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Bayesian calibration of the ICBM/3 soil organic carbon model constrained 
by data from long-term experiments and uncertainties of C inputs

Lorenzo Menichetti, Thomas K€atterer and Martin A. Bolinder 

Department of Ecology, SLU, Uppsala, Sweden 

ABSTRACT 
Models with various complexity can asses soil C sequestration in agriculture. In this study, 
we updated the Introductory Carbon Balance Model (ICBM) with 28 years of additional data 
and included multiple long-term bare fallow experiments for old pool kinetics. We validated 
the model with data from a new long-term sister experiment. The new calibration included 
uncertainty in the estimation of below-ground C inputs to soil. The model now considers 
above- and belowground and external C inputs separately (ICBM/3). The underlying math-
ematical approach is the same, with two state variables and a climatic parameter, and such 
simple structure remained robust enough to describe soil organic C dynamics over six deca-
des. We tested including an inert soil C pool in the model structure, but it did not decrease 
the observed variance. Similarly, an intercept in the functions for estimating belowground C 
input from crop yield was not useful. Results suggest that root C contributes more to the 
old organic C pool than aboveground C inputs. We also evaluated parameters interactions, 
in particular between C inputs and their transformation into more stable soil C interacted 
and decomposition kinetics. We also describe new functions for estimating the ICBM climatic 
parameter in a more user-friendly way.
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Introduction

Soil organic carbon (SOC) is the primary terrestrial 
C pool, and its management is crucial to the global 
C budget in the biosphere [1]. To manage it, sev-
eral countries use models with different degrees of 
complexity to simulate changes in soil C stocks to 
determine their national contributions to global 
greenhouse gas balances [2]. The robustness of 
such predictions depends on the accuracy of mod-
els and is unavoidably associated with uncertain-
ties. Uncertainty in SOC models is related to 
imperfect knowledge of processes, model struc-
ture, errors in the data from long-term field experi-
ments (LTEs) used for their calibration, and 
uncertainty in input data. All these components 
reduce the robustness of predictions. While struc-
tural uncertainty is inherent to specific model 
assumptions, other uncertainty sources can be esti-
mated with stochastic calibrations [3].

The annual C input to soil is the most important 
driver for changes in SOC stocks, and conse-
quently, it is, in all models, one of the largest 

uncertainty sources [4,5]. This C input comes from 
exogenous organic amendments and aboveground 
(AG) and belowground (BG) crop residues; the lat-
ter comprises the root biomass left in the field at 
harvest plus root-derived C delivered to the soil 
during the growing season, usually referred to as 
rhizodeposition (RD) [6]. Many SOC models esti-
mate such inputs with empirical approaches (i.e. 
allometric functions) based on shoot-to-root (SR) 
ratios to estimate the C input from root biomass 
left in the field at harvest. These ratios consider 
shoots as the total AG biomass produced, esti-
mated from grain yields using data on harvest 
index (i.e. the ratio of grain to total AG biomass; 
HI) for annual crops [4]. Most models assume that 
a fraction of such C inputs is converted into more 
stabilized soil organic material (i.e. a humification 
coefficient; h) entering one or several SOC pools 
depending on model structure [7].

Of the large uncertainties associated with C 
inputs, the most important are relative to estimat-
ing BG C inputs. For annual crops, pioneering work 
by Barber et al. [8] and by Sauerbeck et al. [9] 
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indicated an RD coefficient of 1.0 (i.e. RD contrib-
utes as much as the root biomass to BG C inputs), 
an assumption commonly used thereafter [10,11]. 
Because these estimates are affected by traits of 
plants, pedo-climatic conditions and fluctuate over 
the growing season, RD coefficients reported in 
the literature vary from much lower than 0.5 to as 
high as 2.0 [12,13], evidentiating the high uncer-
tainty around root C inputs estimation. We also 
know that field-based estimates of SR ratios for 
crops are highly variable within different crops, 
such as small-grain cereals and maize, with coeffi-
cients of variation typically of at least 50% [6,14].

Furthermore, SR ratios and HI data vary with 
genotypes and can change over time due to plant 
breeding; this can cause problems when modeling 
LTEs or assessing historical changes in C inputs 
[15]. Finally, the most common allometric func-
tions assume that SR ratios and HI data are linear 
with respect to production levels [4]. However, 
some recent studies suggest that estimating BG C 
inputs using fixed values for root biomass by crop 
type may be better, independent from yields 
[16,17] or using HI values that change with crop 
yields [18].

All these uncertainties affects the uncertainty of 
the humification (h) coefficients used in most SOC 
models, which are not measured but estimated 
with model calibration. The amount of C inputs to 
the soil and their decomposition (controlled in 
large part in compartmental SOC models by the h 
coefficients) interact directly in the models to 
determine the simulated SOC stocks over time. 
The change in SOC stocks over time in LTEs, 
the primary source of information to calibrate 
models, can result from many combinations of C 
inputs and humification. These direct interactions 
between the kinetics of decomposition and the C 
inputs, neither of which is ever precisely known, 
imply that many parameter combinations can 
explain the observed results (which is defined as 
equifinality) in the models [19] and make it very 
difficult to determine both SR and h values.

Historically, commonly used values of h for 
AG crop residues (hs) vary between 0.05 and 0.15 
[20–22]. However, the h-values for roots (hr) were 
early recognized as higher than those for hs. For 
example, H�enin and Dupuis [20] assumed the hr 

coefficient for maize and small-grain cereals were 
1.50 and 1.80 times higher than the corresponding 
values for hs. Since then, several studies on LTEs 
and reviews have been quantifying this further, 
showing that total root-derived C (i.e. roots and 

RD) contributes from 1.3 up to almost four times 
more to SOC than AG [11,14,23]. Following these 
studies, some models have recently assumed a 
higher root contribution to SOC than contributions 
from AG vegetation. For example, Dechow et al. 
[24] modified the default h-value used for both 
shoots and roots (0.47) in the RothC model and 
found that using a lower range of values for hs 

(0.27–0.35) compared to hr (0.43–0.47) improved 
the model accuracy. On the other hand, in the 
AMG model, Clivot et al. [25] considered hr values 
to be 26% to 77% higher than that for hs.

Sweden uses a relatively simple first-order two- 
component model, Introductory Carbon Balance 
Model (ICBM) [26], to estimate SOC stock changes 
in the national reporting system [27]. This 
approach relies on linear allometric functions for 
estimating plant C inputs from yields. It includes a 
parameter modifying SOC decomposition rates as 
a function of climate, edaphic properties, and crop 
conditions. The ICBM model is also used within 
farm-scale advisory tools such as Holos [28] 
and other applications (Supplementary Material, 
Table 1). Recent studies of the Ultuna LTE, used to 
calibrate the original version of ICBM, and its sister 
LTE at Lanna [29,30] showed that roots contribute 
more to SOC than AG crop residues. Based on 
these findings, some attempts have already been 
made to modify the ICBM model [31,32] by divid-
ing the crop residue C input pool into AG and BG 
components, assuming hr 2.3 times the value of h 
(i.e. 0.125) in the original calibration. Kr€obel et al. 
[28] suggested the introduction of another third 
component accounting for organic amendments 
(i.e. ICBM/3 version), recognizing the need to cali-
brate and validate this new model structure.

Furthermore, since its development, the original 
ICBM calibration still needs to be updated. More 
than two decades of new data are now available 
from the Ultuna LTE, and the sister experiment at 
Lanna, starting just after the original calibration, 
now has more than two decades of data. 
Moreover, throughout the years, we have further 
developed the functions for estimating the climatic 
parameter of ICBM, and such incremental improve-
ments also need to be assessed and validated. The 
present study provides an update of the model, 
together with additional tools, such as the climatic 
module, that allow the model users to adapt this 
updated ICBM version to their workflow quickly 
and maintain the model being easily accessible. 
Given the expected equifinality of the model, we 
relied on a stochastic calibration approach, which 
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should be more robust. Our objectives in the pre-
sent study were as follows:

� Calibrate the ICBM/3 version on the Ultuna LTE 
using more than two decades of new data 
within a stochastic Bayesian framework, includ-
ing the new functions for estimating the cli-
matic parameter. This version is referred to as 
ICBM/3B (B for Bayesian).

� Test whether the longer time scale requires 
modifying ICBM/3B by including an additional 
inert SOC pool.

� Test the robustness of a linear allometric 
approach to BG input estimations by adding an 
intercept in the allometric functions represent-
ing a minimal total BG C input independent of 
crop yield.

� Analyze model uncertainties and equifinality, 
focusing on BG C inputs, including the available 
information for constraining SR ratios, hs, and 
hr from the literature.

� Validate ICBM/3B on the Lanna sister LTE, the 
decomposition of the old SOC pool in ICBM/3B, 
and the new functions for estimating the cli-
matic parameter on European bare-fallow LTEs.

Materials and methods

LTEs used for calibration and validation

The two Swedish LTEs are located along an east- 
southwest gradient in central Sweden. Experiment 
treatments involve the effect of three different 
types of mineral N fertilizer and organic 

amendments (farmyard manure FYM, composts, 
sewage sludge SLU, sawdust SAW, peat, small- 
grain cereal straw, and green manure GM) or a 
combination of both. The Swedish classical frame 
trial (FRAME-56) was initiated in 1956 in small plots 
(2� 2 m, separated by metal frames) at Ultuna 
[29], while its sister experiment (R3-0130) at Lanna 
started in 1996 in large (92 to 112 m2) plots [30]. 
The latter includes several treatments in the former 
site; both LTEs also include a bare fallow treatment 
(Table 1). Both sites replicate all treatments four 
times in randomized block designs, and the 
organic amendments are applied every second 
year, corresponding to approximately 2 Mg C 
ha−1 yr−1 in the frame trial and 4 Mg ash-free dry 
mass ha−1 yr−1 at the Lanna site.

We used the Ultuna LTE (59.82oN, 17.65oE) time 
series for all model calibrations (Figure 1). The field 
had been cultivated for centuries before the start 
of the experiment and is located on a clay loam, 
classified as a Typic Eutrochrept (USDA soil tax-
onomy) or Eutric Cambisol (FAO). The annual 
mean total precipitation is 542 mm, and the mean 
annual temperature is 5.8 �C. The organic amend-
ments are added in the fall by carefully incorporat-
ing them into the topsoil down to a depth of 
20 cm using a spade. The frequency of crops (num-
ber of years) between 1956 and 1999 was as fol-
lows: small-grain cereals (31), fodder rape (5), 
oilseed (3), fodder beet (2), and crop failure (3). 
Small-grain cereals were mostly spring barley (17) 
and oats (11), spring wheat (2), and winter wheat 
(1) were occasionally grown. Silage maize has 

Table 1. A summary of the treatments (�) and topsoil texture for the long-term field experiments used 
in the calibration and validation of ICBM/3B.
Treatments Ultunaa Lannab Versaillesc Grignonc Askov B3c Kurskc

Calibration Validation

Bare fallow � (A) � (A) � � � �

Unfertilized control � (B) � (I) – – – –
Calcium nitrate � (C) � (B) – – – –
Ammonium sulfate � (D) � (C) – – – –
Calcium cyanide � (E) – – – – –
Straw � (F) – – – – –
StrawþN � (G) – – – – –
Green manure (grass) � (H) � (D) – – – –
Peat � (I) – – – – –
Farmyard manure � (J) � (E) – – – –
Farmyard manureþ P � (K) – – – – –
Sawdust � (L) – – – – –
PeatþN � (M) – – – – –
SawdustþN � (N) – – – – –
Sewage sludge � (O) � (F) – – – –
Sewage sludgeþmetals – � (G) – – – –
Compost – � (H) – – – –
Topoil texture (%)
Clay 36.5 45.5 17 30 7 30
Silt 41 46.5 57 54 11 65
Sand 22.5 8 26 16 82 5

aFor details, see K€atterer and Andr�en [34], in parenthesis, the treatment ID used in this publication.
bFor details, see K€atterer et al. [30], in parenthesis, the treatment ID used in this publication.
cSites from the long-term bare-fallow network are described in detail in Barr�e et al. [33].

CARBON MANAGEMENT 3



been growing continuously since the year 2000. 
Every year at harvest, all AG plant biomass is cut at 
the soil surface, removed from the experimental 
plots, weighed, and sorted into crop products and 
AG crop residues; see K€atterer et al. [29] for more 
details. The climatic data come from the Ultuna 
meteorological station, located at about 1 km dis-
tance from the experimental field.

The Lanna LTE (58.34oN, 13.10oE) was used for 
validating the model and is located on an Aquic 
Haplocryept developed on a Quaternary silty clay 
deposit [30]. The annual mean total precipitation is 
636 mm, and the mean annual temperature 7.3 �C. 
The organic amendments are added in the fall by 
incorporating them through moldboard plowing 
into the topsoil to a maximum depth of 25 cm. 
The frequency of small-grain cereal crops (number 
of years) between 1996 and 2018 was as follows: 
oats (12), spring barley (8), winter wheat (2), and 
spring wheat (1). At this site, the stubble was left 
in the experimental plots after harvest, corre-
sponding to 33% of the total amount of straw pro-
duced, measured for most of the years; see 
K€atterer et al. [30] for more details. The climatic 
data for Lanna come from the Swedish 
Meteorological Institute (https://www.smhi.se/wea-
ther/Sweden-weather/obsevartions).

We also used data from an LTE bare-fallow net-
work in Europe to specifically validate the decom-
position rates of the old SOC pool and the climatic 
module of the ICBM model. From this network, 
consisting of six LTEs, we selected five, including 
Ultuna (year of initiation): Askov in Denmark 
(1956), Grignon and Versaille in France (1959 and 
1928), and Kursk in Russia (1965). All sites have 
been kept free from vegetation, and we retrieved 
weather data records from https://www.ncdc.noaa. 
gov/cdo-web/; for details on these LTEs, see Barr�e 
et al. [33].

SOC measurements and equivalent soil mass 
calculation
Measurements of SOC in the Ultuna and Lanna 
LTEs were made intermittently, more or less every 
second year, in the topsoil down to a fixed depth 
of 20 cm. For the time series of SOC data from the 
bare-fallow LTEs, measurements were taken ten 
times at Versaille and Grignon and six times at 
Kursk to a fixed depth of 25 cm, while measure-
ments were available for almost every year at 
Askov to a fixed depth of 20 cm [33]. The mass of 
soil sampled to a fixed depth changes over time 
proportional to dry soil bulk density changes. 
Consequently, we corrected the reference depth of 
20 cm used in this study using an equivalent soil 
mass approach described in detail by K€atterer 
et al. [29]. In short, treatment-specific bulk density 
values over time were estimated using linear func-
tions based on the initial value measured at the 
start of the trial (1.44 Mg m−3) and those measured 
in the different treatments in 2009. The depth to 
which an equivalent amount of soil mineral mass 
is distributed was normalized for 20 cm depth in 
the control treatment. We then calculated soil car-
bon stocks by multiplying the bulk density and 
SOC concentration product with equivalent soil 
depth per treatment and year. The equivalent soil 
depth in the treatments at the Ultuna LTE varied 
between 19.5 and 27 cm [29].

The ICBM/3B model

The model we calibrated is derived from the ori-
ginal ICBM presented by Andr�en and K€atterer [26]. 
The original ICBM model is a two-component first- 
order compartmental model with two state varia-
bles referred to as Young (Y) and Old (O) SOC 
pools, having specific decomposition rates (kY and 
kO, respectively), connected by a humification coef-
ficient (h). The annual C input to soil enters 
through the Y pool, representing organic matter 
not yet humified with a fast decay rate, while the 
O pool represents the organic matter stabilized in 
the soil that decays much slower. In the original 
calibration, kY (here referred to as k1) was 
0.8 year−1, and kO (here referred to as k2) was 
0.0061 year−1 under standard climatic conditions 
at the calibration site in central Sweden [26].

In order to consider C inputs from different 
organic materials having specific h-values, which 
determine the fraction that enters the O pool, we 
introduced three separate Y pools, all decaying in 
parallel (Figure 2). These pools were AG crop 

Figure 1. Soil organic carbon (SOC) stock time series for 
the treatments of the Ultuna LTE, on which we based all 
model calibrations.
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residue inputs (Ys), total BG inputs including root 
tissues and rhizodeposits (Yr), and inputs from 
amendments (Ya), which are associated each with 
different humification coefficients (hs, hr, and ha, i, 
respectively, where i refers to each specific amend-
ment in the experiment). In this application, Ya 

represented farmyard manure, sewage sludge, 
peat, and sawdust (Table 1). The basic mathemat-
ics of the ICBM model has been extensively intro-
duced in the literature (Appendix A). In particular, 
we refer the reader to Appendix 1 in K€atterer and 
Andr�en [34], which thoroughly describes the equa-
tions. This model, from now on called the standard 
ICBM/3B model to distinguish it from the original 
version, adds two additional Y pools as described 
above, which are associated with different humifi-
cation factors to account for different qualities of C 
inputs. This modification does not alter the math-
ematics foundations of the model, and, under con-
stant input conditions, it is equivalent to 
considering an h value that is the weighted aver-
age of the individual h values of the various mater-
ial added to the soil. However, it allows to 
decompose the different h values in calibration 
under non-steady input conditions, resulting in a 
more useful model when applied.

The climatic functions
The climatic interactions with decomposition are 
implemented through a climatic parameter multi-
plying the two kinetic coefficients, k1, and k2. This 
parameter derives from the product of relative 
water content (rwat) and soil temperature (rtemp) 
calculated daily and averaged to an annual value 
since the model works in annual time steps. Its 

calculation involves daily climatic data and soil and 
crop properties. In this application, the climatic 
parameter was for convenience called rclim (please 
note that this corresponds to re_crop as defined in 
Bolinder et al. [35]).

In this study, we updated the calculations of 
rwat and rtemp with the most recent functions we 
are using, as described in detail below. Specifically, 
we introduced a function with a peak in the mid-
dle at optimal moisture and with activity decreas-
ing on both sides to represent the effect of soil 
moisture on biological decomposition activity at 
soil saturation. We also present in more detail the 
set of functions and information flow involved in 
the calculations of rclim (Appendix B), and we 
compiled the relative functions into an R package 
available on the GitHub repository of the corre-
sponding author (address at the end of the 
Discussion section).

The effect of soil temperature is based on a 
quadratic response function [27] with maximum 
(Tmax) set to 30 �C and minimum (Tmin) set to 
−3.8 �C.

rtemp, t ¼
Tsoil, t − Tminð Þ

2

Tmax − Tminð Þ
2 

This function presents a curve quite similar to 
the more conventional Arrhenius function [36]. Its 
main limit of applicability is the lack of a protein 
denaturation mechanism, which varies depending 
on different soils but happens at relatively high 
temperatures (>35 �C [37]), which are in general 
not reached in the soil in temperate climates. The 
daily mean soil temperature is calculated from the 
daily mean temperature based on an empirical 
relationship:

Figure 2. A schematic representation of the ICBM/3 model, adapted from Menichetti et al. [ 3].
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Tsoil, t ¼ max −2, 0:92∙Tair, tð Þ

The effect of soil water content is more compli-
cated to simulate since it is seldom available, and 
in general, it must be calculated from meteoro-
logical data. The response function for soil mois-
ture is in this present model version adapted from 
Moyano et al. [38]:

rwat, t ¼ f xð Þ

¼

0, Ùhth < hm

ht − hth

min hopt , hfcð Þ − hth
, Ùhth � ht < min hopt , hfcð Þ

1, Ùmin hopt , hfcð Þ � ht � max hopt , hfcð Þ

1 − 1 − qð Þ
ht� max hopt , hfcð Þ

hs� max hopt , hfcð Þ
, Ù� max hopt , hfcð Þ < ht � hs

8
>>>>>>>><

>>>>>>>>:

where hopt , the optimal water content for decom-
position, is calculated according to hopt ¼

0:2þ 1 − 26∙ hfcð Þ
2:03 and htg, the lower boundary 

water content for decomposition, is calculated 
according to hth ¼ 0:0965∙ln h}

� �
þ 0:3, hfc is the 

water content at field capacity, h} is the water 
content at wilting point, and q¼ 0.5. However, this 
function needs, as input, besides soil hydrological 
constants, the soil water content. Soil water con-
tent is seldom available but can be calculated 
based on a simulated daily soil water balance once 
precipitation and evapotranspiration are known. 
For a specific soil layer of a given thickness, the 
water balance at a given time (Xt) can be calcu-
lated according to:

Xt ¼ Xt − 1þ PPT t − ETt − Pintercepted, t − Xbypass, t 

where PPT t is the total precipitation in a given day 
t, ETt is the actual evapotranspiration on the same 
day, Pintercepted,t is the water intercepted by the 
crop and Xbypass, t is the excess water (lost by per-
colation). The ETt is calculated from reference 
evapotranspiration (ET0) through two coefficients 
according to ETt ¼ EToKcKr , where Kc is 
the coefficient to calculate the potential evapo-
transpiration on the specific plot from the refer-
ence (ETc ¼ EToKc). The factor Kc is calculated 
from the green area index (GAI) according to Kc ¼

1:5 − 0:5∙e−0:17∙GAI: The intercepted water 
Pintercepted, t is calculated using the GAI according to 
Pintercepted, t ¼ min PPT t , ETc, , GAI∙0:2ð Þ: The factor Kr 

is a coefficient to consider the effect of water 
stress on the crop, and it is calculated according to 
Kr ¼ max 0, 1 − 0:9∙hðð fc−ht

0:9∙Tfield−0:7∙h}Þ
2
Þ:

Wilting point 
(h}) and field capacity (hfc) are calculated accord-
ing to pedotransfer functions developed for 
Sweden [39].

The climatic parameter is calculated for each 
site and treatment separately and is normalized to 

the unit for the strawþN treatment (G) at the 
Ultuna site since this represents the most normal 
agricultural practice [26,40]. For this treatment, the 
updated calculations described above yielded a 
rwat � rtemp factor of 0.1057 for the time series 
1956 to 2019. Thus, we were scaling all rclim values 
by dividing them by this factor, which implies that 
rclim became 1 for treatment G at Ultuna, and rclim 

for all other treatments at Ultuna, Lanna, and the 
long-term bare fallow sites have values relative to 
this normalized calibration site and treatment. 
Since rclim is multiplying the kinetic coefficients of 
the ICBM SOC pools, this implies that a higher 
value increases decomposition and that for a given 
amount of annual C inputs to soil, the steady-state 
SOC mass will be lower.

Testing possible modifications of the ICBM/3B 
model
Since the original ICBM calibration [26], the trends 
in SOC stocks have been changing for most treat-
ments. Consequently, it is expected that the 
decomposition rates have changed by adding two 
more decades of data, particularly in the bare-fal-
low treatment used initially for estimating the 
decomposition rate of the old SOC pool (kO), 
assuming a single exponential decaying pool may 
be less appropriate. Indeed, on very long time 
scales, the quality changes of SOC may not be well 
described by a single exponential law because the 
assumed exponential decay rate is slowing down 
over time [33,41]. Increasing the number of pools, 
adding, for example, a very slow or inert pool, can 
mitigate this problem. We also calibrated the 
model by introducing an inert pool to test if we 
needed to update the original model structure 
with only two SOC pools (Y and O) for time scales 
longer than four decades. This is a simple 
approach for increasing model complexity to rep-
resent a broader range of SOC quality. The size of 
the inert pool was treated as a parameter in the 
Bayesian framework.

The long-term experiment at Ultuna is located 
more or less in an urban area, and in order to 
avoid attracting people visiting the site to poach 
corn on the cobs, the maize was seeded late 
(between May 30 and June 23) and harvested rela-
tively early (between September 2 and 29). 
Therefore, the maize at this site did not fully 
exploit the potential growing season. Some of the 
treatment plots are also extremely acidic. 
Consequently, maize yields are relatively low, vary-
ing between 1.9 and 8.4 and averaging 5.5 Mg dry 
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matter ha−1 across all treatments from 2000 to 
2019. Although maize primarily grows in southern 
Swedish regions, national average maize yields 
(2014–2018) usually are slightly higher than 10 Mg 
dry matter ha−1 (www.scb.se/JO0601). Therefore, 
we tested if an intercept in the allometric func-
tions representing a minimal total BG C input 
could be more appropriate for these conditions, 
particularly for maize.

I ¼ 1þ .ð Þ∙c∙ aþ ywð Þ
1

S : Rw 

Where I is the mass of C inputs from roots each 
year, . is the amount of roots exudates as a frac-
tion of root mass, and we set it to 0.65 [6], c is the 
average ratio of C in the total organic mass and 
was assumed between 0.40 and 0.51 with uniform 
prior, yw and S : Rw represents each crop’s yields 
and shoot-to-root ratio, respectively, and a is the 
intercept. Units are in Mg C ha−1. The intercept 
was treated as a parameter in the Bayesian frame-
work (i.e. it is zero in the standard ICBM/3B 
version).

Calibration and initialization of the ICBM/3B 
model

The model was calibrated within a Bayesian frame-
work in JAGS language [42] and ran in R [43]. The 
technique is nowadays broadly adopted, and we 
refer to specific publications for details, such as 
Gelman et al. [44] and Kruschke et al. [45]. Shortly, 
the approach is a stochastic implementation of 
Bayesian statistics, achieved by running a large 
number of simulations with parameter sets 
sampled from their prior probability distributions 
and then updating such distribution based on the 
information from the data. The properties of the 
sampler used (Metropolis-Hastings) are Markovian 
(meaning that each new state is correlated only 
with the former), and this makes it so that the 
mean of each resulting chain (Markov chain Monte 
Carlo, shortly MCMC) converges to the optimal 
calibration. At the same time, the distribution of 
the MCMC represents the updated posterior prob-
ability distribution. Assuming that some distribu-
tions might be skewed, we generally relied on the 
mode rather than the mean (still reporting both) 
for estimating the best prediction. The climatic 
parameter rclim was left outside the Bayesian 
framework and utilized as an external driving vari-
able. We also considered the RD coefficient (0.65) 
outside the Bayesian framework. We chose this 
because any uncertainty related to this parameter, 

being a multiplier of root biomass, will be included 
in the root biomass uncertainty since the two 
terms interact directly.

The initial ICBM calibration [26] was based on a 
sequential approach, where different treatments at 
the Ultuna LTEs were used to infer specific model 
parameters. More specifically, the bare-fallow treat-
ment, not receiving C inputs since the beginning 
of the experiment, was used to determine the 
decay rate of the old SOC pool (k2). This assump-
tion implies that the decomposition of this pool 
was considered independent of C inputs, which 
may be questionable, particularly for some organic 
amendment treatments. In the present study, we 
relaxed this assumption, and instead of a sequen-
tial calibration, we calibrated all parameters simul-
taneously using all the treatments. We recognize 
that eventual modification of the kinetic coeffi-
cients can occur through SOC interactions with C 
inputs (e.g. priming). However, we assume they 
are not important enough to make the process of 
SOC decomposition radically different between 
treatments and that the Bayesian calibration can 
take care of minor modifications of the decay rates 
with its error model. This versatility is one of the 
advantages of the calibration method utilized 
in this study, together with estimating the 
uncertainty.

Model predictions were based on a combination 
of the whole MCMC parameter sets, uniformly 
resampled 5000 times over 25 independent chains. 
The model was running for all these 5000� 25 
sets, and the uncertainty intervals were drawn 
where the maximum and minimum of all these 
runs are present.

We initialized the model by including the pro-
portion between the young and old (Y, O) SOC 
pools, which prior was assumed to be between 
80% and 100% O (and the remaining Y), in the 
Bayesian framework. We assumed a fixed propor-
tion for redistributing the C mass assigned to each 
Y pool (50% to the shoots, 50% to the roots, and 
none to the amendments). This way, the initializa-
tion of the SOC pools could be treated as any 
other parameters and calibrated within the 
Bayesian framework.

Since one of the study’s aims was to calibrate 
the model with more than two decades of new 
data, we conducted the calibration on two differ-
ent time series. The first ended in 1999 (close to 
the original calibration, which ended in 1991), and 
the second ended in 2019. The latter allows us to 
assess the influence of silage maize since the shift 
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from C3 to C4 crops that occurred in the year 
2000.

Estimating model uncertainties: model priors

Initially, ICBM was designed in the beginning of 
the 1990s and aimed to produce a simple yet ver-
satile first-order kinetic model for describing and 
predicting SOC stock changes [26]. While recogniz-
ing that these simple approaches are not explicitly 
accounting for all the mechanisms of SOC forma-
tion and turnover [46,47], they have proven effi-
cient in capturing a large amount of the variance 
in SOC decay [41]. A large part of the model uncer-
tainty is inherent to the structure common to all 
models in the same class (first-order, compartmen-
tal). On top of that, the assumption of a particular 
discretization carries some uncertainty, which we 
could include in the Bayesian framework as a par-
ameter with a more abstract generalization of first- 
order models such as Q [41]. However, model 
structural uncertainty was outside the scope of 
this study, and we focus here only on parameter 
uncertainty given the assumed model structure.

For the model version with a constant inert 
pool, we assumed its priors conservatively as a uni-
form distribution between 0 and 15 Mg SOC ha−1, 
considering that former estimates were between 2 
and 7% of total SOC stocks [33].

Priors for the decomposition rates and  
humification coefficients
In the present study, prior probability distributions 
for ICBM parameters were mainly taken from the 
literature [26,34,48] concerning the mean values, 
but we introduced the uncertainties with different 
approaches for the SOC pool kinetics and the 
humification coefficients. We considered that the 
decomposition of the two SOC pools was relatively 
well known since k1 was estimated from empirical 
values from the literature and k2 was estimated 
from the bare-fallow treatment at Ultuna (see 
Andr�en and K€atterer [26]). We, therefore, utilized 
normal priors for the kinetic coefficients of the Y 
and O pools, with a standard deviation of 5% of 
the initial value.

For the priors regarding the BG humification 
coefficient (hr), we were considering the ratio of 
average contribution of total root-derived C com-
pared to that of AG crop residues (hs) derived from 
studies in LTEs, mostly between 10 to 50 years dur-
ation [11,14,29,30]. Based on these studies, we 
considered that the upper limit of the priors for hr 

was four times higher than that for hs and 
assumed that both had uniform distributions. 
Similarly, since the previous humification coeffi-
cients for amendments (ha) were derived from 
inverse modeling, we also assumed a uniform dis-
tribution with wider priors, varying around ±100% 
of the formerly estimated values [29,30]. Priors for 
green manure and straw were considered the 
same as for shoots and connected with the same 
model parameter. The C content of organic matter 
was assumed between 40% and 51% (Appendix E), 
with uniform prior, contributing to the posteriors’ 
uncertainty estimate.

Priors used for the allometric functions
For the Ultuna calibration site, all AG plant biomass 
is cut at the soil surface and removed from experi-
mental plots, and there is no need to have any pri-
ors concerning harvest index data. Thus, the AG 
crop residues that are not measured consist only of 
very short stubble parts below the soil surface, 
including stem bases, and its prior was estimated 
conservatively as a uniform distribution between 1 
and 8% of total AG biomass. This estimate was 
based on results from an adjacent field trial, where 
BG stem bases accounted for between 2.5 and 
3.8% of shoot biomass at harvest for wheat under 
different experimental treatments [49].

In the present study, we used allometric func-
tions assuming SR ratios relating linearly to crop 
yields, one of the most commonly used 
approaches [6,50], eventually adding a calibrated 
intercept (see “Testing possible modifications of 
the ICBM/3B model” section for an explanation of 
the rationale behind). However, BG estimations are 
possibly the most uncertain element of any SOC 
model. Therefore, we focused on estimating this 
approach’s uncertainty, conditional to the uncer-
tainty in other parameters of the ICBM model. We 
were basing the priors for SR ratios on literature 
studies from Europe and North America evaluating 
SR ratios in field studies at or close to maturity 
and assuming uniform distributions. For small- 
grain cereals, it was based on Bolinder et al. [6,51], 
for maize on Amos and Walters [12] and Bolinder 
et al. [6,14], while priors for root crops were set 
accordingly to Bolinder et al. [52]. Priors for oilseed 
crops were based on the following studies: Ilola 
et al. [53], Barraclough [54], Pietola and Alakukku 
[55], Gan et al. [56], and Williams et al. [57].

We used a fixed proportion for rhizodeposition 
(RD) of 0.65, suggested as an approximation by 
Bolinder et al. [6], meaning that the plants are 

8 L. MENICHETTI ET AL.



delivering RD C to the soil during the growing season 
in an amount equal to 65% of the total root biomass 
(i.e. 0.65 � root biomass measured at or close to 
maturity). This RD consists of root turnover (root hairs 
and fine roots), cell sloughing of epidermal root tis-
sues, and root secretion of soluble low-molecular 
organic compounds (exudates) during the growing 
season. Our coefficient for RD is similar to the average 
value found for maize of 0.56 by Pausch et al. [58]. 
Our approximation of 0.65 more or less also equals 
the mean value (0.66) from the studies on maize 
when considering only the measurements made about 
four months after planting in the review by Amos and 
Walters [12], and it is similar to the value of 0.67 for 
wheat, maize, and soybean estimated at physiological 
maturity by Buyanovsky and Wagner [59].

For the model version with an intercept (a) in 
the allometric functions, we assumed for this inter-
cept a uniform prior between 0 and 5 Mg C ha−1; 
this lies within the range of general estimates for 
total root biomass [60].

Results

Model calibration

The impact of 20 years of new data on the model
The present model calibration differs from the 
approach used in the original calibration in 1997 
[26], and differences are expected even when con-
sidering only the initial time series. These differen-
ces could be due to the calibration approach, 
which relaxes many assumptions made with the 
sequential calibration approach, but also to differ-
ences in the estimations of BG C inputs or the 
updated climatic functions. In particular, the 
decomposition of both the old and the young 
pool are different, with the young pool (k1) decay-
ing slower, and the old pool (k2) decaying faster.

The ICBM mean annual rclim parameter in Ultuna 
showed high inter-annual variation, with values 
ranging from as low as 0.71 to as high as 1.32 
(Figure 3). The inter-annual variation followed the 
same general pattern for all treatments. There 
were minor differences between the treatments in 
the average values of rclim over the whole calibra-
tion period (1956 to 2019), from 1.00 for the 
strawþN reference treatment G (which is by defin-
ition scaled to unity) to the highest value of 1.05 
for the bare-fallow treatment A. The rclim param-
eter tended to be higher when maize was grown 
(2000–2019), with an average value for all treat-
ments of 1.11, compared to 0.97 during the first 
period ending in 1999.

The introduction of new information in the cali-
bration with more than two decades of data 
slowed down k1 compared to the calibration on 
the shorter time series and even more when com-
pared with the original calibration from 1997, and 
in the same way, it sped up k2 (Figure 4). The 
effect of the new data is particularly evident when 
comparing the posterior probability distributions 
of k1 and k2: When calibrating only on the bare fal-
low treatment, the differences between prior and 
posterior probability distributions become not 
noticeable, also because the uncertainty of the 
probability distributions increased greatly.

The model did not seem to require the intro-
duction of an inert pool (Figure 5), which was 
always calibrated close to zero.

The model residuals in Ultuna for the model 
without an inert pool and intercept in the allomet-
ric functions (Figure 6) slightly increased when cali-
brating on the longer time series but with no 
difference in their general pattern.

Model residuals (measured minus predicted val-
ues) were generally well distributed around the 
mean (Appendix C), but the model presented 
some explicit biases toward different treatments, 
which could be related to processes specific to the 
treatments (Figure 6). In particular, the model 
seemed to be overpredicting the calcium nitrate 
treatment C, and most of the amended treatments 
not receiving N inputs (B – control, H – Green 
manure, I – Peat and J – Farmyard manure), except 
for L (Sawdust), which was still pretty close to neu-
tral, while N (SawdustþN fertilizer) were also 
slightly overpredicted. Among the treatments 
without N addition the bare fallow treatment (A) 
and straw (F) were instead undepredicted.

The humification coefficients
The posterior mode values of the humification 
coefficients (Figure 7) for the amendments on the 
time series to 1999 were highest for peat (0.75), 

Figure 3. The ICBM climatic parameter (rclim) in Ultuna.
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Figure 4. The prior and posterior probability distributions of the model parameters representing the kinetics of the two 
pools for the standard ICBM/3B model, calibrated on the time series until 1999 and 2019 and on all the plots or only on 
the bare fallow (BF) plot. Densities are estimated with kernel density estimation, N¼ 3750.

Figure 5. The prior and posterior probability distributions of the intercept ( aÞ and inert pool parameters other than the 
kinetic terms for the ICBM/3B model (modified with intercept and inert, respectively) calibrated both on the time series 
until 1999 and 2019. Densities are estimated with kernel density estimation, N5 3750.

Figure 6. Average residuals of the simulation in Ultuna considering the standard ICBM/3B version, calibrated both on the 
time series until 1999 and 2019.
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followed by that for sewage sludge and manure, 
and lowest for sawdust (0.27). The more recent 
data considering the whole time series to 2019, 
slowed down the humification coefficients slightly. 
The ratio of the humification coefficient for roots 
compared to shoots (i.e. hr/hs) was 2.6 and 4.0 
when calibrating on the time series to 1999 and 
2019, respectively. This difference was due to a 
lower value for hs in 2019 (0.09) than when the 
model was calibrated on the time series ending 
1999 (0.14), whereas hr remained at 0.36 for both 
calibration periods. The posterior mode and mean 
values for all humification coefficients for both 
time series were similar (Table 2).

The simulation of the bare fallow treatment
All the models considered simulated the Ultuna 
bare fallow treatment well, but when calibrating 
only on the bare fallow treatment, the model had 
a more accentuated initial decrease. This pattern 
was true for the standard and the model with an 
inert pool. This different model behavior is mainly 
due to the combination of a different initialization 
and a slower decomposition described by the k2 

parameter (Figure 4), the most important in the 

bare fallow case since it describes the decompos-
ition of the older organic matter. The k2 parameter 

when calibrating only on the bare fallow treatment 
was slower when calibrating until 1999 and when 

calibrating over the whole time series and was 
closer to the original value from 1997 (i.e. 0.0061).

Also in Lanna, although the bare fallow was not 

simulated well due to processes unaccounted for 
(most likely inputs above zero since the 

Figure 7. The prior and posterior probability distributions of the model parameters other than the kinetic terms for the 
standard ICBM/3B model calibrated both on the time series until 1999 and 2019. Densities are estimated with kernel 
density estimation, N¼ 3750.

Table 2. Results from the ICBM/3B calibration at the 
Ultuna long-term field experiment without an inert soil 
organic carbon pool and an intercept for minimal total 
belowground C inputs for maize.

Time series 1956–1999 Time series 1956–2019

Parameter Mode Mean 95% CI Mode Mean 95% CI

k1 (year−1) 0.36 0.37 0.27;0.45 0.26 0.28 0.24;0.31
k2 (�10−3 year−1) 10 9.9 9.2;11.2 9.7 9.5 9.3;11.0
hr 0.36 0.31 0.22;0.37 0.36 0.33 0.34;0.37
hs 0.14 0.13 0.09;0.15 0.09 0.09 0.07;0.1
hFYM 0.31 0.31 0.27;0.34 0.26 0.26 0.24;0.28
hPEAT 0.75 0.75 0.71;0.79 0.66 0.65 0.64;0.68
hSAW 0.27 0.27 0.24;0.31 0.23 0.23 0.21;0.25
hSLU 0.57 0.58 0.51;0.62 0.41 0.41 0.37;0.44
S:R cereals 4.81 4.65 3.7;5.49 4.62 4.70 4.18;5.5
S:R root crops 25.9 30.0 2.5;57.8 43.8 33.4 5.99;57.8
S:R oilseed 1.11 7.11 0.76;15.6 7.29 8.14 1.2;15.7
S:R maize NA NA NA 12.1 14.1 9.64;23.1

Note: CI: lower and upper 95% confidence interval; NA: not applicable; 
FYM: farmyard manure; SAW: sawdust; SLU: sludge; S:R: shoot to 
root.
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measurements record an increase in SOC), the dif-

ferent models had almost no difference in the 

residuals (Figure 8).

The uncertainties of belowground C inputs 
estimation

Unsurprisingly there were strong interactions 
between the terms controlling the C inputs, par-
ticularly BG, and the humification factors. There 
was a relatively thin but elongated space of com-
binations of S:R and hr values for cereals with 
relatively good fitness (Figure 9) and a broader 

range for maize (Figure 10). In both cases, there 
was a relatively vast region of high probability 
density with multiple local optima and little 
difference in the fitness of many different param-
eters’ combinations. This explains the broad pos-
terior distributions of the S:R parameters 
(Figure 7).

Model predictions and validation

The model represented, in general, the measured 
SOC in Ultuna relatively well, with an average 
RMSE of 3 Mg ha−1 when calibrated on the whole 

Figure 8. The model simulation in Lanna, considering only the standard ICBM/3B model on the time series until 1999 and 
2019 (the shaded area represents the uncertainty of the model calibrated until 1999) (panels A, C, E, G, I, J, L, and N) and 
the distributions of the RMSE in Lanna of all the calibrated model versions (panels B, D, F, H, J, K, M and O). The sewage 
sludgeþmetals treatment in Lanna was not considered for validation since it presents conditions that are far from the 
scope of the ICBM model.
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time series and 2.6 Mg ha−1 when calibrated for 
data until 1999. The less extreme treatments, as 
well as the treatments losing C, are represented 
particularly well by the model, while it struggles 
more with the treatments receiving amendments 
that lead to SOC accumulation (Figure 11). The 
residuals were evenly distributed when consider-
ing the whole calibration, but biases were specific 
to each treatment (Figure 6). The last decade pre-
sented a regular bias in many treatments 
(Appendix C).

Interestingly, the inert pool did not seem 
needed regardless of how long the calibration 
time series was, with its probability distribution 
resulting in both calibrations being very small and 
skewed toward zero. The intercept in the allomet-
ric functions seemed helpful to the model only to 
some extent but was still skewed toward zero 
(Figure 5).

When considering the error of model predic-
tions in the independent validation on the Lanna 
site (Figure 8), the intercept improved the model’s 
performance only in the two mineral fertilization 
treatments. The minimal impact of the intercept 
on residuals was even more evident when the 
model was calibrated on the shorter time series.

The standard ICBM/3B model had mixed results 
in Lanna, representing relatively well most treat-
ments but struggling in particular with the bare 
fallow and the sludge treatments (Figure 8).

The four European long-term bare fallow sites 
considered were instead represented all pretty 
well except Kursk (Figure 12), but the initialization 
had to be tuned for Versailles, with a larger initial 

proportion of young material at the start of the 
experiment to represent the land use change 
(from grassland to cropland). There was no appre-
ciable difference between the model calibrations 
on the two time series.

Discussion

Comparing the new model calibration with the 
former version of ICBM

The new model calibration presents some differen-
ces compared to the original model from 1997 
that deserves some discussion. The original calibra-
tion used a stepwise parameterization process to 
derive rclim [26]. Briefly, this was assuming h was 
constant (i.e. hs and hr were the same) and deter-
mined on only four of the treatments at Ultuna (B, 
C, F, and G), where a linear regression against yield 
differences provided the diverse rclim values under 
the assumption that higher plant biomass gives 
higher transpiration and thereby lower soil water 
content and rclim values. The principle used in our 
calibration estimating rclim values based on climatic 
response functions (i.e. rtemp and rwat) was intro-
duced later [27]. Using the climatic response func-
tions showed that the bare-fallow in Ultuna still 
had the highest rclim value among treatments but 
did not provide as high a difference in rclim 

between the treatments as the former approach 
(Table 1 in Andr�en and K€atterer [26]). This is partly 
explained by the fact that all treatments con-
strained our Bayesian calibration and allowed the 
other parameters (k- and h-values and allometric 
functions) to explain the variance between 

Figure 9. The values of cereals shoot:root ratio and the 
humification coefficient for root for each element of the 
MCMC chains (after random resampling) for the standard 
ICBM/3B model calibrated on the time series until 2019 
showing the equifinality between the two parameters.

Figure 10. The values of maize shoot:root ratio and the 
humification coefficient for root for each element of the 
MCMC chains (after random resampling) for the standard 
ICBM/3B model calibrated on the time series until 2019 
showing the equifinality between the two parameters.
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treatments. In particular, a faster decay rate of the 
old SOC pool (k2) compensated the lower rclim 

value compared to the original calibration was 
compensated. The slightly lower rclim value for 
maize compared to other crops is mainly due to 
the shading of the maize plants.

Estimating the climatic parameter with climatic 
response functions has the advantage that this 
approach is more easily generalizable. For 
example, applied to more contrasting climatic con-
ditions, such as the eight agricultural regions 
within the Swedish national inventory reporting 
system [40], it provided rclim values ranging from 
0.67 in the north to 1.30 in southern Sweden. 

Similarly, the approach has also helped describe 
climate’s influence on SOC decomposition at much 
broader scales [35,61], and the approach can be 
easily tuned to these broader ranges.

Another issue to consider is the equifinality that 
this class of models (first-order SOC models, driven 
by C inputs) presents [19,62]. The optima for the 
related parameters are, therefore, not well con-
strained. Because of that, slight differences in 
methods or assumptions can shift the optimal cali-
bration values. The calibration approach adopted 
in the present study differs from the former ver-
sion since it does not consider optima for single 
treatments to constrain parameters in sequence. 

Figure 11. The model simulation in Ultuna considering all three model versions (all calibrated on the time series until 2019).

14 L. MENICHETTI ET AL.



Instead, in the current calibration approach, since 
all parameters are calibrated simultaneously on all 
treatments, the parameter values will represent 
optima between all the data points. With the for-
mer sequential approach, the SOC dynamics in the 
bare fallow treatment was assumed to be the most 
reasonable approximation of the old SOC kinetic 
coefficient, which was then used to define k2 in all 
the other treatments (thus making one more 
assumption and reducing the amount of possible 
optimal parameter sets). The overall optima for the 
SOC decomposition rates could differ from the 
bare fallow optimum for several reasons, including 
substrate interactions such as priming effects), 
differences in microbial community composition, 
or effects of soil structure on biogeochemical 
processes.

Testing modifications of the ICBM/3B model

When considering the residuals of the three model 
versions, the only appreciable differences when 
introducing an intercept in the allometric functions 
occurred for the mineral fertilizer-only treatments 

(Figure 11). The addition of an inert pool seemed 
to make very little difference in all treatments, con-
firmed by the small size of the calibrations 
assigned to the inert pool (Figure 5). Besides, 
guessing the size of the “inert” pool is difficult 
since it represents a coarse approximation as a 
concept [41] and is connected to the slower 
cycling part of SOC, which is likely dependent on 
local edaphic factors [63,64].

The standard ICBM/3B model, similar to the ori-
ginal ICBM, performed relatively well in Lanna con-
cerning most treatments but failed to represent 
the high C input extremes (Figure 8). In particular, 
the model struggled to represent sludges and, to a 
lesser extent, compost. The model assumes that all 
amendments have the same kinetic coefficient (i.e. 
k1), which remains a simplification. Furthermore, 
concerning sludge, its properties depend on the 
process used in the sewage treatment plants, 
which can be variable over time and from one 
plant to another, depending on the technical solu-
tions adopted. In the lowest C inputs extreme (i.e. 
bare fallow), it is possible that the experiment at 
Lanna had C inputs from weeds since weeding was 

Figure 12. The simulations from the standard ICBM/3B model, calibrated on the time series until 1999 and 2019, on four 
long-term bare fallow experiments in Europe [ 33]. Please notice for Versailles an additional simulation with a different 
initialization ratio (0.8) other than the one resulting from the calibration (0.952).
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mechanical, contrary to the Ultuna bare-fallow plots, 
where weeding is done by hand and more frequently.

Testing the model representation for the decay 
of the old SOC pool

Despite the model’s k2 being optimized on all 
treatments rather than just on the Ultuna bare- 
fallow as in the 1997 model version, the model 
performed well (Figure 12) in other long-term 
bare-fallow experiments [33]. The model’s excellent 
performance in these experiments is not extremely 
surprising since the kinetics of old organic matter 
depends mainly on time, temperature, and mois-
ture and very little on other edaphic factors 
[41,65]. Nevertheless, it represents a good valid-
ation of the general robustness of the kinetic coef-
ficient of the old pool. In the absence of C inputs, 
the young pool rapidly more or less disappears, 
and the model becomes quickly equivalent to a 
one-compartment model represented by the old 
pool. Consequently, given the broad climatic gradi-
ent of the bare-fallow experiments, it is also a 
good validation of the climatic module since rclim 

is the only driver under such conditions. The 
model worked well for Grignon and Askov, while it 
struggled more for Versailles and Kursk. The Kursk 
site is a chernozem, a particularly rich soil where 
local processes have accumulated organic matter. 
These processes are probably not fully captured by 
our model. The site at Versaille is older than the 
other sites and has a different history. This site was 
a former grassland [33], and the higher biomass 
productivity or at least root C inputs of this ecosys-
tem, compared to cropland, seems to have influ-
enced the quality of the initial SOC [41]. When we 
tuned the model with an 80% initial size of the old 
pool (and therefore a 20% young pool), compared 
with the 98% old pool assumed by default in the 
other sites (i.e. set to the same initial proportion 
than Ultuna), the model represented the site in 
Versailles closely. This suggests that the only dis-
crepancy of the Versailles site is not in the decom-
position rate of the old pool but probably in the 
higher amount of young material at the beginning 
of the experiment, which can be represented by 
site-specific model starting conditions.

Model uncertainty

Model predictions residuals
Despite a relatively high uncertainty of model 
parameters (Figure 4, Figure 7), model prediction 
boundaries were well constrained (Figure 8, 

Figure 11). Such relatively narrow predictions’ 
uncertainty suggests that the model structure 
makes it robust and suitable for describing the 
SOC balance even if parameters are not precisely 
known since predictions are relatively insensitive 
to parameter uncertainty.

Most of the treatments not receiving N were 
overpredicted except for sawdust, calcium nitrate 
and bare fallow. All other underpredicted treat-
ments receive some form of quickly available N. 
This pattern might be related to N-related proc-
esses but not to the C/N ratio (which does not cor-
relate with the model residual). More likely, a more 
readily available N form might slightly slow down 
the SOC decomposition in a way not considered 
by the model by interacting with the soil micro-
biota. This effect is clear and well known for 
N-limited environments such as forests [66], and it 
is mentioned in the literature for agricultural sys-
tems, although less clear [67]. The introduction of 
maize seemed to increase the difficulties for the 
model, probably because of additional processes 
not captured by it, for example the already men-
tioned possible shading effect, or other similar 
effect on the micrometeorology of the plots, or 
effects related with inputs estimation (maize inputs 
are estimated lower than previous crops).

While in temperate agricultural systems [68] the 
C:N ratio seems to drive decomposition with no 
effect of N fertilizers, N addition plays a more 
important role in determining SOC decomposition 
in poorer systems [69]. In our case, long-term treat-
ments without additional N added might have little 
bioavailable N compared with more conventional 
agricultural treatments and present some N limita-
tions. Regarding the absolute error, the model 
struggled with treatments receiving amendments 
where the material is already partially decomposed 
and can present some very specific chemical quality, 
such as peat. The model considers the specificities 
of these amendments with different humification 
coefficients, but the amendments might also lead 
to differences in the chemistry of the remaining 
SOC (conceptualized by the O pool), which may 
explain the error.

Model equifinality and belowground C inputs
The strong interactions between the mass of C 
inputs and SOC decomposition are well recognized 
for this particular class of SOC model [3,19,70,71]. 
Decomposition rates are uncertain due to limita-
tions in the measurement techniques on the rele-
vant time scales. These results also confirm the 
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high uncertainty in the estimation of C inputs, in 
particular due to the limitations when measuring 
BG biomass and fluxes, which constitutes a major 
limitation in SOC modelling [4]. These uncertainties 
affect all SOC models and are a reason to keep the 
model as simple as possible since a more detailed 
model (with more pools) would face the same 
problem but only distribute the uncertainty among 
more parameters.

The equifinality caused by the interactions 
between the BG C input estimates and the kinetics 
of both SOC pools make the humification coeffi-
cient of roots and the SR ratios uncertain. The 
broad spread of the various chains in the trace-
plots of the relative parameter (Appendix D) also 
seem to be a consequence of such equifinality, 
which becomes visible when plotting the values of 
the cereals’ SR ratio and the hr coefficient for each 
element of the MCMC chains (Figure 9 and Figure 
10). This interaction is particularly important for 
small-grain cereals and maize, the dominant crops 
in the time series at Ultuna, representing 53 and 
39%, respectively.

The mode of posteriors for the humification 
coefficients for crop residues at Ultuna (Figure 7
and Table 2) were within the range of those esti-
mated in LTEs involving mostly small-grain cereals 
and maize, with values between 0.08 to 0.20 and 
0.14 to 0.44 for AG and BG crop residues, respect-
ively [10,29,30,72–75]. The ratio we obtained for 
the humification coefficient for roots compared to 
shoots (i.e. hr/hs) was also within the range of pre-
viously estimated values (i.e. 1.3 to 3.7) obtained in 
LTEs and reviews [11,14,23,29,30]. Compared to 
similar studies using the RothC [24] and AMG [25] 
models, our calibration highlights the usefulness of 
attributing a higher C contribution of root C to the 
old SOC pool also in the ICBM model. For the 
organic amendments, humification coefficients 
were similar to those calculated earlier by K€atterer 
et al. [29] using a first-order kinetics approach and 
linear approximation. For manure, hFYM calculated 
on the time series ending 1999 is almost identical 
to that used in the H�enin and Dupuis [20] model 
(i.e. 0.30), whereas hFYM derived using the whole 
time series is similar to the average value (i.e. 0.26) 
in a recent review on data from Canadian 
LTEs [76].

The mode of posterior SR ratios for the domin-
ant crops, small-grain cereals and maize, were 4.8 
and 4.6 for small-grain cereals when calibrated on 
the time series up to 1999 and 2019, respectively, 
and 12.1 for maize (Figure 7 and Table 2). This is 

close to the average SR ratio that was found for 
small-grain cereals (i.e. 5.6) in a review study on 
Scandinavian data [77]. The relatively high SR ratio 
for maize is probably because its mean growth 
period at this site (see “The climatic functions” sec-
tion) was only 95 ± 10 days, whereas the potential 
growing season in the area is about 140 days. 
However, the SR ratio from our calibration is simi-
lar to that reviewed for maize by Amos and 
Walters [12], where SR ratios were between 11.1 
and 14.5 for the measurements made 73 to 
105 days after planting. Other recent studies on 
varieties used in Europe are also reporting SR 
ratios for maize well above 10.0 [13,78].

The impact of almost three decades of data on 
the calibration
The modifications in the two kinetic coefficients 
caused by two more decades of data align with 
the expectations since decomposition naturally 
slows down with time. Since the decomposition, 
initially well approximated by a single exponential 
decaying pool [33], departs from such simple 
decomposition kinetics the more time passes, and 
in theory, the longer the time scale, the more 
pools would be useful. Although there is no real 
“inert” material in the soil [41], the decay tends to 
slow down over time more than what is described 
by a single exponential law because the SOC qual-
ity changes gradually over time toward more recal-
citrant material. This slowing down in the 
decomposition of the old SOC pool is why we 
introduced in this calibration the possibility of 
explaining part of the variance with a constant 
inert pool, a relatively simple modification that 
would allow the model to better represent this 
decrease in decomposition over time. However, 
this inert pool was not particularly crucial (Figure 
8), suggesting that a two-pool model can still cap-
ture most of the variance of SOC over time, even 
approaching the scale of a century. Residuals also 
were not particularly high, although they did 
increase from an RMSE of 2.6 to 3.0 Mg ha−1. 
Adding the last decades of data shifted the opti-
mum toward reduced humification coefficients 
and slightly faster old pool decomposition follow-
ing the slightly diminished C inputs from maize 
(Appendix F). Specifically, the average root C 
inputs, representing the largest organic contribu-
tion other than amendments, evolved from an 
average of roughly 0.6 to 0.32 Mg C ha−1 y−1.

The regular bias present in many of the treat-
ments for the points of the last decade (Appendix 
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C) might also be related to some other effect 
connected with maize. For example, since the 
experimental plots are adjacent and relatively 
small, in some treatments, plants might be shaded 
by the plants in another (maize grows much taller 
than all other crops previously grown in the 
experiment) in a more favorable position in the 
randomized block design.

When calibrating the model only on the bare-fal-
low treatments, the effect of the last two decades 
of data becomes clear (Figure 4). The term k1 is 
mostly not constrained by the data from the bare- 
fallow treatment since, with no inputs, the young 
material disappears quickly from the system, but 
the term k2 is definitely affected by the new data. 
It is not surprising that the decomposition of SOC 
in the bare-fallow seems to slow down. Still, given 
how well the standard ICBM/3B model calibrated 
on all treatments performed on all long-term bare- 
fallow experiments, this effect is small.

Description of the material attached to the 
study

We included as Supplementary Material:

1. The updated functions for calculating the cli-
matic scaling are downloadable at https:// 
github.com/ilmenichetti/reclim and possible 
to install in R through the package devtools.

2. A table describing all the applications of ICBM 
in the literature that we are aware of, with 
references

Conclusions

The ICBM model was calibrated with new data and 
considering a new structure (ICBM/3B), which 
allowed us to test if the model assumptions still 
hold on a longer time scale than the original 
model calibration. The assumptions still hold; in 
particular, the model does not need to consider 
more than two pools to represent the observed 
changes in SOC stocks. Introducing an intercept in 
the allometric functions was also not useful.

The model was calibrated with a multi-objective 
Bayesian approach, resulting in slightly different 
kinetic coefficients than the former sequential 
calibration approach, with a slightly faster decom-
position for the old pool that nevertheless seems 
realistic. In particular, the calibration made evident 
the strong equifinality of the model due to the 
interactions between the decomposition of SOC 
and uncertain C inputs, which is common for 

compartmental SOC models. The lack of precise 
knowledge about BG C inputs is confirmed as the 
highest uncertainty for this class of SOC models. At 
the same time, the calibration pointed out the 
relative robustness of model predictions to model 
equifinality and uncertainty of BG C input 
estimates.

Keeping the model as simple as possible seems 
an effective way to deal with such equifinality 
since added complexity would only increase it 
without substantially increasing the model 
performance.

The ICBM model is one of the simplest compart-
mental SOC models available, and, nevertheless, it 
captures most of the SOC variance over time, mak-
ing it useful for applied studies involving SOC 
decomposition. This simplicity is one of the main 
assets of the model. There is still a need to evalu-
ate model performance with new experimental 
results and measurements of SOC dynamics. In 
particular, future work will focus on a refined 
regional multi-site calibration using data from 
other LTEs to test further and improve the general-
izability of modeling results.
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Appendix A
The model has been adapted from K€atterer and Andr�en 
[34]. In order to have a climatic parameter rclim variable over 
time, we started from the step version of the ICBM models.

The initial model:

Ytþ1 ¼ Yt þ Itð Þ∙e−ky∙rt 

Otþi ¼ Ot − h
ky∙ Yt þ Itð Þ

ko − ky

 !

∙e−ko∙rt þ h
ky∙ Yt þ Itð Þ

ko − ky
∙e−ky∙rt 

For simplicity, we substitute with one single term for 
the flux between the pools:

u ¼ h
ky∙ Yt þ Itð Þ

ko − ky 

Obtaining a more compact writing:

Otþi ¼ Ot − uð Þ∙e−ko∙rt þ u∙e−ky∙rt 

To consider the three input classes, we now introduce 
three Young pools with three humifications (but with 
the same kinetic ky), R (Roots), S (Shoots), and M 
(Manure):

YR
tþ1 ¼ YR

t þ IR
t

� �
∙e−ky∙rt 

YS
tþ1 ¼ YS

t þ IS
t

� �
∙e−ky∙rt 

YM
tþ1 ¼ YM

t þ IM
t

� �
∙e−ky∙rt 

We therefore have also three fluxes:

uR ¼ hR∙
ky∙ YR

t þ IRt

� �

ko − ky 

uS ¼ hs∙
ky∙ YS

t þ ISt

� �

ko − ky 

uM ¼ hM∙
ky∙ YM

t þ IMt

� �

ko − ky 

Which all end up in the Old pool:

Otþi ¼ Ot − uR − uS − uM
� �

∙e−ko∙Rt

þ uR þ uS þ uM
� �

∙e−ky∙Rt 

The total SOC is given by the sum of the Old and 
Young pools:

SOCt ¼ Ot þ Yt 

To which we can add a constant Inert pool (G):

SOCt ¼ Ot þ Yt þ G 
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Appendix B
A diagram of the information flow in the climatic module.   
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Appendix C

All the residuals of the two calibrations. Empty points represent the calibration until 1999, and solid fill points until 2019.
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Appendix D
The traceplots of the MCMCs of selected parameters.  

Appendix E
The prior and posterior probability distribution of the C content of organic matter.  
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Appendix F
The C inputs from roots estimated by the Bayesian calibration.
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