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A B S T R A C T   

The effect of ecologisation on crop production performance in Sweden, measured as technical efficiency, was 
investigated by incorporating ecologisation into the production function and technical inefficiency determinant 
model. An unbalanced panel of data from the Swedish Farm Accounting Data Network (FADN), comprising 1944 
observations on 346 crop farms 2009–2019, was used in stochastic frontier analysis. Ecologisation indicators 
considered were crop diversity index, organic farming, and environmental subsidies. The results showed that 
ecologisation affected the technical efficiency of crop production. Crop diversity index for the current year and 
the two preceding years had a positive effect on performance, with crop diversity index for current year in 
particular being positively associated with production performance of crop production. Organic farming was 
estimated to be negatively significantly associated with production performance. Rural subsidies were positively 
associated with production performance, but no association was found between environmental subsidies and 
production performance. Mean technical efficiency was 0.715, with higher values in southern Sweden than 
northern Sweden. These findings on the impact of ecologisation on arable farming can be useful when designing 
policies to encourage farmers to adopt ecologisation approaches.   

1. Introduction 

The concept of ecologization reflects the growing significance of 
environmental concerns in agriculture and rural policies and practices, 
especially in light of the impact of European Union (EU) agriculture 
policies (Mormont, 2009). In response to criticism of conventional 
farming practices, ecologization has been widely adopted over the past 
decade as a way to address the negative effects of conventional farming 
practices on the environment, such as soil and water pollution, loss of 
biodiversity, and impacts on climate change and food safety. Unlike 
agroecology, which focuses on the ecological and societal dimensions of 
the entire food system, ecologization focuses specifically on the impacts 
of agriculture with respect to the environment and conservation efforts 
(Allen et al., 1991; Cárdenas Rodríguez et al., 2018; Lamine, 2011; van 
der Ploeg et al., 2019). Although ecologization is a holistic approach that 
seeks to understand and address the social, environmental, and eco-
nomic impacts of agricultural policies and practices, it is unknown 
whether it affects production performance, and in what way. This paper 
investigated the effects of ecologization on crop production performance 
in Sweden. 

Current research on ecologization in agriculture is focused on two 
main areas (Schnebelin et al., 2021). The first involves optimizing inputs 
and minimizing negative outputs from production to improve resource 
efficiency and productivity, such as transitioning to fossil-free agricul-
ture and public subsidies. Agri-environmental subsidies through the EU 
Common Agricultural Policy (CAP) fall within this area, since the key 
motive for providing subsidies is to address market failures originating 
in positive or negative externalities. The second area involves promoting 
new practices that benefit the environment and mitigate climate change, 
such as organic farming. To identify the best way of implementing 
ecologization in agricultural practices, researchers have investigated 
practical changes from conventional to organic farming and integrated 
pest management (Lamine et al., 2011). Previous research has explored 
the coexistence and interrelation of the two main areas of ecologization 
research, while in this study we addressed the missing link by investi-
gating how ecologization affects the production performance of farms. 

The technical efficiency (TE) of agricultural production reflects the 
extent to which multiple inputs are optimally used by farmers in the 
production process to produce agricultural outputs (Farrell, 1957). It 
was used in the present study as a proxy for the production performance 
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of farms. Existing research shows mixed results in terms of TE or pro-
ductivity analysis on the impact of ecologization-related practices or 
policies on farm performance. For example, according to Guesmi and 
Serra (2015) efficient use of chemical inputs can improve both envi-
ronmental and technical performance of farms. Crop diversity is re-
ported to play a crucial role in agricultural production (Di Falco and 
Perrings, 2006; Chavas and Falco, 2012; Nilsson et al., 2022). The 
relationship between organic farming and production performance has 
also been widely discussed over the past few decades (De Ponti et al., 
2012; Lakner and Breustedt, 2017; Subrata and Huang, 2023). 

Parametric stochastic frontier analysis (SFA) (Battese and Coelli, 
1995) was used in this study to calculate TE, defined by Farrell (1957) as 
the ratio of optimal output to observed output, given the level of tech-
nology. Battese and Coelli (1995) developed a stochastic frontier pro-
duction function that includes firm-specific effects and time effects in 
the model of inefficiency, and this has become one of the standard 
models for measuring TE. During the past two decades, the Battese- 
Coelli model and its stochastic frontier production function have been 
applied for productivity and efficiency analyses in agricultural produc-
tion (Greene, 2005; Karagiannis and Sarris, 2005; Coelli et al., 2013; 
Huang and Jiang, 2019; Subrata and Huang, 2023). However, no pre-
vious study has introduced the concept of ecologization systematically 
into TE measurement within the production function framework. 

This paper makes three novel contributions to the literature. First, it 
sheds new light on the effects of ecologization on production perfor-
mance in agricultural production. In particular, it addresses how eco-
logization influences the TE of crop farming in Sweden. The analytical 
framework used was based on the stochastic frontier production func-
tion proposed by Battese and Coelli (1992). That function and the 
technical inefficiency determinant model were updated to incorporate 
ecologization indicators, using an unbalanced panel of data from the 
Swedish Farm Accounting Data Network (FADN). Second, instead of 
providing an aggregating concept of ecologization, this study goes 
further than previous literature by applying multiple indicators to 
represent ecologization, in order to deepen understanding about the 
perspective that works best in relation to farm performance. In partic-
ular, it uses indicators such as crop diversity index, certified and 
in-transition organic farming, and environmental and 
non-environmental CAP subsidies to represent different aspects of eco-
logization for agricultural crop production. Third, this study provides 
new empirical evidence that can be used in designing policies to 
encourage farmers to adopt ecologization approaches, by accounting for 
the effectiveness of ecologization. It offers policymakers a clear under-
standing of TE scores, including differences in TE between southern and 
northern Swedish crop farms, with and without ecologization ap-
proaches, and factors that are negatively/positively associated with TE 
in agricultural production, thus helping them tailor policies to improve 
efficiency on farms and in the agricultural sector in future. In particular, 
the results obtained in this study show whether to encourage compen-
sation or insurance supporting crop diversity in order to avoid crop di-
versity loss, or to continue rural subsidies for organic farming by 
considering its association with production performance. This infor-
mation is crucial for farmers who are considering adopting ecologization 
approaches and for policymakers who are seeking to promote on-farm 
ecologization. 

The rest of this paper is structured as follows. The theoretical 
framework used for assessing the impact of ecologization on perfor-
mance, literature findings, and starting hypotheses in the present work 
are described in Section 2. Section 3 presents the data and descriptive 
statistics. The method and empirical model specification are described 
in Section 4, while Section 5 presents and discusses the empirical results. 
Some conclusions are drawn in Section 6. 

2. Literature review and hypothesis 

Ecologization describes the importance of environmental and 

ecological perspectives when implementing agricultural practices and 
policies (Lamine, 2011; Lucas, 2021; Schnebelin et al., 2021). It covers a 
range of social and economic activities aimed at reducing environmental 
impacts and protecting the environment, the effects of which can be 
measured as crop diversity, certified and in-transition organic farming, 
and payment of subsidies. Technical efficiency quantifies the managerial 
ability of a farmer to attain the highest level of output given a set of 
inputs (such as land, labor, and capital), and is the key measure of 
overall production performance. The theoretical framework for the 
relationship between production performance and the three selected 
indicators of ecologization (crop diversity, organic farming, subsidies) 
are presented below. 

2.1. Crop diversity and production performance 

Crop diversity plays a crucial role in agricultural production, as 
demonstrated in recent studies (Di Falco and Perrings, 2006; Chavas and 
Falco, 2012; Cardinale et al., 2012; Bareille and Letort, 2018; Nilsson 
et al., 2022). Higher crop diversity results in improved yields (Bareille 
and Letort, 2018) and enhances the value of production factors within 
the system (Chavas and Falco, 2012; Cardinale et al., 2012; Nilsson 
et al., 2022). For example, a study by Smale et al. (1998) investigating 
associations between crop diversity and wheat production in Pakistan 
found that greater variation in crop species is linked to higher yields. 
Another study examining the impact of genetic diversity on cereal 
production found that higher crop genetic diversity can lead to 
improved farm productivity and reduced risk (Di Falco and Perrings, 
2006). Bareille and Letort (2018) applied a dynamic acreage farm-level 
model in which they considered the productive ability of crop biodi-
versity as a quasi-fixed input, and concluded that crop diversity should 
be considered productive capital in farmers’ decision making. 

Crop diversity is beneficial for sustainable crop production. First, the 
probability of growing the best-adapted species can be increased by 
growing more diverse crop species, e.g., crop species with different root 
systems can improve nutrient uptake efficiency (Clark and Tilman, 
2017; Tilman et al., 2005). Second, crop management is facilitated by 
growing more diverse crop species, because different crops require 
different forms of management (Loreau and Hector, 2001), so use of 
production inputs such as labor and technical factors can be optimized. 
Third, farm resilience to biological risk is improved by crop diversity, 
while increasing crop diversity can also make pests and diseases easier to 
control. Fourth, the ability of farms to maintain production levels under 
climate change can be enhanced when growing more diverse crop spe-
cies (Di Falco and Chavas, 2006, 2008). Based on these reported asso-
ciations between crop diversity and crop production, crop diversity was 
selected as an indicator of ecologization for Swedish crop farms in this 
study, which tested the following hypothesis: 

Hypothesis 1. (H1): Crop diversity improves crop production 
performance. 

2.2. Organic farming and production performance 

Organic agriculture is defined as “a holistic view of agriculture that 
aims to reflect the profound interrelationship that exists between farm 
biota, its production and the overall environment” (Pacini et al., 2003). 
Organic farming is widely recognized and regulated worldwide through 
legislation, regulations, and certification schemes (Feola et al., 2012), 
and was thus selected as another important indicator of ecologization in 
this study. There is a crop yield gap between organic and conventional 
farming, with average yields of individual organically cultivated crops 
being lower than those of their conventionally cultivated counterparts 
(De Ponti, Rijk, and Van Ittersum, 2012). The relationship between TE 
and organic/conventional farming has been investigated in depth in 
recent decades, with a comprehensive overview and synthesis on effi-
ciency and organic farming provided by Lakner and Breustedt (2017). 
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The relationship between production performance of TE and organic 
farming has been examined in Western Europe (in particular dairy 
farming) and Southern Europe (in particular olive and grape produc-
tion). In Northern Europe, studies by e.g., Kumbhakar et al. (2009) and 
Manevska-Tasevska et al. (2026) have estimated that TE is lower on 
organic dairy farms than on conventional dairy farms in Finland and 
Sweden, and that inefficiency decreases the probability of conversion to 
organic farming. However, organic farms in European countries tend to 
differ in structure and those based on organic grassland and dairy 
farming may differ in performance from those specializing in crop 
farming. The second hypothesis tested in this study was: 

Hypothesis 2. (H2): Organic farming reduces crop production 
performance. 

2.3. CAP subsidies and production performance 

The concept of ecologization closely co-exists with, and is partially 
shaped by, the EU CAP system, as reflected in its recent reforms and 
developments. When first established in the 1960 s, the primary objec-
tive of CAP was to improve agricultural productivity. In the 1990 s, it 
was reformed to achieve additional goals such as protecting the envi-
ronment, preserving biodiversity, preserving rural landscapes, and 
maintaining social viability in rural areas (CAP Pillar 1). The introduc-
tion of rural development programs (RDPs) in CAP shifted its focus to 
competitiveness, flexibility, and liberalization (CAP Pillar 2) (Potter and 
Tilzey, 2005; Erjavec and Erjavec, 2009). In 1992, mandatory imple-
mentation of agri-environment schemes (AES) aimed to encourage 
farmers to voluntarily manage their land in an environmentally friendly 
manner (EU Regulation 2078/92). The 2007–2013 CAP period set a new 
formal goal of improving the environment and countryside through 
RDPs. The 2014–2020 CAP reform placed more emphasis on conserving 
the environment and ecosystems, mitigating biodiversity loss, and 
improving ecosystem services in agricultural landscapes (Erjavec and 
Erjavec, 2009, 2015; Leduc et al., 2021). The latest revision of CAP, for 
the period 2021–27, increased its environmental and climate ambitions, 
but it still relies on voluntary participation by farmers in environmental 
measures (Kuhmonen, 2018). The 2023–27 CAP Strategic Plan com-
bined direct payments and coupled support (Pillar 1) with rural devel-
opment support (Pillar 2) for the first time, and earmarked around 25% 
of the Pillar I budget for an “Eco-scheme” to support and strengthen 
ecosystem protection and climate impact mitigation. This new instru-
ment aims to incentivize farmers to prioritize environmental care and 
climate action. Together with the RDPs of Pillar 2, the Eco-scheme will 
work towards achieving sustainable environmental and climate objec-
tives for EU agriculture (Kuhmonen, 2018). 

A trend for ecologization has been evident in CAP since the intro-
duction of AES in 1992 and continues to grow, as exemplified by the 
current environmental subsidies aimed at reducing negative agricultural 
impacts on the environment (Schnebelin et al., 2021). The increasing 
significance of ecologization is reflected in the recent reforms and de-
velopments of CAP. A study by Latruffe et al. (2017) on the relationship 
between CAP subsidies and dairy farm production performance in nine 
western EU countries from 1990 to 2007 found that CAP subsidies can 
have negative, null, or positive effects on production performance, 
depending on the country. A meta-analysis by Minviel and Latruffe 
(2017) on the impact of public subsidies on farm TE in France found that 
subsidies are commonly negatively associated with farm TE. Using 
FADN data for EU-15 countries, Rizov et al. (2013) investigated the 
impact of CAP subsidies on farm productivity and found that CAP sub-
sidies had a negative impact on farm productivity before the CAP 
decoupling reform, but a positive impact after CAP decoupling. Overall, 
therefore, the effect of CAP subsidies has been found to differ for 
different farming types in different countries (Martinez Cillero et al., 
2021). Our third hypothesis was thus: 

Hypothesis 3. (H3): Subsidies reduce crop production performance. 

3. Data and descriptive statistics 

The empirical data comprised an unbalanced panel obtained from 
the Swedish FADN database1 of 1944 observations on 346 individual 
Swedish crop farms during the period 2009–2019. The farms chosen 
were based on the FADN standard typology for farm specialization, with 
a specific focus on farms dedicated to field crop production such as 
specialist cereals, oilseeds, protein crops, general field crops, and mixed 
crops (identified by code TF8 in the FADN database). The FADN dataset 
supplied detailed information on variables needed for creating a sto-
chastic frontier model and a TE model for crop farm production. 

The empirical production function used consisted of a single output 
and four inputs, as outlined in Table 1. Farm output, denoted "y", 
measured in 1000 Euros, encompassing the total value of output, 
including all farms revenue obtained from kinds of agricultural pro-
duction activities. The four inputs were aggregated as follows: (i) Agri-
cultural land area (x1), which encompassed total utilized agricultural 
area of the holding, measured in hectares (ha), and included land in 
owner occupation, rented land, and land in share-cropping where 
remuneration is linked to the output from the land made available. But 
excluded from this measure were used for mushrooms, land rented for 
less than one year on an occasional basis, woodland, and other non- 
farmed areas (such as roads and ponds). (ii) Labor (x2), which repre-
sented the total labor input, including both family and hired labor, 
measured in total working hours. (iii) Intermediate input (x3), which 
accounted for the total costs linked to agricultural activities and asso-
ciated with the output of the accounting year, such as costs of seeds, 
fertilizers, pesticides, fuel, and other specific costs. (iv) Fixed costs (x4), 
which represented total assets, including fixed and current assets. Sta-
tistics Sweden provided information on the national output price and 

Table 1 
Descriptive statistics on variables used in the analysis.  

Continuous variables Symbol Units Mean Std. Dev. 

Agricultural area x1 ha 152.15 196.81 
Labor x2 annual 

work unit 
(AWU) 

1.35 1.92 

Intermediate inputs x3 1000 Euro 2.24E+ 02 4.01E+ 02 
Fixed assets x4 1000 Euro 1.36E+ 03 1.62E+ 03 
Total outputs y 1000 Euro 2.01E+ 02 3.71E+ 02 
Year t    
Crop diversity index in 

current year 
CDI - 0.700 0.120 

Crop diversity index in 
previous year 

CDI-1 - 0.702 0.118 

Crop diversity index two 
years earlier 

CDI-2 - 0.703 0.119 

Environmental subsidy z5 1000 Euro 4.021 19.279 
Total subsidy for rural 

development 
- 1000 Euro 38.669 54.582 

Non-environmental subsidy z6 1000 Euro 34.647 42.847 
Dummy variables Symbol Mean Obs. no. of 

1 
Obs. no. of 
0 

Organic farming (1 = partly 
or fully organic production 
or in transition to organic 
production; 0 = no organic 
production at all) 

z4 0.09 168 1776 

Year of policy shock 
(1 = year later than 2013, 
0 = otherwise) 

z7 0.43 1112 832 

Total observations: 1944.     
Total observed farms: 346.      

1 Swedish FADN data from 2007 to 2017 were used to calculate crop diversity 
index over the past two years. 
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input price index. 
Three indicators of degree of ecologization were used to investigate 

the impact effect of ecologization on the TE of Swedish crop production: 
(i) crop diversity index (CDI) in the current year and lagged for the past 
two years (z1-z3); (ii) organic farming (z4); and (iii) CAP environmental 
subsidy (z5). 

Crop diversity index (z1-z3) was calculated as CDIt = 1 − HIt , where 
HIt is the Herfindahl index and t is year defined as HIt =

∑n
i=1P2

it , where 
Pit (= Ait∑n

i=1
Ait

) is the proportion of area occupied by crop i and Ait is the 

area of crop i for crops such as ley, barley, wheat, oats, etc. A study by 
Smale et al. (2008) utilized the Herfindahl Index to measure the area 
distribution of crop diversity, where a value of 1 represents a single crop 
on a farm (i.e., monoculture) and a value of 0 represents a higher 
number of crop species. In the present study, HI was computed from the 
FADN dataset to calculate CDI and its one-year and two-year lagged 
values (CDI-1 and CDI-2). CDI directly reflects the degree of diversifica-
tion on a farm by considering the area of each crop, and its value ranges 
from 0 to 1, with higher values indicating a greater level of crop 
diversification. 

To identify the organic farming indicator (z4), a dummy variable with 
a value of either 1 or 0 was utilized, where a value of 1 indicated that a 
farm was either fully or partly engaged in organic production or was 
transforming into organic production, while a value of 0 indicated fully 
non-organic (conventional) production. Of the 1944 observations in the 
data panel, 168 (8.6%) had implemented organic production. CAP 
environmental subsidy (z5) was represented by code SE621 in the FADN 
dataset and comprises two types: subsidies related to environmental 
protection (with measures taken to avoid double-counting of Direct 
Payments under Article 69 of 1782/2003) and subsidies related to 
environmental restrictions. Two relevant indicators were selected for 
crop production performance in this study. The first was the total sub-
sidy for rural development (SE624), which includes the environmental 
subsidy, less favored area (LFA) subsidies, and other rural development 
payments. To avoid a correlation between the total subsidy for rural 
development (SE624) and the environmental subsidy (z5), the model 
included a non-environmental subsidy (z6), which was generated by 
deducting environmental subsidy (z5) from the total subsidy for rural 
development (all in 1000 Euro). A subsidy supporting certified organic 
farming is included in the environmental subsidy, so a positive corre-
lation between these could arise, but was not detected in the dataset. 
Another indicator used to evaluate crop performance (TE) was a dummy 
variable, year of policy shock (z7), which was employed to assess how 
policy changes related to ecologization affected production perfor-
mance. A mandatory greening component of direct payments was 
implemented by the EU in 2013, which is designed to encourage and 
promote sustainable land use practices. To generate this variable, we 
created a dummy variable with a value of 1 assigned to the period after 
the policy change in 2013 (i.e., for all years since 2014), and a value of 
0 assigned to all other years. The dummy variable had a mean value of 
0.43, based on 1112 farm observations since 2014. Notably, all the 
variables for inputs, outputs and determinant characteristics related to 
price were adjusted for inflation using the relevant national output price 
index, with the base year set is 2010. 

4. Method and empirical model specification 

Output-oriented SFA measures the distance between the observed 
and the optimal feasible input-output pairing of farms given the highest 
achievable output (revenue in this study) obtained while the input 
quantity constant (Battese and Coelli, 1992; Kumbhakar and Lovell, 
2000). When dealing with the balanced panel data, panel data models 
are often favored as they can control for unobserved differences between 
observations and add a time dimension to the analysis by capturing the 
"firm effect." However, in this study, the analysis relied on a rotating 
unbalanced panel dataset with a numerous farms that appeared for a 

period shorter than three years, and thus a pooled data model was 
considered more suitable for this scenario. The Trans-log and 
Cobb-Douglas production functions were compared and tested (Table 2) 
and, based on the test results, the Trans-log production function was 
chosen. It takes the form: 

lnyi = α0 +
∑4

k=1
βklnxik +

1
2
∑4

k=1

∑4

l=1
βkllnxiklnxil + ln(t)+ ln(t)2vi − ui (1) 

In Trans-log SFA, farm output yi obtained for farm i is express as a 
function of the four inputs denoted as xi (here one single output and 
four inputs, see Table 1); t denotes year; ln is the natural logarithm; 
α0 represents a constant term; βkandβkl are parameters to be esti-
mated; vi represents random noise, assumed to be independently and 
identically distributed N

(
0, σ2

v
)
; andui is an inefficiency term 

describing the disparity between maximum optional output and actual 
observed output. Then ui = lny∗

i − lnyi and the inefficiency term is: 
exp(− ui) =

yi
y∗i

. The predicted TE ranges between 0 and 1, because the 

actual observed output is always below the frontier output level, which 
represents the maximum optional output. As a result, farm efficiency is 
denoted by a percentage between 0% and 100%. Additionally, the lower 
bound of the observed output is set at 0, so the variable ui (which rep-
resents the deviation of observed output from the frontier output) is 
greater than or equal to 0 (ui ≥ 0). 

To elaborate further, the technical inefficiency determinant model 
was used to estimate the associated determinants of technical in-
efficiency and how they affect the level of inefficiency on each farm i. 
The vector of variables zi in that model (Eq. 2) captures the factors that 
affect inefficiency, such as managerial skills, farm size, and environ-
mental factors. The parameter δ is estimated to determine the strength of 
the association between zi and technical inefficiency. The variable wi is 
an unobservable random variable that captures the effects of other un-
measured factors affecting technical inefficiency. These factors may 
include weather conditions, pests and diseases, and other unpredictable 
factors that affect farm productivity. The variable wi is assumed to 
follow a truncated normal distribution with a mean of zero and variance 
of σ2

w. The truncation ensures that ui is always non-negative, which is a 
necessary condition for efficiency scores (ui ≥ 0): 

ui = ze
i δi +wi (2) 

In this study, the constant α0 and parameters β (βk and βkl) in Eq. 
(1) and δi in Eq. (2) were estimated simultaneously. By estimating the 
technical inefficiency determinant model and the production frontier 
together in a single step, we were able to avoid any potential bias that 
might have arisen from using a two-step approach. Our model included 
seven inefficiency determinants (z1-z7), as described in detail in Section 
3. 

5. Results and discussion 

5.1. Model specification testing and production function selection 

The specifications of the final model were decided based on the re-
sults of five preliminary tests (Table 2). Test 1 was designed to test 
whether the Cobb-Douglas production function fitted better and Test 2 
to test whether the Trans-log production function fitted better. The 
Trans-log production function was selected, as it fitted the data signifi-
cantly better than the Cobb-Douglas production function in both tests. 
Additionally, the null hypothesis of no technical inefficiency was 
rejected (Test 3), affirming the necessity of incorporating a technical 
inefficiency determinant model. The Likelihood-Ratio (LR) results in 
Test 4 and Test 5 also rejected the null hypothesis that CDI and CDI- 
relevant variables and ecologization approaches does not have any ef-
fect on technical inefficiency, indicating that these variables should be 
included in the technical inefficiency determinant model. 
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5.2. Estimates for the stochastic production function 

The estimated parameters of the stochastic production function, 
derived through maximum likelihood estimation, are presented in  
Table 3. To make it easier to interpret the parameter estimates, both the 
output variable and four input variables (x1-x4) were normalized by 
dividing them by their respective sample means. This normalization 
allowed the estimated first-order parameters of the Trans-log production 
function to be interpreted as partial production elasticities with respect 
to a unit change in each input variable, while holding all other inputs at 
their sample mean values (Brümmer et al., 2002; Huang et al., 2016). 
Model 1 in Table 3 denotes the statistics for the estimation results of the 

production function with setting the technical inefficiency determinant 
model, which provided detailed estimates as the unlimited model for the 
hypotheses in Tests 2–5 (Table 2). Model 2 in Table 3 denotes the sta-
tistics for the estimation results of the production function without 
seeting the technical inefficiency determinant model, which was the 
hypothesis in Test 3. Model 3 was designed to examine how ecologiza-
tion affected model specification, where all variables related to eco-
logization were excluded from the model. Model 4 was designed to 
examine how CDI in the current year and in lagged years affected model 
specification (all three variables, CDI, CDI− 1, and CDI− 2) (Table 3). In 
Model 1, the coefficient σu was estimated to be 0.557 and σv was esti-
mated to be 0.169, indicating that the variance in the farm-specific error 

Table 2 
Null hypotheses used in Tests 1–5 for model specification and statistical assumptions.  

Test Null hypothesis Log-likelihood value Degrees of freedom AICa BIC2 

For selection of production function: 
1 Cobb-Douglas production function without technical inefficiency model -659.94 9 1337.89 1388.04  

Trans-log production function without technical inefficiency model -623.93 19 1285.86 1391.74 
2 Cobb-Douglas production function with technical inefficiency model -568.98 16 1169.96 1259.12  

Trans-log production function with technical inefficiency model -540.66 26 1133.31 1278.20  

For specification of technical inefficiency model:  
Unlimited model -540.66 26 1133.31 1278.20 

3 ω1=ω2=ω3=ω4=ω5=ω6=ω7= 0 -623.93 19 1285.86 1391.74 
4 ω1=ω2=ω3 -568.48 23 1182.95 1311.12 
5 ω1=ω2=ω3=ω4=ω5= 0 -573.29 21 1188.58 1305.60  

a Akaike information criterion. 2Bayesian information criterion. 

Table 3 
Maximum likelihood estimates of the stochastic frontier model.  

Variables Parameter Model 1 Model 2 Model 3 Model 4   

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Dependent variable: lny             
Constant term  α0 0.300 * **  0.014 0.342 * ** 0.015 0.314 * ** 0.014 0.311 * **  0.014 
lnx1area  β1 -0.063  0.018 -0.013 0.019 -0.074 * * 0.018 -0.067 * **  0.018 
lnx2labor  β2 0.133 * **  0.017 0.145 * ** 0.020 0.134 * ** 0.017 0.134 * **  0.017 
lnx3intermediate  β3 0.894 * **  0.019 0.896 * ** 0.022 0.899 * ** 0.020 0.893 * **  0.020 
lnx4assets  β4 0.002  0.010 0.008 0.012 0.006 0.010 0.006  0.010 
lnx1

2  β11 -0.128  0.036 -0.146 * ** 0.036 -0.171 * ** 0.034 -0.155 * **  0.034 

lnx2
2  β22 -0.022  0.037 -0.002 0.038 -0.024 0.038 -0.014  0.038 

lnx3
2  β33 -0.063  0.047 -0.102 * * 0.048 -0.089 * 0.046 -0.070  0.047 

lnx4
2  β44 0.035 * *  0.015 0.054 * ** 0.016 0.040 * ** 0.016 0.040 * *  0.015 

lnx1 • lnx2  β12 -0.065 * *  0.031 -0.068 * * 0.031 -0.066 * * 0.029 -0.060 * *  0.030 
lnx1 • lnx3  β13 0.126 * **  0.036 0.156 * ** 0.035 0.167 * ** 0.034 0.151 * **  0.035 
lnx1 • lnx4  β14 0.059 * **  0.019 0.058 * ** 0.021 0.048 * * 0.020 0.049 * *  0.020 
lnx2 • lnx3  β23 0.059 *  0.035 0.052 0.035 0.055 0.035 0.043  0.035 
lnx2 • lnx4  β24 -0.047 * *  0.021 -0.054 * * 0.022 -0.043 * * 0.021 -0.039 *  0.021 
lnx3 • lnx4  β34 -0.083 * **  0.023 -0.098 * ** 0.025 -0.086 * ** 0.023 -0.087 * **  0.023 
ln (year) β41 -0.047  0.031 -0.073 * * 0.029 -0.058 * 0.031 -0.058 *  0.031 
ln (year) β42 -0.118 * **  0.027 -0.136 * ** 0.027 -0.125 * ** 0.028 -0.125 * **  0.028 
Usigma             
Constant  ω0 4.076 * **  0.681 -1.442 * ** 0.063 4.795 * ** 0.651 4.813 * **  0.662 
ln (CDI) ω1 -0.181  0.172        
ln(CDI− 1) ω2 -0.989 * **  0.293        
ln(CDI− 2) ω3 -0.130  0.237        
ln (dummy of organic production) ω4 0.438 * **  0.138     0.410 * **  0.136 
ln (environmental subsidy)  ω5 0.002  0.005     -0.004  0.005 
ln (non-environmental subsidy)  ω6 -0.568 * **  0.069  -0.624 * ** 0.066 -0.631 * ** 0.067   
dummy of shock year (2014)  ω7 -0.010  0.094   -0.081 0.088 -0.091  0.092 
Vsigma             
Constant term   -3.553 * **  0.094 -3.382 * ** 0.101 -3.541 * ** 0.095 -3.565 * **  0.096 
E(σu)   0.557   0.486 * ** 0.015 0.510  0.507   
σv   0.169 * **  0.008 0.184 * ** 0.009 0.168 * ** 0.008 0.170 * **  0.008 
λ   3.345 * **  0.027 2.638 * ** 0.022      
Statistics             
Log likelihood  -540.656 -623.9299  -568.4750 -573.288       
Number of observations  1944 1944  1944 1944       
Wald Chi2(14)  14642.73 16740.43  14608.34 14647.61       
Prob. > Chi2(14)  0.000 0.000  0.000 0.000       

Significant at *P < 0.10, * *P < 0.05, * **P < 0.01. 
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term was larger than the variance in the stochastic error term. This 
suggests that the one-sided random inefficiency component had a more 
significant impact on the measurement error and other random distur-
bances. Despite the first-order and second-order estimates for the land 
area input (x1) having an unexpected sign, overall model quality 
appeared satisfactory, as evidenced by both the LR test results and 
associated statistics. 

For Models 1–4, all first-order estimates of labor (x2) and interme-
diate inputs (x3) were statistically significant, with expected signs. The 
estimated first-order parameters of the Trans-log production function in 
Table 3 provide information on the partial production elasticities for the 
sample mean. The results highlight the significance of intermediate in-
puts and labor in crop production. The partial production elasticity of 
intermediate inputs was 0.894, indicating that a 1% increase in inter-
mediate inputs leads to a 0.894% increase in crop output, which is the 
highest partial production elasticity in the production function. The 
partial production elasticity of labor was estimated to be 0.133, meaning 
that a 1% increase in labor increases crop output by 0.133%. This is 
consistent with production economics theory, underscoring the impor-
tance of agricultural labor input in agriculture and its positive contri-
bution to production. The estimated first-order coefficients for the fixed 
assets input (x4) were not significantly associated with performance, 
while the second-order coefficients were positively significantly asso-
ciated, meaning that more fixed assets will contribute to better farm 
performance. 

5.3. Summary of technical efficiency (TE) 

Following estimation of the stochastic production function and 
technical inefficiency variance function using Model 1, we computed TE 
for each farm, as shown in Table 4. The average TE score for Swedish 
farms stands at 0.715, indicating that farms produced 71.5% of their 
potential output given the current level of technology and input usage. 
This suggests that there is room for improvement, and adopting the 
practices of the best-performing farms could potentially lead to an 
average increase in crop production of 28.5% in the short term. The 
kernel density distribution of TE is illustrated in Fig. 1. Based on the 
region code in the FADN database, most crop farms are situated in 
southern Sweden. On average, farms in southern Sweden had a higher 
TE score (0.726) than those in central Sweden (0.680) and northern 
Sweden (0.615). The average TE score for organic farms was 0.669, 
lower than that of non-organic farms (0.719). As discussed above in 
relation to the technical inefficiency determinant model, the association 
between TE and organic farming was negative. However, caution is 
needed in interpretation of this negative relationship, because there 
were much fewer observations for organic farms (observation number =
168) than for conventional farms (observation number = 1776) in the 
dataset and the representativeness and reliability of the data may differ 
between these groups. 

5.4. Results of the technical inefficiency determinant model and the 
effects of ecologization 

The technical inefficiency model was used to estimate the de-
terminants of variation in a farm’s technical inefficiency (see the lower 
part of Table 3). The dependent variable in this model was technical 
inefficiency, and thus a negative coefficient indicates a positive effect on 
TE. Comparing the results of Model 1 and Model 4 revealed a difference 
in the effects of CDI, CDI-1, and CDI-2 on technical inefficiency. The block 
of CDI was estimated to be negatively correlated with technical in-
efficiency, supporting hypothesis H1. CDI, CDI-1, and CDI-2 were posi-
tively correlated with TE, with CDI-2 having the highest coefficient 
(− 0.989, statistically significant at P < 0.05). This is consistent with 
previous findings that higher crop diversity increases productivity 
(Cardinale et al., 2012). According to Cardinale et al. (2004), crop di-
versity has a “dynamic” effect on productivity and the effects “grow 
stronger through successional time”. Crop diversity has been found pre-
viously to be positively related to productivity in both current and lag-
ged years (Falco and Chavas, 2008). 

Comparing the results of Model 1 and Model 3 revealed differences in 
the effects of ecologization on TE. Interestingly, the dummy variable for 
organic farming was estimated to be positively correlated with technical 
inefficiency, meaning that organic farming decreased farm TE, con-
firming hypothesis H2. This is consistent with previous research that 
suggests organic farms in Finland and Sweden are linked to lower TE 
(Kumbhakar et al., 2009; Manevska-Tasevska et al., 2016), and indicates 
that complying with “environmental” requirements is output-reducing 
(Manevska-Tasevska et al., 2016). 

The CAP environmental subsidy had no significant influence on 
technical inefficiency, but the non-environmental subsidy was estimated 
to be negatively correlated with technical inefficiency, meaning that 
more non-environmental subsidies will result in lower TE, confirming 
hypothesis H3. This is in line with findings by Bojnec and Fertő (2022) 
that Pillar I subsidies of CAP have had positive effects on farm use of paid 
labor in Hungary and family labor in Slovenia, and thus might be 
positively correlated with production performance. The policy shock 
introduced in 2014 was found not to be significantly related to TE, 
which might be explained by farmers anticipating the change in policy 
earlier and incorporating ecologization measures before 2014. 

5.5. Policy suggestion 

One of the innovative contributions of this study was to investigate 
the impact of ecologization on production performance. Crop diversity 
was found to be positively associated with TE, while organic farming 

Table 4 
Summary of technical efficiency (TE) values.   

No. of 
observations 

Mean Std. 
Dev. 

Overall TE 1944  0.715  0.161 
TE in southern Sweden 1635  0.726  0.153 
TE in central Sweden 195  0.680  0.161 
TE in northern Sweden 114  0.615  0.223 
Non-organic farms 1776  0.719  0.160 
Organic farms 168  0.669  0.167 
Only organic production methods for all farm 

products 
120  0.651  0.172 

Both organic and conventional production 
methods or in transition to organic 
production 

48  0.714  0.145  

Fig. 1. Histogram of technical efficiency on Swedish arable farms.  
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and environmental subsidies showed a negative association. Non- 
environmental subsidies had no impact on TE. The upcoming EU CAP 
for 2023–2027 aims to ensure steady farm income while intensifying 
environmental and climate efforts, with greater emphasis on biodiver-
sity. Our results suggest that compensation or insurance supporting crop 
diversity is needed to avoid crop diversity loss. Our results also suggest 
that compensation programs in policy should take account of the effects 
of ecologization on agricultural production (Koiry and Huang, 2023). 
The adverse impact of ecologization can probably be attributed to the 
distinctive traits or elements of specific ecological practices. In organic 
farming, for example, use of chemical fertilizers, herbicides, in-
secticides, or other plant protection substances is prohibited, which 
could impose limitations in enhancing soil fertility or addressing issues 
related to insect and pest infestations in crop production. While reducing 
the use of fertilizers and pesticides may contribute to long-term soil 
health improvement, it may not lead to an immediate or short-term 
increase in crop yield for the current year. Measures aimed at promot-
ing crop diversification may thus need to include compensation for 
organic farms, which experience lower production performance, to 
encourage more farmers to switch to certified organic farming. Other-
wise, farmers may be hesitant to make the transition. 

6. Conclusions 

Modern agriculture has a negative impact on climate and biodiver-
sity, and must be transformed to align with sustainability goals while 
ensuring food security. Ecologization of agricultural policies is necessary 
to guide agricultural production towards operating within environ-
mental constraints. A unique aspect of the present study was measure-
ment of the influence of ecologization on TE in crop production, using 
indicators such as crop diversity index, certified and in-transition 
organic farming, and non-environmental and environmental subsidies. 
Land, labor, fixed costs, and variable costs were considered as the pri-
mary inputs, while the total revenue from agricultural crops in arable 
production in Sweden was taken as the output. The results indicated 
comprehensive effects of ecologization on TE. Crop diversity was iden-
tified a positive association with TE, while organic farming and envi-
ronmental subsidies showed a negative association. Non-environmental 
subsidies had no impact on TE. The average TE of Swedish crop pro-
duction was estimated to be 0.715 (ranging from 0.726 in southern 
Sweden to 0.615 in the north), with TE in organic farming (0.669) being 
lower than that in conventional farming (0.79). 

There are several promising avenues for future research. First, the 
panel dataset used was unbalanced and it is possible that interesting 
information was concealed between the panels, such as the performance 
effects of different crop species by group, which could be further 
explored using panel data analysis. Second, more precise information 
regarding the location of crop plots/blocks, crop rotations, and diversity 
could improve assessment of the ecological effects of production and 
enable more detailed analysis of trade-offs and synergies between 
ecological and economic impacts, providing a comprehensive under-
standing of the interplay between agricultural practices and their 
broader environmental consequences. Third, while crop diversity is a 
crucial aspect of biodiversity, there are other components of ecosystem 
biodiversity that could be incorporated into efficiency analysis, such as 
wild species (e.g., semi-natural pastures, wildflower strips). This could 
provide a more comprehensive understanding of the interactions be-
tween biodiversity and economic values on farms. 
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