adjusting the calculation to match the 
conditions on a specific farm.

We used a penalty of €25.4 per 1% increase in in-
breeding, which is in line with the US$25 (about €20) 
used by Cole (2015) and US$24 used by Smith et al. 
(1998). Pryce et al. (2012) used a range up to AU$20 
(about €13), whereas Bengtsson et al. (2022) tested €10 
to €40 and found that mating results were not sensitive 
in that range. Hence, even if the cost for inbreeding in 
Nordic Holstein is still unknown, €25.4 appears to be a 
reasonable estimate.

Implementation Opportunities

We decided to use linear programming in this study 
because it has been shown to outperform other mating 
methods such as sequential solving (Sun et al., 2013; 
Carthy et al., 2019). When data on genetic relation-
ships, NTM, and monogenic traits were available, 
linear programming using a regular laptop maximized 
the economic score within seconds for the herds stud-
ied. Hence, the method is suitable for implementation 
in mating software that farmers or advisors can use. 
Genotype phasing and extracting the genomic segments 
was the most time-consuming calculation, and required 
a more powerful computer. Further, estimating allele 
frequencies and genotype phasing require information 
from more than one farm. Therefore, we suggest that 
this be done at a central level, like today’s breeding 
value estimation, and that genetic relationships could 
then be made available for downloading to the mating 
program. In this study, gSNP was the fastest genomic 
relationship to calculate and it was relatively good at 
keeping the segment-based relationships low, making 
it an efficient implementation alternative. However, 
computation time aside, a segment-based relationship 
should be considered, because it is most likely better in 
prediction of inbreeding depression.

In this study, we optimized matings with a within-
herd focus and only looked one generation ahead. 
Future studies should address how this type of mat-
ing allocation would affect a population over several 

generations. Matings optimal at the herd level are not 
necessarily optimal for the population. Hence, the mat-
ing allocation suggested in this study should not be 
seen as a replacement for optimum contribution selec-
tion for breeding organizations.

Breeders of other livestock species could also adopt 
the mating scenarios presented here, but they would 
need to be adopted to each specific situation. Further, 
including genomic relationships and information about 
genetic defects, as in this study, requires genotypes 
from both females and males. An economic score could 
also be developed for crossbred animals where the focus 
is to maximize heterosis instead of minimizing parent 
relationships. In this study, we did not consider ungeno-
typed animals. An option for ungenotyped animals 
could be to impute their genotype, as done by Carthy 
et al. (2019) using the method described by Gengler 
et al. (2007). Sun et al. (2013) suggested use of the 
H matrix in single-step genomic evaluation. However, 
farmers who do not genotype their females might have 
to avoid using carrier bulls to completely avoid at-risk 
mating for known genetic defects.

CONCLUSIONS

We explored mating allocations at the herd level 
with real data and found that it was possible to re-
duce genetic relationships and eliminate expression of 
genetic defects with minimal effect on the genetic level 
for NTM. It was also possible to increase the percent-
age of polled and β-CN homozygous (A2A2) offspring 
substantially in one generation when competitive bulls 
were available, without any significant negative effect 
on other mating criteria. Compared with maximizing 
only NTM index, the frequency of polled offspring 
increased from 13.5 to 22.5%, and that of offspring 
homozygous for β-CN (A2A2) from 66.7 to 75.0%, in 
one generation, without any substantial negative effect 
on other comparison criteria. Using only semen from 
polled bulls, which might be necessary if dehorning 
is banned, considerably affected the genetic level. We 
also found that animals in the data set carrying the 
polled allele were less likely to be homozygous for β-CN 
(A2A2) and more likely to be carriers of the genetic de-
fect HH1. Based on this, we recommend monitoring of 
the comparison criteria used in this study in a modern 
genomic mating program.
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