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Abstract
Whitefly (Aleurotrachelus socialis Bondar) is a major pest causing significant eco-

nomic losses in cassava production systems in North South America. It diminishes

cassava’s photosynthesis by colonizing leaves, directly feeding on phloem sap, or

excreting substances that foster sooty mold growth, reducing the photosynthetic area.

The most effective pest management approach is deploying natural resistance in the

crop. Identifying germplasm with superior whitefly-resistance (WFR) through phe-

notypic evaluation distinguishing it from whitefly-susceptible responses requires an

accurate, high-throughput, quantitative phenotyping method. We developed Nymph-

star, an image-based phenotyping tool, as an ImageJ plugin, quantifying third- and

fourth-instar nymphs and their leaf area they occupy through red, green, and blue

color space analysis. Using Nymphstar, we tested 19 cassava genotypes and classified

their resistance to A. socialis. The plugin proved efficient, completing the analysis

in 25.56 min on average for the entire dataset. In contrast, manual counting for the

same set of images took 425.23 min on average averaging around 6.29 min/image.

Nymphstar was ∼17 times faster showcasing its efficiency. To assess WFR in cas-

sava germplasm, we conducted a full-bench caging free-choice assay. This approach

enhanced whitefly colonization on each cassava genotype, providing an accurate rep-

resentation of resistance/susceptible while reducing operator bias. Nymphstar is a

rapid, precise tool for automated nymphs counting and leaf area quantification. It

facilitates the large-scale assessment of cassava resistance to whitefly, eliminating

bias associated with field assessment and manual counting.
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1 INTRODUCTION

Cassava (Manihot esculenta Crantz) is a basic staple food for

over 800 million people (FAO, 2019). Known for its adapt-

ability to adverse climatic conditions and harsh soil, cassava

thrives where most other crops struggle (El-Sharkawy, 2004;

Raphael, 2008). This resilience makes cassava a vital contrib-

utor to food security and a promising candidate for climate

change adaptation in tropical areas (Burns et al., 2010; Jarvis

et al., 2012).

However, cassava production faces significant challenges

due to various pests and diseases, with cassava white-

flies (Hemiptera: Aleyrodidae) being particularly problematic

across the Neotropics, Africa, and parts of Asia. These white-

flies not only act as vectors but also directly damage cassava

by feeding on its phloem, causing chlorosis and premature

leave drop (Herrera-Campo et al., 2011). Moreover, white-

fly excretes sticky, sugary substances on foliage, fostering the

growth of sooty mold fungi (Nelson, 2008).

The Americas exhibit the highest diversity of cassava

whiteflies, with 11 reported species (Ovalle et al., 2014;

Vásquez-Ordóñez et al., 2015). In South America, Aleurotra-
chelus socialis Bondar stands out as a major whitefly species

that can cause significant yield losses when unchecked (Bel-

lotti et al., 2012). Fortunately, resistance to A. socialis has

been identified in several cassava genotypes (Bellotti & Arias,

2001; Parsa et al., 2015).

Resistance to insect attack in plants, stemming from a co-

evolutionary process, is vital for their survival (Berlinger,

2008). However, the introduction of novel un-adapted, exotic

germplasm can compromise plant defense mechanisms. This

can lead to genetic uniformity and increased vulnerability to

new pests and diseases, as seen with cassava introduction

to Africa over five centuries ago (Jones, 1957). In Africa,

endemic organisms like Bemisia tabaci and the African

cassava mosaic virus have adapted, posing new threats to

cassava (Herren, 1994; Maruthi et al., 2019; Omongo et al.,

2012). After years of research, scientists are concluding that

increases in B. tabaci population abundance play a key role

not only in the yield losses caused by physical damage but

also in the incidence and spread of both Begomoviruses (cas-

sava mosaic disease [CMD] and Ipomoviruses [cassava brown

streak disease [CBSD]) in this region (Macfadyen et al., 2018;

Milenovic et al., 2019).

Whitefly population control is essential for managing viral

diseases and preventing yield losses. Achieving this involves

monitoring cassava-growing regions to detect infestation pat-

terns, enabling the deployment of integrated pest management

measures. Additionally, the screening of novel germplasm can

reveal new sources of whitefly resistance (WFR) for crop

improvement. However, both of these processes often rely on

manual counting which is labor-intensive, time-consuming,

Core Ideas
∙ Investigating whitefly resistance in Latin Ameri-

can cassava germplasm involves a comprehensive

characterization searching into the genetic fac-

tors influencing resistance to better understand the

plant’s natural defenses against this pervasive pest.

∙ Employing high-throughput methods for assess-

ing whitefly resistance responses allows for effi-

cient and rapid data collection, enabling a more

thorough analysis of cassava germplasm and its

potential sources of the resistance traits.

∙ Streamlining the identification and selection of

whitefly-resistant cassava varieties within breed-

ing programs is crucial for developing resilient

crops. By accelerating the breeding process, we

can enhance food security and reduce the impact

of whitefly infestations on cassava yields.

∙ Harnessing the power of machine learning in

phenotyping plant-pest responses enhances the

precision and speed of data analysis. Integrat-

ing advanced algorithms enables us to uncover

complex patterns in cassava’s interaction with

whiteflies, providing a better understanding of cas-

sava’s defense mechanisms and facilitating more

informed decisions in breeding programs and

contributing to sustainable agriculture practices.

and prone to errors, making it unsuitable for large-scale field

monitoring or breeding programs (Bellotti & Arias, 2001;

Sseruwagi et al., 2004).

Recent advancements in digital and electronic imaging

have introduced image analysis and machine learning process-

ing methods for pest monitoring and phenotyping resistance

to insects (Bereciartua-Pérez et al., 2022; Berger et al., 2012;

Mundada & Gohokar, 2013). These technologies enable the

development of early detection systems based on image or

video analysis, effectively counting and identifying various

pests (Bechar & Moisan, 2010; Bereciartua-Pérez et al., 2023;

Cho et al., 2008; Mundada & Gohokar, 2013; Zayas et al.,

1989) and estimating the damage (Bhadane et al., 2013).

However, there is a need for image-based identification meth-

ods specific to whitefly nymphs, which offer a more precise

assessment of the damage caused by whitefly activity on cas-

sava plants (Baldin & Beneduzzi, 2010; Sulystio & Inayati,

2016).

Efforts have been made to develop image-based counting

methods for whitefly nymph stages. This method leverages

digital image processing and artificial intelligence techniques
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to enhance the precision of nymph identification (Barbedo,

2014). For instance, a density map-based algorithm has been

developed to count B. tabaci nymphs in leaf disks, providing

a user-friendly tool for field technicians (Bereciartua-Perez

et al., 2022, 2023).

In conclusion, cassava plays a pivotal role in tropical

regions as a staple food, but it faces challenges from pests

such as cassava whiteflies. To combat these threats, efficient

and accurate monitoring methods are essential. Traditional

manual counting methods are laborious and prone to errors,

necessitating the adoption of digital imaging and machine

learning technologies. These innovative approaches offer the

potential to streamline monitoring efforts and enhance our

ability to assess varietal resistance, ultimately contributing to

cassava’s resilience and food security in tropical regions.

2 MATERIALS AND METHODS

2.1 Mass rearing of A. socialis colony

The process for mass rearing of A. socialis comprises three

phases. First, field production of standard cassava plant mate-

rial (genotype COL1468) is carried out to obtain a regular

supply of seed stakes for host plantlet propagation. Second,

screen house host plantlet production (COL1468) is done

for controlled glasshouse infestations. Finally, massive adult

whitefly production was achieved through a mass-rearing

approach using the permanent A. socialis colony glasshouse at

the International Center for Tropical Agriculture (CIAT). The

method described here facilitates the production of an aver-

age of 7600 whitefly adults per plant, by adapting previous

cassava whitefly studies (Bellotti & Arias, 2001).

In the field production of seed stakes, 300 stakes of the

genotype COL1468 were vertically planted every 3 months,

with a separation of 1 m between plants and rows. The opti-

mal length of each seed stake was ∼20 cm or 5 axillary buds.

The plants were fertilized 1 month after planting with N:P:K

(15:15:15), and micronutrients were supplemented during the

rest of the growing cycle as needed (such as iron and zinc).

Pests and diseases were controlled with pesticides, but pesti-

cide use was immediately interrupted 7 months after planting

to avoid any effect on whitefly colony development.

In the growing of host plantlets in the screen house, we

collected 100 seed stakes (aged 8–10 months) from the field

on a weekly basis. The seed stakes were then planted in 2-

L pots containing sterile substrate (1:3 sand to black soil;

no clay topsoil) and maintained in a whitefly-free screen

house for 6 weeks (Figure 1A). Fertilization was applied

15 days after planting with N:P: K (15:15:15) and watered

when needed. Pests were manually controlled with continu-

ous monitoring. We avoided using agrochemicals for mites,

thrips, and other organisms at this stage, as traces of pes-

ticides could significantly affect whitefly development and

population reproduction fitness.

In the whitefly colony phase, the A. socialis colony was

permanently maintained in a glasshouse with a daily aver-

age temperature of 27.5 ± 0.1˚C and relative humidity of

66 ± 0.3% (mean ± SEM). The glasshouse was separated

into two spaces: the infestation chamber and the devel-

opment chamber. In the infestation chamber, two groups

of plants were permanently kept: infested COL1468 plants

with fourth-instar nymphs and COL1468 plants for oviposi-

tion. Two times each week, 30 six-week-old COL1468 host

plantlets were moved from the screen house into the infesta-

tion chamber, where whiteflies were allowed to oviposit for

72–96 h (Figure 1B). Then, another group of 30 six-week-

old COL1468 host plantlets was introduced to the infestation

chamber, and the previously infested group of plants was

shaken to remove the adults. The group of adult-free plants

infested with eggs was then transferred to the develop-

ment chamber (Figure 1C). Overall, this method allows

the production of large quantities of A. socialis adults to

ensure good infestation pressure in a controlled and efficient

manner.

Once the A. socialis nymphs reach the fourth-instar stage in

the development chamber, which occurs ∼30 days after infes-

tation (Figure 1D), we carefully spray water on each leaf of the

plants. This helps to remove exuviae, honeydew, sooty mold,

and most of the white wax that this species produces in their

immature stages. This procedure does not disturb the nymph

development cycle, and it allows us to inspect each leaf for

opportunistic undesirable pests, which can then be manually

removed just before the plants are placed into the infestation

chamber where whitefly adults will emerge. As adult white-

flies prefer the youngest leaves, we cut the shoot apices of the

plants with fourth-instar nymphs to encourage the oviposition

on the new, uninfected plants (Figure 1E,F).

2.2 Phenotypic assay to measure cassava
defense responses against whitefly infestation

We developed an easy-to-use and robust assay for whitefly

infestation to evaluate cassava’s defense responses (resistance

vs. susceptible). We designed a free-choice experiment that

could be performed under practical glasshouse-based con-

ditions. We refer to this experiment as a glasshouse WFR

assay.

We evaluated two full-sib cassava families (240 and 198

individuals) that were segregated for whitefly resistance in

eight infestation trials. We conducted 176 replications across

four years (2013, 2016, 2017, and 2018). We included 19 cas-

sava genotypes, of which 10 genotypes had a known resistance

response to A. socialis infestation based on previous studies

(Parsa et al., 2015). The other nine genotypes were selected
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4 of 16 BOHORQUEZ-CHAUX ET AL.

F I G U R E 1 Graphical representation of A. socialis mass rearing including the field production of COL1468 seed-stakes. (A) Genotype

COL1468 stakes planted in 2-L pots containing sterile substrate, (B) COL1468 plants at the infestation chamber with whitefly adults, (C) infested

COL1468 in the development chamber, (D) A. socialis life cycle on COL1468, (E) shoot apices cut to force adult whiteflies to oviposit on new

un-infested plants to start a new infestation cycle, and (F) plants are introduced into the infestation chamber, where new-born adults emerge.

for traits of economic importance to the CIAT cassava pro-

gram stakeholders, although their resistant response to high

whitefly infestation levels was unknown (Table 1). We used

the data gathered from these 19 M. esculenta to validate the

effectiveness of the standardized WFR glasshouse assay using

high levels of whitefly infestation (Supporting Information 1).

To produce clean cassava planting material, we re-

propagated 8-week-old in vitro plantlets of the genotypes

listed in Table 1 at CIATťs cassava program tissue culture

lab. Once these materials showed four expanded leaves, we

transferred them to a screen house for tissue hardening in soil,

where they were transplanted into black plastic bags (10 cm

W × 15 cm H) filled with sterile soil substrate (1:2 sand: black

soil).

Approximately 2 months after soil transfer, we moved the

cassava plantlets displaying at least new five fully expanded

leaves to the phenotyping infestation glasshouse to conduct

the WFR assay. We placed the plants on a table (18 m L ×
3 m W), with each plant separated by 20 cm, on an experi-

mental table with a total capacity of 100 plants (Figure 2B).

For each replicate, we placed one COL1468 plantlet produced

in the second phase of the mass-rearing process as an infesta-

tion control. We covered each table with a large white mesh

tent (18 m L × 3 m W × 3 m H) to confine the whitefly adults

after infestation (Figure 2E).

Before the whitefly infestation, we identified and marked

the leaves preferred by A. socialis adults as Leaf-1 and Leaf-

2. Leaf-1 corresponded to the youngest expanding leaf and

Leaf-2 to the next fully expanded leaf (Figure 2C,D). We

marked the stem with a permanent ink marker below Leaf-2

to monitor the position of this leaf at the time of the eval-

uation when whiteflies reached the fourth-instar stage. Six

COL1468 plantlets that were kept in the infestation chamber

of the whitefly colony glasshouse for 72–96 h (Figure 2A)

are transferred using a cage to the phenotyping infestation

glasshouse to avoid the scape of perched adults. Once there,

these plants are introduced into the mesh tent and shaken

above the experimental plants, releasing ∼22,000 adults

(Figure 2B).

Seven days after infestation, we moved the plants to another

screen house to facilitate the development of immature white-

flies while also avoiding unwanted infestations by other pests.

At 40 days post-infestation, when most nymphs had reached

the fourth instar, we marked Leaf-2 on the upper side of the
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T A B L E 1 List of the cassava genotype checks used in bioassays of resistance to whitefly A. socialis carried out during 2013–2018. The table

includes information on the whitefly responses and other biotic stress responses, author references, and the type of variety and origin.

Genotype
Whitefly response and other biotic
stress responses Author reference Type of variety, origin

COL1468 WFS is the host for A. socialis mass

rearing

Bellotti and Arias (2001) Landrace, Colombia

COL2182 WF response unknown, CBSD

resistant

Sheat et al. (2019) Landrace, Colombia

COL2246 WFS is parental of segregant family Parsa et al. (2015) Landrace, Colombia

ECU19 WF response unknown, CBSD

resistant

Sheat et al. (2019) Landrace, Ecuador

ECU41 WF response unknown, CBSD

resistant

Sheat et al. (2019) Landrace, Ecuador

ECU72 WFR is parental of segregant family Bellotti and Arias (2001) Landrace, Ecuador

ECU183 WFS Parsa et al. (2015) Landrace, Ecuador

PAR41 WF response unknown, CBSD

resistant

Sheat et al. (2019) Landrace, Paraguay

PER183 WFS Parsa et al. (2015) Landrace, Peru

PER226 WF response unknown, CBSD

resistant

Sheat et al. (2019) Landrace, Peru

PER317 WFR Parsa et al. (2015) Landrace, Peru

PER335 WFR Parsa et al. (2015) Landrace, Peru

PER368 WFR Parsa et al. (2015) Landrace, Peru

PER415 WFR Parsa et al. (2015) Landrace, Peru

PER556 WF response unknown, CBSD

resistant

Sheat et al. (2019) Landrace, Peru

PER597 WF response unknown, CBSD

resistant

Sheat et al. (2019) Landrace, Peru

PER608 WFR Parsa et al. (2015) Landrace, Peru

TMS60444 WFS, parental of segregant family Irigoyen et al. (2020) African improved variety

TME3 WF response unknown, CMD

resistant

Akano et al. (2002) African improved variety

Abbreviations: CBSD, cassava brown streak disease; CMD, cassava mosaic disease; WFR, resistant to whitefly; WFS, susceptible to whitefly.

petiole with a permanent ink marker for easy recognition dur-

ing image capturing. We water-sprayed Leaf-1 and Leaf-2

according to the whitefly colony methodology (Figure 2F).

We collected clean infested leaves, placed them outspread

between two reusable paper towels, and stored them in a plas-

tic box containing all these paper towels on top of each other at

4˚C until the image could be captured. This method allowed

us to store the leaves for several weeks until the image was

captured.

2.3 Image acquisition to develop the
Nymphstar plugin

We developed a new tool called Nymphstar, which uses

image-based nymph counts to assess whitefly infestation lev-

els in planta. To ensure high-quality images for accurate data

analysis, we pre-treated the leaves with 50% ethanol to remove

any unwanted residues such as white wax and honeydew that

could introduce noise into the analysis. This process increases

the contrast between the black color of the third- and fourth-

instar nymphs of A. socialis, and the green color of the leaves

(Figure 3 (1A, 1B, and 1C)).

To capture the images, we placed each leaf into the ORTech

Photo-e-Box Bio using a piece of black fabric as a back-

ground to increase the contrast and ensure even lighting of

the leaf. We used a Nikon D300s with an AF-S DX Micro-

NIKKOR 40 mm f/2.8G lens fixed onto a Copy-Stand (Kaiser

Reproduction Stand RS1/RA1 5510) at 70 cm from the black

background (Figure 3 (3)). For large leaves that exceeded the

visual field, we divided them into two or three pieces [Figure 3

(2)]. We used the Nikon Control Pro 2 software to standardize

the image-capture settings in the red, green, and blue (RGB)

color model with a resolution of 4228× 2848 pixels and stored

them in JPG format.

With the Nymphstar tool, we can reduce labor and accel-

erate the data acquisition necessary for whitefly infestation

assessments in cassava plants. By pre-treating the leaves
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6 of 16 BOHORQUEZ-CHAUX ET AL.

F I G U R E 2 Graphical representation of phenotyping glasshouse-based assay. The COL1468 plants, which serve as the primary material for

rearing large numbers of whiteflies, are transferred from the mass-rearing glasshouse into the infestation glasshouse prior to the emergence of adult

whiteflies. Once the adults emerge, the COL1468 plants are gently shaken above the experimental plants to encourage the adults to select a new host

within the experimental lines. (A and B) The stem marked with a permanent ink marker under the oldest leaf (Leaf-2) next to the youngest one with

at least one lobe completely opened (Leaf-1) (C and D), the experimental cassava plants covered with a large white mesh tent (E), and harvesting at

38–40 days post-infestation of Leaf-1 and Leaf-2, marked on the day of infestation, of all the genotypes under study (F).

and optimizing the image-capture process, we can obtain

high-quality images for accurate nymph count analysis.

2.4 Nymphstar: Image analysis for nymphs
counting and nymphs density estimation

We developed a Java-based image analysis application,

Nymphstar, which functions as a plugin for the ImageJ soft-

ware (National Institute of Health, USA). Nymphstar was

created to analyze leaf images and count whitefly nymphs, as

well as estimate nymphs density. The development of Nymph-

star involved three main steps: (1) pre-processing, which

includes performing operations on the images to suppress

undesired objects that distort the nymphs detection; (2) pro-

cessing, which involves the application of different methods

to extract the desired information from the image; and (3)

post-processing, which involves analyzing the nymphs data

extracted and interpreting the results to obtain the total num-

ber and density of nymphs. The overall image processing flow

is depicted in Figure 4, and further details about the process

can be found in Section 3.

2.5 Accuracy and efficiency evaluation of
Nymphstar image analysis application

We evaluated the accuracy and efficiency of the Nymphstar

image analysis application by comparing its performance with

the manual counting of ground-truth images. We randomly

selected 2% of the total images obtained from the 19 M. escu-
lenta checks and classified them into one of three infestation

levels adapted from the population scale of six levels proposed

by previous studies (Bellotti & Arias, 2001).

Three evaluators counted the number of nymphs including

an expert entomologist, a person with an intermediate level

of experience in nymphs counting, and a beginner who per-

formed manual counting using the selected images taken with

the protocol of image acquisition. For manual counting, the

time was recorded with a digital stopwatch, while for digi-

tal counting, running Nymphstar on a computer with an Intel

Core I7-7500U processor with a speed of 2.7 GHz and 16

GB of RAM, we estimated the time extracting the creation
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BOHORQUEZ-CHAUX ET AL. 7 of 16

F I G U R E 3 Illustration of the steps taken for leaf image capturing: (1) Cassava leaf before image acquisition: (A) third- and fourth-instar

whitefly nymphs covered with white wax before washing and collection of the leaf, (B) leaf completely dry after the wax and empty pupal cases

(EPC) removing by water spraying and collection between reusable paper towels, and (C) leaf after being moistened with 50% ethanol to increase the

contrast between the leaf and nymphs before the image capturing. (2) Some leaves are larger and do not fit into the visual range. In these cases, the

lobes of the leaf are separated, and two or three pictures are taken. (3) The system used for image acquisition, including the ORTech Photo-e-Box

Bio, a black fabric background to increase contrast and even lighting, a Nikon D300s camera with an AF-S DX Micro-NIKKOR 40 mm f/2.8G lens

fixed onto a Copy-Stand at 70 cm from the background, and the Nikon Control Pro 2 software was used to standardize image-capture settings.

time recorded in the file properties (hh:mm:ss) of each post-

processing image. Finally, we contrasted the original images

with the output images produced by Nymphstar to verify the

segmentation between the background, leaf, and nymphs.

2.6 Statistical analysis

To perform statistical analysis, we used the SAS software 9.3

for Linux with the PROC GLM procedure. We estimated the

effect of whitefly (A. socialis) infestation on 19 cassava clones

(Table 1) by averaging the number of nymphs found in leaves

1 and 2 per plant, obtained from Nymphstar, across the exper-

iments performed in 2013, 2016, 2017, and 2018 for mean

nymphs number and in 2017 and 2018 for the nymphs den-

sity. Our preliminary descriptive analysis of the data showed

that the distribution of the nymphs number variable corre-

sponded to a negative binomial distribution. Therefore, we

used a generalized linear model for this type of distribution

before establishing differences between means of genotypes

using independent-sample least significant difference (LSD)

t-test. We considered p < 0.0001 as significant in detecting

statistical differences. We used the same model and test of

comparison of means to evaluate the insects density, but the

model was adjusted to a binomial distribution.

For the accuracy test of Nymphstar, we used the concor-

dance correlation method to evaluate the agreement between

manual counting and Nymphstar plugin counting. We used

the epiR R package to calculate the concordance correlation

coefficient and the respective confidence interval at 95%. We

determine the bias for each pair of comparisons by computing

the average difference of both measurements. We produced

correlation and Bland–Altman plots using the ggplot2 R

package.
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8 of 16 BOHORQUEZ-CHAUX ET AL.

F I G U R E 4 Flow chart showing the Nymphstar image processing steps from image acquisition to data acquisition.

3 RESULTS

3.1 Nymphstar: Image analysis for nymph
counting and density estimation

3.1.1 Pre-processing and background removal

To extract nymphs count data from the leaf images, we

separated the leaf information from the image background

by using Bayesian learning, a machine learning technique

that leverages color as the training feature. We first applied

a Gaussian blur filter to the original image (Figure 5A)

to reduce details and noise, including that of the nymphs

(Figure 5B). We then used the trained Bayesian learning

method to segment the image into two categories: (i) back-

ground (black = zero value pixels) and (ii) leaf (white = 255

value pixels). We removed all particles in the background

(Figures 5C,D) and calculated the total leaf area to esti-

mate the nymphs density. We then used the resulting image

(Figure 5D) as a mask for the original image (Figure 5A) to

produce a new RGB image for further processing (Figure 5E).

3.1.2 Processing: Image segmentation and
object detection

Given the green channel contained more information on the

leaf, while the blue channel contained more information on

the nymphs, we decomposed the image into its red, green,

and blue (RGB) channels and subtracted the blue channel

from the green channel, which highlighted the black regions

corresponding to the nymphs, and facilitated segmentation

(Figure 5E). To correct for smoothness and loss of edges, we

applied the “Unsharp Mask” filter (Figure 5F). We then fil-

tered the pixels by color using a low-pass filter set at that zero

value of the nymphs color. Pixels with intensity levels higher

than zero value (grays and whites) were set to zero value

and eliminated, while those with the same zero value as the

nymphs were set to 255 (white) and considered information.

This process produced a binary image with white-colored

nymphs on a black background (Figure 5G).

To remove any remaining undesirable object in the binary

image, we used the ImageJ plugin “Analyze Particles” with

a minimum and maximum pixel size of 20 and 700, respec-

tively, and a circularity range between 0 and 1. We then

combined the original image with the binary image with

an “AND” logical operator but observed that some nymphs

crowded together were considered one, leading to data loss.

To account for each individual nymph within the cluster, we

used the ImageJ “Watershed Segmentation” plugin. We again

used the “Analyze Particles” plugin to filter the remaining

undesired objects based on shape and size, setting the new

range to a minimum of 30 and infinite for the maximum.

3.1.3 Post-processing and data analysis

Once each image had been segmented and all informative

objects had been detected, we quantified the nymphs by

applying the Euler number from the MorphoLibJ package
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BOHORQUEZ-CHAUX ET AL. 9 of 16

F I G U R E 5 Steps of the image analysis process on a cassava leaf. (A) Original image; (B) Gaussian blur filter; (C) image segmented by the

supervised classifier; (D) mask for subtracting the background from the figure (A); (E) red, green, and blue (RGB) image for decomposition on

channels (channel green–channel blue image); (F) filtered image with “Unsharp Mask” for edge sharpening; (G) filtered pixels by color, detection of

objects touching each other, filtered particles by shape and size, to obtain a binary image with nymphs colored in black; (H) Figure 5G is combined

with Figure 5C inverted; (I) final JPG image.

of ImageJ. This algorithm quantifies the number of objects

by computing the Euler number measurement (E), which is

the result of the number of white particles (N) minus the

number of holes in those objects (H), E = N − H. Using

eight-connectivity among pixels, it computes the Euler num-

ber measurement. Since nymphs do not have holes inside

them, the result was the number of nymphs on the leaf. To

estimate the nymphs density, we used the image histogram

to extract the number of white pixels. For a better visual

appreciation of the results, we combined the processed image

(Figure 5G) with the segmented image of the leaf generated

in the pre-processing step with colors inverted (Figure 5H).

Hence, the full data acquisition package (Nymphstar) pro-

vides a processed grayscale JPG image that includes the total

nymphs number estimation, and the leaf area and nymphs

density (percentage) (Figure 5I).

Our newly developed ImageJ plugin, Nymphstar, can be

used to acquire single image data, as well as perform batch

analysis on a group of images. For a group of images, traits

are analyzed and exported to a CSV file, and processed images

are stored in a target folder chosen by the user (see Supporting

Information 2, Batch-processing section). For a single image,

data processing results are immediately displayed in a log

window; in both cases, the resulting image(s) is saved in a

JPG format.

3.1.4 Nymphstar’s accuracy and efficiency
test

To test the accuracy of the Nymphstar application, we con-

trasted the manual nymph counts from ground-truth images

with the results given by Nymphstar (Table 2). We randomly

selected 57 images with a resolution of 12 MPX (4228 by

2848 pixels; Lavalle et al., 2023) from the set of 3871 images

obtained from the 1464 plants evaluated (two leaves from each

plant and, depending on size, one or several pictures from each

leaf), with a range of infestation between 57 and 4107 nymphs

per leaf (Figure 6A and Supporting Information 3).

We performed Lin’s concordance index for the accu-

racy test (see statistical results in Supporting Information

4), obtaining the result r = 0.98 between the number of

nymphs counted by the Nymphstar plugin and the manual

count of nymphs. We also used a Bland and Altman plot to

compare two measurement techniques based on the differ-

ences between their measurements, with differences plotted to

observe the dispersion. Ideally, the difference would be zero,

and all points should lie on the horizontal line y = 0 (dotted

line). The solid black line represents the average of the dif-

ferences obtained, which should be a horizontal line at y = 0

in an ideal situation, and if the differences are not zero, this

value would represent the bias.
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10 of 16 BOHORQUEZ-CHAUX ET AL.

T A B L E 2 Comparison of the average number of nymphs and time spent obtained with manual counting and using the Nymphstar plugin.

Manual Nymphstar plugin
Infestation level No. of images No. of nymphs (Mean) Time mean (s) No. of nymphs (mean) Time mean (s)
Low (0–200) 16 120.6 64.3 136.1 19

(22–199) (23.8–93.3) (57–206) (18–22)

Medium (201–2000) 20 955.5 339.76 959.7 19.5

(201–2021) (97.5–902) (237–1670) (18–24)

High (>2001) 21 3044.6 651.87 2648.04 19.33

(1702–4941) (196–1929.7) (1954–4107) (18–20)

Note: For all variables, we show the range in parentheses. We adapted the infestation levels based on the population scale described before (Bellotti & Arias, 2001). This

scale has values from 1 to 6; therefore, the low level would be equivalent to 1 (no whitefly stages present) and 2 (1–200 individuals per leaf). The medium level would

be equivalent to 3 (201–500 individuals per leaf) and 4 (501–2000 individuals per leaf). The high level would be equivalent to 5 (2001–4000 individuals per leaf) and 6

(>4000 individuals per leaf).

Here, the difference is calculated based on Nymphstar,

so a positive bias would indicate that the Nymphstar count

yielded higher values on average than the counts made by

the person. A negative bias would indicate that the person

counted more nymphs than Nymphstar (Figure 7). Panel B

shows a Bland–Altman plot, which displays the difference

between manual counts and Nymphstar counts on the y-

axis and the mean of the two methods on the x-axis. The

plot allows us to observe the dispersion of the data when

comparing manual counting versus counting using Nymph-

star. In this case, we can see that most of the data points

lie within the limits of agreement, which are represented

by the dotted lines. These lines show that 95% of the data

fall within ±1.96 standard deviations of the mean difference.

The plot indicates that Nymphstar counts tend to be slightly

higher than manual counts, but the difference is small and

does not affect the accuracy of the results, indicating that

Nymphstar is a reliable tool for counting nymphs in this

context.

Analysis efficiency: The ImageJ plugin Nymphstar enables

us to analyze the 57 images for nymphs quantification with a

total time of 1534 s (25.56 minutes) at an average of 19.175

s/image (Table 2). In contrast, the manual counting of the

same images took 25,513.7 s (425.23 min) with an average

of 6.29 min/image.

3.1.5 Glasshouse-based whitefly-resistance
bioassay

We conducted the whitefly-resistance (WFR) bioassay to

assess the relative resistance levels of 19 cassava genotypes

to whitefly infestation under glasshouse conditions (Table 1).

Cassava genotypes were tested for whitefly infestation, as

measured by the mean number of nymphs found per leaf

(F [18, 3451] = 22.32, p < 0.0001) (Table 3, Supporting

Information 5). The most susceptible genotype was PER556,

which had a previously unknown response to A. socialis and

had significantly more nymphs per leaf than all other geno-

types (1634.8 nymphs per leaf). The next most susceptible

genotypes were TMS60444, PAR41, ECU183, PER226, and

PER415, which had between 1150 and 1300 nymphs per leaf.

The intermediate group consisted of genotypes with a mean

number of nymphs per leaf between 913 and 1100, including

COL2246, ECU19, COL1468, PER597, TME3, COL2182,

PER335, ECU41, and PER183. We categorized this group as

“Intermediate” because they fell between two statistically dif-

ferent genotypes PER451 (group “BC”) and PER608 (group

“DEF”).

The resistant genotypes PER608, PER317, and PER368 did

not differ significantly from each other, with nymph counts

ranging from 635.1 to 841.4. Notably, ECU72, a genotype cat-

egorized in previous studies as resistant to A. socialis, showed

exceptional resistance to whitefly attack (521.3 nymphs per

leaf) with a nymphs population lower than all the other

genotypes except PER317.

4 DISCUSSION

4.1 Automated identification and counts of
pests in agriculture

The development of automated methods for identifying and

counting pests in agriculture has become increasingly impor-

tant in recent years because of the advancement of image

digitization and data processing automation (Maharlooei

et al., 2017; Wang et al., 2018). The focus of most studies

in this has been on the development of software or algorithms

for the identification of different pests (Barbedo, 2014; Deng

et al., 2018; Espinoza et al., 2016; Maharlooei et al., 2017;

Solis-Sanchez et al., 2009; Xia et al., 2015) with particular

emphasis on adult insects capture in most cases on sticky traps

(Deng et al., 2018; Sun et al., 2017; Wang et al., 2018). How-

ever, there have been very few attempts to identify insects at

early stages of development such as eggs or nymphs (Barbedo,

2014; Bereciartua-Pérez et al., 2023; Bhadane et al., 2013;

Chen et al., 2018).
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BOHORQUEZ-CHAUX ET AL. 11 of 16

T A B L E 3 Mean ± standard error of the total number of nymphs per leaf in checks analyzed for 4 years (2013, 2016, 2017, and 2018) in eight

different experiments (number of plants per experiment shown in Supporting Information 1).

Clone
Mean ± SE
(nymphs per leaf) No. of plants

Whitefly responses reported
in previous studies

Whitefly response
using Nymphstar

PER556 1634.8 ± 213.5 A 4 Unknown High WFS

TMS60444 1277.6 ± 38 B 134 WFS WFS

PAR41 1163.7 ± 130.7 BC 20 Unknown WFS

ECU183 1122.8 ± 110.4 BC 30 WFS WFS

PER226 1156.8 ± 84.3 BC 20 Unknown WFS

PER415 1154.9 ± 80.5 BC 36 WFR WFS

COL2246 1102.4 ± 41.6 BCD 183 WFS Intermediate

ECU19 1060.7 ± 127.2 BCDE 20 Unknown Intermediate

COL1468 1041.1 ± 113 BCDE 185 Unknown Intermediate

PER597 1046.1 ± 38.5 BCDE 18 Unknown Intermediate

TME3 1037.9 ± 58.7 BCDE 81 WFS Intermediate

COL2182 991.1 ± 105.2 CDE 19 Unknown Intermediate

PER335 946 ± 75.7 CDE 61 WFR Intermediate

ECU41 931.5 ± 104.2 CDE 20 Unknown Intermediate

PER183 913.2 ± 65 CDEF 44 WFS Intermediate

PER608 841.4 ± 46.1 DEF 156 WFR WFR

PER317 800.6 ± 51.5 EF 89 WFR WFR

PER368 635.1 ± 62.4 FG 60 WFR WFR

ECU72 521.3 ± 18.3 G 284 WFR High WFR

Note: We made these measurements using WFR bioassays. For each clone, the means within a column followed by the same letter are not significantly different

(independent-samples least square difference t-tests, DF = 3433, p < 0.0001).

Abbreviations: WFR, resistant to whitefly; WFS, susceptible to whitefly.

To the best of our knowledge, three studies developed

methodologies to count whitefly B. tabaci nymphs. The first

study developed an algorithm to count whitefly third- and

fourth-instar nymphs (Barbedo, 2014), and the other two stud-

ies used deep learning-based object detection and density

maps for all nymph stages (Bereciartua-Pérez et al., 2023; de

Castro et al., 2022).

Developing a precise, quick phenotyping method based on

digitized image analysis for A. socialis whiteflies is impor-

tant not just because the early identification of plants carrying

resistance to whitefly attack can prevent these species from

becoming superabundant and widespread reducing the risk

of yield loss or the spread of other viral diseases, but also

because A. socialis can be a model insect to test plant resis-

tance in Latin America where B. tabaci sub-Saharan cryptic

species are not present. We developed a tool called Nymph-

star, which is a plugin for the open-access software ImageJ,

for the identification and quantification of A. socialis third-

and fourth-instar nymphs and the estimation of the leaf area

occupied by nymphs.

We have tested Nymphstar across eight independent

glasshouse-based WFR phenotyping trials, analyzing 19 M.
esculenta checks with their replicas, for a total of 1937 plants,

which corresponded to 3874 leaves bearing 775,050 nymphs.

The results have been extremely promising with Nymphstar

vastly improving data acquisition time. We found that while

counting the nymphs manually on these ground-truth images

could take an average of 39,471 min (82 standard 8-h labor

days), analysis of all images using the automatic batch image

analysis of Nymphstar would be completed in 20.63 h, turn-

ing a multi-day task into one accomplished in just hours.

Nymphstar conclusively proved to reduce the burden of rou-

tine A. socialis monitoring offering to be a powerful tool for

agricultural scientists and extensionists controlling whitefly

outbreaks. Moreover, a practical application of this tool is in

the field of breeding offering to potentially reduce the WFR

selection time in the absence of advanced molecular markers

tools.

Nymphstar not only offers a solution to the limitations of

the manual assessment of whitefly populations in the field and

the glasshouse but also presents the opportunity to undertake

large epidemiological surveys or to innovate in the phenotypic

characterization of WFR. Although this tool was tested on

cassava plants, it could be used for other plant types and other

whitefly species, with some modifications in the processing

of the images.

Our findings demonstrate the potential of such tools to sig-

nificantly reduce the burden of routine pest monitoring faced
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12 of 16 BOHORQUEZ-CHAUX ET AL.

F I G U R E 6 (A) Cassava leaves with different levels of infestation

of A. socialis nymphs high (left), medium (center), and low (right),

with populations between n = 22 and n = 4941 nymphs per leaf. (B)

Images of the same leaves were obtained after the processing by the

plugin Nymphstar.

by agricultural scientists and extensionists and to improve

the accuracy and speed of phenotyping efforts. Further

research and development in this area could have impor-

tant implications for global food security and sustainable

agriculture.

4.2 Image analysis

To develop the Nymphstar plugin of ImageJ for counting A.
socialis nymphs, we used some techniques to improve its effi-

ciency and accuracy. To identify the pixels corresponding to

the leaf and background, we used the naive Bayes approach.

This technique is a probabilistic classifier based on the Bayes

theorem, which computes the class of each observation using

a likelihood-trained model (Hsu et al., 2017). Here, we trained

the program with different color samples of leaves and back-

grounds to obtain a binary image output where the image was

labeled as (i) background (black = zero value pixels) and (ii)

leaf (white = 255 value pixels). In this way, we were able to

separate the leaf from the background and measure the area

corresponding to the leaf.

Image reproducibility is key to the accuracy and effi-

ciency of data acquisition performance (Espinoza et al.,

2016). The PhotoBox allows for the use of the same light

levels for each image to avoid changes in the characteris-

tics of the image in subsequent analysis. The control of the

light conditions and camera height improves image acquisi-

tion, avoiding the presence of shadows that could generate

unhelpful data and maintaining the same height to compare

leaf areas between samples. Nymphs count and measuring

of the leaf area are usually performed manually or semi-

automatically. The high-throughput method described here is

an automated image-based phenotyping system, which can be

easily adapted to other whiteflies and plants.

4.3 Measuring resistance to whitefly in
cassava: Phenotyping assay

The identification of effective sources of resistance is central

to the development of a whitefly-resistant variety. A natural

infestation (choice bioassay) of insect pests in cassava has

been an effective but time-consuming process developed

over nearly a quarter of a century (Bellotti & Arias, 2001;

Parsa et al., 2015). In these choice bioassays, both antibiosis

and antixenosis are plant response strategies deployed during

host infestation. However, natural infestations are not stable,

whitefly populations fluctuate with weather changes, compe-

tition, natural enemies presence, and other causes. To control

the infestation level and measure the resistance of plants, we

proposed a glasshouse-based WFR bioassay (Figure 2).

Our phenotyping methodology allows screening for WFR

of many cassava genotypes and plants per trial. We have

applied this method to plants propagated in pots or bags

and on different substrates, from in vitro, micro, or regular-

size stakes (data not shown). With this glasshouse-based

methodology, it is possible to have results 3 months after

planting, leading to the classification of plants in various

resistant/susceptible categories without infestation from

other organisms or the effects of changing weather in field

experiments.

We were able to differentiate and identify with statisti-

cally significant power the WFR (WFR vs. WFS) of each

of the cassava genotypes evaluated. Our results are consis-

tent with those based on measurements using damage and
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BOHORQUEZ-CHAUX ET AL. 13 of 16

F I G U R E 7 Accuracy of Nymphstar in counting the number of nymphs compared to manual observation is shown. Lin’s concordance index

results on manual nymph count by visual observation (A) and nymph counts obtained from red, green, and blue (RGB) images using the Nymphstar

tool (B). The index ranges from 0 to 1, with 1 indicating perfect agreement. The high value of 0.96 indicates that Nymphstar provides accurate counts

of the number of nymphs. Plane B shows the Bland–Altman plot where 95% of the data fall within ±1.96 standard deviations of the mean difference.

CCC, concordance correlation coefficient; CI, confidence interval.

population scales in previous studies (Bellotti & Arias, 2001;

Parsa et al., 2015) in which ECU72 showed high levels of

resistance to A. socialis. Interestingly, this genotype also has

been reported as resistant to B. tabaci Sub-Saharan cryp-

tic species in Africa (Omongo et al., 2012) and Bemisia
tuberculata in Brazil (Barilli et al., 2019), which means

that A. socialis potentially can be a good model for test

cassava resistance to whiteflies. In contrast, with our method-

ology, we observed that genotypes PER368, PER317, and

PER608 previously characterized as highly resistant (Bellotti

& Arias, 2001) did not display the high levels of resistance

observed in ECU72. Other important genotypes in cassava

for breeding CBSD in Africa (Sheat et al., 2019), such as

ECU19, ECU41, COL2182, and TME3, have shown inter-

mediate resistance to whitefly as well. Additionally, TME3

is an African genotype that is resistant to the whiteflyborne

viruses of the genus Begomovirus (family Geminiviridae) that

causes CMD (Colvin et al., 2004). Using Nymphstar, we

were able to identify the susceptibility of a wide variety of

important cassava genotypes used for different purposes over

several years, which included PER556, TMS60444, PAR41,

PER226, PER415, and ECU183. For instance, TMS60444

was used as a model plant for cassava genetic transforma-

tion and served as a male-susceptible parent in establishing a

WFR mapping population (Becerra Lopez-Lavalle, personal

communication, 2010). The glasshouse-based whitefly bioas-

say revealed that genotypes previously considered susceptible

were intermediate into the group of evaluated genotypes. For

cassava breeding programs, precise and reliable phenotyping

for WFR is extremely useful; additionally, the evaluation of

large collections of plants in a short time makes the anal-

ysis more reliable, delivering quantitative measures such as

nymph counts and leaf area occupied by nymphs. These

highly accurate quantitative measurements of WFR are ideally

suited to genomic and genetic studies searching for resis-

tance genes, using QTLs or GWAS analysis (Kayondo et al.,

2018; Nzuki et al., 2017). The automated methodology of

Nymphstar eliminates errors and bias that can be caused by

manual counting, making it a more reliable tool for quanti-

fying the number and area of A. socialis nymphs on cassava.

Previous QTL analyses for whitefly resistance relied on field

testing using scales of damage and population of whiteflies

as phenotypic data. However, these scales did not provide the

best measure for quantitative analysis. They have allowed for

the characterization of cassava germplasm into resistant and

susceptible categories, which were validated by later studies

(Parsa et al., 2015). In contrast, the quantitative and continu-

ous data provided by Nymphstar offer a better resolution and

can account for the variability of WFR across this segregating

population.

Nymphstar offers several advantages over traditional meth-

ods of whitefly evaluation. It is quicker, less laborious, and

allows for the visual control of the outcome. Moreover, it can

provide additional parameters, such as the leaf area occupied

by nymphs, which can be useful in determining the level of

whitefly infestation.

The use of Nymphstar is not limited to working hours, as

it can be used in batch mode without human supervision.

This feature makes it a valuable tool for the fast and accurate

screening of multiple breeding populations to select superior

genotypes with decreased whitefly infestation. By reducing

the population size of whiteflies in cassava cropping sys-

tems, Nymphstar can help in minimizing the potential for

insect-transmitted diseases.
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14 of 16 BOHORQUEZ-CHAUX ET AL.

4.4 Future field screening: Opportunities
and challenges

Nymphstar, an efficient tool for glasshouse-based white-

fly resistance (WFR) phenotyping, holds immense promise

for future field applications in agriculture. Transitioning

from controlled environments to open fields presents both

opportunities and challenges.

Incorporating Nymphstar into field screening workflows

demands robust field deployment strategies. The tool needs to

withstand unpredictable environmental conditions, including

variable lighting, weather, and field-specific challenges such

as pest pressure.

Furthermore, field screening encompasses a vast diversity

of pest species, host plants, and environmental conditions.

Adapting Nymphstar to identify and count various white-

fly species while accommodating the variability in host

plant characteristics is a formidable challenge. It necessi-

tates continuous research and algorithm refinement to ensure

its versatility and effectiveness across different crops and

regions.

To unleash Nymphstar’s full potential in field screening,

addressing challenges related to data management, scala-

bility, integration with complementary technologies, user

training, and accessibility is imperative. Implementing robust

data handling solutions, ensuring scalability for large-scale

agriculture, and integrating Nymphstar with other sensor

technologies for comprehensive crop assessment are essential

steps. Effective training programs and user-friendly interfaces

will empower farmers, extensionists, and researchers to har-

ness Nymphstar’s capabilities, making it a valuable asset in

addressing pest-related challenges in the field. Ultimately,

overcoming these challenges will pave the way for Nymphstar

to revolutionize pest management and crop breeding, con-

tributing to global food security and sustainable agriculture

practices.

5 CONCLUSIONS

Nymphstar is a high-throughput image analysis-based tool

that has been proven highly efficient in obtaining quantitative

measurements such as the number of third- and fourth-

instar nymphs and the leaf area they occupy. It is used with

glasshouse-based WFR bioassay for the fast and accurate

screening of multiple breeding populations to select superior

genotypes for decreasing the relative population size of white-

flies in cassava cropping systems, thus reducing the potential

for insect-transmitted viruses (CMD and/or CBSD) to mutate

into more virulent forms.

Overall, Nymphstar represents a significant advancement

in the field of cassava breeding and offers an efficient and

effective way to evaluate whitefly resistance, which has

important implications for improving the productivity and

sustainability of cassava production in many parts of the

world.
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