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A B S T R A C T

Remotely sensed data are frequently used for predicting and mapping ecosystem characteristics, and spatially
explicit wall-to-wall information is sometimes proposed as the best possible source of information for decision-
making. However, wall-to-wall information typically relies on model-based prediction, and several features of
model-based prediction should be understood before extensively relying on this type of information. One such
feature is that model-based predictors can be considered both unbiased and biased at the same time, which has
important implications in several areas of application. In this discussion paper, we first describe the conventional
model-unbiasedness paradigm that underpins most prediction techniques using remotely sensed (or other)
auxiliary data. From this point of view, model-based predictors are typically unbiased. Secondly, we show that for
specific domains, identified based on their true values, the same model-based predictors can be considered biased,
and sometimes severely so.

We suggest distinguishing between conventional model-bias, defined in the statistical literature as the difference
between the expected value of a predictor and the expected value of the quantity being predicted, and design-bias
of model-based estimators, defined as the difference between the expected value of a model-based estimator and the
true value of the quantity being predicted. We show that model-based estimators (or predictors) are typically
design-biased, and that there is a trend in the design-bias from overestimating small true values to under-
estimating large true values. Further, we give examples of applications where this is important to acknowledge
and to potentially make adjustments to correct for the design-bias trend. We argue that relying entirely on
conventional model-unbiasedness may lead to mistakes in several areas of application that use predictions from
remotely sensed data.
1. Introduction

Remotely sensed (RS) data are widely used in ecosystem surveys for
predicting and mapping characteristics of interest (e.g., Tomppo et al.,
2008; Heckel et al., 2020). A standard procedure is, first, to acquire data
from field plots to serve as reference data. Metrics from the RS sensor are
then derived for the same plots to establish a dataset from which pre-
diction models are specified and estimated (e.g., McRoberts et al., 2015).
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The models may be used either for classification or for predicting
continuous variables, such as biomass. In this article, we focus on pre-
diction of continuous variables. Several statistical methods are available
for developing prediction models. Standard methods include parametric
models, e.g. linear and non-linear regression models, and non-parametric
models, such as random forests and k-nearest neighbour imputation (e.g.,
Penner et al., 2013). All of them share the common feature that when
properly applied, they provide approximately unbiased predictions
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conditional on the RS metrics used as explanatory variables.
However, bias is a concept with several flavours. First, we may

distinguish between design-bias and model-bias, relating to which sta-
tistical inference framework is applied. In design-based inference (e.g.,
Gregoire, 1998; Arnab, 2017) an estimator of a population quantity (such
as the total biomass in a study area) is unbiased if its expected value
coincides with the true value, which is fixed but unknown. In
model-based inference (ibid.), model-unbiasedness occurs when the ex-
pected value of a predictor of a population quantity coincides with the
expected value of the quantity; in model-based inference, this quantity is
assumed to be a random variable with properties determined by a model
known as a super-population model (e.g., Cassel et al., 1977). It should
thus be noted that model-bias and design-bias are two different concepts.
Further, note that we use the terms estimation and estimator when the
target quantity is fixed (e.g. the population parameters of interest in
design-based inference), and prediction and predictor when the target
quantity is a random variable (e.g. the population random quantities of
interest in model-based inference), following the conventional use of
these terms in statistical literature. Moreover, we use the term bias in its
strict sense, as a property of an estimator or predictor, whereas in general
language the term is often used in many other contexts.

Second, we need to acknowledge that certain conditions may be
required for an estimator or predictor to be unbiased. In model-based
inference, to which standard regression analysis and many similar tech-
niques belong, predictors are model-unbiased conditional on the input
explanatory variables (if the model is correctly specified and the pa-
rameters have been estimated using unbiased estimators). However, if
we alternatively assess the performance of predictors conditional on
some arbitrary set of true values, we may reach a different conclusion.
For example, the mean biomass value of the 10% of plots with the largest
biomasses from a forest inventory typically deviates substantially from
the mean of the biomass predictions for these plots. Thus, conditional on
the true state for some set of population units, model-based predictors
can be conceived of as biased (which will be discussed and defined more
thoroughly later on in this article). This is often noted as a tendency
towards the mean for model-based predictions, i.e., small true values are
over-predicted whereas large true values are under-predicted, leading to
less empirical variability among predicted values than among observed
values.

The term regression fallacy has been coined for situations where an-
alysts fail to acknowledge the random nature of the response variable
(e.g., Quah, 1993). For example, medical studies that select patients for
treatment with the largest observed levels of some bodily substance that
varies rapidly across time and observe smaller levels after treatment must
be cautious about concluding that the treatment has an effect. The reason
is that the levels of the substance could have decreased even without
treatment, because it might have been patients with temporarily greater
levels that were selected for the treatment (e.g., Barnett et al., 2005). In
this discussion article, we suggest that another kind of regression fallacy
is also important to understand. This fallacy is related to failure to
acknowledge that for populations that remain more or less stable across a
long period of time (such as forests), model-based predictors may sys-
tematically under- or over-predict the true values for certain population
units, although the predictors are model-unbiased. This kind of “inverse”
fallacy is rarely discussed but leads to problems in several applications.

Many users of regression analysis have been surprised to learn that
when graphing residuals versus true values of the response variable a
strong trend is typically observed across the range of true values,
although the predictor is model-unbiased. In some areas of application,
such as chemistry, calibration methods are applied which remove this
trend (e.g., Shukla, 1972; Tellinghuisen, 2000). In other areas, re-
searchers and practitioners rely on the model-unbiasedness property of
model-based predictors, deliberately or by convention. Remote sensing
of forest ecosystems is an area of the latter kind.

In this discussion article, we first describe and illustrate different bias
concepts. Then, we show how different scientifically valid perspectives
2

lead to different conclusions regarding whether model-based predictors
(or estimators) are unbiased. Further, we discuss how potential bias
adversely affects the results in several areas of application, and we briefly
discuss different methods available for correcting for the bias.

2. Bias formalism

Loosely speaking, bias occurs when the expected value of an estimator
or predictor does not coincide with the true value of the quantity of in-

terest. More specifically, for a fixed target quantity, Y, an estimator bY is
unbiased if its expected value (over all possible samples) coincides with

the fixed true value, i.e. if EðbY Þ ¼ Y . If we are instead interested in
predicting a random quantity, the value of which varies depending on the
realisation of some random process, the convention (e.g., Cassel et al.,
1977) is to define unbiasedness as the case where the expected value of a

predictor bY coincides with the expected value of Y, i.e. EðbY Þ ¼ EðYÞ. In
this case, we formally evaluate the expectations over an infinite number
of realisations of the random process, normally conditional on a given
sample that does not have to be a probability sample.

In the following, we first give an overview of bias in model-based
inference. Secondly, we move to design-based inference and suggest
howmethods similar to model-based prediction can be applied under this
framework.

2.1. Model-based inference

In model-based inference (e.g., Cassel et al., 1977; Gregoire, 1998;
Arnab, 2017) our target population is considered a realisation from a
model known as a superpopulation model, indicating that it has the ca-
pacity to create a variety of realised populations that all conformwith the
specified model assumptions.

The state of our target population at a given time point is a single
realisation from the superpopulation model. Model-based inference
treats the generated values as random (e.g., Chambers and Clark, 2012)
until they are observed. This means that population quantities of interest,
such as means and totals, are also random variables because in practice
we will rarely make observations on all units in a population. This has
implications for the definition of bias in model-based inference, because
there is no single fixed population value to compare with. Instead, in
model-based inference the expected value of a predictor is compared
with the expected value of the quantity being predicted (which may be
related to an individual population unit, a certain domain, or the entire
population). Model-unbiasedness occurs when the expected value of the
predictor coincides with the expected value of the random quantity being
predicted (e.g., Cassel et al., 1977; Thompson, 2012). That is, unbi-
asedness is a property that we, theoretically, assess in relation to an
infinite number of realisations from the superpopulation model.

Model-based prediction is typically conducted under the umbrella of
model-based inference. To further demonstrate and illustrate the con-
cepts, we assume a simple linear superpopulation model between some
RS metric, X (assumed to be fixed in this article), and plot level biomass,
Y. Thus, the model is Y ¼ α0 þ α1Xþ ϵ. Besides specifying the model
form, we also need to specify the properties of the error terms, ϵ. In this
article, for simplicity, we assume that these terms are independent,
normally distributed, with constant variance, and that they have zero
expectation. However, in many real-world cases, the variance of the error
terms depends on X, and spatial autocorrelation between them is often
present.

The model parameters can be estimated in several ways, e.g. through
ordinary least squares regression analysis or maximum likelihood

methods. We thus obtain an estimated model, bY ¼ bα0 þ bα1X. Under the
given assumptions, the parameter estimates will be unbiased and thus it

can be formally shown that, for any given X, EðcY jXÞ ¼ α0 þ α1X ¼
EðY jXÞ. Thus, the expected value of the predictor coincides with the
expected value of Y, which implies model-unbiasedness. In this case, we
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addressed prediction at the level of individual population units. By
aggregating across population units, we can show that model-
unbiasedness holds also for population totals and means in case it
holds for all individual units. A straightforward predictor of the (random)
population total

PN
i¼1Yi, for an area tessellated into N grid-cells, would

be
PN

i¼1
bY i. Because the predictor for each population unit is model-

unbiased it follows that EðPN
i¼1

bY iÞ ¼ EðPN
i¼1YiÞ, i.e. the predictor of

the population total is also model-unbiased.1

In this article, we denote the above kind of unbiasedness as conven-
tional model-unbiasedness to separate it from another kind of model-
related unbiasedness, which will be introduced later. In summary, con-
ventional model-unbiasedness means that on average across an infinite
number of realisations from a superpopulation model, the mean of our
predictions coincides with the average realised value of the predicted
quantity.

The principle of conventional model-unbiasedness is illustrated in
Fig. 1, which is based on a large number of realisations from a super-
population model, out of which a limited number of realisations are
displayed with different colours. That is, in the same figure different
realised true values exist for each population unit. However, the general
patterns that we observe would remain the same for a single realisation of
true population values or for a large sample from some population.

The upper left part of Fig. 1 (a) shows how the explanatory variable
(the variable X in our model) is related to the realised true values in
different hypothetical populations. The red line in Fig. 1 (a) is the
superpopulation model, without the error term. The model we would
estimate based on a sample from any realised population would
approximate the superpopulation model, if the regression model is
correctly specified. Thus, intuitively, the red line in Fig. 1 (a) also ap-
proximates the regression line from a single sample, passing through the
mean value of the realised population values at all levels of the explan-
atory variable.

The upper right part of Fig. 1 (b) illustrates that model-based pre-
dictions are (conventional) model-unbiased, because for all levels for the
expectation of predicted values (on the horizontal axis) the mean value of
the error terms is zero (the dashed line). That is, the expected value of the
predictions coincides with the expectation of the true value. This corre-
sponds to checking graphs of residuals, which are predictions of error
terms, versus predicted values in case regression analysis is conducted
using a sample from a single realisation of true values.

The lower left part of Fig. 1 (c) shows a scatterplot of realised true
values versus expectations of predicted values. From this graph, it can be
seen that the range of predicted values is narrower than the range of true
values, i.e. model-based prediction leads to less variability among pre-
dicted values compared to the variability among true values. This can be
observed as the well-known tendency that the predictions are closer to
the mean than the true values (e.g., Galton, 1886) (The dashed line
displays a 1:1 relationship).

Finally, in the lower right part of Fig. 1 (d) the true values are graphed
versus the error term values. Here, a trend can be observed that the
average value of the error terms deviates substantially from zero in case
the true values are either large or small. Intuitively, this appears to
indicate that model-based predictions are biased, although we have
shown that they are in fact model-unbiased (at the level of individual
population units, as well as for domains, totals and means).

Scatterplots like the one in the lower right part of Fig. 1 (d) frequently
cause confusion among remote sensing researchers and practitioners,
1 However, in large-area surveys based on RS data model-based predictors are
rarely evaluated for bias, because it would involve substantial efforts to collect
field reference data from all parts of the target population to check if the
assumed model is valid. Many studies indicate that model-bias arises due to
incorrectly specified models or lack of field data for model fitting from some
ecosystem types (e.g. R�ejou-M�echain et al., 2019). Thus, model-unbiasedness is
a theoretical concept that is typically difficult to verify in practical surveys.
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when graphing residuals versus true values. How can the predictors be
model-unbiased although we observe a strong trend for the residuals
across the range of true values? Studies like the ones by Barth et al.
(2012), Gilichinsky et al. (2012) and Lindgren et al. (2022) have pro-
posed methods to adjust for this apparent “bias” of predictors based on
RS data.

In this article, we suggest that a core issue of concern is whether we
apply model-based inference for populations with realised values of the
response variable that vary quickly across short periods of time (i.e. we
frequently obtain new realisations from the superpopulation model) or if
we apply it for populations that remain more or less stable across long
periods of time, such as many forests (i.e. a given realisation from the
superpopulation model remains the same for a longer time). In the first
case, if we repeat a survey at several occasions across time, the average of
our predictions for a given population unit would tend to coincide with
the average of the realised true values. In this case it is intuitively
straightforward to accept the model-based predictions as the “best”
predictions we can obtain at the level of individual population units.
However, in the latter case our model-based predictors would repeatedly
over- or under-predict the realised true values for many population units.
Whenever we address a certain population unit with a new prediction
using a certain type of RS data, we are likely to obtain a similar sys-
tematic error. Indeed, it is commonly observed that small true values of
biomass or growing stock volume tend to be systematically over-
predicted and large true values under-predicted (e.g., Gilichinsky et al.,
2012; Ehlers et al., 2018; Persson and Ståhl, 2020). This occurs although
the predictors are model-unbiased in the conventional sense.

We argue that using methods and definitions that are valid for con-
ventional model-based inference could be questioned in case we are
addressing populations that remain stable across time. For many appli-
cations based on predictions from RS data, we need to acknowledge that
systematic over- or under-prediction occurs and that this might affect the
usefulness of the RS-based predictions. In the next section, we propose an
alternative view to model-based assessment where we assume that the
realised population is fixed. We suggest that framing the problem in this
way, i.e. in a design-based context, leads to results that might be more
straightforward and relevant to practitioners.
2.2. Use of models in design-based inference

In design-based inference (e.g., Gregoire, 1998; Arnab, 2017), prob-
ability samples from populations are selected and the observations for
these units, as well as the population quantities of interest, such as the
population mean or total, are treated as fixed values. Estimators are
specified for estimating the population quantities of interest; the esti-
mators are random variables because the input to them emanates from
randomly selected samples. For illustration and comparison with
model-based inference, we assume that the study area has been tessel-
lated into N units. With some random sampling design (without
replacement), n units are randomly selected for the design-based infer-
ence. A Horvitz-Thompson estimator (e.g., Wu and Thompson, 2020) of
the population total is bτ ¼ Pn

i¼1yi=πi, where yi is the value for the i:th
unit2 and πi is the unit's inclusion probability. The expected value of the
estimator is EðbτÞ ¼ EðPn

i¼1yi =πiÞ ¼ EðPN
i¼1Iiyi =πiÞ ¼ PN

i¼1EðIiÞyi=πi ¼PN
i¼1yi; because the expected value coincides with the true value the

estimator is unbiased. In the derivation, a random inclusion indicator, Ii,
which takes the value 1 if the unit is included in the sample and
0 otherwise, is used; the expected value of the indicator coincides with
the inclusion probability, i.e. EðIiÞ ¼ πi. In design-based inference, un-
biasedness is a property that we, theoretically, assess in relation to all
possible samples under the given design. Note that in this case the values
2 Note that, for simplicity, we use the same notation for the ith value in the
sample and the ith value in the population.



Fig. 1. An illustration of different characteristics of
model-unbiasedness. In (a), the explanatory variable
values are graphed versus realised true values (the red
line is the superpopulation model, without the error
terms). In (b), the expectations of predicted values are
graphed versus the error terms. In (c), true values are
graphed versus expectations of predicted values (the
dashed line is the 1:1-line). In (d), true values are
graphed versus the error terms. The different colours
display different realised populations. (For interpre-
tation of the references to colour in this figure legend,
the reader is referred to the Web version of this
article.)
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of the variables of interest for individual population elements are treated
as fixed, but unknown unless the population elements are included in the
sample.

A standard method of applying models in design-based inference is to
use model-assisted estimators (S€arndal et al., 2003). With such estima-
tors, predicted values for all units in the population (or for a large sample
of auxiliary data) are obtained using models. A probability sample is used
for estimating the total (or mean) of the deviations between model pre-
dictions and observed values. This estimate is added to the total (or
mean) of the model-based predictions for all population units to obtain
an approximately design-unbiased estimator of the population quantity
of interest. Several studies have demonstrated the usefulness of
model-assisted estimation based on combinations of RS and field data
(e.g., Andersen et al., 2011; Gregoire et al., 2011; Nӕsset et al., 2011).
The assisting models can be developed in different ways, and the pro-
cedure assures approximate design-unbiasedness of estimators although
the models applied may be incorrectly specified or “biased” in other
ways.

However, we will not address model-assisted estimation further but
instead a model-based estimation counterpart to the model-based pre-
diction discussed in the previous section. We have argued that assessing
properties of predictors across a large number of random realisations
from a superpopulation model may be conceived of as non-intuitive for
populations that remain stable across time. Thus, we now instead adopt a
design-based view to the problem and conceptualize that all target
quantities (such as plot or grid-cell level biomasses) are fixed but un-
known, just as in the case of standard design-based inference. We argue
that, compared to the assumptions underpinning model-based inference,
practitioners would more easily understand this assumption and it would
be more useful in applications where they are interested in properties of
the single population confronting them rather than properties of hypo-
thetical realisations from a superpopulation model.

Standard regression analysis (and similar prediction techniques) is
based on the same assumptions as those underpinning model-based
inference. For fixed populations, design-based methods for estimating
the parameters of models of similar kind as those used in model-based
inference are available (e.g., Heeringa et al., 2017). Alternatively,
linear relationships between explanatory and response variables can be
estimated fully from the design (e.g., S€arndal et al., 2003). With simple
4

random sampling from a population, following the methods proposed by
Heeringa et al. (2017), the design-based parameter estimators are similar
to those used in standard regression analysis. Thus, for the purpose of this
discussion article, we conclude that models of similar kind as those
previously discussed can be estimated and applied also when we frame
our problem in a design-based context. However, because the quantities
we assess are now fixed, the proper nomenclature would be model-based
estimators rather than model-based predictors. Although we change the
terminology, the models used for assessing the values of the variables of
interest remain more or less the same as before.

A major difference compared to the case of model-based inference is
that we treat the true values (as well as totals and means) for the popu-
lation units as fixed whenwe assess whether or not an estimator is biased.
Design-unbiasedness of a model-based estimator occurs when the expecta-

tion of an estimator bY coincides with the fixed true value, i.e. if EðbY Þ ¼
Y, when evaluated over all possible samples (collected for estimating the
model parameters). Whereas our focus is estimators for the values of the
variables of interest for individual population element, the definition
holds in general for estimators of any other population parameter, such
as the population mean and total.

Returning to Fig. 1, we would observe similar patterns in the case of
model-based estimators of the response variable for individual popula-
tion units, since the models would be developed in a similar way as in
model-based inference. However, in the design-based case, all estimators
with expected values which do not coincide with the true value are
formally biased.

Fig. 2 shows the results of a design-based approach to estimating the
value of the variable of interest for each unit in the population (corre-
sponding to Fig. 1). In this case, however, (i) a simple random sample
(without replacement) of 50 units was selected; (ii) the model parameters
were estimated based on the sample, and (iii) the estimated model was
applied for estimating the value of the variable of interest for all popu-
lation units. This procedure was repeated 500,000 times (for a single
realisation from the superpopulation model), to obtain mean values for
each population element that would be good approximations of the
corresponding expected values.

Fig. 2 (a) shows the same general pattern as Fig. 1 (c), i.e. that the
range of estimated values is narrower than the range of true values. Fig. 2



Fig. 2. Model-based estimation at the level of individual population units and the effects of calibration. In (a) true values are graphed versus the expectation of
estimated values; in (b) the design-bias of standard model-based estimators is shown; in (c) true values are graphed versus expectations of calibrated estimated values;
in (d) the design-bias of the calibration estimator is shown.
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(b) shows that most estimators of the value of the variable of interest at
the level of population units are design-biased. Thus, standard regression
techniques typically result in design-biased estimates at the level of in-
dividual population units. Especially, there is a problematic trend from
positive bias for small true values to negative bias for large true values
(Fig. 2b).

As suggested by Tian et al. (2016) and Persson and Ståhl (2020), the
simple linear model ~Y ¼ β0 þ β1Y may be used for characterising prop-
erties of estimates or predictions based on RS data. In this model, ~Y is the
estimate obtained for an individual population unit from a model-based
estimator, and the βs are model parameters. Following principles for
calibration developed in chemometrics (e.g., Shukla, 1972; Tell-
inghuisen, 2000), this model can be rearranged to obtain a calibration
estimator that removes the trend of the bias for standard model-based
estimators (although estimates for individual units remain biased). A

simple classical calibration estimator is bY cal ¼ ~Y�bβ0bβ1

. It has previously

been applied to model-based predictions from RS data by Lindgren et al.
(2022).
Fig. 3. The standard regression model (red line) and the calibration model (blue line
variable (a) and in case of a 0.70 correlation (b). (For interpretation of the referenc
this article.)
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Fig. 2 (c) and (d) show the effects of applying the calibration esti-
mator. Fig. 2 (c) shows that it increases the range of calibrated values,
which tends to be similar to the range of true values. Fig. 2 (d) shows that
calibration removes the bias trend. It is important to note that through
calibration we cannot make estimators at the level of individual popu-
lation elements design-unbiased, but we can remove the trend of the
design-bias.

Further, based on the simple linear models presented earlier in the
article, it is possible to deduce what would be the linear relationship
between the explanatory variable and the response variable, both for the
case of a standard linear regression model and for a calibration model. In
Fig. 3, we demonstrate the difference between the two models for two
cases, which differ in terms of the correlation between the explanatory
variable and the response variable. It can be seen that in the case of a 0.95
correlation (Fig. 3a) the difference between the calibrationmodel and the
standard regression model is minimal. However, in case of a weaker
correlation (0.7; Fig. 3b), the difference between the two models is
substantial.

In summary, we argue that a design-based inference perspective
rather than a model-based inference perspective would often be more
) in case of a 0.95 correlation between the explanatory variable and the response
es to colour in this figure legend, the reader is referred to the Web version of
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relevant when we model the response variable for individual units in
populations that remain more or less stable across long periods of time,
such as many forests. In this case, standard methods of model-based
prediction may lead to substantial trends of the design-bias across the
range of true values. This trend can be very strong in case the correlation
between the explanatory variable and the response variable is weak.

3. Consequences for applications

The consequences of design-bias of model-based estimators of
response variable values for individual population units differ between
different areas of application. In this section, we give a brief overview of
the consequences of this type of bias. We restrict the discussion to pop-
ulations that remain relatively stable across a long period of time, such as
forest ecosystems.

3.1. Assessment at the level of individual population units

When the main interest in applications is to make assessments at the
level of individual population units, conventional model-based predic-
tion (without calibration) leads to smaller mean square errors (cf., Tell-
inghuisen, 2000) of predicted values compared to when classical
calibration is applied. Thus, we suggest that in this case a straightforward
approach would be to apply prediction models obtained through stan-
dard regression analysis, or similar techniques, without attempting to
remove the bias trend. However, in some cases it might be important to
remove this trend, in which case adjustments could be considered.

3.2. Assessment of population totals and means

Model-based prediction of population totals and means has a strong
theoretical underpinning in the literature (e.g., Cassel et al., 1977;
Chambers and Clark, 2012). Predictors of population totals and means
can be shown to be conventional model-unbiased if the models have been
correctly specified and estimated. For large populations, the relative
difference between the expected value of the quantity being predicted
and the realised value is likely to be small (e.g., McRoberts et al., 2018).
Thus, in assessing population totals and means we can rely on conven-
tional model-based inference, not least since model-based predictors are
likely to be approximately design-unbiased as well. The
design-unbiasedness follows from balancing positive bias for predictions
of small true values with negative bias for predictions of large true values.
As a consequence, it might be prudent to apply sampling schemes which
are balanced in the explanatory variable(s), when models are estimated
(cf., Chambers and Clark, 2012).

However, it should be noted that model-based prediction of popula-
tion totals and means is sensitive to conventional model-bias, due to
incorrectly specified models or lack of data from certain subpopulations
(cf., R�ejou-M�echain et al., 2019).

3.3. Assessment for domains

Although conventional model-based inference is model-unbiased also
for domains (e.g., Chambers and Clark, 2012), domain estimators based
on conventional model-based inference would typically be design-biased.
For example, if the domain of interest is the 10% of a forest region with
the largest biomass density, the design-bias of a model-based predictor
for this domain is likely to be substantial unless corrections are made.
Thus, our suggestion is to consider calibration or similar adjustment if the
interest is assessment for domains. However, note that many other
techniques are available for domain estimation, using either model-based
or design-based inference (e.g., Hou et al., 2022).

3.4. Mapping

Increasingly, national, regional and global maps of ecosystem
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conditions are produced. One important example is biomass maps, sup-
porting reporting of greenhouse gas fluxes to the UN Convention on
Climate Change (e.g., Langner et al., 2014; Dubayah et al., 2022).
Although the biomass maps may be estimated using methods that ensure
model-unbiasedness, they may turn out to be very different depending on
which type of RS data are applied (e.g., Mitchard et al., 2013). With RS
data strongly correlated with biomass, the actual variability of biomass
across the landscape would be fairly well depicted, whereas if data
weakly correlated with biomass have been applied the map would
display substantially less variability (e.g., Saarela et al., 2023). Thus, our
suggestion is to consider corrections to reduce the design-bias of
model-based estimators in case the purpose is to present maps that
display the real variability of the feature of interest in the landscape. This
conclusion concerns maps displaying continuous rather than categorical
variables. However, note that calibration will not remove the bias at the
level of individual population elements, only the bias trend.

3.5. Scenario modelling and planning

Scenario modelling is conducted in many countries as a means of
assessing the possible outcomes of certain ecosystem management pol-
icies, before policy decisions are made (e.g., Mohren, 2003; L€amås et al.,
2023). Increasingly, scenario modellers and planners require spatially
explicit wall-to-wall data for modelling features that cannot be
adequately assessed using sample data. An important example is biodi-
versity, where habitat models often require spatially explicit data (e.g.,
Ruckelshaus et al., 1997). Further, a current trend is to integrate
modelling of several ecosystem services using the same set of data and to
move towards precision management where treatments are allocated to
small parcels of land, based on the available information (e.g., Wil-
helmsson et al., 2021).

Trends in the design-bias of model-based estimators, or predictors,
may be a substantial problem in scenario modelling, because “extreme”
values are often the most important ones. For example, old forests with
large growing stock volumes are of particular interest, both from the
point of view of timber harvesting and biodiversity preservation in
forestry scenario modelling. Thus, our suggestion in this case is to
consider making modifications to reduce the design-bias trend, before
data are entered into scenario modelling or planning systems.

3.6. Data assimilation and composite estimation

In data assimilation, as well as composite estimation, several pre-
dictions of the same feature within a geographical area are combined to
improve the precision of a composite predictor, which uses all the
available information. For example, in data assimilation a series of pre-
dictions for a given area will be linked through an updating model, and
combined based on the precision of the update and the new prediction
(e.g., Ehlers et al., 2013). In this case, design-bias trends pose problems
because the magnitude of the bias will differ depending on which RS data
source is used for the predictions. As shown by Lindgren et al. (2022),
correcting for design-bias trends has the potential to decrease the mean
square error of composite data assimilation predictors.

4. Discussion

The main conclusion from this article is that standard predictors (or
estimators) of the values of interest for individual population elements,
such as pixel-level forest biomass predicted from RS data using regression
analysis or machine learning algorithms, are design-biased, although in
the mean time they are typically model-unbiased. Potentially, this has
negative consequences in several areas of application. Negative conse-
quences mainly occur when the goodness-of-fit of estimated models is
intermediate or poor. This can be seen in Fig. 3, where the difference
between a non-calibrated and a calibrated estimator (or predictor) is
small when there is strong correlation between the explanatory variable
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and the response variable, but large when the correlation is weaker.
However, we argue that manymodels for forest resources and ecosystems
assessment are of the second kind. Models for biomass assessment based
on optical satellite or radar data (e.g., Gao et al., 2018) are important
examples.

The interest in forest ecosystem information is currently increasing
and wall-to-wall mapping is increasingly being proposed as a strong
alternative for acquiring the information. With maps, geographically
explicit information is obtained, and totals can be obtained by summing
estimates or predictions from individual map elements. Changes can be
assessed by comparing maps from different time points (e.g., Hansen
et al., 2013) and with wall-to-wall information, forest scenario models
can incorporate features that cannot be retrieved from sample data (e.g.,
Wilhelmsson et al., 2021). In this development, we suggest that it is
becoming increasingly important to understand the difference between
model-based and design-based inference, and the assumptions underly-
ing each of the concepts.

Model-based inference has a strong theoretical underpinning (e.g.,
Cassel et al., 1977; Chambers and Clark, 2012) and it is widely applied,
deliberately or by tradition, for mapping and formal inference about
population totals or means. In this discussion article, we do not question
the theoretical soundness of model-based inference or the toolbox of
methods linked to it. However, we suggest that for populations that
remain more or less stable across time, in many cases it could be more
relevant to treat the population quantities of interest as fixed but un-
known rather than as random variables. In many applications, we are
only interested in the features of the single realisation of the super-
population model that constitutes the real world. We are less interested
in the hypothetical worlds that the superpopulation could have created,
but did not. We suggest that for populations and applications of this kind,
design-based inference could be a conceptually more appropriate
framework than model-based inference. Design-based inference treats
the features of the world we face as fixed but unknown. We assess them
by collecting random samples where we record the conditions.

As shown in this article, model-based predictors typically are design-
biased, and the use of such predictors will typically lead to trends in the
design-bias across the range of true values. In case extreme values are of
special interest, which they often are, the design-bias of model-based
predictors tends to be especially large for such population units.

Interestingly, although model-based prediction techniques are
applied, many remote sensing studies evaluate the results in a design-
based perspective by collecting a validation sample based on which the
properties of the model-based predictions are assessed (e.g., Persson and
Ståhl, 2020). A typical conclusion is that small true values are over-
estimated and large true values are underestimated (e.g., Gao et al.,
2018). As previously described in this article, this conclusion should not
come as a surprise, because it is an inherent property of model-based
prediction when evaluated in a design-based context.

Several studies have addressed adjustment for the bias we propose to
be termed design-bias of model-based estimators. Barth et al. (2012)
proposed a routine for imputation that ensured that the wall-to-wall
imputed values had the same proportions in the imputed population as
in the sample. Gilichinsky et al. (2012) adopted histogram matching for
achieving a similar result. Lindgren et al. (2022) applied classical cali-
bration for removing the design-bias trend. A related technique is
empirical best linear prediction (E-BLUP) which makes adjustments for
all units belonging to the same group based on observations of some units
in the group (e.g., Breidenbach and Astrup, 2012; Hou et al., 2019). This
will also reduce the design-bias, but not remove it.

In chemometrics, for a long time, an important challenge has been to
“calibrate” measurement instruments, so that the instrument reading
corresponds to the actual concentration of some compound being ana-
lysed (e.g., Shukla, 1972; Tellinghuisen, 2000). From a known concen-
tration, Y, of some compound, the instrument provides the response, ~Y .
The objective is then to calibrate the instrument so it provides a reading
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corresponding to Y rather than ~Y. The classical calibration approach
applied by Lindgren et al. (2022) to predictions based on RS data ema-
nates from approaches devised in chemometrics.

In this article, we have assumed that a certain RS sensor would
repeatedly provide more or less the same response for a certain forest
area, leading to the same systematic error being repeatedly committed
when estimating the conditions in that area (if a survey is repeated
several times). In reality, many factors influence the sensor response and
assuming it to be constant is a simplification, e.g. due to seasonal vari-
ability (e.g., Wang et al., 2017). However, as shown by Ehlers et al.
(2018) for a boreal forest ecosystem, the error correlations between
repeated assessments of forest characteristics using a certain sensor are
typically very strong, which supports the assumption made in this article.

Lastly, we suggest that there is room for further studies on how to
construct model-based estimators for individual population units that
have small design-bias, and that lead to minimal trends of the design-bias
across the range of true values. Classical calibration and histogram
matching appear to be relevant approaches, but there are probably other
approaches that could be considered as well, such as quantile regression
(e.g., Hao and Naiman, 2007), orthogonal regression, or total least
squares regression (cf., Solberg et al., 2010).

5. Conclusions

We have shown that standard regression or machine learning pre-
dictors, which are approximately model-unbiased, are at the same time
design-biased. For populations that remainmore or less stable across long
periods, such as forests, this implies that the same type of systematic
errors repeatedly will be observed when forest ecosystem characteristics
are assessed using data from a certain RS sensor type. This has important
negative implications in several areas of application.

The discussion about the relevance of model-based inference in
comparison to design-based inference is far from new (e.g. Brewer, 2013;
Dumelle et al., 2022). However, conclusions tend to vary depending on
area of application. In this article, we have discussed and highlighted
important issues to consider in studies applying RS data for assessing
forest ecosystem characteristics. In some cases, calibration to remove
design-bias trends of model-based predictors should be considered.
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