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The widespread use of plant grafting enables eudicots and gymnosperms
tojoin with closely related species and grow as one. Gymnosperms have
dominated forests for over 200 million years, and despite their economic
and ecological relevance, we know little about how they graft. Here we
developed a micrografting method in conifers using young tissues that
allowed efficient grafting with closely related species and between distantly
related genera. Conifer graft junctions rapidly connected vasculature

and differentially expressed thousands of genes including auxin and
cell-wall-related genes. By comparing these genes to those induced during
Arabidopsis thaliana graft formation, we found acommon activation

of cambium, cell division, phloem and xylem-related genes. A gene
regulatory network analysis in Norway spruce (Picea abies) predicted that
PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PATI) acted as a core regulator
of graft healing. This gene was strongly up-regulated during both spruce
and Arabidopsis grafting, and Arabidopsis mutants lacking PAT genes failed
to attach tissues or successfully graft. Complementing Arabidopsis PAT
mutants with the spruce PATI homolog rescued tissue attachment and
enhanced callus formation. Together, our data show an ability for young
tissues to graft with distantly related species and identifies the PAT gene
family as conserved regulators of graft healing and tissue regeneration.

The cutting and joining of different plants during the process of grafting  grafted plants are eudicots, but gymnosperms too are grafted to
has been practiced for millenniato combine the best propertiesoftwo  propagate desirable varieties for forestry breeding programs and for
plants. Grafting likely originated as ameans for vegetative propagation  horticulture’™. Gymnosperms evolved approximately 200 million
butnowis commonly used toimprove stresstolerance, toretainvarietal  yearsbefore angiosperms and, today, dominate many forest environ-
characteristics and to enhance yields. The majority of commercially mentsand haveimportanteconomicand ecological consequences*’.
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Fig.1|Micrografting dynamics in conifers. a, Cartoons showing the
micrografting method used in conifers. Ten- to 12-day-old scions and rootstocks
from different plants are grafted with silicon collars. b, Homografted Picea
abies (left, n = 48) and Pinus contorta (right, n = 40) at 60 DAG. Scale bars,1cm.
White triangles indicate the graft junction. Middle panels: confocal images of
the vascular anatomy at the graft junction. Three to four plants per combination
perreplicate, two biological replicates. Scale bars, 100 pm. ¢, Phloem and xylem
transport assays in conifers involving CFDA application to the scion (phloem)
and rootstock (xylem) monitored the appearance of fluorescence in rootstock
or scion, respectively, consistent with phloem or xylem transport. Scale bars,

1 mm. Hand-section stems above or below the graft junction confirmed vascular
transport 15 DAG. Scale bars, 100 pm. n =11 plants per replicate, 3 biological
replicates. d, Phloem and xylem reconnection rates in Picea abies and Pinus
contorta grafts as measured by CFDA transport (mean + s.d. of 3 biological
replicates, n = 8-21 plants per time point per replicate). e, Xylem staining with
basic fuchsinin grafted Picea abies and Pinus contorta. Plants were fromd, and
grafting success was measured by the presence or absence of CFDA in scions
at15 DAG. n=3-4 plants per combination per replicate, 3 biological replicates.
Scale bars, 20 um.

Despite their widespread prevalence and their ability to be grafted,
we have little understanding of how such a process might function
in gymnosperms and its relationship to grafting in angiosperms. In
conifers, our ability to successfully graft is limited by various factors
including grafting techniques, grafting season, pathogen contamina-
tionand the relatedness of species®®. Closely related conifer or eudicot
species from the same genus normally successfully graft, whereas
combinations from different genera often fail, aphenomenon known
as graft incompatibility that limits grafting success®'°. The mecha-
nistic basis for graft incompatibility remains unclear but might be
due to structural weakness, metabolicimbalances or the activation of
defence responses™ . However, not all distantly related grafts fail, and
inter-genus grafts within the cactus and Solanaceae families are pos-
sible’. Recently, inter-family grafts were made using Petunia hybrida or
Nicotiana benthamiana where a cell-wall-related -1,4-glucanase gene
isimportant to promote graft attachment™", Protocols to successfully
graft monocots have recently been established usingembryonic tissues
which allow both inter- and intra-species grafts'®. Grafting with such
smalltissues, a process known as micrografting, is increasingly being

used as atool to improve grafting efficiency and also to characterize
the process of grafting itself'* ™.

Work in tomato, Sedum and Arabidopsis has revealed a dynamic
healing process at the eudicot graft junction”**?, After cutting, cells
expand and divide to adhere tissues and fill the wound. Cell-wall
components, including pectins, are secreted, and the expression of
cell-wall-related genes such as 5-1,4-glucanase plays animportant role
in the early stages of graft attachment'**’. Cell divisions lead to the
formation of callus, a stem-cell-like tissue, at the cut ends that helps
seal the wound. Inthe final stages of graft formation, the callus and sur-
roundingtissues are differentiated to functional phloem tissues, xylem
tissues and outer cell layers to resume vascular transport and reform
protective barriers. During grafting, thousands of genes are differen-
tially expressedincluding early activating transcription factors such as
ETHYLENE RESPONSE FACTORs (ERFs), DNA BINDING WITH ONE FINGER
(DOF) and NAC DOMAIN-CONTAINING PROTEINs (ANACs)****. These
factors play important roles during grafting to promote tissue adhe-
sion, callus formation and vascular differentiation®* >, For instance,
a gene relevant for grafting, ERF115, also controls the replenishment
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Table 1| Graft success rate in different conifer combinations after 2.5 years of growth

Scions Picea abies Pinus sylvestris Pinus contorta Larix hybrid Larix sibirica
Rootstocks Ratio % Ratio % Ratio % Ratio % Ratio %
Picea abies 45/48 93.8 11/56 19.6 17/55 30.9 NP 3/9 333
Pinus sylvestris 2/56 3.6 73/73 100 37/38 974 0/10 (0] 0/29 (0]
Pinus contorta 1/55 18 36/40 90 40/40 100 NP NP

Larix hybrid NP 0/8 NP 7/8 875 3/6 50
Larix sibirica 1/6 16.7 0/15 NP 5/8 62.5 7/9 77.8

Note: NP, not performed.

of root stem cells after wounding and isimportant for successful root
tip regeneration and callus formation”*”. The regenerative ability of
ERFI15isenhanced by itsinteracting partner PHYTOCHROME A SIGNAL
TRANSDUCTIONI (PAT1). PAT1, along with two other GIBBERELLIC-ACID
INSENSITIVE, REPRESSOR OF GA1, and SCARECROW (GRAS) transcrip-
tion factors, SCARECROW-LIKES (SCL5) and SCL21, are important for
root tip regeneration and cell death recovery”®*®, ERFI115 also plays
an important role during wounding to enhance auxin sensitivity by
activating AUXIN RESPONSE FACTORS (ARFS)*. Auxin isimportant for
graft formation asblocking auxintransportinhibits the ability of Arabi-
dopsisandrice grafts to heal, whereas reducing auxin response below
the graft junction inhibits Arabidopsis graft healing'®"*°. Other early
activators during grafting include WUSCHEL-RELATED HOMEOBOX13
(WO0X13) and WOUND INDUCED DEDIFFERENTIATIONI (WINDI) that are
important for callus formation at the site of cutting®**. Thus, workin
Arabidopsis, rice and Nicotiana has identified numerous factors that
areactivated early and contribute to attachment, callus formation and
vascular differentiation during grafting.

Inthis Article, weinvestigated the process of graft formationinsev-
eral widespread and commercially relevant conifer species. We devel-
oped an efficient and practical grafting method using young conifer
plantsthatallowed graftjunctions to rapidly heal and permitted several
inter-species and inter-genus graft combinations to successfully form.
We used this method to characterize graft healing and discovered a
common graft formation pathway in Norway spruce (Picea abies) and
Arabidopsisthatinvolved cell division, vascular differentiation and the
up-regulation of cell-wall- and auxin-related genes. We additionally
identified that PATI up-regulationis common in Arabidopsis and Picea
abies grafting and that this gene appears to have a conserved role in
wound healing between gymnosperms and eudicots.

Results

A new method for conifer grafting

Previous conifer grafting methods were limited by various factors
including techniques, grafting season, temperature and contamina-
tion**”. To improve graft formation rates and the ease of grafting, we
developed a micrografting method using 10- to 12-day-old spruce
(Picea) and pine (Pinus) seedlings. Plants were excised inthe hypocotyl
region, and scions and rootstocks from different plants were attached
tightly together using a silicon collar (Fig. 1a,b). With practice, one
person could perform 50 grafts per hour with >90% success rates
(Table 1), asubstantial improvement over traditional conifer grafting
methodsin which upwards of 120 grafts per day are done’. To monitor
the dynamics of graft healing, we grafted Picea abies to Picea abies,
and Pinus contorta (Lodgepole pine) to Pinus contorta, and treated
the scion and rootstock with carboxyfluorescein diacetate (CFDA), a
dye used for testing vascular connectivity in grafted Arabidopsis and
rice'®”. Ten days after grafting (DAG), we observed that nearly half
of plants transported CFDA from the scion to the rootstock, consist-
ent with resumption of shoot-to-root transport through the phloem
(Fig. 1c,d). Similarly, nearly half of plants at 10 DAG showed movement
of CFDA from rootstock to the scion consistent with resumption of

root-to-shoot transport through the xylem (Fig. 1c,d). By 20-25 DAG,
nearly all individuals showed transport dynamics consistent with
phloem and xylem connectivity. As a second test of vascular recon-
nection, we stained hand sections from the graft junction with basic
fuchsin to assess the presence of xylem-associated lignin. Successful
grafts showed xylem connections across the junction, whereas uncon-
nected plants showed little xylem staining and only callus formation at
thejunction (Fig. le and Extended Data Fig.1). Two months after graft-
ing, the grafted spruce and pine showed normal growth, well-healed
junctions and survival rates of 90-100% (Fig. 1b and Supplementary
Tablel). Thus, our technique was an efficient and practical method for
grafting young conifers that allowed the graft junction to rapidly form
xylem and phloem connections after grafting.

Micrografting allows heterograft success

Previous studies found that grafting success decreases and incompat-
ibility increases as conifer species become more distantly related,
and inter-genus grafts are generally not possible®”**. We therefore
tested whether our micrografting method overcame this limitation.
As the Pinaceae family shows the closest relatedness between Picea
and Pinus (Fig. 2a)**, we first tested inter-genus grafting between
Picea and Pinus species. Two months after grafting, species grafted
to themselves (homografts) or different species (heterografts) had
high survival rates varying between 70% and 100% depending on the
genotype (Supplementary Table 1). We assessed xylem connectiv-
ity in Pinus contorta/Picea abies heterografts (scion/rootstock nota-
tion) and found xylem connectivity was similar to homografted plants
(Fig. 2b). Incompatibility in woody species can develop several years
after grafting®, so we moved plants to soil for long-term observation.
Survival rates of homografted plants remained high 2.5 years after
grafting (90%to100%), but heterografted Picea-Pinus combinations
showed lower survival rates (Table 1). Picea abies scions grafted to
Pinus sylvestris (Scots pine) and Picea abies scions grafted to Pinus
contortarootstocks had very low survivalrates (3.6% and 1.8% viable,
respectively). However, survival rates were substantially higher when
Picea abiesrootstocks were grafted to Pinus sylvestris or Pinus contorta
scions (19.6% and 30.1% viable, respectively) (Table 1). Successful grafts
showed good growth, although some heterografted combinations
were shorter and showed swelling at the graft junction. Heterografted
plants without swelling had similar heights to intact plants (Fig. 2c—f
and Supplementary Table 2). Picea abies rootstocks also appeared
toreduce the needle length of the Pinus scions (Fig. 2c,e). Next, we
tested two species from the Pinaceae genus Larix in heterografts
(Extended Data Fig. 2). Larix sibirica/Pinus sylvestris combinations
did not survive, whereas Larix sibirica/Picea abies had three of nine
plants grow well and appear to overcome graft incompatibility
but with swelling at the graft junction (Table 1 and Extended Data
Fig. 2). One of six Picea abies/Larix sibirica survived, but it showed
poor growth (Table1and Extended DataFig. 2). Our results suggested
that micrografting allowed several inter-species and inter-genus grafts
tosuccessfully form and that Picea abies rootstocks enabled long-term
grafting success with divergent scions.
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controls. Pinus sylvestris was used as scions in (c), and Pinus contorta was used as
scionsin (e). Scale bars, 10 cm. Inserts show the graft junctions. Scale bars, 1 cm.
d,f, Height of 2.5-year-old intact and grafted Pinus sylvestris, Pinus contorta and
Picea abies (mean + s.d., n =11-34 plants per combination). Pinus sylvestris was
used as scions in (d), and Pinus contorta was used as scions in (f). Different letters
above the bars represent P < 0.05. One-way ANOVA, with Tukey’s post hoc test.
Pvalues are shown in source data.

Grafting activates vascular and cell-division-associated genes

To understand the process behind conifer grafting and to identify
the genes differentially expressed, we generated RNA sequencing
(RNA-seq) libraries fromboth ungrafted (intact) and grafted Picea abies
aboveandbelow thegraftjunctionat0,1,3,7,14 and 28 DAG (Fig. 3a). A
principal component analysis (PCA) showed samples largely clustered
by tissues type and time point with a close correlation between scion
androotstock samples (Fig.3b). Intact and grafted samples had similar
numbers of expressed genes, yet there was an increase in differential
expressioningrafted samples particularly at1 DAG and 3 DAG compared

tointact controls (Extended DataFig. 3a-d and Supplementary Table 3).
To analyse common patterns of gene expressionin grafted tissues, we
used Mfuzz (version 3.15) to group differentially expressed genes (DEGs)
into12 clusters (Fig. 3c-e and Extended Data Fig. 3e,f). These included
genes showing both scion and rootstock up-regulation (clusters 5, 6,
7,11,12), scion-specific up-regulation (cluster 10), rootstock-specific
up-regulation (clusters1,2,9) and down-regulationin scion and root-
stock (clusters 3, 4, 8). A Gene Ontology (GO) analysis on the clusters
revealed enrichment of wounding and defence-related processes in
cluster 2, enrichment of cell-cycle-related processes in cluster 5 and
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Fig. 3| Transcriptome dynamics during Picea abies graft healing. a, Schematic
diagram showing where Picea abies tissues 1 mm above or 1 mm below the

graft junction were collected as scion and rootstock material, respectively, for
transcriptome analysis. TF, transcription factor. b, PCA of the gene expression
data from Picea abies graft healing transcriptomes. The two principal
components (PCland PC2) explained 79% of the total variation in the grafting
transcriptomes and showed correlations with graft healing along PC1and with
time along PC2. Colours indicate the different DAG; shapes indicate different
tissues. Shown are data from three biological replicates per tissue per time

point. c-e, Clustering analysis of transcriptional dynamics during graft healing
for clusters 5(c), 6 (d) and 11 (e). Lines indicate the average of DEGs in scion or
rootstock. Dots indicate DAG. The number in the brackets represents the number
of genesin the cluster. f-h, Expression profiles for select Picea abies genes
belonging to clusters 5 (f), 6 (g) and 11 (h). Cluster number isindicated, and the
mean (ts.d.) from three biological replicates per time points per tissue is shown.
Arabidopsis homolog expression data are plotted and taken from previously
published transcriptome data” with amean (+s.e.m.) from 2 biological replicates
per tissue per time point.

enrichmentin cell-wall-and xylem-related processesin cluster 10 (Sup-
plementary Table 4). Within these clusters, we searched for homologs
of previously described grafting-related genes**"* to better under-
stand how conifers graft. Cluster 6 contained early activating genesin
the scion and rootstock including a wounding-related PaWOX13-like
gene”(Fig. 3d,g). Cluster 10 contained early activating scion-specific
genes including a wounding-related PaWINDI-like gene (Extended
Data Fig. 3e). Cluster 5 contained genes that slightly later increased
inbothrootstock and scionincluding cell-cycle-related genes such as
PaCDKB2;2-like (Fig.3c,f) (Supplementary Table 4). Aphloem-related
PaAPL-like, xylem-related PaPRX66-like and PaVND4-like genes had
intermediate and late activation dynamics (Fig. 3e,h and Extended
DataFig.3g,h). Tocompare gene expression profilesin grafted conifers
and eudicots, we analysed the grafting transcriptomics dataset from
Arabidopsis® and found the expression of several Picea abies gene
homologs had similar expression patterns in Arabidopsis (Fig. 3f-h,
Extended DataFig.3e,g,h). Thus, there appeared to be consistent activa-
tion of homologous genes during Arabidopsis and Picea abies grafting

suggesting a conserved grafting process involving wound response,
followed by cell division, and phloem and xylem differentiation.

Auxinresponses increase and correlate with cell-wall-related
gene expression

Auxin and cytokinin play important roles during vascular formation
We explored whether they were relevant for Picea abies graft formation.
Auxin and cytokinin-responsive genes in the hypocotyl are not well
described in Picea, so we first treated 2-week-old seedlings with a syn-
thetic cytokinin 6-benzylaminopurine (BAP), auxin (indole-3-aceticacid
(IAA)) or BAP +1AAfor O day, 5 days, 10 daysand 15 days (Fig. 4a). We col-
lected 8-10 mm of treated Picea abies hypocotyl tissues and used these
for RNA-seq analyses. APCA grouped samples together largely based
onhormonetreatment rather thantime point (Extended DataFig. 4a).
Looking at theindividual time points, we found several thousand genes
were auxin responsive or responded to both hormones, while aslightly
lower number responded to cytokinin (Fig.4b-d, Extended DataFig. 4b
and Supplementary Table 5). To focus on genes specifically induced

36,37
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by auxin or cytokinin, we looked for genes induced at all three time
points butinduced only by the presence of cytokinin or auxin alone. We
found auxininduced 2,598 genes and repressed 2,013 genes, which we
defined as auxin-responsive genes. Cytokinin induced 710 genes and
repressed 978 genes, which we defined as cytokinin-responsive genes
(Fig. 4c,d). In grafted scions and rootstocks, the average expression
of these hormone-responsive genes was similar (Extended Data Fig.
4c,d), but when comparing genes differentially expressed by graft-
ing and hormone treatment, we saw an enrichment in auxin-induced
genes up-regulated in scions and rootstocks, and an enrichment in
auxin-repressed genes down-regulated in scions and rootstocks, from
3 DAG onwards (Fig. 4e). Cytokinin-induced genes showed little enrich-
mentinthescionorrootstock but cytokinin-repressed genes showed
enrichment at later time points particularly in the rootstock (Fig. 4f).

Auxinresponse and cell wall modifications are important for suc-
cessful graft formation'***** so we assessed whether auxin might affect
cell-wall-related gene expression. Many putative laccase, pectin methyl
esterase (PME), beta-1-4-glucanase and pectate/pectin lyase genes
showed differential expression both after exogenous auxin treatment
and after grafting including PaLACI-like, PaPMES-like, PaKORI-like and
PaPECTIN LYASE-like (Fig. 4g,h and Extended Data Fig. 4e-k). In particu-
lar, there was a substantial overlap between laccases and PMEs affected
by bothauxintreatment and grafting (Fig. 4g,h). These results showed
thatgrafting induced an auxin response at the junction, and this corre-
lated with the activation of cell-wall-related genes at the graft junction.

A conserved PAT1 gene family promotes graft healing

To further explore the transcriptional regulation of Picea abies graft
formation, we identified differentially expressed transcription factors
and mapped their abundance according to transcription factor gene
families (Extended Data Fig. 5a). We performed a weighted correla-
tion network analysis (WGCNA), clustered these transcription factors
according totheir expression patternsin the grafting transcriptomes
and defined seven modules (Extended Data Fig. 5b,c). One module, rep-
resented in yellow (Extended DataFig. 5c), showed differential expres-
sionspecifically in scions and rootstocks but not inintact plants. Using
the expression patterns of the genes in the yellow module, we generated
ageneregulatory network (Fig. 5a,b). Most transcription factors in
thismodule were up-regulated during grafting, and five in particular,
PaPATI-like, PaWiP4-like, PaMYB4-like, PaLRPI-like and PaMYBI123-like,
were highly up-regulated and appeared to act as hubs of the regulatory
network (Fig. 5a-c and Extended Data Fig. 5d-g). We then used the
regulatory network to test whether homologous genes were induced
inArabidopsis. We found that Arabidopsis LRP1, MYB4 and PATI were all
induced during Arabidopsis grafting, suggesting abroadly conserved
regulatory response between Arabidopsis and Picea abies (Fig. 5c and
Extended Data Fig. 5d,g). As the PAT1 gene family promotes root tip
regeneration’?®, we focused on this family and tested an Arabidopsis
PAT1overexpression line (AtPATIOE) and pati-related mutantsin callus
formation assays as callus is relevant for graft healing'>*"*°. The AtPA-
T1OE line showed increased callus formation at the wounding sites of
petioles, while patl, patiscl5 and patiscl5scl21 showed strongimpair-
mentin callus formation. scl5 showed mild defectsin callus formation,
whereas scl21 did not show major differences compared to wild type
(Col-0) (Fig. 5d-f). To investigate this gene family in Picea abies, we
first constructed a phylogenetic tree with PaPAT1-like and Arabidopsis

GRAS family genes. The phylogeny indicated that PaPATI-like was most
closely related to AtPAT1, AtSCL5 and AtSCL21. An amino acid align-
ment also showed strong similarity between proteins of these genes
(Extended Data Fig. 6a-c). To examine whether PaPATI-like could
perform a similar function as Arabidopsis PAT1, we cloned the Picea
abies PaPATI-like gene to generate aninducible overexpressionlinein
Arabidopsis (PaPATI-likeOE). We found that PaPAT1-likeOE increased
callus area in cut petioles compared to wild type (Col-0) (Fig. 5g).
ERF115 caninteract with PAT1family genes, and A¢tERF115and PaERF115
were upregulatedin both Arabidopsis and Picea abies transcriptomes
(Extended Data Fig. 5h). We cloned and overexpressed PaERF115-like
(PaERF115-likeOE) inthe Arabidopsis AtPATIOE background and found
PaERF115-like AtPAT1OE massively increased callus formation similar to
AtERF1150F AtPATIOE (Extended DataFig. 7c). Next, toinvestigate the
role of PATI in grafting, we tested Arabidopsis graft attachment rates
and found patisclS, sclS5scl21, patiscl21 and patlsci5sci2] all reduced
attachment rates (Fig. 5h). In CFDA-mediated phloem reconnection
assays, the PATIOF line showed no changes, but the single, double and
triple AtPATI-related loss of function mutants all showed moderate
to strong inhibition of phloem reconnection (Fig. 5i) including when
combined with erf115 mutants (Extended DataFig.7a,b). We also found
that PaPATI-likeOE could partially rescue the graft attachment defect
of patiscl5and scl5scl21 double mutants (Fig. 5j). As our grafting assays
used young hypocotyls, we also grafted with Arabidopsisinflorescence
stems to look at the effects of age. However, we saw no evidence of
AtPATI induction at the inflorescence graft junction (Extended Data
Fig. 8). Together, our results indicated that grafting-induced PAT1
up-regulation was shared between Arabidopsis and Picea abies and
thatthisgene hasaconservedroleinwound healinginjuvenile tissues.

Discussion

Propagating and combining species through grafting is commonly
used worldwide, highlighting the need to establish efficient and prac-
tical grafting methods for diverse species®***°. Here we developed
amicrografting method that allowed multiple conifer species to be
grafted together, expanding the range of compatible graft combi-
nations and providing insights into grafts formation between Picea,
Pinus and Larix members that are estimated to have diverged from
each otherover100 million years ago*. Previous conifer micrografting
methods between mature leaf and young seedling rootstocks had low
grafting success rates and seasonal limitations’. In this study, our rapid
micrografting approach (50 grafts per hour) provided high success
rates in both homografted and inter-species conifer graft combina-
tions. Inter-genus combinations also initially showed high survival
frequency, although with time, many combinations died or showed
stunted growth consistent with delayed incompatibility*’. However,
several inter-genus combinations were successful after several years.
Picea abiesrootstocks were compatible (20-33%) with Pinus sylvestris,
Pinus contorta and Larix sibirica scions. Reciprocal grafts with Picea
abiesscions had much lower long-term success rates suggesting Picea
abiesrootstocks allowed inter-genus graft compatibility, whereas sci-
ons did not. Previous inter-genus grafts between Lotus japonicus and
Medicago truncatula, or Solanum lycopersicum and Capsicum annuum,
alsoshowed different efficiencies when scion and rootstock genotypes
were reversed®*’. The basis for this ‘graft polarity’ is not well known, but
Arabidopsis alf4 mutants deficient inauxin response perturb grafting

Fig. 4| Picea abies grafting activates auxin-responsive and cell-wall-related
gene expression. a, Schematic diagram showing the regions collected for

the hormone transcriptomes in Picea abies. About 50 mM auxin (IAA), 135 pM
cytokinin (BAP) or auxin plus cytokinin (IAA + BAP) was applied, and tissues were
collected 0 day, 5 days, 10 days and 15 days after treatment. b, The distribution
of DEGs responding to hormone treatments. c¢,d, Venn diagrams showing the
auxin-responsive genes (c) and cytokinin-responsive genes (d) differentially
expressed by all three time points in the various treatments. e,f, An overlap

analysis presented as a ratio of 1.0 for genes differentially expressed in response
to hormones (auxin (e) and cytokinin (f)) and genes differentially expressed
during Picea abies grafting (Extended Data Fig. 3¢). Asterisks indicate statistically
significant overlap between hormone response and graft healing. Significance
was calculated by a Fisher test (one sided) with FDR adjustment. *P < 0.05.
Pvalues are shown in source data. g,h, Heat map showing the fold changes of
putative laccase genes (g) and putative pectin methyl esterases (PMEs) (h) in
graft healing and auxin datasets.
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Fig.5|PATI1-related genes promote graft healing. a, Heat map of positively
regulated transcriptional factors during graft healing. b, Regulatory connections
of the top five core transcriptional factors based on a gene regulation network
of transcription factors activated by grafting. The size and colour of nodes
indicate the number of edge connections. The edge colour indicates the value of
correlation. ¢, PaPATI-like and AtPATI expression during graft formation in Picea
abies and Arabidopsis. The mean (+s.d.) from two to three biological replicates

is shown. d, Callus formation from cut Arabidopsis petioles overexpressing

PATI1 (AtPATI1OE) (n = 40) or mutants for patlscl5 (n = 41) or patlscl5scl21 (n =35).
Scale bars, 100 pm. Two biological replicates. e, Callus area in wounded petiole
explantsin Col-0 (n = 28), AtPATIOE (n = 40), patlscl5 (n = 41) or pat1scl5scl21
(n=35). Two biological replicates. f, Callus area in wounded petiole explants
inCol-0 (n=33), patl (n=>52),scl5(n=46),scl21 (n=46) and sclS5scl21 (n=31).

Three biological replicates. In panels e and f, significance was calculated using
Wilcoxon’s test (two-sided) with FDR adjustment, compared with Col-0. Dots
indicate individual samples, *P < 0.05, **** P< 0.0001; see source data for
Pvalues. g, Images and quantifications of callus formation from cut petioles of
Col-0 (n=10) and PaPATI-like overexpression (n = 11). Scale bars, 100 pm. Dots
indicate individual samples, two-sided Student’s ¢-test; ** P < 0.01. Two biological
replicates. See source data for Pvalues. h,i, Attachment (h) and phloem
reconnection (i) rates of homografted Col-0, AtPATIOE, patl, scl5, scl21, patiscls,
sclSscl21, patlscl21 and patisclSsci?l. j, Graft attachment rates of Col-0 and
PaPATI-like transformed in patiscl5 and scl5scl21. In panels h-j, the mean (+s.d.)
from 3 to 6 biological replicates with 10-17 plants per time point per experiment
isshown. One-way ANOVA, with Tukey’s post hoc test. Different letters above the
barsrepresent P<0.05. Pvalues are shown insource data.
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intherootstock butnotinthescion, consistent with Arabidopsisroot-
stocks being more sensitive to auxin than scions' and suggesting at
least one plausible explanation for differences in grafting efficiencies
between scion and rootstock being related to auxin responsiveness.

Our transcriptome analysis of the Picea abies graft junction
revealed dynamic activation of genes related to cell division, cam-
bial identity, phloem and xylem, similar to what has been previously
described at the Arabidopsis graft junction (Fig. 3 and Extended Data
Fig. 3)”°. However, there were notable differences. In Arabidopsis,
phloem reconnection (3-4 DAG) is followed by xylem reconnection
(6-7 DAG)", whereas our Picea transcriptomes showed the activation
of putative xylem and phloem markers at similar times, although our
time course was limited as the Arabidopsis thaliana experiments had
better temporal resolution given that graft healing took alonger time
in Picea and Pinus. However, we found multiple similarities regarding
the physiology and gene expression changes during grafting, pointing
to a conserved process. Our study also identified auxin-responsive
genes in Picea abies and found elevated auxin response at the graft
junction that correlated with the activation of cell-wall-related genes
(Fig. 3 and Extended DataFig. 4). Both auxin and cell-wall-related pro-
cesses promote graft formation in Arabidopsis, grape, Nicotiana and
tomato®?***** implying that auxin response and cell wall modifica-
tions areimportant for graft formationin both eudicots and conifers.

Our gene regulatory network analysis identified several expres-
sion hubs including a PaPATI-like homolog of an Arabidopsis GRAS
transcription, PAT1. The PAT1 protein sequence was highly similar
between Picea and Arabidopsis, in particular the C-terminus found in
many GRAS/SCL family members (>78% of protein sequence identity).
Our cross-species complementation analysis showed that PaPAT1 was
functional and acted similar to AtPAT1 as we observe partial rescue of
graft attachment phenotypes and callus formation. Previous studies
have also used genes fromtree species to modify Arabidopsis function.
MADS (for MCML1, AG, DEF and SRF) -box genes DAL2, DAL11, DAL12and
DAL13from Picea abies showed acommon function with homologous
genesinangiosperms suggesting conservation of genes structure and
activity*®*’. A poplar PeSCL7 canimprove salt tolerance of sc/[7 mutant
in Arabidopsis*®, whereas several conifer genes including HBK1, SAGI
and NEEDLY can functionally substitute for their homologous genes
in Arabidopsis*~'. Such heterologous techniques are useful tools
to understand the function of these genes outside of their endog-
enous system, particularly with the limitations of Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) mutations in trees;
however, further work is needed with Picea abies mutated in PATI to
confirmits endogenous role in wound healing and graft formation.

Our work with Picea abies helped identify PATI as a novel regu-
lator of tissue attachment and graft formation in Arabidopsis. We
also see evidence that a PAT1 homolog is induced by wounding in rice
(Extended Data Fig. 7d)'®. Monocot grafting succeeds due to the use
of embryonic tissues'®, and here, the use of young tissues also allowed
divergent conifer grafts to succeed. AtPATI expression was notinduced
by Arabidopsisinflorescence grafting or cutting (Extended Data Fig. 8)
suggesting PAT1 might be a key factor giving juvenile tissues a higher
regeneration competency. Our findings imply that grafting young
tissues helps overcome incompatibility in both gymnosperms and
angiosperms and present a useful tool to extend the range of success-
ful grafting in seed plants.

Methods

Plant materials and growth conditions

Conifer genotypes used were as follows: Picea abies—FP-96 Skogsgard
(for graftingand generating graft junctionlibraries) and FP-518 TreO G7
Soregarde (for generating hormone treatment libraries); Pinus sylves-
tris—FP-601 Almnads; Pinus contorta—FP-704 Logdo; Larixhybrid (Larix
x Marschlinsii)—FP-73 Langtora; and Larix sibirica—SV309 Lassinmaa.
All conifer seeds were surface sterilized in 30% hydrogen peroxide

solution for 20 min, followed by three rinses in autoclaved water; the
sterilized seeds were imbibed overnight in darkness. The seeds were
germinated on1/4 Murashige and Skoog (MS) medium + 1% sucrose +1%
phytagel and stored vertically in a dark growth cabinet for 6 days; the
seedlings were then moved to a low light condition (covered with a
A4 paper) for an additional 1 day, and then seedlings were grown in
a plant growth chamber (16/8 h light/dark, ~110 pmol m2s™, 22 °C,
chamber). Ten-to twelve-day-old seedlings were used for micrograft-
ing. The grafted plants were grown in the same plant growth chamberin
2 months after grafting, followed by growing for1yearinagreenhouse,
thenasubset of the plants was moved to grow in a field at the Skogforsk
research station, Ekebo, Sweden.

All A. thaliana mutants used in this study were in the Columbia-0
background. p35S::ERF115(AtERF1150OE), p35S::PAT1(AtPATIOE),
PPATI:NLS-GFP/GUS, patl, erfl1s, scls5, scl21, erfl15Spatl, patlscls,
sclSscl21, patiscl2l, erfl15scl5 and patlsclSscl21 were previously pub-
lished®**®, To generate p35S.:XVE»PaERF115-like-YFP (PaERF115-likeOE)
and p35S::XVE»PaPATI-like-YFP (PaPATI-likeOE), the open reading
frame sequence without stop of PaERFI115-like and PaPAT1-like were
amplified from Picea abies complementary DNA (cDNA) and cloned
into pDONR221. RNA extraction used the cetyltrimethylammonium
bromide (CTAB)/lithium chloride (LiCl) method? (‘RNA extraction’);
cDNA was synthesized using a First Strand cDNA Synthesis Kit (K1612,
Thermo Fisher Scientific). The primers used for cloning spruce genes
are listed in Supplementary Table 6. All three segments of the entry
vectors carrying the promoter of p35S::XVE>, followed by the entry
vector carrying the open reading frame and the yellow fluorescent
protein (YFP) with terminator, were combined into destination vector
PFR7M34GW**. The constructs were transformed into GV3101Agrobac-
terium competent cell for plant transformation. Seeds were surface
sterilized for 10 minin70% ethanol, followed by arinse with 99.5% etha-
nol, air-dried and sown on petri dishes containing 1/2MS medium + 0.8
% (w/v) agar. Seeds were stratified at 4 °C for 48 h, then moved to
plant growth chamber (8/16 h, light/dark, 80-100 pmol m2s light
intensity) and grown vertically.

Plant micrografting and measurement of attachment and
vascular reconnection

A. thaliana micrografting and CFDA (VWR International) assays for
measuring vascular reconnection were performed according to previ-
ously published protocols”. For testing graft attachment, we picked
up the cotyledon and root of grafted plants with forceps. Unseparated
grafts were counted as attached. For phloem assays, the CFDA was
dropped onacotyledon which was wounded by pressing with forceps.
After1h, fluorescence was monitored in therootstock asanindication
of phloem connectivity. Attachment and phloem reconnection were
both checked 3 DAG.

For conifer micrografting, 10- to 12-day-old plants were excised in
the hypocotylregion 0.5 cm below the needles. Scions and rootstocks
from different plants were attached tightly together using a 0.8 mm
inner diameter silicon collar. To check for the phloem reconnection,
weremoved allleaves and dipped the cut siteinto1 mM CFDA solution.
Two hours after applying, we made a hand section of the rootstocks
to observe the CFDA fluorescence. For xylem reconnection assays, we
removed thetissues 1 cmbelow the graft junction, dipping the cut part
into 5 ul CFDA for 2 h, then observed the fluorescence in the needles.
Tolook for xylem differentiationat the junction, we made longitudinal
sections at the graftjunction, cleared the sections with acidified metha-
nol (methanol:37% HCI:H,0 =10:2:38)>**¢ and incubated at 55-57 °C for
15-20 min. We then replaced the clearing buffer with 7% NaOH in 60%
ethanol andincubated themfor 15 minat roomtemperature, followed
by rehydration with40%, 20% and 10% ethanol, incubating for 15 minin
each ethanolsolution. The rehydrated sections were stained with 0.01%
basic fuchsin solution (dissolved in water) for 5 min. The staining was
stopped with 70% ethanol for 15 min, and sections were rehydrated with
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10% ethanol for 15 min, before adding 50% glycerol and incubating for
30 min. Sections were mounted in 50% glycerol for imaging.

Arabidopsisinflorescence stem grafting and incisions

The inflorescence stem grafting was performed following a previ-
ously published method”. Grafting was performed using a wedge graft
method when the primaryinflorescence meristemhad grownto10 cm,
leaving the stock around 3 cm above the rosette. The graft junction was
sealed by wrapping with parafilm. The grafted plants were growingin
a clear plastic box to maintain a humid environment. The stem inci-
sion experiment was performed according to a published method*®.
Using a microsurgical knife (Surgical Specialties), amature flowering
stem was incised approximately 3 cm from its base, reaching halfway
through its diameter.

Imaging

Grafted plants were imaged using a Nikon D5300 camera. The CFDA
fluorescence was observed with a Leica M205 FA stereofluorescent
microscope fitted with a YFP filter. Basic fuchsin-stained samples
and B-glucuronidase (GUS)-stained samples were imaged with a Zeiss
Axioscope Al microscope or M205 FA stereofluorescent microscope.
The higher-resolution images of hand sections were imaged with an
LSM-780 confocal microscope. For CFDA imaging, 488 nm excita-
tion and 500-560 nm emission settings were used. Wavelengths of
561 nm excitation and 571-690 nm emission were used for imaging
basic fuchsin-stained samples. Allimages were analysed using Zen blue
or Fiji (version 2.9.0/1.53t)%.

Hormone treatment

Two-week-old Picea abies seedlings were selected for hormonal treat-
ment. Picea abies seedlings were treated with either BAP, IAA or a
combination of BAP and IAA hormones. The hormone concentrations
were BAP135 mM, IAA50 mM, BAP135 mM +1AA 50 mM. Approximately
20 pl of hormone dissolved in 70% ethanol was quickly mixed with a
small amount of lanolin. The hormone lanolin paste was then applied
tothe middle hypocotyl region of the seedlings, approximately 1.5 cm
belowtheneedles. Thetreated area (8-10 mminlength) was wrapped
inaluminium foil.

Construction and analysis of RNA-seq libraries

Graft junction libraries. Samples were collected fromboth ungrafted
(intact) and grafted Picea abies above and below the graft junction at
0,1,3,7,14 and 28 DAG. Approximately 1 mm of tissues from scions or
rootstocks or 2 mm fromintact plants was collected. Samples were col-
lected in three biologically independent replicates for all treatments.
Five plants were pooled for eachreplicate.

Hormone treatment libraries. Samples were collected for analysis
after 5,10 and 15 days. Approximately 5 mm of the treated hypocotyl
was collected from each seedling, and the sample was snap frozen
with liquid nitrogen. Samples were collected in three biologically
independent replicates for all treatments. Eleven plants were pooled
foreachreplicate.

RNA extraction. Total RNA was extracted using amodified CTAB/LiCl
method*”. Briefly, frozen tissue was ground into a fine powder. Extrac-
tion buffer was prepared (100 mM Tris—HCI (pH 8), 2% (w/v) CTAB,
30 mMEDTA, 2 MNaCl, 0.05% (w/v) spermidine, 2% (w/v) PVPP, 2% (v/v)
2-mercaptoethanol, proteinase K (10 mg ml™) to afinal concentration
of 1.5 mg ml™) and warmed for 10 min at42 °C, then added to the ground
frozen tissue and incubated at 42 °C for 90 min. Chloroform-isoamyl
alcohol (24:1 (v/v)) was added to extract RNA. After vortexing and
centrifuging at15,000 gfor 15 min at4 °C, the top aqueous phase was
transferred to a new tube, and 1/4 volume of 10 M LiC1 was added,
allowing overnight precipitation at 4 °C. Samples were centrifuged at

15,000 gfor 30 min and the supernatant discarded. Finally, the pellet
was washed with2 M LiCl twice and dissolved in RNase-free water. RNA
concentration was measured using Qubit 2.0. The RNA integrity num-
berwas analysed by using an Agilent 2100 Bioanalyzer with RNA 6000
Nano kit. The RNA integrity numbers of all samples were above 8.0.

Libraries construction. About 1 pug total RNA per sample was used
for RNA-seq library preparation. For grafting junction libraries, we
followed the New England Biolabs (NEB) library building method.
mRNA isolation was performed using NEBNext Poly(A) mRNA Mag-
netic Isolation Module (NEB number E7490S), followed directly by
using NEBNext Ultra Directional RNA Library Prep Kit for Illumina
(NEB number E7760S) and NEBNext Multiplex Oligos for [llumina (NEB
number E7600S) for library construction. The quality of DNA libraries
was checked with an Agilent 2100 Bioanalyzer DNA High Sensitivity Kit.
The hormone treatment libraries were performed by Novogene (UK).

Bioinformatic analysis. Sequencing was performed on Illumina
NovaSeq 6000 system with PE150. RNA-seq analysis was performed
as previously described with minor modifications®’. Briefly, the quality
of raw data was accessed using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) (version 0.11.8). Theresidual rRNA
contamination was removed using SortMeRNA (version 4.3.3)®". Data
were then filtered using fastp (version 0.20.0). After both filtering
steps, FastQC was run again to ensure that no technical artefacts
wereintroduced during the pre-processing steps. Filtered reads were
aligned to version 1.0 of the Picea abies genome (retrieved from the
PlantGenlE, https://plantgenie.org/FTP?dir=Data%2FPlantGenlE%2
FPicea_abies%2Fv1.0) using STAR (version 2.7.9a)%’. The parameters
of RNA-seq data pre-processing followed the previously described
guideline®®. Read counts were quantified by HTSeq®* using Picea abies
version 1.0 GFF file (retrieved from the PlantGenlE), with setting -s
reverse. DEGs were identified using the DESeq2 package (version
3.13) in R (version 4.0.4)®. In each time point during grafting, intact
samples were used as a reference. However, for intact samples, day O
was the reference, while for hormone treated samples, mock treat-
ment was the reference. Genes with an absolute log,(fold change)
value aboveland a g value below 0.05 were considered differentially
expressed. The normalized reads obtained from DEseq2 were used for
gene expression. The analysis of common patterns of gene expression
during grafting was performed using the Mfuzz package (version 3.15)
inR®. First, DEGs of grafted tissues (scion and rootstock) from all time
points were combined into a list to consider for analysis. Then based
on the DEGs list, day O intact samples were also included to identify
the common gene expression patterns during grafting. GO enrichment
analysis of clusters was performed by hypergeometric distributionin
R,withanadjusted P < 0.05 and fold change >2 as the cut-offto deter-
mine significantly enriched GO terms. We downloaded the spruce GO
annotation file from the PlantGenlE. For the overlap analysis, overlap
was presented as aratio of 1.0 for DEGs up- or down-regulated in the
grafting dataset relative to intact samples compared with up- and
down-regulated genesinthe hormone datasets relative to mock. The
gene co-expression network was conducted using the WGCNA pack-
age (version1.71)*in R. Only 524 putative transcriptional factors that
differentially expressed during grafting were analysed. To increase the
samplesize, theindividual replicates were introduced as one sample.
Then a module that showed positive regulation during the grafting
was considered to discover the hubs of regulatory interactions. Then
the interactions were visualized in Cytoscape 3 (version 3.9.1)%®. The
orthologs between Picea abies and Arabidopsis were obtained from
pabies_artha.tsv (retrieved from the PlantGenlE, https://plantgenie.
org/FTP?dir=Data%2FCross-Species%2FOrthologs). The list of DEGs
from all comparisons and the orthologs, and transcription factor of
theregulatory network are provided in Supplementary Table 7, as well
asthe genes used for heat map plots.
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Quantitative reverse transcription-PCR (qRT-PCR) assays. Sam-
ples were collected from Arabidopsis inflorescence stems, from
both grafted and non-grafted plants. Total RNA was extracted using
aRoti-Prep RNA MINIKit. About 500 ng RNA was used for cDNA synthe-
sis using the Maxima First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific), which includes oligo(dT)18 primers. Quantitative reverse
transcription-PCR (qRT-PCR) reaction was performed with 2x Maxima
SYBR Green qPCR/ROX Master Mix (Thermo Fisher Scientific) and run
with aBio-Rad CFX96 qPCR machine. Theresults were analysed using
the 2-**“"method. The primers used for quantitative reverse transcrip-
tion PCR are in Supplementary Table 6.

Callus induction. Cotyledons with petioles excised from 10-day-old
seedlings growing in long-day conditions were used for callus induc-
tion”. The cotyledon explants were placed on petiole callus induction
medium (MS) medium plates supplemented with 1% sucrose and 0.6%
Gelrite) and induced for 7 days under long-day conditions. For callus
formation without wounding, the F1 generation of AtERF1150E AtPA-
T1OE seedlings were grown on 1/2 MS medium for 21 days, and the T2
generation of PaERF115-likeOE AtPATIOE seedlings were grown on
1/2 MS medium with 10 uM estradiol (Sigma-Aldrich) for 7 days, then
transferred to 1/2 MS medium for 14 days.

Estradiol treatment. For callus induction and grafting assay using
Arabidopsis, plants growing medium and callus induction medium
were both prepared containing 10 pM estradiol (Sigma-Aldrich). The
grafted plants were placed on the filter paper containing water with
10 pM estradiol.

Phylogenetic analysis and amino acid alignment. The protein
sequence of Arabidopsis GRAS family and spruce PaPATI-like were
used for phylogenetic analysis with MEGA11 software (version
11.0.13)*°. The protein sequences were aligned by ClustalW (offered
in MEGAL11); Construct/Test neighbour-joining tree (offered in
MEGA11) was used to estimate phylogenetic trees. Bootstrap repli-
cates number was setto1,000. Amino acid alignment was generated
with Snapgene software (version 5.1.4.1; www.snapgene.com). The
protein similarity and heat map was generated using TBtools soft-
ware (version 1.120)"°.

GUS staining. Plant tissues were submerged in cold acetone for 10 min.
After washing with staining solution without x-gluc, tissues were trans-
ferredinto staining solution (100 mM sodium phosphate buffer pH7.0,
10 mM EDTA, 1 mM K;[Fe(CN).], 1 mM K4[Fe(CN)(], 2 mM 5-bromo-4
-chloro-3-indolyl-B-glucuronide) and vacuum infiltrated for 10 min
atroomtemperature. Tissues were incubated in the staining solution
for 2 hat 37 °C. Stained tissues were submerged in 70% ethanol until
the GUS was cleared.

Measurement of plant size. For plant height measurements, the
shoot length of the above-ground part was measured as the plant
height. For the shoot diameter measurements, the shoot diameter
of grafted plants was measured at 3 cm above the graft, and the
shoot diameter of intact plants was measured at a site similar to
grafted plants.

Statistical analysis. Statistical analyses methods were used as indi-
catedin the figure legends. Student’s t-test was performed with Excel
(version 16.72), Wilcoxon signed-rank test and one-way analysis of
variance (ANOVA) followed by Tukey honestly significant difference
test were performed with R (version4.0.2).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data are available in the manuscript, supplementary information,
extended data and source files. Transcriptome data reported in this
paper are deposited in the NCBI Gene Expression Omnibus (GEO) data-
base under the accession number GSE231633. Spruce genome informa-
tion and orthologs were retrieved from the PlantGenlE site (https://
plantgenie.org/FTP?dir=Data%2FplantGenlE%2Fpicea_abies%2Fv1.0).
OsPATI-like (0s07g0583600) expression values were obtained from
a previously published dataset™. Source data are provided with this

paper.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Differentially expressed genes during Picea abies
grafting. a, b, Total differentially or non-differentially expressed genesin
grafted Picea abies scions, rootstocks or intact tissues. Differential expression
was determined by comparing to intact samples at the same time point (a) or by
comparing to the day zero intact sample (b). ¢, d, Total number of upregulated
and downregulated genes in scion, rootstock or intact Picea abies tissues.
Differential expression was determined by comparing to intact samples at

the same time point (c) or by comparing to the day zero intact sample (d).

a-d, 3 biological replicates per tissue per treatment. e-h, Clustering analysis

of transcriptional dynamics during graft healing. Lines indicate the average of
differentially expressed genes in scion or rootstock and the expression profiles
for selected Picea abies genes plotted over grafting. Dots indicate days after
grafting (DAG). The number in the brackets represents the number of genes in
the cluster. Cluster number isindicated and the mean (+ SD) from 3 biological
replicates per time points per tissue is shown. Arabidopsis homolog expression
dataare plotted and taken from published transcriptome data* with a

mean (+ SEM) from 2 biological replicates per tissue per time point is shown.
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Extended Data Fig. 4 | See next page for caption.

Nature Plants


http://www.nature.com/natureplants

Article

https://doi.org/10.1038/s41477-023-01568-w

Extended Data Fig. 4 | Auxin, cytokinin and cell wall related genes
expression. a, Principal component analysis of the gene expression data

during hormone treatments. Colors indicate different time points and shapes
indicate different treatments including auxin (IAA), cytokinin (BAP) and auxin
plus cytokinin (IAA+BAP). Shown are data from 3 biological replicates per
treatment per time point. b, Total differentially or non-differentially expressed
genes in hormone treatments at different time points. ¢, Average expression

of auxin responsive genes during graft healing (Fig. 4c). d, Average expression

of cytokinin responsive genes during graft healing (Fig. 4d). Asterisks indicate
statistically significant differences between scion and rootstock tissues. **p<0.05

was calculated using Wilcoxon'’s test (two-sided) with FDR adjustment. p values
areshowninsource data. Box plots show the 25% quantile, median (line) and 75%
quantile of the reported values, respectively. The whiskers correspond to 1.5x
the interquartile range. Black points indicate outliers. e, f, Heatmap showing
the fold changes of putative beta-1-4-glucanase genes or putative pectate and
pectin lyase genes in graft healing or auxin datasets. g-k, Expression profiles of
Pal ACI-like (MA_75861g0010), PaPMES-like (MA 10267810g0010), PaKOR1-like
(MA_69345g0010) and PaPECTIN LYASE-like (MA_6752784g0010) in the auxin
treatment datasets (g) or grafting datasets (h-k). Data are presented as mean (£
SD) from 3 biological replicates per tissue per time point.
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Extended Data Fig. 5| Transcription factor analysis during graft formation.
a, Bar plot showing the distribution of all differentially expressed transcriptional
factors during graft healing. X-axis indicates the different families of
transcription factors. Y-axis indicates the number of differentially expressed
TFsduring spruce graft formation. b, Hierarchical cluster tree showing co-
expression modules identified using WGCNA. Colorsindicate different clusters.
¢, The association between modules and graft healing. Each row corresponds to
amodule, labeled with acolor asin (b). Each column corresponds to the grafted
samples (scion and rootstock) and intact samples. The color of each cell indicates

10

the correlation coefficient between the module and samples. d-g, Expression
profiles for the candidate core transcription factor genes during Picea abies
grafting including PaLRPI-like (MA_2299g0010), PaWIP4-like (MA_29238g0010),
PaMYBI123-like (MA_10048467g0010) and PaMYB4-like (MA_316475g0010).

d and g show the homologs of PaL PR1-like and PaMYB4-likein the Arabidopsis
graft formation datasets”. h, Expression profiles of PaERF115-like
(MA_10274g0010) and AtERF115 during graft healing. d-h, Data are presented

as mean (+ SD) from 3 biological replicates per tissue per time pointsin

Picea abies and 2 biological replicates per tissue per time point in Arabidopsis.
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Extended Data Fig. 6 | Phylogenetic analysis and amino acid alignment of
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Picea abies PaPATI1-like proteins. Red text indicates PAT1 family proteins.

b, Amino acid alignment of the C-terminal of AtPAT1, AtSCL5, AtSCL21and
PaPAT1-like. The consensus sequences are highlighted in yellow. ¢, Heatmap
showing the amino acid similarity in percentages for PAT1family proteins.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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