
1.  Introduction
Water is a universal concern. Two-thirds of the world's population experience seasonal water scarcity, with over 
half a billion enduring it year-round (Kummu et al., 2016; Mekonnen & Hoekstra, 2016). There has long been 
concern over declining water availability in Africa (Falkenmark, 1989). In sub-Saharan nations, an estimated 
85%–90% of agriculture, 70% of employment, and 40% of its exports depend on reliable rain (Onwujekwe & 
Ezemba, 2021). Inadequate access to water impacts food security, nutrition, and development (Heino et al., 2018; 
Iizumi et  al.,  2014). By 2017, at least 310 million people in sub-Saharan Africa lacked access to safe and 
affordable water for domestic use, with various estimates suggesting that as many as 700 million people may be 
displaced by 2030 as water stress escalates (Leal Filho et al., 2022). The consequences include hardship (Owuor 
et al., 2016), conflicts, and migration (Kattel, 2019). Reliable access to sufficient freshwater is key to the UN 
Sustainable Development Goals, with Goal 6 - Ensure availability and sustainable management of water and 
sanitation for all - being a prerequisite for achieving the rest. The challenges are considerable. Global per-capita 
freshwater reserves halved between 1960 and 2016, while consumption is estimated to double approximately 
every two decades (Ripple et  al.,  2017), and groundwater reserves are being depleted at an accelerating rate 
(Wada et al., 2010). In much of sub-Saharan Africa, the replenishment of soil moisture and groundwater stores 
and water availability largely depend on whether and how water at the soil surface is captured—a process that is 
largely determined by infiltration.

Infiltration is a critical hydrological process controlling the partitioning of water at the soil surface into surface 
runoff and subsurface water recharge (Ferré & Warrik, 2004; Hillel, 1998; Lal & Shukla, 2004). When the rate 
of water supply at the soil surface exceeds the soil's ability to absorb it, infiltration proceeds at a maximal rate 
known as the soil's infiltration capacity (Horton, 1941), or infiltrability (Hillel, 1971) for the particular case in 
which water at the soil surface is at atmospheric pressure. This capacity influences the quantity, quality, location, 
and timing of freshwater supplies, as it controls the pathways and the time needed for water to reach the stream 
channel. It also governs the replenishment of soil moisture required to sustain primary production and rainfed 
agricultural systems, and is thus critical to support food security. Soil infiltration capacity thus governs the provi-
sion of several ecosystem services, including those related to primary production and water cycling (Brauman 
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et al., 2007; MEA, 2005; Ponette-González et al., 2015; Sun et al., 2017), in particular the mitigation of floods 
and droughts, water purification and regulation, and erosion control. When soil infiltration capacity is high, more 
water can enter the soil surface and become available both for soil- and groundwater recharge. Enhanced infiltra-
tion capacity can eventually lead to an increase in groundwater recharge and dry season flow (Ilstedt et al., 2016; 
Krishnaswamy et al., 2013), which in turn can improve water security. In contrast, low infiltration capacity results 
in more surface runoff, thereby increasing the risk of flooding, soil erosion, and siltation of water bodies. Hence, 
understanding soil infiltration capacity is critical for soil and water management. Such understanding is particu-
larly urgent under climate change, as it will likely increase the frequency and intensity of heavy precipitation and 
droughts (Loukas et al., 2008; Seneviratne et al., 2021).

Soil infiltrability into an initially unsaturated soil is typically high during the early stages of the infiltration 
process and tends to decrease asymptotically over time as infiltration proceeds (Hillel, 1998). As the soil satu-
rates, soil infiltrability approaches a steady, gravity-driven rate known as the soil steady-state infiltrability or 
final infiltration capacity. Steady-state infiltrability is thus independent of initial soil water content and approx-
imates saturated hydraulic conductivity (Hillel, 1998). Saturated hydraulic conductivity depends on soil texture 
and structure and is higher in soils with large conducting pores. Soil pores can be textural pores (i.e., the pores 
between the primary mineral particles) or structural pores such as interaggregate cracks, decayed root channels, 
or wormholes (Dexter, 2004). Coarse-textured soils with relatively large pores typically have a higher saturated 
hydraulic conductivity than clay soils with smaller pores (Ferré & Warrik, 2004; Saxton et al., 1986). Pedotrans-
fer functions developed to predict soil hydraulic conductivity from soil properties are primarily based on texture 
or other easy-to-measure attributes such as bulk density or organic carbon content—for example, Rosetta (Schaap 
et  al.,  2001; Zhang & Schaap,  2017) or hydraulic properties of European soils  (Wösten et  al.,  1999). These 
pedotransfer functions may be insufficient to adequately assess field-saturated hydraulic conductivity due to the 
importance of structural porosity, especially under real-world conditions in the field (Bonetti et al., 2021; Fatichi 
et al., 2020; Gupta, Lehmann, et al., 2021; Jarvis et al., 2013; Pachepsky & Rawls, 2004; Rahmati et al., 2018; 
Vereecken et al., 2010; Wösten et al., 2001; Zhang et al., 2020).

Several processes and practices can influence soil structural porosity and, thereby, soil hydrological function-
ing. Changes in land cover and land use can alter the infiltration capacity of soils through concurrent changes 
in the quality and quantity of soil organic matter inputs, the structure and abundance of soil biota communities, 
the characteristics of root systems, and the overall structure of soils. Soil organic matter promotes biological 
activity and aggregation in soils, which can improve infiltration capacity (Franzluebbers, 2002; Lado, Paz, & 
Ben-Hur, 2004), although in some cases increases in organic matter content can have the opposite effect (Araya 
& Ghezzehei, 2019; Jarvis et al., 2013; Larsbo et al., 2016; Nemes et al., 2005; Wang et al., 2009). Roots and 
soil biota, in particular macroinvertebrates, can further enhance infiltration through the creation of macropores 
and persistent soil aggregates (Beven & Germann, 2013; Lavelle et al., 2006; Weiler & Naef, 2003). Conver-
sion of forests, woodlands, and natural grasslands to agriculture typically results in reduced infiltration capacity 
(Bormann et al., 2005; Lal, 1996; Lulandala et al., 2022; Nyberg et al., 2012; Zimmermann & Elsenbeer, 2008). 
This, in turn, can adversely affect various aspects of hydrological functioning, including reduced dry-season 
flows, increased surface runoff, and enhanced soil erosion (Bruijnzeel,  2004). Land management can poten-
tially reverse such degradation and contribute to maintaining or improving hydrological functioning and derived 
ecosystem services. Adopting practices such as agroforestry, controlled grazing, and conservation tillage can 
improve soil infiltration capacity (Abdelkadir & Yimer, 2011; Bargués Tobella et al., 2014; Benegas et al., 2014; 
Ilstedt et al., 2007; Lulandala et al., 2022; Moreno et al., 1997; Mwendera & Saleem, 1997; Zhang et al., 2007). 
Similarly, tree planting or natural regeneration following the abandonment of croplands, pastures, or degraded 
grasslands can progressively restore soil infiltration capacity (Bonell et al., 2010; Colloff et al., 2010; Ilstedt 
et al., 2007; Lal, 1996; Zhao et al., 2013; Zimmermann et al., 2010). However, evidence is often restricted to 
observations and experiments conducted at the local level.

Understanding soil infiltration and surface water redistribution processes at scales relevant for management 
requires an assessment of saturated hydraulic conductivity over broad areas. However, soil saturated hydraulic 
conductivity is extremely variable in space, and individual measurements represent only a limited area (Nielsen 
et  al.,  1973; Usowicz & Lipiec,  2021; Warrick,  1998). Obtaining sufficient field observations to character-
ize saturated hydraulic conductivity at the landscape or regional level is difficult due to the cost, time, and 
effort associated with traditional field techniques. Using less complex methods such as single-ring infiltrome-
ters (Bouwer, 1986; Reynolds & Elrick, 1990) allows for higher sampling intensity, which is usually preferred 
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even if at the expense of relatively higher uncertainty in the individual measurements (Bagarello et al., 2004; 
Nimmo et al., 2009). Pedotransfer functions for estimating soil hydraulic properties have also been developed to 
reduce the need for costly field measurements (Schaap et al., 2001; Wösten et al., 1999). However, these func-
tions are often developed for specific regions, especially North America and Europe, which limits their broader 
geographical applicability, particularly in the tropics (Botula et al., 2012; Gupta, Hengl, et al., 2021; Hodnett 
& Tomasella, 2002; Tomasella et al., 2000; Young et al., 1999). Similarly, the soil data and resulting methods 
tend to neglect natural areas and focus on agricultural land. In an effort to address these geographical and land-
use limitations, Rahmati et al.  (2018) gathered published infiltration data to create the Soil Water Infiltration 
Global database (SWIG), which contains single infiltration curves and accompanying data, including data on soil 
properties and land management, from 215 sites across 53 countries. Efforts to compile data on soil hydraulic 
properties for specific regions in the tropics include the Hydrophysical Database for Brazilian Soils (HYBRAS) 
(Ottoni et al., 2018) and the soil infiltration and saturated hydraulic conductivity database of the soils of Rio de 
Janeiro (Martins et al., 2022). Africa lacks such databases, and the region remains sparsely represented in SWIG 
and other global databases.

Here, we present soil infiltration measurements and other soil and land health indicators collected systematically 
across sub-Saharan Africa. These detail 3,573 plots from 83 100 km 2 sites across 19 countries. We use these data 
to (a) determine field-saturated hydraulic conductivity (Kfs), and (b) explore which variables best explain the 
variation in Kfs. Variables include soil texture, pH, soil organic carbon (SOC), visible signs of erosion, vegetation 
structure, herbaceous cover, woody cover, and impact of grazing.

2.  Materials and Methods
2.1.  Study Sites and Field Sampling Design

The data presented and used in this study were collected following the Land Degradation Surveillance Frame-
work (LDSF), an established sampling approach for landscape-level assessment of soil and land health (Vågen & 
Winowiecki, 2020). The data derive from 3,573 plots from 83 sites distributed across 19 countries in sub-Saharan 
Africa and covering diverse climates and contexts (Figure 1a; detailed site-specific information can be found in 
Table S1 in Supporting Information S1). These LDSF sites were selected at random across a region of interest 
or placed in a specific location representing an area of particular interest or planned activities (interventions).

The LDSF employs a spatially stratified hierarchical (nested) sampling scheme with four levels corresponding to 
different spatial scales (Figure 1): sites (100 km 2), clusters (1 km 2) nested within sites, plots (1,000 m 2) nested 

Figure 1.  (a) Location of the 83 Land Degradation Surveillance Framework (LDSF) sites. The grid layer represents the annual average aridity index (AI = mean annual 
precipitation/mean annual potential evapotranspiration) over the period 1970–2000 (Trabucco & Zomer, 2019). (b) Example of an LDSF site (10 × 10 km) in Hoima, 
Uganda, showing the location of the sampling plots. (c) Plot outline, showing the four sub-plots.
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within clusters, and sub-plots (100 m 2) nested within plots. Each site is divided into 16 tiles, and cluster centroid 
locations are randomized within each tile. Within each cluster, 10 sampling plots are placed at random. Each 
plot contains four subplots. We only used data from the plots where soil infiltration was measured, which was 
typically in three plots per cluster (i.e., 48 plots per site. Figure 1b), although the number of plots with complete 
infiltration and soil data varied slightly among sites (Table S1 in Supporting Information S1).

2.2.  Field Data Collection

Field data were collected both at the plot and sub-plot levels following the LDSF protocol (Vågen & 
Winowiecki, 2020). Plot coordinates were recorded at the center of subplot one with an accuracy better than 
5 m. Soil infiltration measurements were conducted at the center of each plot using a single-ring infiltrometer 
(Bouwer, 1986) consisting of a metal cylinder with an inner radius of 78 mm and a height of 20–30 cm. The 
infiltrometer was inserted at least 20 mm into the soil, taking care to minimize soil surface disturbance. Before 
starting the infiltration measurements, the soil within the infiltration ring was pre-wetted to increase the chances 
of reaching steady-state conditions. Water was gently poured to fill the infiltration ring to the top, covering the 
soil surface to minimize surface disturbance, and ponding was maintained for 15 min. After pre-wetting, the 
infiltration measurements started and were carried out for 2.5 hr. A ruler was fixed on the inner side of the infil-
tration ring to measure the water level. The ring was then refilled, and the initial ponding depth was recorded. 
After 5 min, the final ponding depth was recorded, and the ring was immediately refilled to the start level. This 
procedure was repeated at 5-min intervals during the first 30 min of the experiment, 10-min intervals during the 
following 60 min, and 20-min intervals during the remaining 60 min. Intervals were adjusted as necessary when 
infiltration was too fast or too slow to obtain accurate readings.

In each plot, the dominant vegetation structure was classified into forest, woodland, bushland, shrubland, wooded 
grassland, grassland, or annual cropland following FAO's Land Cover Classification System (Di Gregorio & 
Jansen, 1998). Woody and herbaceous vegetation cover were visually assessed within each sub-plot and scored 
following a modified Braun-Blanquet cover-abundance rating scale (Braun-Blanquet, 1932) into either 0 (absent), 
1 (<4%), 2 (4%–15%), 3 (15%–40%), 4 (40%–65%) and 5 (>65% vegetation cover). The four sub-plot ratings 
were averaged to obtain plot-level estimates of woody and herbaceous vegetation cover. Visible signs of soil 
erosion (rill, gully, or sheet) were recorded within sub-plot 1, which is where infiltration measurements were 
carried out. In addition, the impact of grazing was assessed at the plot level using a scale from 0 (no impact) to 3 
(severe impact) based on visible signs of grazing and browsing.

Topsoil samples (0–20 cm) were collected from the center of each sub-plot using a soil auger and combined 
into a composite plot-level sample. These samples were air-dried before shipping them to the soil laboratory for 
analysis.

2.3.  Determination of Topsoil Field-Saturated Hydraulic Conductivity (Kfs)

We applied Nimmo et al. (2009)'s method to analyze ponded infiltration from within a single-ring infiltrometer 
under falling-head conditions and determine the field-saturated hydraulic conductivity (Kfs). The formula for Kfs 
(Equation 1) compensates for non-constant falling head and subsurface radial spreading typical of small-diameter 
infiltration rings like the ones used in this study:

𝐾𝐾fs =
𝐿𝐿𝐺𝐺

𝑡𝑡 − 𝑡𝑡0
ln

[

𝐿𝐿𝐺𝐺 + 𝜆𝜆 +𝐷𝐷0

𝐿𝐿𝐺𝐺 + 𝜆𝜆 +𝐷𝐷

]

� (1)

where t0 and t are the initial and final time, λ is the soil macroscopic capillary length, D and D0 are the initial 
and final ponding depths within the infiltration ring, and LG is the ring-installation scaling length (Equation 2):

𝐿𝐿𝐺𝐺 = 𝐶𝐶1𝑑𝑑 + 𝐶𝐶2𝑏𝑏� (2)

where b is the inner radius of the infiltration ring (78 mm), d is the ring insertion depth (20–40 mm), and C1 
and C2 are empirically determined constants with recommended values of 0.316 π and 0.184 π, respectively 
(Reynolds et al., 2002).

The soil macroscopic capillary length parameter (λ), which here is the reciprocal of the soil macroscopic capillary 
length as defined by Reynolds and Elrick (1990) and Reynolds et al. (2002) (α*), represents the relative importance 
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of gravity and capillary forces during ponded infiltration (Reynolds 
et al., 2002). We used a value of α* of 0.012 mm −1 (i.e., λ = 83.33 mm), 
as this value has previously been shown to be adequate for most soils with 
structural development (see Elrick et al. (1989) and Reynolds et al. (2002)).

We applied Equation 1 to all infiltration measurements, regardless of whether 
they were at (quasi-)steady state or not. We then fitted an asymptotic func-
tion to each individual curve of corrected ponded infiltration rates over time 
and extracted the asymptote value, which represents Kfs for that specific plot. 
Asymptote curves were fitted using the R package nls.multstart, which uses 
non-linear least square regression with the Levenberg-Marquardt algorithm 
(Padfield & Matheson, 2020).

2.4.  Soil Laboratory Analyses

Soil samples were analyzed using mid-infrared (MIR) spectroscopy at the 
ICRAF Soil-Plant Spectral Diagnostics Laboratory in Nairobi, Kenya. Soil 

MIR spectroscopy is a well-established, non-destructive, rapid, and cost-effective method for predicting key soil 
properties such as SOC, pH and texture, enabling landscape-level assessments of soil health (Terhoeven-Urselmans 
et al., 2010; Vågen et al., 2016; Winowiecki et al., 2016). Prior to analysis, air-dried soil samples were ground and 
sieved through a 2 mm mesh. A subsample was further ground to attain a particle size between 20 and 53 μm. 
These subsamples were then scanned and analyzed in triplicate for MIR absorbance using a Tensor 27 HTS-XT 
MIR spectrometer (Bruker Optics, Karlsruhe, Germany), and the spectra were subsequently processed following 
Terhoeven-Urselmans et al. (2010).

Soil texture, pH, and SOC were simultaneously predicted from MIR spectra using Random Forest regression models 
(Breiman, 2001) built with data from ICRAF's global soil MIR spectral library following the methods developed by 
Vågen et al. (2016). Today, the library consists of spectra from about 162,000 samples and data on soil properties 
obtained using traditional analytical methods for 10% of these samples (including those used in this study). For this 
reference set of soil samples, soil pH was measured using an Eutech Cyberscan 1,100 pH meter on a 1:2 soil/water 
solution prepared by shaking 20 g of soil with 40 ml of deionized water for 30 min. SOC content was analyzed by 
dry combustion using an Elemental Analyzer Isotope Ratio Mass Spectrometer from Europa Scientific after remov-
ing inorganic C with 0.1 N HCl, at the IsoAnalytical Laboratory (United Kingdom). Finally, soil textural analyses 
were conducted using a LA-950 Laser Diffraction Particle Size Distribution Analyzer (HORIBA Scientific) after 
shaking each soil sample for 4 min in a dispersing solution of 1% sodium hexametaphosphate (calgon). The U.S. 
Department of Agriculture (USDA) soil particle-size classification system was used, which defines the size limit 
between sand and silt at 50 μm (USDA, 2017). No adjustment was applied to the soil particle-size distribution data 
obtained with the laser diffractometer to bring the values closer to those measured by classical sieve-sedimentation 
methods. Random Forest regression models were trained on the reference set of soil samples with both MIR spectra 
and associated data obtained using traditional analytical methods as outlined in Vågen et al. (2016). These models 
achieve a good prediction accuracy (R 2 > 0.95) for the soil properties that concern our investigation (Table 1).

2.5.  Statistical Analysis—Modeling

2.5.1.  Mixed-Effects Models

Given the nested structure of the LDSF data (Site:Cluster:Plot), we used hierarchical models (Zuur et al., 2013) 
with Site and Cluster as nested random effects. In other words, we applied a 2-way nested random structure with 
sites, and clusters within sites. Furthermore, since Kfs is positive, continuous, and skewed, and to take care of vari-
ance heterogeneity, we used a gamma generalized linear mixed-effects model (Zuur et al., 2013) with a log-link 
function and random intercept:

𝐾𝐾fs𝑖𝑖𝑖𝑖𝑖𝑖
∼ gamma (𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖, 𝑟𝑟)�

𝐸𝐸
(

𝐾𝐾fs𝑖𝑖𝑖𝑖𝑖𝑖

)

= 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖�

Soil property R 2 RMSEP ∗

Soil organic carbon (SOC; g kg −1) 0.98 2.03

Soil pH 0.98 0.14

Sand (%) 0.97 4.30

Clay (%) 0.97 3.91

Note. Performance was assessed by comparing predicted values to reference 
analysis methods, as outlined above.
 ∗RMSEP = Root Mean Squared Error of Prediction.

Table 1 
Performance Metrics for the Prediction of Soil Properties Included in the 
Study Using Mid-Infrared Spectroscopy
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var
(

𝐾𝐾fs𝑖𝑖𝑖𝑖𝑖𝑖

)

= 𝜇𝜇
𝑖𝑖𝑖𝑖𝑖𝑖

2

∕𝑟𝑟�

log
(

𝐾𝐾fs𝑖𝑖𝑖𝑖𝑖𝑖

)

= fixed component + site𝑖𝑖 + cluster𝑖𝑖𝑖𝑖𝑖�

where:
�i is the Site. i = 1, …, 83
�j is the jth cluster within site i. j = 1, …, 16
�k is the kth observation (plot) within cluster j. k = 1, 2, 3
�r is a shape parameter (gamma distribution)
�sitei is the site-level random intercept
�clusteri,j is the cluster-level random intercept

Mixed-effects models have become an increasingly popular tool for analyzing complex ecological data (Harrison 
et  al.,  2018; Zuur et  al.,  2009). Linear mixed-effects models and generalized linear mixed-effects models 
(GLMMs) are particularly suited to the analysis of highly structured data sets like ours containing discrete 
groupings of non-independent observational units that are hierarchical in nature. Mixed-effects models have 
advantages over regular linear models as they can account for non-independence and heterogeneity. Never-
theless, underlying assumptions and model selection and interpretation require care (Harrison et al., 2018). 
Here, we follow the best practices and guidelines for such analyses provided by Zuur et al. (2013, 2009) and 
Harrison et al. (2018).

Gamma GLMMs were fitted using the function glmmTMB within the glmmTMB package in R (Brooks 
et al., 2017). We fit four initial candidate models (Table 2). All four models included interactions between soil 
texture (either expressed as sand content or texture class) and the remaining covariates, as we expected it to 
influence the effect of the other covariates. We defined three soil texture classes, sandy (>50% sand content), 
clay (>50% clay content), and clay loam (<50% sand content and <50% clay content). Ordinal categorical 
variables (i.e., woody and herbaceous vegetation cover ratings and grazing impact rating) were treated as 
continuous covariates to simplify model structure and preserve ordering. Continuous covariates were stand-
ardized (x  −  mean(x)/sd(x)) to fit the models in order to improve model performance and interpretability 
(Schielzeth, 2010).

Model selection involved two steps. First, we applied model selection on the covariates, dropping non-significant 
interaction terms from the four initial candidate models using likelihood-ratio tests via the drop1 function in the 
stats package in R (Chambers & Hastie, 1992). Second, the best model was selected from the four final candidate 
models (Table 2). The model with the lowest Akaike's Information Criterion (AIC) is considered to be the best in 
that it optimizes the trade-off between fit and complexity (Burnham & Anderson, 2004).

In the model validation, we followed Zuur et al. (2013) to check that model assumptions were not violated. Plots 
of Pearson residuals (residuals vs. fitted values, residuals vs. model covariates, and residuals vs. spatial coordi-
nates) were used to visually assess the lack of heteroscedasticity, non-linear patterns, and spatial correlation. To 
aid with non-linear pattern detection, we fitted a smoother to the residuals versus model covariates plots via the 
geom_smooth function in the ggplot2 package in R. We also used variograms of the residuals to confirm the lack 
of spatial correlation. Histograms of the random intercepts were used to check that the assumption of normality of 
random effects was fulfilled. Plots of random effects versus residuals and variograms of the random effects were 
also used to check the lack of spatial correlation. Models were checked for multicollinearity using the function 
check_collinearity in the performance package in R (Lüdecke et al., 2021), which uses the variance inflation 
factor. Model assumptions were not violated.

Model performance indices, including marginal and conditional R 2 (Nakagawa et al., 2017), Interclass Correla-
tion Coefficient (ICC, Hox et al. (2017)) and AIC, were computed using the function model_performance within 
the performance package in R (Lüdecke et al., 2021). Marginal R 2 comprises variance explained by only the fixed 
effects, while conditional R 2 comprises the variance explained by both the fixed and random effects (Nakagawa 
et al., 2017).

2.5.2.  Random Forest Regression Models

We used Random Forest regression models (Breiman, 2001) to gain further insight into the relative importance 
of the different covariates in predicting Kfs. Random Forests are a nonparametric method of statistical learning 
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widely used across a broad range of disciplines, including ecology and soil science (Biau & Scornet, 2016). 
The popularity of Random Forest models is mainly due to their predictive performance and versatility, with few 
restrictions on the nature of the data. Their main drawback is that they can be complex to interpret. In addition to 
being a powerful prediction tool, a key application is the quantification of the relative importance of the candidate 
explanatory variables (Grömping, 2015; Molnar, 2022).

Model covariates included sand and clay content, SOC content, soil pH, erosion presence, vegetation structure 
class, grazing impact rating, and herbaceous and woody cover rating. Random Forest regression models were fitted 
using the tidymodels framework in R (Kuhn & Wickham, 2020), with the ranger package (Wright & Ziegler, 2017) 
as the underlying engine. First, the data set was split into training (80%) and test (20%) sets using simple random 
sampling. The training set was then used to fit the model and tune its parameters. We performed parameter tuning 
for mtry, that is, the number of variables randomly selected at each node, and trees, that is, the number of trees 
in the forest/ensemble. First, we conducted a grid search in which different combinations of the two parameters 
were explored (mtry = 1–10 and trees = 100, 250, and 500). Multiple models were trained on resampled data sets 
(k-fold cross-validation, k = 10) using the different combinations of mtry and trees. We then evaluated how well 
these models performed based on the cross-validated estimates of two standard performance metrics, Root Mean 
Squared Error (RMSE) and Mean Absolute Error. Based on this, we selected the best combination of mtry and 
trees (mtry = 2, trees = 500). The final model was then built with the selected values of the parameters. Overall 
model performance was evaluated on the test set using R 2 and RMSE as the performance metrics.

The importance of each explanatory variable was assessed using the Mean Decrease in Accuracy (MDA) or Permuta-
tion Importance measure (Breiman, 2001). The MDA is a measure of variable importance, and it is constructed from 
the Random Forest model prediction accuracy (the Mean Squared Error, MSE, in the case of regression models), which 
is assessed using the out-of-bag (OOB) observations. The MDA for a particular variable represents the normalized 
average (among trees in a forest) increase in the MSE made by a tree when randomly permuting the observations for 
that variable in the OOB samples. The more important a variable is as a predictor, the higher this increase will be.

To clarify how predicted Kfs varied across the observed ranges of the model covariates, we constructed partial 
dependence plots (Friedman, 2001) using the pdp package in R (Greenwell, 2017). Partial dependence plots illus-
trate the marginal effect a specific feature of interest has on the predicted outcome of a machine learning model 
(Friedman, 2001; Molnar, 2022). These plots visualize the direction, strength, and form of relationships, although 
they might not capture the full complexity of the model (Molnar, 2022).

All data analyses were conducted using R version 4.0.0 (R Core Team, 2015).

3.  Results
3.1.  Overview

The sample set consists of data from 3,573 plots across 83 sites. Of these plots, 45% were under cropland, whereas 
the vegetation structure in the remaining plots was classified as either shrubland (17%), grassland (10%), bush-
land (9%), wooded grassland (7%), woodland (7%), or forest (5%) (Table S2 in Supporting Information S1). The 
distribution of vegetation structure classes varied among sites, but cropland was the predominant class (≥50% 
of the plots) in 36 out of 83 sites (Figure S1 in Supporting Information S1). Plot-average woody and herbaceous 
vegetation cover ratings (0–5) varied within and among sites, with an overall mean value of 1.7 and 2.8, respec-
tively (Figure S2 in Supporting Information S1). On average, half of the plots per site had visible signs of erosion, 
but erosion prevalence varied significantly among sites (Figure S3 in Supporting Information S1). The overall 
mean impact of grazing rating (0–3) was 1.1, but it varied within and among sites (Figure S4 in Supporting Infor-
mation S1). Overall, 57% of the plots presented visible signs of grazing and browsing (impact of grazing rating 
≥1). This proportion was highest for plots classified as bushland (84%), followed by wooded grassland (75%), 
grassland (75%), shrubland (69%), cropland (46%), and forest (26%) (Figure S5 in Supporting Information S1).

Topsoil field-saturated hydraulic conductivity (Kfs) for the 3,573 measures followed a right-skewed distribution 
with a median value of 41.2 mm hr −1 and an interquartile range of 57.7 mm hr −1 (Figure 2, Table S3 in Support-
ing Information S1). Kfs varied within and among sites; Median Kfs for the 83 sites ranged from 6.8 (at Temki, 
Chad) to 160.9 mm hr −1 (Mbinga, Tanzania), and, in general, sites with higher median Kfs also exhibited higher 
variability (Figure 2).
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Figure 2.  Boxplots (Q1, median, Q3) of topsoil field-saturated hydraulic conductivity (Kfs) for the 83 sites included in the 
study. The color indicates the average site aridity class (UNEP, 1992) for the period 1970–2000, based on Trabucco and 
Zomer (2019). The overall distribution of Kfs is also shown with a marginal density plot. The x-axis is limited to 400 mm hr −1 
to improve data visualization (only seven observations were above this threshold).
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Soil sand content, SOC content, and pH also varied within and among sites (Figure 3). In general, SOC content 
increased, and soil pH decreased with humidity. Sites with lower median SOC also had lower variability 
in SOC. The sampled soils had relatively low silt content (below 50%); 53% of them had more than 50% 
clay content, while only 19% had more than 50% sand content (Table S4 in Supporting Information S1 and 
Figure 4b).

Overall, there was a moderate and positive correlation of Kfs with SOC content (r = 0.18), woody cover rating 
(r = 0.13), soil sand content (r = 0.1), and herbaceous cover rating (r = 0.08), and a negative correlation of Kfs 
with soil pH (r = −0.22), the impact of grazing rating (r = −0.15), and soil clay content (r = −0.09) (Figure S6 in 
Supporting Information S1). Sites with a more humid climate tended to have higher Kfs than drier sites (Figure 2), 
as indicated by the positive correlation between site mean aridity index (AI = mean annual precipitation/mean 
annual potential evapotranspiration) and median Kfs (r = 0.3). Median Kfs per aridity class across all plots also 
decreased with increasing aridity (Figure 4a). Overall, coarser soils had higher Kfs than more fine-textured ones 
(Figure 4). However, as humidity increased, the effect of soil texture on Kfs was less pronounced (Figure 4a). 
Interestingly, more extreme Kfs values (above the overall 95th percentile) occurred not only in sandy soils but also 
in soils with more than 50% clay content (Figure 4b).

Figure 3.  Boxplots (Q1, median, Q3) and marginal density plots of sand content (a), soil organic carbon (b), and pH (c) for the 83 study sites included in the study. The 
color indicates the average site aridity class (UNEP, 1992) for the period 1970–2000, based on Trabucco and Zomer (2019). The sites are ordered by their aridity index, 
from more arid to more humid sites.
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3.2.  Modeling Results

3.2.1.  General Linear Mixed-Effects Model

The best model explaining Kfs (see Table 2 for the final model formulation) had a marginal and conditional R 2 of 
0.15 and 0.33, respectively (Table 3). Sand and SOC content had a significant positive effect on Kfs (Figures 5 
and 6). In contrast, the impact of grazing and soil pH had a significant negative effect. The effect of vegeta-
tion structure was also significant, with shrublands, wooded grasslands, croplands, woodlands, bushlands, and 
forests having an increasingly positive effect on Kfs compared to grasslands. On the other hand, herbaceous cover 
and the presence of erosion had a positive and negative effect, respectively, on Kfs, although not statistically 
significant.

The relationship between field-saturated hydraulic conductivity and SOC content, erosion, vegetation struc-
ture, and grazing impact varied with soil texture. The positive effect of SOC on Kfs (Figure 6b) was stronger in 
fine-textured soils as opposed to soils with higher sand content (Figure 6c). According to the 95% confidence 
intervals from the selected gamma GLMM model, there were no significant differences in Kfs between plots with 
or without visible signs of erosion for the average sand content; nonetheless, the presence of erosion in coarser 
soils had a negative relationship with Kfs (Figure  6d). The relationship with vegetation structure also varied 
depending on soil texture. Overall, Kfs increased with increasing tree cover, from grasslands to forests (Figure 6f). 
Higher sand content was associated with higher Kfs across all vegetation structure classes, particularly in the 
case of woodlands, bushlands, and forests (Figure 6g). Finally, grazing was associated with lower values of Kfs 
(Figure 6h). This negative pattern was more pronounced for finer soils with little sand than for soils with higher 
sand content, although sand content increased overall Kfs.

Figure 4.  (a) Density plots showing the distribution of field-saturated hydraulic conductivity (Kfs) values per aridity class (UNEP, 1992) and soil texture class (sandy: 
sand content >50%; clay: clay content >50%; clay loam: sand content <50% and clay content <50%). The dotted lines show the overall distribution of Kfs per aridity 
class, and the dotted vertical lines correspond to median values. The triangles along the x axes indicate median values per textural class (b) Soil texture ternary diagram 
of the samples. The color scale is related to the magnitude of Kfs. Extreme Kfs values are highlighted in white (i.e., greater than the 95% percentile of 165 mm hr −1).
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3.2.2.  Random Forest Regression Model

Sand and clay content were the most important covariates for predicting Kfs, followed by SOC content, whereas 
the presence of erosion was the least important (Figure 7).

Partial dependence plots showed a positive relationship between Kfs and sand content, SOC, herbaceous and woody 
cover ratings, and a negative relationship with clay content, pH and grazing (Figure 8). The relationship between 
sand content and predicted Kfs was most pronounced between sand content values of 50% and 75% (Figure 8a). 
On the other hand, the relationship with clay content was strongest for values below 25%, while increases in clay 
content above this threshold did not have a substantial effect on predicted Kfs (Figure 8b). There was a positive 
relationship between SOC and predicted Kfs up to around 60 g kg −1, and thereafter predicted Kfs leveled off and 
appeared to be unaffected by SOC (Figure 8c). However, SOC content above 60 g kg −1 was rare (only 1.5% 

Predictors Estimates CI P

Intercept 3.56 3.42–3.71 <0.001

Sand 0.36 0.24–0.47 <0.001

SOC 0.17 0.10–0.24 <0.001

Erosion (presence) −0.02 −0.09–0.05 0.613

VegStructure (cropland) 0.26 0.15–0.38 <0.001

VegStructure (shrubland) 0.08 −0.04–0.21 0.197

VegStructure (wooded grassland) 0.22 0.07–0.38 0.004

VegStructure (woodland) 0.30 0.15–0.46 <0.001

VegStructure (bushland) 0.33 0.18–0.48 <0.001

VegStructure (forest) 0.49 0.29–0.68 <0.001

ImpactGrazing −0.07 −0.11 to −0.02 0.003

pH −0.14 −0.19 to −0.08 <0.001

HerbCovRate 0.03 −0.01–0.07 0.129

Sand * SOC −0.15 −0.22 to −0.08 <0.001

Sand * Erosion −0.08 −0.15 to −0.01 0.029

Sand * VegStructure (cropland) −0.18 −0.28 to −0.07 0.001

Sand * VegStructure (shrubland) −0.19 −0.32 to −0.06 0.004

Sand * VegStructure (wooded grassland) −0.20 −0.35 to −0.05 0.009

Sand * VegStructure (woodland) −0.13 −0.28–0.01 0.072

Sand * VegStructure (bushland) −0.04 −0.18–0.10 0.579

Sand * VegStructure (forest) −0.08 −0.28–0.12 0.457

Sand * ImpactGrazing 0.05 0.01–0.09 0.014

Random effects

  ICC 0.21

  NCluster:Site 16

  NSite 83

  Observations 3,573

  Marginal R 2/Conditional R 2 0.15/0.33

Note. The standardized estimates of the fixed effects (beta coefficients), their associated 95% confidence intervals (CI) and corresponding p-values are shown (both 
based on Wald Z statistics). The random effects, number of observations, sites and clusters within sites, the marginal and conditional R 2, and the Interclass Correlation 
Coefficient (ICC) are included. The estimates of the fixed effects are based on the standardized values of continuous covariates. Sand: Sand content (%), SOC: Soil 
organic carbon content (g C kg −1), Erosion: Presence of erosion (binary), VegStructure: Vegetation structure class, ImpactGrazing: Grazing impact rating, pH: Soil 
pH, HerbCoverRate: Herbaceous cover rating. The effects and corresponding p-values for the factor variables Erosion and VegStructure are in relation to their baseline 
levels (absence of erosion and grassland, respectively).

Table 3 
Summary of the Optimal Gamma Generalized Linear Mixed-Effects Model Explaining Variation in Field-Saturated Hydraulic Conductivity (Kfs)
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of samples were above this threshold); hence, this relationship should be interpreted cautiously. Predicted Kfs 
declined with increasing soil pH up to values around 7, while it remained low and relatively unchanged in the 
case of alkaline soils (Figure 8d). In the case of herbaceous cover, predicted Kfs varied little over the ratings 0–4, 
but increased between 4 and 5 (i.e., between 40%–65% and >65% herbaceous cover) (Figure 8i). The effect of 
grazing on predicted Kfs was strongest between ratings of 0 and 2 (Figure 8e). Predicted Kfs varied with vegeta-
tion structure class, and it was higher in classes with more trees (such as forest or bushland) compared to grass-
lands, shrublands or croplands (Figure 8g). Similarly, woody cover had a positive relationship with predicted 
Kfs (Figure 8h). Finally, predicted Kfs was slightly lower (57 vs. 59 mm hr −1) in plots with erosion than in plots 
without erosion (Figure 8f).

Figure 5.  Fixed effects standardized estimates of the optimal gamma generalized linear mixed-effects model explaining 
field-saturated hydraulic conductivity (Kfs) and associated 95% confidence intervals. Asterisks indicate the significance level 
of the corresponding p-values (***p < 0.001, **p < 0.01, *p < 0.05). Sand: Sand content (%), SOC: Soil organic carbon 
content (g C kg −1), Erosion: Presence of erosion (binary), VegStructure: Vegetation structure class, ImpactGrazing: Grazing 
impact rating, HerbCoverRate: Herbaceous cover rating. The effects for Erosion and VegStructure are in relation to their 
baseline levels (absence of erosion and grassland, respectively).
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Figure 6.
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4.  Discussion
Previously, representative observations of soil hydraulic properties in Africa were few and of mixed form and 
quality (Gupta, Hengl, et  al.,  2021; Rahmati et  al., 2018; Schaap et  al., 2001; Wösten et  al., 1999; Zhang & 
Schaap, 2017). Our data set expands existing regional and global databases of soil hydraulic properties, improv-
ing coverage for Africa and providing field data for underrepresented land uses and soils. As such, we envision 
that our data set can contribute to improved understanding and prediction of soil hydraulic properties and to 
improved Earth system and land surface models. In particular, we see great potential to validate and improve the 
performance of regional and global predictions of Ks. In our analyses of these unique data, we used established 
methods (Nimmo et al., 2009) to estimate topsoil Kfs from field measurements of soil infiltration in 3,573 plots 
across 83 sites in sub-Saharan Africa. Median Kfs across these sites spanned a similar range to median Kfs values 
for different soil texture classes from the SWIG database (6.8–160.9 vs. 2.8–150 mm hr −1) (Rahmati et al., 2018). 
The positive correlation between within-site variability in Kfs and median Kfs is also consistent with previous find-
ings (Nyberg et al., 2012; Takoutsing et al., 2022). In general, Kfs tended to be higher in more humid versus drier 
sites. This likely results from differences in inherent soil properties on the one hand and differences in net primary 
production and, subsequently, in SOC and soil structure on the other; these factors are discussed in detail below.

Results from the GLMM and Random Forest models show that soil sand content, SOC content, and woody cover 
had a positive relationship with Kfs, whereas grazing impact and soil pH had a negative relationship. Our findings 
also indicate that soil texture (sand and clay content) and SOC were the most important covariates for predicting 
Kfs. As expected, Kfs increased with sand content, with some variation depending on climate. The positive effect 
of the coarse-textured fractions on Kfs agrees with previous findings (Lehmann et al., 2021; Saxton et al., 1986; 
Tomasella et al., 2003). This relationship was less marked in more humid sites, likely due to potential differ-
ences in clay type and mineralogy between drier and more humid sites. While low-activity (non-swelling) clay 

Figure 6.  Marginal effects of the optimal gamma generalized linear mixed-effects model model explaining field-saturated hydraulic conductivity (Kfs) and associated 
95% confidence intervals. Predicted values of Kfs are shown as a function of the main terms (left column) and the interaction terms (right column). Observe that 
the y-axes have different scales. The plots show the predicted Kfs as a function of the predictor variable(s) on the x-axis while considering mean values of all other 
continuous predictor variables and baseline levels of factor variables Erosion and Vegetation structure (absence of erosion and grassland, respectively). Interactions 
between sand content and soil organic carbon (c), erosion (e), vegetation structure class (g), and Impact Grazing (i) are illustrated based on sand content first (Q1), 
second (Q2) and third quartile (Q3) values, which are shown as vertical lines in (a).

Figure 7.  Random Forest variable importance plot showing the relative importance (Mean Decrease in Accuracy or 
Permutation Importance) of each covariate in predicting field-saturated hydraulic conductivity (Kfs) using a Random Forest 
regression model (R 2 = 0.21). Sand: Sand content (%), Clay: Clay content (%), SOC: Soil organic carbon (g C kg −1), 
ImpactGrazing: Grazing impact rating, HerbCoverRate: Herbaceous cover rating, VegStructure: Vegetation structure class, 
WdCovRate: Woody cover rating, Erosion: Presence of erosion (binary).
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Figure 8.  Partial dependence plots showing the marginal effect of the model covariates (A–J) on the predicted field-saturated hydraulic conductivity (Kfs) using a 
Random Forest regression model. Marks on the x-axis indicate the data distribution (deciles, minimum and maximum values).
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minerals predominate in the humid tropics, more active (swelling) clay minerals are more common in drylands 
(Lehmann et al., 2021). Soils dominated by swelling clay minerals (e.g., smectite) are dispersive and, when satu-
rated, have very low hydraulic conductivity. In contrast, weathered kaolinite-dominated soils such as Ferralsols 
(Oxisols) are highly permeable due to their stable micro-aggregated structure and low dispersibility (Hodnett & 
Tomasella, 2002; Lado & Ben-Hur, 2004; Lehmann et al., 2021; van den Berg et al., 1997). Our observations 
of extreme (>95th percentile) Kfs values occurring in soils with more than 50% clay content were surprising but 
may reflect such micro-aggregated structure or the presence of macropores such as those created by roots and 
soil fauna and cracks in some vertic soils. Our results also show a negative relationship between soil pH and Kfs, 
with a substantial drop at around 7. Soil pH can indicate the degree of weathering and can thus also be related 
to clay mineralogy and exchangeable base cation concentration (Hodnett & Tomasella, 2002). Soils from drier 
sites tended to have higher pH values, which may reflect the dominance of more active and dispersive clays as 
well as a higher concentration of monovalent base cations that contribute to the dispersion of clay aggregates 
and soil structure degradation (Rengasamy et al., 2016) and, therefore, lower Kfs. Mills et al. (2006) also found a 
similar negative trend between pH and infiltrability for soils in Namibia and South Africa, which they ascribed 
to an increase in clay dispersibility with increasing pH. Future work needs to investigate further the effect of clay 
mineralogy in Kfs. Current soil databases used to train pedotransfer functions of soil hydraulic properties are 
strongly biased toward temperate regions with higher silt content and different clay minerals than tropical soils, 
which highlights the importance of increasing the amount of data from tropical soils in these databases when 
used for global predictions (Botula et al., 2012; Gupta, Hengl, et al., 2021; Tomasella et al., 2000). Our data set 
helps fill this gap. Our results also support the importance of considering dominant clay mineral types, not just 
clay  fraction, when estimating soil hydraulic properties in the tropics (Lehmann et al., 2021).

Topsoil organic carbon content had a positive relationship with Kfs. SOC is crucial in supporting soil's physical 
quality (Dexter, 2004; Rawls et al., 2004) and is a major indicator of overall soil health (Bagnall et al., 2023; 
Cardoso et al., 2013; Lal, 2016). In general, SOC is considered to improve soil aggregation (Beare et al., 1994; 
Castro Filho et al., 2002) and porosity (Adams, 1973) and, as a result, saturated hydraulic conductivity (Lado, 
Paz, & Ben-Hur, 2004; Mbagwu & Auerswald, 1999). Our findings support this understanding and provide a 
broader evidence base. We also found that the implied effect of SOC on Kfs was texture-dependent, with a more 
substantial positive relationship for fine-textured soils than for coarser ones. This is consistent with the results of 
Araya and Ghezzehei (2019) for U.S. soils in the USKSAT database (Pachepsky & Park, 2015), who found that Ks 
increased with SOC across all textural classes except for sand and loamy sand. These results might be explained 
by the formation of organic matter and clay complexes that enhance soil porosity and reduce clay dispersibility 
in water (Dexter et al., 2008). Our results also indicate that, while at low to moderate SOC contents coarser soils 
exhibit higher Kfs than more fine-textured soils, this trend is reversed for high SOC contents. Our finding that Kfs is 
positively associated with SOC contrasts with other studies that found a negative relationship (Jarvis et al., 2013; 
Larsbo et al., 2016; Nemes et al., 2005; Wang et al., 2009). This negative relationship has been linked to greater 
soil water repellency and soil tortuosity as soil organic matter content increases. While our results indicate that 
the positive relationship between Kfs and SOC is less strong for coarser compared to more fine-textured soils, 
they do not support any negative Ks-SOC relationship. This suggests that, overall, in our data set, the positive 
effect of SOC on soil aggregation outweighs any negative effects of SOC on Kfs. Nevertheless, given that other 
studies found evidence of a negative Ks-SOC relationship, we recognize that this may still occur under specific 
conditions. Future studies should further explore these relationships and identify the conditions under which the 
relationship might be negative. Taken together, our results and interpretations suggest considerable potential to 
enhance soil hydrological functioning through the adoption of land use and management practices that increase 
SOC, particularly in the case of fine-textured soils. Such practices include agroforestry, cover crops, crop residue 
retention, reduced tillage, and optimal livestock stocking rates (Minasny et al., 2017; Paustian et al., 2016; Vågen 
et al., 2005). Increasing SOC can improve soil hydrological functioning while yielding many other benefits, from 
increased food and nutrition security to climate change mitigation (Johnston et al., 2009; Lal, 2006, 2010; Vågen 
& Winowiecki, 2013; Vågen et al., 2005), and should hence be key in land restoration efforts.

Vegetation structure was strongly associated with Kfs, with grasslands and forests exhibiting the lowest and 
highest Kfs values, respectively. These results and those from the Random Forest model suggest that woody 
cover, especially tree cover, has a positive impact on Kfs. These findings are consistent with a meta-analysis 
conducted by Ilstedt et al. (2007) showing that tree planting in the tropics, both in afforestation and agroforestry, 
improves soil infiltration capacity across a wide range of conditions and humidity levels. More recent studies 
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in the tropics further support these findings (Abaker et al., 2018; Benegas et al., 2014; Bonnesoeur et al., 2019; 
Filoso et al., 2017; Leite et al., 2018; Lozano-Baez et al., 2019, 2021; Mens et al., 2023; Niemeyer et al., 2014; 
Nyamadzawo et al., 2007; Zwartendijk et al., 2017). The positive impacts appear due to increased litter inputs, 
improved soil biological activity, and enhanced aggregation and macropore formation (e.g., root and faunal chan-
nels) (Bargués Tobella et al., 2014; Belsky et al., 1989, 1993; Niemeyer et al., 2014; Zwartendijk et al., 2017). 
Our results suggest that the effect of vegetation structure on Kfs is texture-dependent, with a stronger effect of 
tree cover on Kfs for more coarse-textured soils. This finding somehow disagrees with previous observations 
showing that the recovery of infiltration capacity following tree planting in the tropics is slower in the case of 
sandy soils (Lozano-Baez et al., 2019), although our data set does not allow testing this. Along the same lines, 
Niemeyer et al. (2014) found that the relationship between woody cover and Kfs along a vegetation gradient in 
dry tropical Nicaragua was greater for fine-textured soils than for coarser soils, which they ascribed to the impact 
of root-macropore formation on Kfs in fine-textured soils. Our results, which differ from these observations, may 
partly be explained by the so-called “inverse texture effect” observed in dryland ecosystems and by which coarser 
soils appear to support taller and denser perennial vegetation than finer soils (Gupta et al., 2022; Noy-Meir, 1973). 
Such apparently contradictory observations indicate that the combined relationship of woody vegetation and soil 
texture on Kfs is complex and requires further investigation. Overall, our findings support the importance of 
incorporating some measure of woody vegetation cover into models to predict Kfs (Bonetti et al., 2021; Niemeyer 
et al., 2014). Our results also show a smaller, but still positive, effect of herbaceous cover on Kfs. Results from the 
Random Forest model suggest that increases in herbaceous cover between 0% and 40% (ratings 0–4) have little 
relationship with Kfs, whereas increases above 40% have a larger positive effect, underscoring the value of main-
taining a high herbaceous cover. Grasslands exhibited the lowest Kfs values of all vegetation structure classes, 
even compared to croplands. These results contrast with findings from a global meta-analysis on the  impact of 
land use on soil hydraulic properties showing that grasslands had higher K values than comparable soil under 
cultivation (Robinson et al., 2022). Our vegetation structure classes do not fully reflect the land use intensity nor 
the land use history; many plots classified as grasslands were degraded, and some corresponded to abandoned 
croplands or land under fallow, which may help explain our results. Future studies using this data set might bene-
fit from a more detailed analysis of the impacts of land use and land use change on Kfs. Different plant species 
will likely have different influences on infiltration via litter quality and quantity, root traits, microclimate, and 
associated soil fauna (Mens et al., 2023). This also raises important research questions for future studies.

Increasing grazing impact had a negative effect on Kfs, especially in fine-textured soils. This is in line with 
previous local studies showing that soil infiltration capacity decreases with grazing intensity across different 
land cover classes (Lulandala et al., 2022; Mwendera & Saleem, 1997; Savadogo et al., 2007; Talore et al., 2016; 
Vandandorj et al., 2017). The negative impact of grazing has been attributed primarily to soil compaction through 
animal trampling and reduced structural pore space, as indicated by higher soil bulk density values in more 
heavily grazed areas (Dudley et al., 2002; Lai & Kumar, 2020; Lulandala et al., 2022). In addition, heavy grazing 
can lead to reductions in plant cover and biomass, and SOC (Dlamini et al., 2016; Eldridge et al., 2016; Kikoti 
et al., 2015; Lai & Kumar, 2020; Lulandala et al., 2022; Savadogo et al., 2007), which can also contribute to 
decreasing infiltration capacity. Heavy livestock grazing and other anthropogenic activities can dilute or over-
ride the positive impacts of woody vegetation on Kfs (Ghimire et al., 2013, 2014; Lulandala et al., 2022). In this 
first study of this data set, we did not consider the interaction between grazing intensity and vegetation structure 
class due to the limited number of observations, which did not allow us to fit more complex models. This and 
other potentially relevant interactions should be investigated in future studies. Livestock grazing is a widespread 
land use in Sub-Saharan Africa, where millions rely on livestock for their livelihood (Robinson et  al.,  2011; 
Thornton, 2002). Our results highlight the importance of actively managing livestock stocking rates to prevent 
and reverse the degradation of soil hydrological functioning.

The presence of visible signs of erosion had a weak to no relationship with Kfs, though for coarse-textured soils, 
Kfs tended to be lower in such plots. Erosion can lead to the formation of seals at the soil surface that reduce 
infiltration capacity, thus increasing overland flow and soil erosion (Singer & Le Bissonnais, 1998; Singer & 
Shainberg, 2004). Previous studies show that soils with intermediate clay content (ca. 10%–40%) have less stable 
aggregates and are more susceptible to seal formation and pore-clogging compared to soils with higher clay 
content (>40%), which may contribute to our results (Ben-Hur et al., 1985; Lado, Ben-Hur, & Shainberg, 2004). 
Similarly, Yair (1992) found that surface sealing in fine-textured soils was low due to the high stability and strong 
flocculation of clay-rich aggregates. Removal of SOC and reduced vegetation cover following erosion (Lal, 2005) 
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can also reduce infiltration capacity. In turn, decreased infiltration capacity can increase infiltration-excess 
overland flow, and, as a result, increase erosion further, especially under high rainfall intensities. This posi-
tive (self-reinforcing) feedback loop amplifies land degradation and can lead to a degraded state that is hard 
to reverse (D’Odorico et al., 2013; Scheffer & Carpenter, 2003). Erosion is one of the most critical and wide-
spread land degradation processes in Sub-Saharan Africa and elsewhere (Montanarella et al., 2016; Vågen & 
Winowiecki, 2019). Improving soil infiltration capacity can help prevent and curb such processes.

Our findings support the view that soil texture is a major determinant of Kfs, while also underlining the additional 
role of soil structure and soil structure-altering processes. These additional factors are indicated by the positive 
relationships between Kfs and SOC and vegetation cover (in particular woody vegetation) and the negative rela-
tionship between Kfs and grazing and erosion. These relationships suggest significant opportunities to improve 
soil hydrological functioning by adopting land management practices that protect and enhance soil structure. 
Practices that reduce compaction and erosion, and/or enhance soil organic matter, vegetation cover, and soil 
microbial and faunal activity are likely to prove beneficial (Bronick & Lal, 2005; Meurer et al., 2020; Pagliai 
et al., 2004). The application of compost and manure, as well as mulching, alternative tillage systems, crop rota-
tion, and improved grazing management, may all contribute (Bronick & Lal, 2005; Conant et al., 2017; Minasny 
et al., 2017; Pagliai et al., 2004). Protecting and promoting tree cover inside and outside forests, for instance, 
through agroforestry and maintaining trees on field boundaries, steeper slopes, and around drainage features, will 
likely be beneficial as well (Bargués Tobella et al., 2014; Ilstedt et al., 2016). Subsequent improvements in soil 
hydrological functioning can bolster the delivery of related ecosystem services — including water provisioning 
and purification, the regulation of hydrological flows, erosion control, biomass production, and biodiversity 
conservation (Bünemann et al., 2018; Keesstra et al., 2016). We thus recommend that land management practices 
that enhance soil structure and hydrological functioning be widely promoted across the region.

Our data and analyses represent a major improvement on previous studies but can be further improved. 
Our data set encompasses various climates and settings, although it may not fully represent sub-Saharan 
Africa. Notably, data remains limited in Southern and Central Africa, including the Congo Basin, and 
approximately 95% of our sites are not in arid climates. In terms of land use and cover, forests and wood-
lands remain underrepresented. In terms of measurements, we were constrained by the soil and land health 
indicators measured as part of the LDSF, which were selected in part for their cost-effectiveness, while 
other aspects that we have not considered could influence soil structure and Kfs. Variables that identify and 
capture variation in clay mineralogy, the soil biota, vegetation, and herbivory all warrant further attention. 
We also see a need to explore the role and form of SOC and its relationship to other soil and site properties 
in greater detail. In addition to increasing the data set and coverage, alternative statistical approaches, like 
Bayesian hierarchical modeling, may offer insights in future analyses. Our field surveys followed a system-
atic approach to minimize measurement errors and ensure consistency among the data collection teams. 
Remaining uncertainties relate to field measurements, particularly soil infiltration (Nimmo et  al.,  2009; 
Reynolds, 2008), and the estimation of Kfs (Bagarello et al., 2014; Nimmo et al., 2009; Reynolds, 2008). In 
our data set, we provide both the measured and estimated Kfs values. This permits others to use and assess 
different estimation methods beyond the scope of this study.

5.  Conclusions
Taken together, results from this study indicate that, across the 83 study sites in sub-Saharan Africa, Kfs is linked 
with soil texture and soil structure, which highlights the importance of considering both when estimating Kfs, 
as suggested by others (e.g., Fatichi et  al.,  2020 or Bonetti et  al.,  2021). Incorporating attributes that influ-
ence soil structure when estimating Kfs is especially urgent for applications in the tropics, where the impacts of 
soil structure on hydrologic response are more prominent due to the prevalence of high-intensity rainfall events 
and  soils with high contents of clay (Bonell, 1993; Bonetti et al., 2021; Tomasella et al., 2000; Wohl et al., 2012). 
We provide evidence for the importance of structure-altering processes, including compaction, aggregation, and 
burrowing by roots and soil fauna, in determining Kfs, as indicated by the relationships between Kfs and SOC, 
grazing impact, vegetation cover, pH, and erosion. Our findings also suggest that soil texture regulates many of 
these relationships. Hence, while inherent soil properties influence Kfs, dynamic properties affected by land use 
and management are also crucial. This underscores the potential of management and restoration practices to main-
tain and promote soil hydrological functioning. Effort must be placed on promoting practices that improve soil 
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structure and avoiding those that worsen it. Enhancing SOC content, limiting livestock stocking rates, promoting 
vegetation cover, particularly woody vegetation, and preventing and halting soil erosion, can thus maintain and 
enhance Kfs. This evidence can guide sustainable land management practices and restoration interventions for 
improved soil health and water security.
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