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Abstract
Intraspecific genetic variation in foundation species such as aspen (Populus tremu-
loides Michx.) shapes their impact on forest structure and function. Identifying genes 
underlying ecologically important traits is key to understanding that impact. Previous 
studies, using single-locus genome-wide association (GWA) analyses to identify can-
didate genes, have identified fewer genes than anticipated for highly heritable quanti-
tative traits. Mounting evidence suggests that polygenic control of quantitative traits 
is largely responsible for this “missing heritability” phenomenon. Our research char-
acterized the genetic architecture of 30 ecologically important traits using a common 
garden of aspen through genomic and transcriptomic analyses. A multilocus associa-
tion model revealed that most traits displayed a highly polygenic architecture, with 
most variation explained by loci with small effects (likely below the detection levels of 
single-locus GWA methods). Consistent with a polygenic architecture, our single-locus 
GWA analyses found only 38 significant SNPs in 22 genes across 15 traits. Next, we 
used differential expression analysis on a subset of aspen genets with divergent con-
centrations of salicinoid phenolic glycosides (key defense traits). This complementary 
method to traditional GWA discovered 1243 differentially expressed genes for a poly-
genic trait. Soft clustering analysis revealed three gene clusters (241 candidate genes) 
involved in secondary metabolite biosynthesis and regulation. Our work reveals that 
ecologically important traits governing higher-order community- and ecosystem-level 
attributes of a foundation forest tree species have complex underlying genetic struc-
tures and will require methods beyond traditional GWA analyses to unravel.
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1  |  INTRODUC TION

Ecologically important traits are those that affect an organism's abil-
ity to survive and reproduce in natural environments (Stinchcombe 
& Hoekstra, 2008). Despite the rapid advances in our understanding 
of the influence of genetic variation on ecologically important traits 
in non-model plants and their subsequent influence on ecological 
processes, the genetic architecture (number of genes, effect sizes, 
type) underlying those linkages is just beginning to be explored 
(Crutsinger, 2016; Holliday et al., 2017). Incorporation of genomics 
into “genes to ecosystems” science could dramatically advance our 
understanding of fundamental ecological processes, inform predic-
tions of biological plasticity and adaptation to a changing world, and 
guide efforts toward sustainability of natural and managed ecosys-
tems (Whitham et al., 2008).

In the early 2000s, Whitham and colleagues (Whitham 
et al.,  2006, 2008) proposed a framework to extend genomics to 
communities and ecosystems. They suggested, then demonstrated, 
that ecologically important traits of foundation species (such as Pop-
ulus species) could be the bridge connecting underlying tree genes 
and genomic regions to community and ecosystem structure and 
function (i.e., extended phenotypes). Extensive research on Popu-
lus species (e.g., Bailey et al., 2006; Bangert et al., 2006; Madritch 
et al., 2009; Schweitzer et al., 2004) established that intraspecific 
variation has heritable effects on associated communities (e.g., her-
bivorous insects, soil microbes) and ecological processes (e.g., tro-
phic interactions, litter decomposition) at the genotype level, and 
is largely mediated by plant chemistry. Very few studies, however, 
have endeavored to identify genes associated with the variation 
in ecologically important traits that yield extended phenotypes 
(Crutsinger, 2016).

Given the importance of intraspecific trait variation to tree 
ecology and forest health, researchers are directing their efforts 
to understand how genetic and genomic variation influences trait 
variation within populations (Holliday et al.,  2017). Genome-wide 
association (GWA) analyses have become the premier strategy for 
identifying candidate genes associated with variation in traits of in-
terest. Forest trees present formidable challenges to GWA analyses 
because they are physically large, long-lived, harbor exceptional ge-
netic diversity, and often have large genomes that are difficult to 
sequence (Petit & Hampe,  2006). Furthermore, many ecologically 
important tree traits have complex genetic architectures, often with 
small allelic effects on the phenotype that are difficult to detect 
using GWA (Lind et al., 2018).

Human genomics research often pioneers methods, like GWA 
analyses, that are subsequently used with other organisms (e.g., 
forest trees) and can be a bellwether for emerging practices in the 
study of quantitative traits. Traditional GWA studies of highly her-
itable quantitative traits in humans have revealed relatively few 
candidate genes with large effects (Robinson et al., 2014; Visscher 
et al., 2017). As a result, ongoing discussion has focused on where 
the so-called “missing heritability” might be found. Although several 
non-mutually exclusive explanations have been advanced (Edwards 

et al.,  2014; Génin,  2020; Gibson,  2012; Maher, 2008; Robinson 
et al., 2014; Young, 2019; Zhou et al., 2022; Zuk et al., 2012), the 
role of polygenicity (many genes of small to moderate effect influ-
ence phenotypic variation) remains substantial. Further analyses of 
human traits with unexplained heritability have shown that most 
have a polygenic architecture and that rare variants may play an im-
portant (albeit smaller) role in trait variation (Hernandez et al., 2019; 
Marouli et al., 2017; Visscher et al., 2017; Wood et al., 2014; Yang 
et al., 2010).

A similar story has been unfolding for forest tree species (Ing-
varsson & Street, 2011). Most forest tree GWA studies have iden-
tified relatively low numbers of significant loci, explaining a small 
proportion of variation in highly heritable quantitative traits (Barker 
et al., 2019; Bresadola et al., 2019; de la Torre et al., 2021, 2022; 
Fahrenkrog et al., 2017; Hallingbäck et al., 2019; Lind et al., 2018; 
McKown et al., 2018) with rare exceptions (Wang et al., 2018). Sev-
eral studies have begun to employ modified and complementary 
methods to address potential sources of “missing heritability,” fol-
lowing the lead of human genomics research. The multilocus GWA 
is one extended GWA method that can be used to assess the ge-
nomic architecture of potentially polygenic traits (Bresadola et al., 
2019; de la Torre et al.,  2021). A multilocus GWA provides a way 
to understand how variation in a marker set is associated with trait 
variation by evaluating the effects of multiple loci simultaneously 
on a given phenotype. Additionally, transcriptomic methods such as 
differential expression are being used to complement GWA methods 
without the need for extensive species-specific resources, which are 
not available for most forest tree species (Carrasco et al., 2017). Our 
study focuses on aspen (Populus tremuloides Michx.), a foundation 
forest tree species. Aspen is highly genetically diverse (Cole, 2005; 
Mitton & Grant, 1996) and exhibits very little population structure 
across its range (Callahan et al., 2013), both ideal characteristics for 
genome-wide association analyses. Aspen has the largest geograph-
ical range of all tree species in North America and is ecologically 
important. As a foundation tree species, it provides food and habitat 
for an estimated 500 plant and animal species, enhances biodiver-
sity, and provides ecosystem services such as carbon sequestra-
tion (Madson, 1996; Rogers et al., 2020). At the same time, aspen 
faces threats from herbivory and climate change (Refsland & Cush-
man, 2021; Rogers et al., 2020).

Growth and defense traits in aspen show extraordinary vari-
ation among genets (Cole et al.,  2021; Lindroth et al.,  2023). In 
both natural and controlled environments, aspen has exhibited 
trade-offs between growth and defense under variable environ-
mental conditions (Cole et al., 2016, 2021; Cope et al., 2019, 2021; 
Donaldson et al.,  2006; Osier & Lindroth,  2006). For example, 
salicinoid phenolic glycosides represent a class of secondary me-
tabolites that strongly mediate plant-herbivore interactions, are 
negatively associated with growth metrics, and are largely genet-
ically controlled (Boeckler et al., 2011; Cole et al., 2021; Lindroth 
& St. Clair, 2013; Osier & Lindroth,  2006). Variation in phenolic 
glycosides influences performance, distribution, and abundance 
of aspen-associated herbivores (Donaldson & Lindroth, 2007; 
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Holeski et al.,  2016; Lindroth and St. Clair 2013). At the same 
time, high intraspecific competition has been shown to select fast-
growing and poorly-defended genotypes (Cope et al., 2021), that 
could leave some aspen stands vulnerable to pests. How aspen 
populations respond to environmental pressures has long-term 
consequences for intraspecific genetic variation and associated 
community structure (Barker et al., 2019; Cope et al., 2021). Thus, 
an understanding of the genetic architecture of intraspecific vari-
ation in ecologically important traits (e.g., growth and defense) is 
critical to their future management and conservation.

Our initial GWA analysis in this system (Barker et al., 2019) was 
one of the first studies to identify specific genes associated with 
plant traits that shape herbivore community composition. That work, 
however, documented fewer than expected associations for highly 
heritable tree traits. To that end, this current study aimed to explore 
the genetic architecture underlying phenotypic variation in ecolog-
ically important traits using modified GWA and an expanded data 
set. We aimed to characterize the genomic architecture (number of 
genes, effects sizes, type) for 30 ecologically important growth and 
defense traits in aspen using single-locus and multilocus GWA. We 
also explored whether high defense-low growth and low defense-
high growth phenotypes exhibit differential expression patterns. To 
answer this question, we performed a differential expression anal-
ysis on a set of aspen genets, half with extremely high and half with 
extremely low concentrations of salicinoid phenolic glycosides.

2  |  METHODS

2.1  |  WisAsp common garden

The Wisconsin Aspen (“WisAsp”) common garden was established 
in 2010 at the Arlington Agricultural Research Station (University 
of Wisconsin-Madison) near Arlington, Wisconsin (USA). The source 
genets were collected along a north–south transect in Wisconsin, 
USA, (corresponding to the northern subpopulation of aspen, Cal-
lahan et al.,  2013) and propagated via root cuttings to create the 
WisAsp common garden. WisAsp contains a total of 1824 P. tremu-
loides trees distributed across four blocks using a randomized com-
plete block design and surrounded by a perimeter of additional 
aspen trees (N = 256). Our data collection occurred during the pe-
riod of time when trees were 4–7 years old, and the canopy was ap-
proaching closure. For detailed information about the garden design 
and site characteristics see (Barker et al., 2019). Genet identity was 
verified using microsatellites as described by Cole et al.  (2021). A 
total of 516 unique genets were identified, with an average of 3.51 
replicates per genet.

2.2  |  Phenotypic data

Evaluated traits were selected because of their importance to 
the fitness of aspen (Cole et al., 2021; Cope et al., 2019) and their 

cascading effects on trophic interactions, community structure, 
and ecosystem function (Barker et al.,  2018; Rubert-Nason & Lin-
droth, 2021). Surveys of 30 traits (growth, phenology, reproduction, 
indirect defense and damage, growth- and defense-related phyto-
chemistry) were carried out at WisAsp common garden each year 
from 2014 to 2018. Table 1 lists the surveyed traits, provides trait 
descriptions and specifies the associated publications that contain 
detailed methodological information.

Detailed collection and processing for the following surveyed 
traits are described by a previous publication (Cole et al., 2021). The 
sex of each tree was determined through genotyping a sex-specific 
marker, TOZ19 (Pakull et al.,  2015). Flowering was assessed by 
counting the number of flowering twigs per tree. Growth was sur-
veyed by measuring the height and diameter of each tree after each 
growing season and several growth measures including volume, rel-
ative growth, and basal area increment were calculated (Table  1). 
Foliar morphology and indirect defense/foliar damage were quan-
tified from digital scans of leaves collected each year in late June/
early July and early August, respectively. Leaf collection was con-
ducted on each tree by haphazardly selecting four leaves (more if 
they were small) from one or more branches in each cardinal direc-
tion. Finely pulverized freeze-dried leaves were used to quantify all 
foliar phytochemicals. Salicinoid phenolic glycoside concentrations 
(salicin, salicortin, tremulacin, and tremuloidin) were quantified using 
ultra-high-performance liquid chromatography-mass spectrometry 
as reported by Rubert-Nason et al.  (2018). Condensed tannin con-
centrations were quantified colorimetrically using the acid buta-
nol method described by Barker et al. (2019). Nitrogen and carbon 
values were determined by near-infrared reflectance spectroscopy 
and calibrated using reference values from combustion gas chro-
matography, as outlined by Barker et al.  (2019) and Rubert-Nason 
et al. (2013).

The following traits were not included in Cole et al. (2021) and are 
further described here. Concentrations of jasmonic acid, jasmonate-
isoleucine, benzyl alcohol glucoside, and salicylic acid were quan-
tified by ultra-high-performance liquid chromatography, using the 
methods outlined by Boeckler et al.  (2013). These phytochemical 
analyses were performed using finely pulverized freeze-dried leaves. 
Phenology was assessed by recording the timing of bud break every 
2–3 days in the spring using a 5-point scale as described by Barker 
et al. (2019). Bud break values were obtained using a local 2-degree 
polynomial regression adapted from Rohde et al. (2011), where bud 
break stage (e.g., 1–5 on the point scale) was the response and the 
dates of observation were the predictors, to generate a prediction 
equation for the date each tree reached stage three. Only predicted 
values with an R2 ≥ .88 were kept.

2.3  |  Genomic data

Exome sequence data for 506 genets were obtained via sequence 
capture genotyping and the sequence data were aligned to the 
Populus tremula v1.1. genome (Lin et al., 2018). Complete details 
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TA B L E  1 Description of tree traits surveyed.

Trait

Years 
data were 
collected Description of trait measurement Units

Phenology

Budbreak dateb 2014–2017 Bud break values were obtained using a local 2-degree polynomial regression 
to predict when each tree had reached stage three on a 5-point scale. Then 
degree day was calculated using a base temperature of 4.4°C and rank 
transformed to account for year-to-year environmental variation

Degree days

Reproduction

Flowering densitya 2017–2019 Number of flowering twigs were counted in the early spring each year between 
2017 and 2019, representing buds formed during the previous year

Number of 
flowering twigs

Sexa NA Sex of each genet determined through genotyping with the TOZ19 marker 
(Pakull et al., 2015)

NA

Growth

Initial volumea 2012 Volume is calculated as diameter2 × height (d2h), which is known to correlate 
well with biomass (Stevens et al., 2007). For 2012, when the trees were 
too small for a diameter at breast height to be taken, basal diameter (10 cm 
above ground) was used

cm3

Volumea 2015–2018 Volume is calculated as diameter2 × height (d2h), which is known to correlate 
well with biomass (Stevens et al., 2007). For all four measurement years, 
diameter at breast height (DBH) was taken at a standard height of 1.4 m

cm3

Basal areaa 2015–2018 Square root (best transform) of area for a given measurement year, π(d/2)2 
where d is the mean of two orthogonal measurements of diameter. For all 
four measurement years, diameter at breast height (DBH) was taken at a 
standard height of 1.4 m

cm2

Heighta 2015–2018 Height of the tallest stem cm

Relative growth 
(volume)b

2015–2018 Growth represented as the change in volume, expressed as the difference in the 
natural logarithms of the volumes at two time points

cm3

Relative growth 
(basal area)a

2015–2018 Growth as difference in natural logarithms of the basal areas at two time points cm2

Basal area 
incrementa

2015–2018 Growth as basal area increment or the difference between the basal areas at 
two time points

cm2

Leaf morphology

Specific leaf areaa 2014–2017 Average leaf area divided by dry mass cm2/g

Individual leaf areaa 2014–2017 Individual average leaf area cm2

Growth-related phytochemistry

Nitrogena 2014–2017 Concentration of foliar nitrogen Percent dry weight

Carbon:nitrogena 2014–2017 Ratio of foliar carbon to foliar nitrogen NA

Abscisic acidc 2017 Concentration of foliar abscisic acid Percent dry weight

Defense-related phytochemistry

Jasmonic acidc 2017 Concentration of foliar jasmonic acid Percent dry weight

Jasmonate 
isoleucinec

2017 Concentration of foliar jasmonate-isoleucine Percent dry weight

Benzyl alcohol 
glucosidec

2017 Concentration of foliar benzyl alcohol glucoside Percent dry weight

Salicylic acidc 2017 Concentration of foliar salicylic acid Percent dry weight

Salicina 2014–2017 Concentration of foliar salicin. Percent dry weight

Salicortina 2014–2017 Concentration of foliar salicortin. Percent dry weight

Tremulacina 2014–2017 Concentration of foliar tremulacin. Percent dry weight

Tremuloidina 2014–2017 Concentration of foliar tremuloidin. Percent dry weight

Total phenolic 
glycosidesa

2014–2017 Sum of salicin, salicortin, tremulacin, and tremuloidin. Percent dry weight
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on how the sequencing and alignment were performed for those 
506 genets can be found in Barker et al. (2019) and File S1. Subse-
quently, genet verification via microsatellite analysis revealed that 
10 genets had no sequence data. Those genets, plus an additional 
15 genets that were omitted by Barker et al.  (2019) because of 
poor-quality sequencing, were sent for sequence capture geno-
typing using the same probes and methodology as the original 506 
sequenced genets. Additionally, a subset of genets (N = 11) that 
had been sequenced previously with whole-genome sequencing 
(for complete details, see Wang et al.  (2016)) were included be-
cause many of them had better quality sequencing data than when 
sequenced using sequence capture genotyping. A joint call over all 
samples (N = 506 + 25 + 11 = 542) was conducted using GATK Gen-
otypeGVCFs with a standard emit confidence of 10 and a standard 
call confidence of 20 resulting in the discovery of 6,827,282 SNPs. 
Variants were filtered for genotype quality and sample quality 
metrics using VCF and BCF tools (Danecek et al., 2011). The full 
variant filtering pipeline is provided in File S1. Duplicate samples 
(including clones) were removed by keeping the sample with the 
best quality sequencing data (N = 53 duplicate samples removed). 
An additional 32 samples were removed for poor sequence quality 
(>20% missing data) and two were removed because they were 
likely F1 hybrids of P. tremuloides and grandidentata (File S2). After 
variant filtering, missing genotype information was imputed using 
LinkImpute (Money et al.,  2015). The SNP filtering pipeline re-
sulted in a data set of 455 replicated genets with 291,069 SNPs 
distributed across 5375 scaffolds and 20,875 genes with 10 SNPs 
per gene on average.

To assess the presence of population structure, we used AD-
MIXTURE (Alexander et al., 2009), which employed maximum like-
lihood estimation of individual ancestries based on our SNP data to 
determine the most likely number of populations or distinct groups 
present in the sample set. We tested values 1 through 5 for k (i.e., 

the number of groups) and used cross-validation to validate the re-
sults. ADMIXTURE estimated that our samples most likely represent 
a single population, with high confidence (See File S1 for full AD-
MIXTURE analysis details). Five pairs of genets exhibited sibling or 
parent-offspring relationships (see File S1). These genets were not 
excluded to maximize sample size and because an initial GWA run 
with and without the sibling pairs excluded showed no difference 
in results (data not presented). Additionally, as presented above, 
ADMIXTURE did not identify any population structure with the five 
sibling pairs included. File S2 contains further details about all se-
quenced samples and excluded samples.

The exome capture sequencing data were aligned to the Pop-
ulus tremula genome assembly v1.1 (Potra v1.1) because that was 
the best available assembly at the time of the sequencing data 
processing. During the analysis of the GWA results, the most re-
cent assembly, Populus tremula genome assembly v2.2 (Potra v2.2) 
became available. In order to be able to estimate where candi-
date genes might be located within the genome, we developed 
an ad hoc method to connect the Potra v1.1 genes to the Potra 
v2.2 genes. We performed a reciprocal BLAST on gene lists from 
both assemblies. We matched only genes with a sum of ranks 
equal to zero (i.e., the genes were each other's best match in both 
assemblies).

2.4  |  Transcriptomic data

We used an extreme phenotyping sampling scheme to select genets 
from the WisAsp common garden for total RNA sequencing. Using 
foliar salicinoid phenolic glycoside (PG) concentrations from June 
2016, 30 genets with high constitutive PG concentrations (10%–16% 
leaf dry mass) and 30 genets with low constitutive PG concentra-
tions (1%–2.5%) were sampled for a total of 60 genets. Leaf samples 

Trait

Years 
data were 
collected Description of trait measurement Units

Condensed 
tanninsa

2014–2017 Concentration of foliar condensed tannins. Percent dry weight

Indirect defense and damage

Extra-floral 
nectariesa

2014–2017 Mean number of extrafloral nectaries per leaf, measured using digital scans of 
collected leaves.

Density/leaf

Diseasea 2014–2017 Percent of leaf area lost to disease, measured using digital scans of collected 
leaves and the leaf morphology assessment program Winfolia.

Percent area

Herbivorya 2014–2017 Leaf area damaged by leaf scrapers plus holes plus leaf margin removed, 
measured using digital scans of collected leaves and the leaf morphology 
assessment program Winfolia.

Percent area

Total biotic damage 2014–2017 Leaf area damaged by both herbivores and disease: Disease + Herbivory. Percent area

Resistance 2014–2017 100-total biotic damage. Percent area

aSee Cole et al. (2021) for detailed methodology.
bSee Barker et al. (2019) for detailed methodology.
cSee Cole et al. (2021) and Boeckler et al. (2013) for detailed methodology.

TA B L E  1 (Continued)
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from a minimum of four replicate trees per genet were collected on 
1 day in July 2017 (6–7 year-old trees). Extraction of total RNA was 
performed using the RNeasy Plant Mini Kit with DNase digestion 
(Qiagen, Valencia, CA), and quality control and quantification were 
performed on the Agilent 2100 BioAnalyzer (Agilent Technolo-
gies, Santa Clara, CA) at the University of Wisconsin Biotechnology 
Center (Madison, WI, USA). Samples were sent to the Michigan State 
University RTSF Genomics Core (East Lansing, MI, USA) for RNA 
library preparation and sequencing. TruSeq stranded mRNA librar-
ies were divided into three pools and each run in a separate lane of 
an Illumina HiSeq4000 flow cell (San Diego, CA, USA) in 2 × 150 bp 
paired-end mode to an average depth of 16 million read pairs per 
sample.

Raw RNA sequence data were put through a standard filtering 
pipeline. Ribosomal RNA removal was completed using default set-
tings in SortMeRNA (Kopylova et al., 2012) to reduce rRNA alignment 
bias. Trimmomatic (Bolger et al., 2014) was used to remove partial 
adaptor sequences within the sequenced reads and to perform 
quality-based trimming. Quality-based trimming works by “trim-
ming” low-quality bases from the 3′ end until the quality reaches a 
specified Phred-quality threshold. We used a standard Phred-quality 
threshold of 20 corresponding to a base call error of 1 in 100, which 
is approximately the inherent technical error rate of the Illumina 
sequencing platform. FASTQC (Andrews, 2010) and multiqc (Ewels 
et al.,  2016), were used after each filtering step to assess sample 
quality (e.g., per base sequence quality, per sequence quality scores, 
per base sequence content, and per sequence GC content). The fil-
tered RNA sequences were then quasi-aligned to the Populus tremula 
v.2.2 transcriptome (see Schiffthaler et al. (2019); assembly files are 
available through the FTP site at https://plant​genie.org/) using the 
default k-mer of 31 (optimized for reads ≥75 bp) and quantified using 
Salmon (Patro et al., 2017). Quasi-alignment can reduce computa-
tional time and provide a way to align and quantify transcripts for 
organisms with limited genomic resources. As performed in Salmon, 
it uses a reference index created from a given reference transcrip-
tome by evaluating the sequences for all possible unique sequences 
of length k (k-mer) in the transcriptome. That reference index is then 
used to estimate where the raw sequencing reads best align without 
performing base-by-base alignment, decreasing computational time 
substantially. Then the final transcript abundance estimates are gen-
erated after modeling sample-specific biases (e.g., GC and sequence 
biases), which, if not accounted for, are known to create high false 
positive rates in differential expression. File S3 contains a detailed 
description of the RNA filtering and quality assessment pipeline.

2.5  |  Genome-wide association analyses

The first step of our genome-wide association analyses was fitting 
the linear mixed model shown in Equation 1 to each trait in order to 
extract the genotypic mean effect for each genet across all repli-
cates (3.51 replicates per genet on average). In this formulation, xijky 
is the trait value during year y for individual i belonging to genet 

j and residing in block k, and μ is the grand mean of the trait. The 
independent variables in the model include block, perimeter mem-
bership (pi), age at the time of sampling (aiy), initial size of the tree (si ), 
and their fixed effects �, �1, �2, and �3, respectively. The trait value 
also depends upon random effects for genet (� j) and year (�y). The 
random effects and the random error term (�ijky) all follow a zero-
mean Gaussian distribution. These models were fit using the lme4 R 
package (Bates et al., 2015).

Block and perimeter positions were included to control for micro-
environmental differences and edge effects. Tree age and initial size 
were included to account for replanting of a quarter of the ramets 
in 2011 and 2012 due to vole damage (Cole et al., 2021). A subset 
of tree traits (salicylic acid, jasmonic acid, jasmonate-isoleucine, ab-
scisic acid, benzyl alcohol glucoside) was collected at only one time 
point, so survey year was not included in the model for those traits. 
Phenotypic trait data were transformed to meet normality assump-
tions of linear mixed models as needed and z-scale was normalized 
to standardize effect sizes among tree traits. From these models, the 
estimated best linear unbiased predictors (BLUP) of genet effects (� j ) 
were extracted. These BLUP values represent the average effect of 
each genet across replicates on a trait that is attributable to genetic 
factors. These values were then rank transformed, which has been 
shown to improve the sensitivity of GWA analyses when sample 
sizes or genetic effects are small (Goh & Yap, 2009), and regressed 
on each genetic variant (i.e., GWA).

Broad-sense heritabilities were calculated by dividing the genet-
associated variance component (�2

�
) by the total variance (�2

x
) as 

shown in Equation 2.

Variance components were extracted using the VarCorr function 
from the R package lme4 (Bates et al., 2015). Since the linear mixed 
model includes repeated measurements for the same individual (i.e., 
multiple survey years), we calculated the correlation between re-
peated measurements of the same individual (i.e., repeatability) to 
assess the accuracy of our broad-sense heritability estimates (Fig-
ure S1) (Falconer & Mackay, 1996). Tables S1 and S2 display model 
characteristics and variance components for each trait, respectively. 
All analyses were performed in R v. 3.4.4, 3.5.1, and 3.6.1 (R Core 
Team, 2018).

A multilocus GWA provides a way to understand how variation 
in a marker set is associated with trait variation. It does so by mod-
eling how much of that trait variation is likely explained by loci with 
relatively larger effects as compared to the infinitesimal effects 
of all loci. In short, it models the genetic architecture of the trait. 
GEMMA's Bayesian Sparse Linear Mixed Model (BSLMM) (Zhou 
et al., 2013) combines a ridge regression (i.e., models relatively small 

(1)
xijky=�+�k+�1pi+�2aiy+�3si+� j+�y +�ijky

� j ∼N
(

0, �2
�

)

�y ∼N
(

0, �2
�

)

�ijky∼N
(

0, �2
)

(2)H2
=

�2
�

�2
x
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    |  7 of 23RIEHL et al.

effect variants) and a Bayesian variable sparse regression (i.e., mod-
els relatively large effect variants) to associate phenotypes and loci 
by modeling all variants simultaneously. The model estimates the 
amount of phenotypic variance explained by sparse and random ef-
fects, defined as PVE, where sparse effects are relatively large effect 
loci and the random effects are the relatively small effect loci. The 
estimated value of the sparse effects is defined as PGE or propor-
tion of genetic variance and indicates what proportion of PVE is ex-
plained by loci with relatively large effects. Multiplying PVE by PGE 
provides an estimate of the proportion of total phenotypic variance 
explained by the sparse effects (i.e., loci with large effect sizes rel-
ative to all the loci included in the model) for each trait, also known 
as narrow-sense heritability, h2 (Bresadola et al., 2019). The model 
also generates an estimate of the putative number of sparse effect 
loci (e.g., loci with large effect sizes relative to all the loci included 
in the model) called n_gamma, which can provide further context 
for the genetic architecture of a trait of interest in combination with 
the PVE and PGE values. Each trait was run through the BSLMM for 
10 runs with a two million burn-in followed by 10 million iterations 
(script available in File S4). Values for PVE and PGE were evaluated 
across all 10 runs for consistency (Figure S2) and one representative 
run was chosen for data presentation.

All GWA analyses were carried out in Plink 1.9 which performs 
simple linear regression using the Wald statistic to generate p-values 
(scripts available in File S4). We did not correct for population struc-
ture as our population was panmictic (Barker et al.,  2019). Tradi-
tional single-locus GWA was performed for each of the 30 traits. 
Many of our growth and defense traits are likely functionally related 
(Cole et al.,  2021; Cope et al.,  2019, 2021) and significant genetic 
correlations were shown for many of them (using Pearson's correla-
tion coefficient, Figure S3). Genetically correlated traits (and even 
functionally related traits in the absence of genetic correlations) can 
be analyzed simultaneously to improve the power of GWA (Chhe-
tri et al., 2019; Stephens, 2013). We conducted multi-trait GWA for 
growth and defense traits with genetic correlations or functional re-
lationships (for a full list of trait combinations see File S5). Multiple 
testing was accounted for by applying a false discovery rate correc-
tion, specifically, Storey's q-value (Storey & Tibshirani, 2003) using a 
threshold of 0.2. Unlike stringent Bonferroni-based multiple testing 
corrections, Storey's q-value corrects for false positives, while re-
ducing the number of false negatives.

2.6  |  Transcriptomic analyses

To identify any confounding factors such as batch effects and to de-
termine if conditions were sufficiently separated, quality assessment 
of the count data was performed in R v. 3.6.1 (R Core Team, 2018) as 
detailed in File S3. Differential expression was carried out in DESeq2 
(Love et al., 2014), which fits a negative binomial generalized linear 
model and automatically normalizes counts by library size. We used 
an adjusted p-value cut-off of .05 and a log fold change cut-off of 0 
given our large sample size, following recommendations by Schurch 

et al. (2016). We analyzed the differentially expressed genes through 
the application of a soft clustering method in the function Mfuzz that 
uses a fuzzy c-means algorithm (Futschik & Carlisle,  2005; Kumar 
et al., 2007). Soft clustering using Mfuzz is more robust to noise than 
hard clustering methods because it allows genes to be a member of 
more than one cluster, thus providing a measure of how well cor-
responding clusters represent gene expression patterns. This attrib-
ute allows users to make nuanced inferences about the role genes 
may play in different functional clusters. Additionally, because the 
method minimizes the variation of genes within a cluster, genes that 
poorly cluster will have less influence on a cluster and thereby make 
the clustering process less sensitive to noise. This attribute is ben-
eficial because no genes were filtered out to reduce noise, enabling 
us to keep potentially important information. Clustering param-
eters were set using the methodology outlined by Schwämmle and 
Jensen  (2010). Only genes with a membership of ≥0.75 were kept 
in each cluster. A gene enrichment analysis was performed for each 
cluster of genes against the background of all Populus tremula (v2.2) 
genes using the enrichment analysis tool from PlantGenIE (https://
plant​genie.org/).

3  |  RESULTS

3.1  |  Genetic architecture of tree traits

3.1.1  |  Broad-sense heritabilities

We calculated broad-sense heritabilities for all of our tree traits to 
understand what proportion of the variation was explained by genet 
identity alone and to compare to the narrow-sense heritability es-
timates obtained from our multilocus GWA. Sex can be considered 
as a pseudo-control trait as it would be expected to exhibit a broad-
sense heritability at or approaching 1 given that it is a genetically 
controlled trait with limited environmental influence and a known 
genetic architecture (Müller et al., 2020). Budbreak date displayed 
a high level of heritability (H2 = 0.80) expected from a highly geneti-
cally controlled trait (Frewen et al.,  2000). Flowering density was 
moderately heritable (H2 = 0.37). It should be noted that only about 
a third of the trees at WisAsp had reached reproductive maturity 
at the time of this study, so the sample size was smaller than for 
the other traits. In general, traits associated with defense (defense-
related phytochemistry and indirect defense) had higher heritability 
than growth traits (growth, growth-related phytochemistry, and leaf 
morphology) (Figure  1). The broad-sense heritabilities were mod-
erate to high (H2 = 0.15–0.64) for most defense traits and low to 
moderate (H2 = 0.01–0.52) for most growth traits. Diseased tissue 
showed a moderate level of heritability (H2 = 0.38), while herbivory 
(i.e., foliar tissue damaged by insects that scrape and/or remove leaf 
area) exhibited low heritability (H2 = 0.12). Total biotic damage and 
resistance (1-total biotic damage), which include area damaged by 
both disease and herbivory, also showed moderate levels of herit-
ability (0.32 and 0.34 respectively).
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8 of 23  |     RIEHL et al.

3.1.2  | Multilocus GWA results

The narrow-sense heritabilities (h2) displayed in Figure  2 give an 
overview of the genetic architecture of each trait. For the major-
ity of tree traits, our SNP dataset explained very little variation, ex-
cluding sex (mean = 0.10, median = 0.09, range = 0.05–0.17). In other 
words, most of the phenotypic variation for a particular trait is likely 
explained by many loci with relatively small effects, indicative of a 
polygenic architecture. Budbreak date, a typically highly heritable 
trait in Populus (Frewen et al., 2000), had a lower narrow-sense her-
itability (h2 = 0.16) than expected, but still higher than the majority 
of other traits. Narrow-sense heritability for sex, a highly genetically 
controlled trait, explains phenotypic variation at close to expected 
values (i.e., broad-sense heritability).

The narrow-sense heritabilities (h2) are calculated from PVE and 
PGE estimates, values that can provide a more nuanced view of trait 
genetic architecture (Figure 3 and Figure S4). PVE is the proportion of 
phenotypic variation explained by all loci and PGE is the proportion of 
PVE explained by loci with relatively large effects. The proportion of 
relatively large effect loci (PGE) is less than ~0.40 for all traits except 
sex (mean = 0.26; range 0.14–0.41). This pattern holds true for traits 
such as initial volume and jasmonate-isoleucine, where our marker 
set explains a large amount of phenotypic variation (PVE > 0.70) (Fig-
ure  3). Posterior probability density distributions indicate that PGE 

values for the majority of loci are less than 0.25 across almost all traits 
(Figure S5). Thus, for many of our traits, most of the loci affecting trait 
variation likely have relatively small effects (random effects portion 
of PVE). Consistent with this finding, estimated effect sizes were ex-
tremely low for most loci across all traits (Table 2).

Sex shows that PVE and PGE are both high, approaching 1 (i.e., 
99% phenotypic variance explained by genomic data, with 98% 
of that variance attributable to relatively large effect loci). Sex 
also has the lowest n_gamma value of all the traits (n_gamma = 17) 
(Table 2). Together, these estimates reveal that the genetic archi-
tecture for sex is highly heritable underlain by a few loci with rela-
tively large effects, consistent with its known genetic architecture 
(Müller et al., 2020). Traits like budbreak date and jasmonic acid 
display a highly heritable genetic architecture (PVE > 0.60) where 
some loci of relatively large effect (i.e., PGE > 25%) exist within a 
polygenetic background. Both budbreak date and jasmonic acid 
have relatively high n_gamma values of 70 and 75, respectively 
(Table 2). In contrast, traits such as total phenolic glycosides and 
initial volume also have a highly heritable genetic architecture 
(PVE > 0.60) but are largely explained by relatively small effect 
loci (i.e., PGE < 15%). N_gamma values are 48 and 87 for phenolic 
glycosides and initial volume, respectively (Table 2). All multilocus 
GWA parameters and corresponding estimates for each trait can 
be found in File S6.

F I G U R E  1 Broad-sense heritabilities for ecologically important traits in aspen (Populus tremuloides). Values calculated by dividing the 
genet-associated variance component by the total random variance component extracted from linear mixed models (variance components in 
Table S1).
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    |  9 of 23RIEHL et al.

F I G U R E  2 Narrow-sense heritabilities. Values calculated by multiplying PVE by PGE (Bresadola et al., 2019) estimates generated by 
GEMMA's BSLMM model; PVE = proportion of phenotypic variance explained by sparse and random effects, PGE = proportion of phenotypic 
variation explained by sparse effects only (i.e., relatively large effect loci).

F I G U R E  3 Hyperparameter PVE from GEMMA's BSLMM model; PVE = proportion of phenotypic variance explained by sparse and 
random effects (relatively large and small effect loci).
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3.2  |  Candidate genes: Single-locus GWA results

Our single-locus genome-wide association analyses used a marker 
data set of 291,069 SNPs and found 38 significant SNPs in 22 genes 
across 15 traits. Budbreak date accounted for six of the 22 genes 
identified (Table 3). An additional 40 SNPs and 15 genes were asso-
ciated with sex. One candidate gene was associated with flowering 
density. Growth traits were associated with four genes. Defense-
related phytochemical traits were associated with eight genes. In-
direct defense and damage (i.e., total biotic damage, diseased foliar 
tissue, and herbivory) accounted for six identified genes. More de-
tailed information for each candidate gene can be found in Files S5 

and S7. Except for sex, candidate genes for any particular trait were 
spread across the genome (Figure 4). Genomic positional annotation 
through snpEff found most of the candidate genes having regulatory 
roles (Table  3). Effect sizes of the significant SNPs for most traits 
were low to moderate (β < ±0.4) excluding sex (File S7). Minor allele 
frequencies were also low to moderate (0.005–0.3) excluding bud-
break date and sex (File S7).

Budbreak date exhibited the highest number of significant SNPs 
for a single trait excluding sex. Nineteen SNPs across six genes were 
associated with budbreak date. A notable gene encodes for a pen-
tatricopeptide repeat-containing protein (PPR). Proteins with PPR 
regulate the expression of genes involved in organelle biogenesis 
and have an impact on plant growth and development (Barkan & 
Small, 2014). Another gene, encoding a MYB108 transcription factor, 
is potentially involved in phenological maturation, chloroplast devel-
opment, and response to abiotic/biotic stress in Arabidopsis (Am-
bawat et al., 2013; Mandaokar & Browse, 2009; Zhao et al., 2020). 
Three other candidate genes have potential roles in transport 
across the chloroplast thylakoid membrane, chlorophyll biogenesis 
(Adam, 2013), and transporting hormones and other compounds es-
sential for plant growth and development across various biological 
membranes (Hwang et al., 2016; Martinoia et al., 2002). The remain-
ing two candidate genes for budbreak date have not been studied 
well or at all in plants to date.

As expected, the sex-determining gene ARR-17 (Bräutigam 
et al., 2017; Müller et al., 2020) was discovered as one of the genes 
with a significant SNP for the sex trait. For sex, the majority of signif-
icant SNPs and associated genes were located on chromosome 19, 
which is thought to be where the sex-determining region is located 
for Populus species. These GWA results are consistent with the ge-
netic architecture suggested by our multilocus GWA, highly herita-
ble with a few loci contributing to the majority of the phenotypic 
variation (see Figures 2 and 3). Flowering density exhibited a single 
association, located within an O-fucosyltransferase family protein 
gene, which is known to be involved in the regulation of the plant 
circadian clock (Liu & Gendron, 2020; Zentella et al., 2017).

Few significant associations were found for growth and growth-
related phytochemical traits, consistent with their narrow-sense 
heritabilities being generally low (Figure 2). Univariate GWA found 
three significant SNPs in three genes, all associated with volume 
metrics. A tubulin beta chain gene and a probable polyol transporter 
are involved in morphogenesis (Snustad et al., 1992) and sugar trans-
port (Johnson et al., 2006), respectively. The third gene encodes a 
chromosome condensation regulator family protein, with no known 
direct connections to plant growth. Multi-trait GWA discovered only 
one association for multi-trait group MT29 including individual and 
specific leaf area, volume, and nitrogen concentration. The SNP was 
located in a circadian clock regulatory gene, with known function in 
animals, but not well-defined in plants (Liu & Gendron, 2020).

For defense-related phytochemical traits, only the plant hor-
mone jasmonic acid and its derivative jasmonate-isoleucine have 
significant associations in the univariate GWA, consistent with the 
PGE estimate suggesting a genetic architecture of being polygenic 

TA B L E  2 Effect sizes for multi-SNP GWA.

Trait

Median 
sparse effect 
size

Mean 
sparse 
effect size n_gamma

Budbreak 0.000004 0.00003 70

Flowering density 0.000002 0.000009 58

Sex 0 0.00002 18

Initial volume 0.000004 0.00002 87

Volume 0.000003 0.00001 132

Basal area 0.000004 0.00002 90

Height 0.000003 0.000009 97

Relative growth 
(volume)

0.000002 0.000009 98

Relative growth 
(basal area)

0.000003 0.000009 97

Basal area increment 0.000005 0.00002 98

Specific leaf area 0.000002 0.000008 54

Individual leaf area 0.000002 0.000006 89

Nitrogen 0.000003 0.00001 68

Carbon:nitrogen 0.000004 0.00001 75

Abscisic acid 0.000003 0.00001 59

Jasmonic acid 0.000005 0.00002 75

Jasmonate-isoleucine 0.000004 0.00001 59

Benzyl alcohol 
glucoside

0.000002 0.000007 68

Salicylic acid 0.000003 0.00001 41

Salicin 0.000002 0.000008 57

Salicortin 0.000004 0.00001 111

Tremulacin 0.000005 0.00002 60

Tremuloidin 0.000004 0.00001 69

Total phenolic 
glycosides

0.000004 0.00001 48

Condensed tannins 0.000002 0.00009 104

Extra-floral nectaries 0.000005 0.00002 58

Disease 0.000002 0.00001 50

Herbivory 0.000004 0.00001 88

Total biotic damage 0.000004 0.00002 25

Resistance 0.000003 0.00001 42
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    |  11 of 23RIEHL et al.

TA B L E  3 Summary table for single-locus genome-wide association analysis results (See Files S5 [multi-trait GWA] and File S8 [univariate 
GWA] for more details).

Trait
Gene ID and description (using Potra 
v1.1 assembly on popge​nie.org) GO annotation(s)

SNPeff annotation(s) 
(number of SNPs)

Phenology

Budbreak date Potra003338g21388: DNA repair 
protein REV1 isoform X1

Damaged DNA binding, 
nucleotidyltransferase 
activity, error-prone 
translesion synthesis

Synonymous gene variant 
(1), missense gene 
variant (1)

Budbreak date Potra000831g06663: 
pentatricopeptide repeat-
containing protein At1g71490

Chloroplast thylakoid membrane Synonymous gene variant 
(3), missense gene 
variant (2), splice region 
variant & intron variant 
(2), stop lost (1), 3′ UTR 
variant (1)

Budbreak date Potra002372g18071: transcription 
factor MYB108-like

DNA binding 5′ UTR variant (1)

Budbreak date Potra003956g23750: ABC 
transporter B family member 
15-like

ATP binding, integral component 
of membrane, ATPase activity, 
coupled to transmembrane 
movement of substances, 
transmembrane transport

5′ UTR variant (1)

Budbreak date Potra003186g20936: transmembrane 
protein 53

Integral component of 
membrane, hydrolase activity

Downstream gene variant (4)

Budbreak date Potra000419g02166: membrane-
bound transcription factor site-2 
protease homolog isoform X1

Metalloendopeptidase activity, 
proteolysis, membrane

3′ UTR variant (1)

Reproduction

Flower density Potra004072g24439: O-
fucosyltransferase family protein

Cytoplasm, fucose metabolic 
process, transferase activity, 
transferring glycosyl groups

5′ UTR variant (1)

Growth

Relative growth (volume) 
between 2016 and 2017

Potra000177g00680: probable polyol 
transporter 4

Integral component of 
membrane, transmembrane 
transporter activity, 
transmembrane transport

Synonymous variant (1)

Initial volume Potra002519g19030: chromosome 
condensation regulator family 
protein

Metal ion binding Intron variant (1)

Initial volume Potra000790g06258: tubulin beta 
chain

GTPase activity, structural 
constituent of cytoskeleton, 
GTP binding, microtubule, 
microtubule-based process

Upstream gene variant (1)

Growth, leaf morphology, growth-related phytochemistry

MT29: individual leaf area, 
specific leaf area, volume, 
nitrogen

Potra001566g12942: circadian 
locomoter output cycles protein 
kaput isoform X1

Protein binding Synonymous variant (1)

Defense-related phytochemistry

Jasmonic acid Potra000530g03683: cation/H(+) 
antiporter 15-like

Cation transport, solute:proton 
antiporter activity, integral 
component of membrane, 
transmembrane transport

Synonymous variant (1)

Jasmonate-isoleucine Potra002923g20319: long-chain-
alcohol oxidase FAO4A

Long-chain-alcohol oxidase 
activity, flavin adenine 
dinucleotide binding, 
oxidation–reduction process

Missense variant (1)

(Continues)
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12 of 23  |     RIEHL et al.

with some relatively large effect loci. The candidate genes were 
a cation/H(+) antiporter gene and a long-chain-alcohol oxidase 
FAO4A gene. A transcriptome analysis in switchgrass revealed that 
a vacuolar Na+(K+)/H+ antiporter gene upregulated JA when over-
expressed (Huang et al., 2018). There is little functional information 
for the gene encoding a long-chain-alcohol oxidase FAO4A, making 
its association with jasmonate-isoleucine unclear at this time. Multi-
trait GWA identified a F-box/kelch-repeat protein associated with 
two defense-related multi-trait groups, including MT10 (benzyl alco-
hol glucoside, total biotic damage, salicylic acid) and MT30 (abscisic 
acid, jasmonic acid, salicylic acid). A multi-trait GWA including all four 
salicinoid phenolic glycoside constituents (multi-trait group MT27) 

resulted in six significant SNPs within five genes. Two genes encode 
serine/threonine-protein kinases, which are known to be involved 
in the regulation of plant defense (Afzal et al., 2008; Hardie, 1999). 
Another two encode genes that seem more related to growth than 
to defense. One encodes a gibberellin 3-beta-dioxygenase, which 
may be involved in the negative regulation of jasmonate to repress 
defense response and promote growth (Bhattacharya et al., 2012). 
The other encodes a leucine-rich repeat extensin-like protein that 
is involved in cell wall sensing indirectly relaying extracellular sig-
nals, including biotic stimuli, to the cytoplasm (Herger et al., 2019). 
The last gene encodes a nudix hydrolase belonging to a large fam-
ily of genes that help regulate diverse biological processes through 

Trait
Gene ID and description (using Potra 
v1.1 assembly on popge​nie.org) GO annotation(s)

SNPeff annotation(s) 
(number of SNPs)

Indirect defense & damage

Disease Potra001342g11489: DNA-
dependent metalloprotease 
WSS1-like

NA Upstream gene variant (1)

Total biotic damage
Disease
Resistance

Potra004005g24127: F-box/kelch-
repeat protein At1g55270

Protein binding Downstream gene variant (1)

Resistance Potra000464g02731: GATA zinc 
finger domain-containing protein 
8-like

NA Downstream gene variant (1)

Defense-related phytochemistry, indirect defense & damage

MT27: salicin, salicortin, 
tremulacin, tremuloidin

Potra002739g19881: nudix hydrolase 
18, mitochondrial-like

Hydrolase activity 5′ UTR variant (2)

MT27: salicin, salicortin, 
tremulacin, tremuloidin

Potra003968g23830: gibberellin 
3-beta-dioxygenase 1-like

Oxidoreductase activity, 
oxidation–reduction process

Intron variant (1)

MT27: salicin, salicortin, 
tremulacin, tremuloidin

Potra002382g18137: serine/
threonine-protein kinase STY8 
isoform X1

Protein kinase activity, 
ATP binding, protein 
phosphorylation

Intron variant (1)

MT27: salicin, salicortin, 
tremulacin, tremuloidin

Potra001164g10107: serine/
threonine-protein kinase HT1-like

Protein kinase activity, 
ATP binding, protein 
phosphorylation

Intron variant (1)

MT27: salicin, salicortin, 
tremulacin, tremuloidin

Potra001654g13571: leucine-rich 
repeat extensin-like protein 4

Protein binding Missense variant (1)

MT10: benzyl alcohol 
glucoside, total biotic 
damage, salicylic acid

MT30: jasmonic acid, abscisic 
acid, salicylic acid

Potra004005g24127: F-box: /kelch-
repeat protein At1g55270

Protein binding Downstream gene variant (1)

MT23: disease, jasmonic acid, 
specific leaf area, budbreak 
date, herbivory

MT24: herbivory, salicylic acid, 
disease, total phenolic 
glycosides

Potra004005g24127: F-box: /kelch-
repeat protein At1g55270

Protein binding Downstream gene variant (1)

MT24: herbivory, salicylic acid, 
disease, total phenolic 
glycosides

Potra001342g11489: DNA-
dependent metalloprotease 
WSS1-like

NA Upstream gene variant (1)

MT24: herbivory, salicylic acid, 
disease, total phenolic 
glycosides

Potra000572g04244: expansin-like 
A2

Extracellular region, sexual 
reproduction

Missense variant (1)

TA B L E  3 (Continued)
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cytosolic and organellar housecleaning and maintain physiological 
homeostasis (Huang et al., 2012; Ogawa et al., 2008).

Four SNPs within three genes were associated with indirect mea-
sures of defense and damage (i.e., disease, total biotic damage, and 
resistance). The F-box/kelch-repeat protein associated with defense 
traits was also associated with disease, total biotic damage, and re-
sistance. A metalloprotease WSS1-like gene was associated with 
disease and is involved in DNA-protein crosslink repair, damage that 
often happens due to reactive oxygen species in the cell during regu-
lar metabolic processes or in response to a pathogen attack (Enderle 
et al., 2019). Finally, a GATA zinc finger domain-containing protein 
like-8 was associated with resistance. This specific gene has not been 
characterized well, but studies characterizing families of genes with 
GATA zinc finger domains have connected them to circadian clock 
regulation and plant development in Arabidopsis and rice (Behringer & 
Schwechheimer, 2015; Reyes et al., 2004), and a variety of potential 
regulatory roles in Populus including circadian clock, phytohormone, 

plant development, and stress response (An et al., 2020). Multi-trait 
GWA resulted in only one new association for multi-trait group 
MT24 (herbivory, salicylic acid, disease, total phenolic glycosides), 
located in an expansin-like A2 gene potentially involved in growth 
and defense (Abuqamar et al., 2013; Yang et al., 2014).

3.3  |  Differential expression and soft 
cluster analyses

Differential expression revealed 1243 differentially expressed 
genes, with 587 upregulated and 656 downregulated in the high PG 
genets relative to the low PG genets, out of a total of 30,249 genes 
with non-zero total read counts. The volcano plot (Figure 5) shows 
that most of the significantly (FDR = 0.05) differentially expressed 
genes have log2 fold changes of less than 1.5. In other words, they 
are up- or down-regulated ~3× (21.5) or less in the high PG group 

F I G U R E  4 Distribution of candidate genes across Populus tremula genome assembly v2.2 using a reciprocal BLAST to match Potra v1.1 
genes to Potra v2.2 genes (see Methods for details); chromosomes are indicated by the white bars on a gray background; colored vertical 
lines represent genes associated with significant SNPs, with different colors corresponding with the specific trait associated with the 
significant SNP as notated in the legend.
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as compared with the low PG group. Differentially expressed genes 
were spread across the genome (Figure 6).

We identified a large number of differentially expressed genes, 
so we used soft clustering methods to group them. We identified 13 
gene clusters, of which seven clusters were significantly enriched 
for GO terms (Table 4, File S8). Most of the enriched clusters con-
tained groups of genes that were associated with general biological 
processes such as photosynthesis or protein synthesis. Interestingly, 
clusters with growth-related functions were downregulated in the 
high PG group as compared with the low PG group.

Three clusters (C4, C11, C13) contained genes of clear interest 
because of their association with phenylpropanoid biosynthesis and 
regulation (Table 4), one (C11) of which was enriched for GO terms 
in secondary metabolism and regulation. Genes in two of those 
clusters (C4 and C11), containing 69 and 128 genes respectively, 
were upregulated in the high PG group. The third cluster (C13) with 
44 genes exhibited genes that were downregulated in the high PG 
group. These three clusters contained several transcription factors 
(MYB, WRKY, NAC) and enzymes (caffeoyl shikimate esterase-like, 
cinnamoyl-CoA reductase 1-like) associated with phenylpropanoid 
biosynthesis, most of which were upregulated in the high PG group.

4  |  DISCUSSION

Forest tree genomics research in the last decade has revealed that 
the genetic architecture of most ecologically important traits re-
mains largely unexplained using traditional GWA methods (Lind 
et al., 2018). Moreover, what has been ascertained is that most eco-
logically important traits likely have a polygenic basis where many 
loci of small to moderate effect explain much of the phenotypic 
variance (Lind et al., 2018). While it is likely that there are multiple 

non-mutually exclusive explanations behind this “missing heritabil-
ity”, it is undeniable that a mismatch exists between the polygenic 
architectures of most ecologically important traits and the tradi-
tional methods currently used to characterize their genetic archi-
tectures (Josephs et al., 2017; Lind et al., 2018). Consequently, our 
understanding of what genes underly ecologically important traits 
remains poor. Studies such as this that incorporate modified GWA 
and complementary methods to characterize the genetic architec-
ture of ecologically important traits will provide a more complete 
picture.

4.1  |  Most aspen growth and defense traits have a 
polygenic architecture

Our exploration of the underlying genetic architecture of important 
traits in aspen (P. tremuloides) reveals that many of them are likely 
polygenic. We found relatively few trait-SNP associations across the 
30 growth and defense traits analyzed, despite most of our traits dis-
playing high broad-sense heritabilities. Most of the significant SNPs 
had low effect sizes and low to moderate frequency alleles (File S7). 
Furthermore, 22 candidate genes identified across all traits, excluding 
sex, are spread across the genome (Figure 4) and many of the can-
didate genes have regulatory roles (e.g., transcription factors or en-
zymes) and are multi-functional. Almost all of the 12 candidate genes 
associated with defense-related phytochemistry and damage traits 
have regulatory roles in growth, defense, or response to stress. Often 
these regulatory genes were members of gene families that regulate 
multiple cellular and biological processes (e.g., Potra002739g19881, 
a nudix hydrolase 18). One gene (Potra004005g24127, F-box/kelch-
repeat protein At1g55270) was also associated with both damage and 
phytochemistry traits. The multi-functional nature of these candidate 

F I G U R E  5 Volcano plot of results from the differential expression analysis with an adjusted p-value cut-off of .05 and log2 fold change 
cut-off of 0. Each dot represents a gene. The horizontal dashed line is the adjusted p-value cut-off of .05, shown in negative log10 scale. The 
center vertical dashed line is the log2 fold change cut-off of zero and the two vertical dot-dash lines represent the cut-off where the majority 
of differentially expressed genes fell (log2 FC = ±1.5). Only those genes that meet both the log2 fold change and adjusted p-value cut-offs are 
considered as significantly differentially expressed (blue dots). Log2 FC: significant by log2 fold change cut-off only (orange dots), adjusted 
p-value and log2 FC: significant by both adjusted p-value and log2 fold change cut-offs (blue dots).
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genes emphasizes how interconnected the gene regulatory networks 
are likely to be for quantitative traits.

Unlike single-locus GWA, multilocus GWA is not subject to 
the Winner's Curse, resulting in inflated effect sizes for significant 
loci (Josephs et al., 2017). Multilocus GWA also often explains far 
more phenotypic variation in traits than single-locus GWA (Jo-
sephs et al., 2017). Furthermore, they can provide a more nuanced 
view of the complex genetic architectures of quantitative traits, 
which can be used to adapt study design and analysis methods 
to better detect candidate genes underlying these traits mov-
ing forward. Our multilocus GWA results revealed that most of 
our traits exhibited a polygenic architecture, with generally low 
narrow-sense heritability (h2) values and relatively high n_gamma 
values. For example, the genetic architecture of defense-related 
phytochemistry traits showed that most of the variation explained 
by our marker set originates from loci with polygenic (i.e., infini-
tesimal) effects.

The one other study that used the multilocus GWA model, 
BSLMM, in a closely related Populus species found similar polygenic 
architecture of six comparable traits, including the main Populus de-
fense phytochemicals. Bresadola et al. (2019) performed a multilocus 
GWA using RAD sequence data from a hybrid zone between closely 
related species to P. tremuloides: P. tremula and P. alba. Six traits were 
comparable between their study and ours, including the four salici-
noid phenolic glycosides (salicin, salicortin, tremulacin, and tremu-
loidin), individual leaf area, and height. They found similar polygenic 
architectures for all six comparable traits (posterior distributions 

for our study (Figure S5) were compared to posterior distributions 
available in Bresadola et al. (2019) (Figure S8). Both Bresadola's and 
our study present a genetic architecture for these phytochemicals 
where most of the phenotypic variation is accounted for by many 
loci of small effects that are not likely to be detected by traditional 
GWA methods. The genes underlying the salicinoid phenolic gly-
coside biosynthesis pathway have been largely elusive (Fellenberg 
et al., 2020). Recent studies that have identified and validated can-
didate genes underlying salicinoid phenolic glycosides have used 
methods that can better account for a polygenic architecture (Fel-
lenberg et al., 2020; Gordon et al., 2022). Taken together, our work 
and these studies underscore the importance of accounting for the 
polygenic nature of most ecologically important traits in character-
izing their genetic architectures accurately.

4.2  |  Differentially expressed genes are associated 
with defense-related phytochemistry

Transcriptomics is fast becoming a complementary method to tra-
ditional GWA to identify candidate genes in quantitative traits be-
cause of increasingly affordable sequencing costs and no need for 
extensive species-specific genomic resources (Lind et al., 2018). Our 
study used differential expression analysis to explore expression 
patterns in low growth-high defense and high growth-low defense 
genotypes, identifying 197 upregulated and 44 downregulated 
genes of interest. Specifically, genes encoding enzymes from the 

F I G U R E  6 Distribution of differentially expressed genes across Populus tremula genome assembly v2.2. Dots represent differentially 
expressed genes, with blue dots being upregulated and red dots being downregulated.
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phenylpropanoid biosynthesis pathway, upstream of the branches 
that produce salicinoid phenolic glycosides and condensed tan-
nins, are present. Several transcription factors (e.g., WRKY, MYB, 
and NAC transcription factors) that are potentially involved in phy-
tochemical defense and lignin formation were also differentially 
expressed between the low and high PG groups. Recent literature in-
dicates potential co-regulation of lignin and phytochemical defense 
via interconnected expression networks in plants (Xie et al., 2018; 
Zhang et al., 2018).

Other enzymes and transcription factors within our differen-
tially expressed candidate gene list may, upon post-GWA valida-
tion, prove to play a role in the still poorly understood salicinoid 
phenolic glycoside biosynthesis pathway. For example, (Fellenberg 
et al.,  2020) used transcriptomics to identify candidate genes in-
volved in the salicinoid biosynthesis pathway in P. trichocarpa. They 
identified a UDP-glycosyltransferase gene and validated its essen-
tial role in the synthesis of major salicinoids through a CRISPER/
Cas9-engineered knockout experiment (Gordon et al., 2022). Three 
UDP-glycosyltransferase genes were identified in our differential 
expression analysis that warrant further investigation.

Most of the differentially expressed genes identified have reg-
ulatory roles as transcription factors or enzymes that are often in-
volved in more than one biological process. For example, one of the 
differentially expressed genes from the cluster enriched for genes 
involved in secondary metabolite regulation included a WRKY tran-
scription factor 40 (Potra000926g07521) that was upregulated in 
the high PG group. This gene has a putative function in response 
to salicylic acid and regulation of biotic defense. As a group, WRKY 
transcription factors are often involved in response to biotic and 
abiotic stress (Jiang et al., 2014) and also in regulation of lignifica-
tion (Wang et al., 2010). More recently, a WRKY transcription factor 

was shown to coregulate lignin biosynthesis and defense response 
in Populus trichocarpa (Zhang et al., 2018). These results emphasize 
how complex and intertwined the genetic architectures of ecologi-
cally important defensive traits likely are.

4.3  |  Relevance to “community genetics” and 
“genes-to-ecosystems” science

The framework proposed by Whitham et al.  (2008) for identifying 
genes with community- and ecosystem-level effects is similar to the 
original concept of using GWA analyses to identify genes underlying 
traits of interest in target organisms. Both had implicit assumptions 
that most traits of interest would be controlled by relatively few 
genes—assumptions bolstered by moderate to high predicted herit-
abilities for traits of interest. In reality, most variants associated with 
these highly heritable traits have exhibited small effect sizes indicat-
ing that the genetic architecture of most quantitative traits (which 
most ecologically important traits are) is likely polygenic (Bresadola 
et al., 2019; Chhetri et al., 2019; de la Torre et al., 2021, 2022; Lind 
et al., 2018). This may also be true for extended phenotypes, such 
as associated insect communities. In work concurrent with that re-
ported here, Morrow (2022) found that several community metrics 
for herbivorous insects at the WisAsp common garden likely have 
undetected genetic associations—indicating that extended pheno-
types themselves may exhibit polygenic architectures.

Our results provide gene-level information about ecologically 
important traits that have been connected to associated commu-
nities and ecosystems. Genotype-mediated growth-defense trade-
offs are well established in aspen (Cole et al., 2021; Cope et al., 2019; 
Osier & Lindroth,  2006) and have been shown to differentially 

Cluster Description
Number of 
genes

Expression pattern 
relative to the low PG 
group

C1a DNA and RNA processes 67 Down

C2a Photosynthesis 41 Down

C3 Enzymes related to sugar metabolism 
and other processes

53 Down

C4 Phenylpropanoid biosynthesis 69 Up

C5a Protein synthesis and catabolism 89 Up

C6 Enzymes 62 Up

C7a Protein synthesis and transport, 
enzymes

119 Down

C8a Tetrapyrrole biosynthesis 34 Down

C9 Growth 58 Down

C10 Growth 52 Down

C11a Secondary metabolism and regulation 128 Up

C12a RNA and ribosome processes 94 Up

C13 Biosynthesis and regulation 44 Down

aDisplayed significant enrichment for GO annotations (See File S8 for more details).

TA B L E  4 Soft clustering analysis of 
differentially expressed gene results; 
genes included must display a membership 
value of 0.75 or higher (See File S9 for 
more details).
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affect population genetic composition in contrasting environments 
(Cope et al., 2021). Moreover, divergent growth and defense phe-
notypes in aspen influence the community metrics of associated 
insect assemblages (Barker et al., 2019; Morrow, 2022). For exam-
ple, a gibberellin 3-beta-dioxygenase gene (Potra003968g23830) 
associated with salicinoid phenolic glycosides in our GWA analyses 
has also been linked to the regulation of growth and defense re-
sponses in Solanum and Nicotiana spp. (Bhattacharya et al., 2012). 
We also identified 197 genes upregulated in genets with high foliar 
concentrations of salicinoid phenolic glycosides, including several 
genes involved in the potential regulation of phytochemical defense 
and lignin biosynthesis.

4.4  |  On the omnigenic model of polygenic 
architecture

A current expectation of genetic architecture is that the genes un-
derlying trait variation would all cluster in key pathways related to 
the trait. Many polymorphisms are often found in non-coding and 
regulatory regions of the genome and the omnigenic model (Boyle 
et al., 2017) suggests that a vast number of highly connected regu-
latory genes may explain most of the heritability of a trait through 
their modulation of the expression of a relatively smaller number of 
core genes. In other words, if gene regulatory networks are highly 
interconnected, then even a peripheral gene is likely to have a 
non-zero effect on the expression of the trait. In this case, the ex-
pression of these peripheral genes will vastly outnumber the core 
genes and small effects of peripheral genes will quickly add up to 
account for far more trait variation than the core genes alone. As 
an example, Boyle et al. (2017) demonstrate that ~100,000 causal 
variants affect human height, and most are located in gene regula-
tory regions.

Many forest tree GWA results exhibit a similar pattern, finding 
mostly regulatory genes that often have vague known biological 
connections to the trait of interest (Barker et al., 2019; Bresadola 
et al., 2019; Chhetri et al., 2019; de la Torre et al., 2019, 2021, 2022; 
Fahrenkrog et al., 2017; Hallingbäck et al., 2019; Mähler et al., 2017, 
2020; McKown et al.,  2018). In particular, a recent co-expression 
network analysis of budbreak in a closely related species, P. trem-
ula, found a negative relationship between eQTL effect size and 
network connectivity, and that genes with low connectivity were 
enriched for eQTLs (Mähler et al., 2017). That work suggests that 
selection on peripheral genes was more relaxed than on core genes 
and provides a way to allow potentially adaptive mutations while 
buffering the core genes from potentially deleterious mutations. 
If this is the case for other quantitative tree traits, then most phe-
notypic variation in polygenic traits will be explained by peripheral 
genes that will be difficult to connect to traits of interest without 
a deeper understanding of the gene networks controlling them. In 
fact, one study has recently used a system genetics approach (e.g., 
co-expression, eQTL analysis, gene regulatory network inference; 

Fagny & Austerlitz, 2021) to show that the genetic architecture of 
leaf shape variation in the closely related P. tremula follows the om-
nigenic model (Mähler et al., 2020).

Our GWA results share many of the characteristics associated 
with the omnigenic model of polygenic architecture. Most of our 
candidate genes have regulatory roles, exhibit low effect sizes, 
and are spread across the genome. Furthermore, multilocus GWA 
revealed most traits exhibited a polygenic architecture with many 
small effect loci explaining most of the phenotypic variation. While 
our results are likely impacted by our sample size and lack of whole-
genome coverage as detailed below, they are consistent with other 
studies in similar species that have more complete genome coverage 
(Chhetri et al., 2019; Escamez et al., 2021; McKown et al., 2018; PK 
Ingvarsson unpublished data). Still, it must be noted that other fac-
tors such as sample size (Lind et al., 2018), effect size biases (Josephs 
et al., 2017), and accounting for effects of other non-coding variants 
(e.g., structural variants; Holliday et al., 2017) need to be considered 
as the field progresses.

4.5  |  Study limitations

Like many forest tree GWA studies, our sampling and genomic re-
sources have limitations. Our sample size (N = 455) was sufficiently 
large for most GWA studies. However, recent studies in forest trees 
have shown that alleles for large-effect loci are likely to be rare, 
requiring sample sizes in the thousands to detect them (Josephs 
et al., 2017; Mähler et al., 2017). Thus, we likely are unable to de-
tect rare variants of large effects. We sequenced the exome, so our 
marker dataset did not cover the entire genome. Additionally, some 
genes could not be sequenced if the probe did not map to a unique 
genomic location, an issue common in species, like Populus (Berlin 
et al., 2010), with whole-genome duplications in their evolutionary 
history. Thus, we are likely missing some genes as well as the non-
coding regions. We believe, however, that our incomplete genomic 
coverage does not adversely affect our main interpretations. Several 
studies in Populus species using whole-genome sequence data have 
similarly found fewer than expected associations for highly heritable 
traits when using traditional GWA methods (Chhetri et al., 2019; Es-
camez et al., 2021; McKown et al., 2018; PK Ingvarsson unpublished 
data). In short, finding associations that explain a substantial amount 
of phenotypic variation seems to be the exception, rather than the 
rule, for most quantitative traits in forest trees.

4.6  |  Conclusions

Despite the challenges presented over the last couple of decades 
in applying genomics to understanding fundamental molecular and 
ecological processes, we have come a long way in understanding 
the complexity of the genetic architecture underlying ecologically 
important traits. Traditional single-locus GWA studies in forest 
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trees have had limited success in uncovering the genomic under-
pinnings of many ecologically important, quantitative traits. Stud-
ies of both plants and humans reveal that the genetic architecture 
of most quantitative traits is likely polygenic and that regulatory 
genes in the periphery of gene networks may play a large role 
in controlling trait variation (Fagny & Austerlitz,  2021; Visscher 
et al., 2017). Our study is one of very few to incorporate several 
years of phenotypic data across many ecologically important traits 
from a large common garden for a species with little to no popu-
lation structure. Additionally, our study is one of the first to em-
ploy multilocus GWA for a forest tree species (also see Bresadola 
et al., 2019; de la Torre et al., 2021). This work adds to a growing 
body of evidence that many ecologically important traits in forest 
trees are polygenically controlled, with many genes of small effect 
underlying phenotypic variation.
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