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Abstract
Spatially balanced samples are samples that are well-spread in some available
auxiliary variables. Selecting such samples has been proven to be very efficient
in estimation of the current state (total or mean) of target variables related to
the auxiliary variables. As time goes, or when new auxiliary variables become
available, such samples need to be updated to stay well-spread and produce good
estimates of the current state. In such an update, we want to keep some over-
lap between successive samples to improve the estimation of change. With this
approach, we end up with partially overlapping and spatially balanced samples.
To estimate the variance of an estimator of change, we need to be able to estimate
the covariance between successive estimators of the current state. We introduce
an approximate estimator of such covariance based on local means. By simula-
tion studies, we show that the proposed estimator can reduce the bias compared
to a commonly used estimator. Also, the new estimator tends to become less
biased when reducing the local neighborhood size.
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1 INTRODUCTION

In repeated surveys, the monitoring of changes in population totals over time is a common focus in various fields,
including environmental and ecological research see, for example, Kalton (1983), Wang and Zhu (2019). Accurately esti-
mating the variance of an estimator of change is crucial for assessing the statistical significance of observed changes
(Berger & Priam, 2016). In the field of environmental metrics, understanding and monitoring changes in natural systems
are of paramount importance. Environmental variables, such as water quality, air pollution levels, or habitat suitabil-
ity, play critical roles in ecosystem health and human well-being. By monitoring changes in these variables over time,
researchers and policymakers can gain insights into the impacts of human activities, climate change, and other ecological
factors on the environment Foss et al. (2022), Lowther et al. (2023). Additionally, tracking changes in environmental vari-
ables helps identify areas of concern, guide conservation efforts, and support sustainable resource management practices.

Considering the broader environmental and ecological context, it becomes evident that spatial sampling and the spa-
tial distribution of populations play crucial roles in accurately estimating changes in environmental variables. The spatial
arrangement of sample units can provide valuable insights into the underlying ecological processes and help identify
spatial patterns or hotspots of change. For example, nearby units in the spatial domain often exhibit similar values due
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to shared environmental conditions or underlying ecological interactions. Incorporating the geographical locations of
populations and utilizing spatially balanced sampling techniques have been recognized as essential components of
effective survey designs in environmental and ecological research Stevens and Olsen (2003).

Spatially balanced sampling designs, such as systematic spatial grids or randomized stratified sampling based on
auxiliary variables, ensure that sample units are distributed evenly across the study area, accounting for the spatial depen-
dence of environmental variables. These designs offer advantages over traditional random sampling methods by capturing
a representative range of environmental conditions and reducing the potential bias introduced by clustering or spatial
autocorrelation. Furthermore, recent studies by Zhao and Grafström (2020) have demonstrated the benefits of employ-
ing spatially balanced and partially overlapping samples for monitoring changes in environmental variables, leading to
improved efficiency and reduced variance in state and change estimators.

Despite the advantages of using spatially balanced and partially overlapping samples for monitoring changes, there
remains a critical knowledge gap in understanding the estimation of variance for the estimator of change under these
sampling designs. This study aims to address this important issue by developing novel estimation techniques that account
for the unique characteristics of spatially balanced sampling designs and provide reliable variance estimates for change
estimators.

It is well known that, when estimating the variance of an estimator of change, we need to estimate the variance of the
two state estimators as well as the covariance between them, for example, Kish (1965, ch. 12). To reduce the variance of the
estimator of change, we can either make the variance of the two state estimators smaller or attempt to create a high positive
covariance between the two state estimators or try both of them. The question of whether we should use independent
samples, a permanent sample or partially overlapping samples over time arises (De Leeuw et al., 2008, ch. 25).

For independent samples (where a new sample is taken independently of previous samples at each survey time), we
do not need to consider the covariance. Then, the variance of change depends only on the variance of the estimators at
each time occasion. This simplifies the estimation problem. However, it will not be the best strategy to use independent
samples when estimating changes over time. This is because the variance of the change estimator becomes the sum of the
variances of the state estimators when using independent samples. When the time between surveys is short and the values
of the target variables have not changed much, a permanent sample (where the same sample units would be revisited at
each survey time) might be employed to reduce the variance of an estimator of change. However, at the following time
occasion, the permanent sample may not be as representative as it used to be as the population changes over time. If the
sample changes in a different way than the population, which is out of our control, then there is a risk of a much larger
variance of the state estimator at the following time occasion (Scott, 1998). Thus, even if the covariance between the two
state estimators becomes large by having fully overlapping samples, it is not guaranteed that the variance of change will
be reduced. There is a need for updating the sample at the next time occasion to account for changes while retaining as
many units as possible from the old sample see, for example, Patterson (1950), Breidt and Fuller (1999).

A large number of variance estimators (approximations) have been proposed under different sampling designs
(e.g., Berger, 2004; Hájek, 1964; Hartley & Rao, 1962; Horvitz & Thompson, 1952; Yates & Grundy, 1953). For repeated
surveys, researchers have also paid a lot of attention to the estimation of covariance. Tam (1984) was one of the earliest
studies that considered covariance estimations from overlapping samples. Qualité (2009, ch. 5) derived covariance estima-
tors based on two overlapping samples by considering sampling designs that are essentially applicable to obtain rotating
panels, that is, panels where only a part of the sample at a previous time occasion is maintained, and the rest of the units
in the sample are replaced by new units at a next time occasion.

Due to the improved spread of samples achieved with spatially balanced sampling designs, it may not be appropri-
ate to use conservative variance or covariance estimators typically employed in simple random sampling. Grafström and
Schelin (2014) introduced a novel local mean variance estimator tailored for spatially balanced sampling designs. Instead
of using a global mean, this method adopts a local mean in the variance estimator. It considers only the nearest neigh-
bors of a sample unit including the unit itself in the computation of the local mean. Additionally, the authors addressed
situations where the distances between units are equal, resulting in the local neighborhood size of sample units being
subject to variation and not remaining constant in the variance estimator. In our work, we enhance this variance esti-
mator by introducing a fixed size for the local neighborhoods of all sample units. Furthermore, following the settings in
Qualité (2009, ch. 5), we develop a local mean covariance estimator and derive a variance estimator for the estimator of
change. Through simulations, we demonstrate that the proposed local mean estimators exhibit stability and lower bias
compared to estimators that do not utilize local means. Consequently, these local mean variance and covariance estima-
tors can be effectively employed when estimating the variance of the estimator of change with partially overlapping and
spatially balanced samples.
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The rest of the article is structured as follows. We begin with notations for estimating change with general designs in
Section 2. In Section 3, we introduce an efficient sampling strategy for monitoring the change of environmental variables.
In Section 4, starting from a local mean variance estimator, we derive a local mean covariance estimator for partially
overlapping and spatially balanced samples. In Section 5, two simulation studies are considered to evaluate the estimators.
Finally, Section 6 is dedicated to discussion and comments.

2 ESTIMATION OF CHANGE WITH GENERAL DESIGNS

Suppose we have a shared list frame U = {1, … , i, … ,N} for N objects (e.g., field plots) over time. A list frame is a finite
list of labels used to sample and identify units. From U, a sample St of nt labels of corresponding plots can be selected
at time t. Denote the target variable for unit i at time t as yit, it can be total number of trees in plot i at time t. The total
can be expressed as Yt =

∑
i∈U yit. Let 𝜋it = Pr(i ∈ St) be the prescribed inclusion probability of unit i at time t, that is, the

probability that unit i is selected to the sample St. The Horvitz–Thompson (HT) estimator of Yt can be expressed as

̂Yt =
∑

i∈St

yit

𝜋it
. (1)

Our goal is to estimate the change of the population total between two occasions Δ = Y2 − Y1 by using ̂Δ = ̂Y2 − ̂Y1.
To know the precision of the estimation, we also need to estimate the variance of the estimator of change. This variance
is given by

V(̂Δ) = V(̂Y1) + V(̂Y2) − 2C(̂Y1, ̂Y2). (2)

This means we need to estimate the variance of the separate state estimators and the covariance between the two
estimators. The variance of the state estimator (1) can be expressed as

V(̂Yt) =
∑

i∈U

∑

j∈U

(
𝜋ijt − 𝜋it𝜋jt

) yit

𝜋it

yjt

𝜋jt
, (3)

where 𝜋ijt = Pr(i ∈ St, j ∈ St) is the second-order inclusion probability for a pair of points (i, j) at time t. An estimator of
V(̂Yt) is

̂V(̂Yt) =
∑

i∈St

∑

j∈St

(
𝜋ijt − 𝜋it𝜋jt

)

𝜋ijt

yit

𝜋it

yjt

𝜋jt
. (4)

Estimator (4) is unbiased for (3) if all second-order inclusion probabilities 𝜋ijt are strictly positive. Otherwise, it is
impossible to obtain unbiased variance estimators.

The covariance between two HT-estimators of two population totals can be expressed as

C(̂Y1, ̂Y2) =
∑

i∈U

∑

j∈U

(
𝜋

12
ij − 𝜋i1𝜋j2

) yi1

𝜋i1

yj2

𝜋j2
, (5)

where 𝜋12
ij = Pr(i ∈ S1, j ∈ S2). It is also possible to construct the HT-estimator of (5) based on the two samples, that is,

̂C(̂Y1, ̂Y2) =
∑

i∈S1

∑

j∈S2

(
𝜋

12
ij − 𝜋i1𝜋j2

)

𝜋

12
ij

yi1

𝜋i1

yj2

𝜋j2
. (6)

Similar to the variance estimator (4), the estimator (6) is unbiased for (5) provided the 𝜋12
ij are strictly positive for all i, j. By

employing (4) and (6) we obtain the estimator of the variance for the estimator of change, provided that we have known
positive second order inclusion probabilities.
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F I G U R E 1 Illustration of two samples selected by the strategy.

3 AN EFFICIENT SAMPLING STRATEGY TO MONITOR THE CHANGE
OF ENVIRONMENTAL VARIABLES

In environmental surveys, the spatial pattern of units is important because the units themselves are defined using spatial
criteria. Since nearby units are more similar than units that are farther apart, more information could then be obtained
if the random sample avoids the selection of nearby units. To achieve good estimates of population characteristics, the
spatial pattern of the sample should be similar to the spatial pattern of the population. Often, we do not know the spatial
pattern of the target variable before the sample is selected. Instead, we have full access to some auxiliary variables that
are related to the target variables. Stevens and Olsen (2004) introduced the generalized random tessellation stratified
(GRTS) design and coined the phrase “spatially balanced sampling”. They also proposed a statistic that measures the
spatial balance of a sample using Voronoi polygons. The local pivotal method (LPM) and spatially correlated Poisson
sampling (SCPS) proposed by Grafström et al. (2012) and Grafström (2012) are two spatially balanced sampling designs
that employ auxiliary variables (often including geographical coordinates plus several other attribute variables) to spread
the samples based on distances. Grafström and Lundström (2013) illustrated that when the target variables are smooth
functions of auxiliary variables, we can get improved estimators if the samples are spread in the auxiliary variables. It
has been confirmed that, by using these designs, we gain in efficiency of design–based estimators of the totals of target
variables (see e.g., Benedetti et al., 2017).

Regarding the monitoring of change, we need to be cautious about the determination of whether a sampling strategy is
an efficient strategy or not. Zhao and Grafström (2020) proposed an efficient sampling strategy for monitoring the change
of environmental variables. In this strategy, the concept of spatially balanced samples and positive sample coordination are
combined. The spatially balanced samples are selected by the SCPS. When applying the SCPS, a set of auxiliary variables
that are related to the target variables should be used to spread the sample. We choose the same set of auxiliary variables
(with different values) at different time occasions. The positive sample coordination is achieved by assigning the same
random number to each unit in the algorithm of SCPS. In this way, we will get partially overlapping and spatially balanced
samples. Figure 1 illustrates two such samples selected by SCPS.

By using this strategy, we can reduce the variance of the state estimators and often achieve a large covariance between
the state estimators. In Zhao and Grafström (2020), the empirical impact of using positively coordinated and spatially
balanced samples was studied. In the next section, we will focus on the variance estimation problem and will provide a
reasonable variance estimator for the estimator of the change under the sampling strategy.

4 ESTIMATION OF CHANGE WHEN SAMPLES ARE OVERLAPPING
AND WELL SPREAD

Under a spatially balanced sampling design, it is often difficult to obtain 𝜋ijt and 𝜋12
ij . Moreover, many second-order inclu-

sion probabilities may be zero. It will likely not be possible to use design-based unbiased variance estimators such as
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(4) and (6) under spatially balanced sampling designs. Even if it is possible, it will generally not be recommended as such
variance estimators can become highly unstable when some second-order inclusion probabilities are very small.

4.1 Variance estimators for spatially balanced samples

Matérn (1947) introduced a variance estimator for systematic sampling from a regular grid of sample locations. In Matérn’s
variance estimator, the sample locations are split into several nonoverlapping groups of neighbors. A local variance is
first constructed for each group, then an average over groups is calculated as the variance estimator. Motivated by this
estimator, Grafström and Schelin (2014) also proposed a local mean variance estimator which was shown to perform well
under spatially balanced sampling. In their variance estimator, the local neighborhood for each sample unit i depends only
on i and its nearest neighbors. The size of the local neighborhood is calculated by one (the sample unit i) plus the number
of nearest neighbors of i in the sample. For example, if a sample unit i has two nearest neighbors, then the size of local
neighborhood is three. Their variance estimator can be applied in situations where units have many nearest neighbors.
For well-spread environmental samples, it is rare for a sample unit to have equidistant neighbors. In principle, by only
including the unit i and its nearest neighbor in the local neighborhood, we often have two units in the local neighborhood
when estimating the variance with the estimator proposed by Grafström and Schelin (2014). In Stevens and Olsen (2003),
the authors recommended using four sample units in the local neighborhood. This is because they found that their local
mean variance estimator became unstable when including fewer sample units in the local neighborhood. We consider
their suggestion and modify the local mean variance estimator in Grafström and Schelin (2014) by using a neighborhood
size proportional to the sample size. For V

(
̂Yt

)
, the local mean variance estimator can be expressed as

̂VSB( ̂Yt) =
nlt

nlt − 1
∑

i∈St

(
yit

𝜋it
− 1

nlt

∑

j∈Sit

yjt

𝜋jt

)2

, (7)

where Sit ⊆ St is the local neighborhood of a sample unit i at time t. The neighborhood Sit contains the unit i as well as its
nearby units in the sample, the size nlt is equal to plnt (rounded to the nearest integer). The proportion pl can be chosen
such that nlt can be any integer between two and nt. The same proportion pl is suggested in estimation of the variance
of ̂Yt for all t. Then, for a fixed pl, the number of neighbors included in the local neighborhood depends only on the
sample size.

Suppose all sample units are independently selected with the same set of drawing probabilities pi > 0, i = 1, 2, … ,N,
with

∑N
i=1pi = 1. For a sample St with sample size nt, the expected number of inclusions of unit i is then ntpi. When

enlarging the local neighborhood to the full sample, that is, if Sit = St, (7) becomes

̂V( ̂Yt) =
1

nt(nt − 1)
∑

i∈St

(
yit

pi
− 1

nt

∑

i∈St

yit

pi

)2

. (8)

The estimator (8) corresponds to the unbiased variance estimator under the probability proportional to size (pps) sampling
design. Furthermore, if we apply a constant inclusion probability 𝜋it = nt∕N, we get

̂V( ̂Yt) =
∑

i∈St

N2

nt(nt − 1)

(

yit −
1
nt

∑

i∈St

yit

)2

= N2

nt
�̂�

2
t , (9)

where �̂�2
t = (nt − 1)−1 ∑

i∈St

(
yit − n−1

t
∑

i∈St
yit

)2
. Equation (9) is equivalent to the unbiased variance estimator under

simple random sampling with replacement (SIR) design.

4.2 Covariance estimator for partially overlapping and spatially balanced samples

As illustrated in Section 4.1, the variance estimator (7) is a local mean version of the variance estimator for sampling with
independent observations. In the case of overlapping samples, we can introduce also a local mean version of an estimator
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of the covariance. As a starting point, we introduce the setting with independent observations. First n1 independent
observations are drawn from U to S1 according to the drawing probabilities pi, and a subsample S12 of S1 is retained as a
part of S2, with n12 ≥ 2 observations. Next, an additional number of n2 − n12 independent observations are drawn from U
to S2 according to pi. Now, the two samples S1 and S2 share n12 observations in the sample S12. In this setting, we estimate
the total Yt =

∑
i∈U yit with ̂Yt =

∑
i∈St

yitn−1
t p−1

i for t = 1, 2. As this is a special case of the bidimensional sampling design
described in Qualité (2009, ch. 5), the covariance between ̂Y1 and ̂Y2 follows from equation (5.5) in Qualité (2009, ch. 5).
For sampling with replacement, it can be expressed as

C
(
̂Y1, ̂Y2

)
= n12

∑

i∈U
pi

(
yi1

n1pi
− Y1

n1

)(
yi2

n2pi
− Y2

n2

)

, (10)

and the covariance (10) can be estimated using S12 by the simple expansion

̂C
(
̂Y1, ̂Y2

)
= n12

n12 − 1
∑

i∈S12

(
yi1

n1pi
−
̂Y ′

1

n1

)(
yi2

n2pi
−
̂Y ′

2

n2

)

, (11)

where ̂Y ′
t =

∑
i∈S12

yitn−1
12 p−1

i is the estimator of Yt based on the sample S12. Even though ̂Y ′
t is not the best estimator of

Yt as it only uses information of the shared observations in S12, it is recommended. Using information outside of S12 can
lead to undesired effects and is for that reason considered bad practice, see Qualité (2009, ch. 5).

In the case of two overlapping and spatially balanced samples, we replace the expected number of inclusions ntpi with
the inclusion probabilities 𝜋it and introduce local means. The estimator (11) then becomes

̂CSB

(
̂Y1, ̂Y2

)
= nl12

nl12 − 1
∑

i∈S12

(
yi1

𝜋i1
− yi1

)(
yi2

𝜋i2
− yi2

)

, (12)

where yi1 = n−1
l12

∑
j∈Si1

yj1𝜋
−1
j1 , yi2 = n−1

l12
∑

j∈Si2
yj2𝜋

−1
j2 and Sit is the local neighborhood for unit i in S12 at time t. The neigh-

borhood size nl12 is chosen as
[
pln12

]
(pln12 rounded to the nearest integer) and the same proportion pl as in the local

mean variance estimator is recommended. Since nl12 ≤ nt, it is reasonable to decide the proportion by the size of the over-
lap when estimating the variance of the estimator of change, that is, pl = nl12n−1

12 , where nl12 can be any integer between
two and n12. Then we make sure that nlt =

[
plnt

]
≥ nl12. If the size nl12 = n12, we get back to the estimator (11). The esti-

mator (12) of covariance under spatially balanced sampling is consistent with the estimator ̂VSB

(
̂Yt

)
of variance, that is,

̂CSB

(
̂Yt, ̂Yt

)
= ̂VSB

(
̂Yt

)
. This is important for estimating the variance of an estimator of change. Combining (7) and (12),

the expression of the variance estimator for the estimator of change with partially overlapping and spatially balanced
samples follows.

Different from the sampling plans in Qualité (2009, ch. 5), the size of overlap is random when using the strategy in
Zhao and Grafström (2020). For the current algorithm in the strategy, it is not possible to fix the size of the overlap and
select a well-spread sample at a second time occasion. That is to say, we do not know how many sample units from S1 that
will also be selected into S2 before we get the full sample on the second time occasion. The percentage of overlap between
two samples depends mainly on the change over time of the auxiliary variables that we use to spread the samples. When
the changes in auxiliary variables increase, the overlap between two samples tends to decrease. Similar to the variance
estimator (7), the covariance estimator (12) is proposed as a general estimator for spatially balanced samples. In the next
section, we study the performance of the proposed variance and covariance estimators, specifically under the strategy in
Zhao and Grafström (2020).

5 EVALUATION OF THE ESTIMATORS

To evaluate the proposed estimators for positively coordinated and spatially balanced samples, two simulation studies are
considered. In the first study we evaluate the estimators under different spatial configurations by applying surfaces. For
the second study, the estimators are evaluated for a forest inventory as an example of environmental monitoring. In both
studies, we take different sizes of neighborhoods into account to check how they will affect the estimators. Estimators
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which apply the full samples/overlap in the neighborhoods are incorporated in the simulations as well. It is worth noting
that, the samples selected at the two time occasions are well spread and positively coordinated in both examples. For
each study, the empirical variance and covariance, the mean of the variance and covariance estimators are presented.
We calculate the mean coverage rates for the 95% confidence intervals when using the variance estimators. The relative
bias(RB) as well as the empirical relative root mean squared error (RRMSE) for the estimators are also compared for
different estimators. Before we go any further in the studies, we will give the explicit expressions of RB and RRMSE.

RB is the ratio between the bias of an estimator and the value we are estimating. Suppose ̂𝜃 is an estimator of 𝜃, the
relative bias of ̂𝜃 can be denoted as

RB(̂𝜃) = Bias(̂𝜃)
𝜃

⋅ 100%. (13)

The mean squared error (MSE) measures the average squared difference between the estimator and the true parameter
value. For ̂𝜃 it is defined as

MSE(̂𝜃) = E
(
(̂𝜃 − 𝜃)2

)
= V(̂𝜃) +

(
Bias(̂𝜃)

)2
. (14)

If ̂𝜃 is unbiased for 𝜃, we get MSE(̂𝜃) = V(̂𝜃). As we can see from the expression, the MSE incorporates both the variance
and the bias of the estimator, thus it can be used to check the efficiency of an estimator. The smaller value of MSE implies
a better estimator. As the MSE has a squared unit of measure, it is sometimes difficult to interpret. Instead, we can use
the root mean squared error (RMSE) when interpreting the results, and we have

RMSE(̂𝜃) =
√

MSE(̂𝜃). (15)

Similar to RB, we may want to relate the size of the RMSE to the value we are estimating. The ratio between the RMSE of
an estimator and the value we are estimating is called relative root mean squared error (RRMSE). It is defined as

RRMSE(̂𝜃) = RMSE(̂𝜃)
𝜃

⋅ 100%. (16)

Simulation study 1. The purpose of this study is to examine the behavior of estimators when tracking changes in eleva-
tion for positively coordinated and spatially balanced samples. To define the target variable, a surface consisting of 2500
pixels is used on each time occasion. The initial target surface at time 1 is generated by applying a Gaussian kernel func-
tion to 20 observations (points) within the range of [0, 1] × [0, 1]. The smoothing parameter, 𝜎, is set to 0.1. The value
of each point is randomly generated from a uniform distribution, U(50, 50). At the subsequent time occasion, the target
surface is obtained by adding an error surface to the surface from time 1 to ensure a change in the elevation. The error
surface is generated similarly to the initial target surface, with 30 points randomly generated from a U(10, 20) distribu-
tion. We employ geographical coordinates as the two auxiliary variables to spread the samples to ensure the selection of
positively coordinated and spatially balanced samples. At each iteration, we select a sample of size n1 = 100 at the first
time occasion, and a smaller sample of size n2 = 50 at time 2 with equal inclusion probabilities of 𝜋it = nt∕N. By varying
sample sizes, we aim to prevent the occurrence of permanent samples since geographical coordinates remain constant.
The simulations are repeated 10,000 times. The surfaces are presented in Figure 2, and Table 1 displays the simulation
results for estimators that utilize varying neighborhood sizes.
Simulation study 2. For this study, a specific area in central Sweden has been chosen as the focus. The population of
interest consists of N = 10,000 clusters of circular plots. The primary objective of this study is to assess the performance
of estimators under the conditions of positively coordinated and spatially balanced samples when monitoring changes in
the basal area of the population over time. To ensure the selection of such samples, we employed four different auxiliary
variables, namely geographical coordinates, elevation, and tree height. Among these, tree height is the only variable
that changes over time, whereas geographical coordinates and elevation remain constant at time occasion 2. Our target
variable is the basal area of the population changes over time as well. At each iteration, we have sample size n1 = n2 = 100,
equal inclusion probabilities 𝜋t = nt∕N = 0.01 and the number of repetitions is 10,000. The results are illustrated for the
basal area in Table 2.
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8 of 12 ZHAO and GRAFSTRÖM

F I G U R E 2 Target surfaces in Example 1. Darker colors indicate higher values of elevation.

T A B L E 1 Performance of estimators in simulation study 1.

nl12 = 2 nl12 = 4 nl12 = 6 nl12 = n12

V
(
̂Y1

)
5,603,276

V
(
̂Y2

)
24,663,288

C
(
̂Y1, ̂Y2

)
2,348,328

V(̂Δ) 25,563,549
̄
̂V SB

(
̂Y1

)
18,307,756 (0.999) 29,398,474 (1) 34,905,003 (1) 51,394,294 (1)

̄
̂V SB

(
̂Y2

)
59,566,510 (0.995) 80,948,404 (0.999) 95,541,122 (0.999) 150,657,134 (1)

̄
̂CSB

(
̂Y1, ̂Y2

)
19,688,631 22,676,798 25,939,517 38,593,385

̄
̂V SB(̂Δ) 38,497,004 (0.960) 64,993,281 (0.996) 78,567,092 (0.999) 124,864,658 (1)

RB
̄
̂V SB

(
̂Y1

) 2.267 4.247 5.229 8.172

RB
̄
̂V SB

(
̂Y2

) 1.415 2.282 2.874 5.109

RB
̄
̂CSB

(
̂Y1 ,̂Y2

) 7.384 8.657 10.046 15.434

RB ̄
̂V SB(̂Δ)

0.506 1.542 2.073 3.885

RRMSE
̄
̂V SB

(
̂Y1

) 2.308 4.290 5.270 8.213

RRMSE
̄
̂V SB

(
̂Y2

) 1.501 2.350 2.935 5.171

RRMSE
̄
̂CSB

(
̂Y1 ,̂Y2

) 7.964 9.140 10.535 16.042

RRMSE ̄
̂V SB(̂Δ)

0.782 1.652 2.162 3.963

Note: The column headings and their respective descriptions are as follows: nl12: size of local neighborhood of the local mean covariance estimator, V : empirical
variance, C: empirical covariance, ̂Yt : HT estimator of population total at time t, ̂Δ: estimator of change in population total between two time occasions, ̄̂V SB:
mean value of the local mean variance estimator for 10,000 iterations, ̄̂CSB: mean values of the local mean covariance estimator for 10,000 iterations, RB: relative
bias, RRMSE: relative root mean squared error. The correlation coefficient between the target variables at the two time occasions is 0.9550. The total of the
target is 72,861.65 at time 1 and 104,398.8 at time 2. The mean of percentage of overlap 2E(n12)∕(n1 + n2) between samples at the two time occasions is 43.35%.
The numbers in parenthesis are the mean coverage rates for the 95% confidence intervals when using the variance estimators.
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ZHAO and GRAFSTRÖM 9 of 12

T A B L E 2 Performance of estimators in simulation study 2.

nl12 = 2 nl12 = 4 nl12 = 6 nl12 = n12

V
(
̂Y1

)
4,450,984

V
(
̂Y2

)
4,117,761

C
(
̂Y1, ̂Y2

)
1,973,211

V(̂Δ) 4,622,964
̄
̂V SB

(
̂Y1

)
5,371,933 (0.965) 6,443,658 (0.980) 8,161,177 (0.991) 34,256,433 (1)

̄
̂V SB

(
̂Y2

)
5,131,544 (0.970) 6,209,523 (0.983) 7,935,950 (0.992) 34,776,755 (1)

̄
̂CSB

(
̂Y1, ̂Y2

)
2,152,611 3,225,581 4,338,479 23,229,975

̄
̂V SB(̂Δ) 6,198,256 (0.975) 6,202,019 (0.974) 7,420,169 (0.986) 22,573,238 (1)

RB
̄
̂V SB

(
̂Y1

) 0.207 0.448 0.834 6.696

RB
̄
̂V SB

(
̂Y2

) 0.246 0.508 0.927 7.446

RB
̄
̂CSB

(
̂Y1 ,̂Y2

) 0.091 0.635 1.199 10.773

RB ̄
̂V SB(̂Δ)

0.341 0.342 0.605 3.883

RRMSE
̄
̂V SB

(
̂Y1

) 0.278 0.486 0.859 6.716

RRMSE
̄
̂V SB

(
̂Y2

) 0.312 0.544 0.952 7.465

RRMSE
̄
̂CSB

(
̂Y1 ,̂Y2

) 0.334 0.718 1.255 10.858

RRMSE ̄
̂V SB(̂Δ)

0.437 0.432 0.676 3.985

Note: The column headings and their respective descriptions are as follows: nl12: size of local neighborhood of the local mean covariance estimator, V : empirical
variance, C: empirical covariance, ̂Yt : HT estimator of population total at time t, ̂Δ: estimator of change in population total between two time occasions, ̄̂V SB:
mean value of the local mean variance estimator for 10,000 iterations, ̄̂CSB: mean values of the local mean covariance estimator for 10,000 iterations, RB: relative
bias, RRMSE: relative root mean squared error. The total basal area is 137,487.4 and 14,6575.3 m2∕ha, respectively for the two time occasions. Correlation
coefficient between basal area at time 1 and 2 is 0.9225. The mean of the overlap is 64.05%. The numbers in parenthesis are the mean coverage rates for the 95%
confidence intervals when using the variance estimators.

Simulation results of both studies are also illustrated in Figure 3 for all estimators. From the figure and the tables, we
can see that all estimators are generally conservative. Compared to the estimators which apply the full samples/overlap
in the neighborhood, we can reduce the bias by using local neighborhood estimators. The smaller the neighborhood size,
the less biased the estimator tends to be. The coverage rate of the confidence intervals also increases as the neighborhood
size grows. Note that, in each iteration we can fix the neighborhood size of the local mean covariance estimator. The
size of the neighborhood of the local mean variance estimator varies according to the size of the overlap. If the aim is to
estimate the variance of the estimator of the total at each time occasion, we can use a fixed neighborhood size.

6 DISCUSSION

Recently, many other studies have been conducted to evaluate different variance estimators in order to find less
biased variance estimator of HT estimator using systematic samples, see for example, Babcock et al. (2018), Frank and
Monleon (2021). For well-spread samples, we have evaluated our proposed estimators by using and equal inclusion
probabilities (representative samples). The use of equal inclusion probabilities is, however, the most common case in
multipurpose environmental surveys. As the strength of the relation between different target variables and the auxiliary
variables that we use to spread the samples are not the same for different target variables, it is safer to spread the samples
with equal inclusion probabilities.

When constructing the local mean covariance estimator, we also tested to use the same number of units in the local
neighborhood as the local mean variance estimator. By doing so the overestimation by the local mean covariance estimator
will become bigger than the overestimation by the local variance estimators. In such a case, it may produce a negative bias
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10 of 12 ZHAO and GRAFSTRÖM

F I G U R E 3 Comparing the estimators for different neighborhood sizes. The bold black vertical lines represent the empirical
variances/covariances.
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ZHAO and GRAFSTRÖM 11 of 12

for the variance of the estimator of change. This is because the local covariance estimator is based only on the overlap,
and the neighbors tend to have larger distances, thereby causing bigger differences in the overlap than in the full sample.
Therefore, the more the neighbors in the neighborhood, the bigger the difference between the value of unit i and its local
mean will be, thus the larger positive bias it will produce. By the method we proposed, fewer neighbors are used in the
local mean covariance estimator than the separate variance estimators. Therefore, we reduce the impact of the distance
in the estimation of the variance of the estimator of change.

Besides the distance, the performances of the local mean covariance estimators are also affected by the rate of overlap.
The bias tends to become bigger for a small percentage of the overlap. We need to notice that, for repeated surveys that
are carried out with more tight time intervals, permanent samples are likely to be better. Especially when we only want
to reduce the variance of the estimator of change in the short run. In that case, the best strategy is probably to use a per-
manently well-spread sample (the sample S1 is well-spread in the first survey, thereafter the same sample will be applied
in the second survey). At short intervals, if S2 is only partially overlapping with S1, it will lead to a smaller covariance
compared to a permanent sample. Although we reduce the variance of the state at the second time occasion by updating
the sample, the reduction of the variance may not compensate for the reduction of the covariance. In the long run, it will
be preferable to apply the new strategy, because the quality of S1 is likely to become worse over time. The reduction of the
variance will then compensate for the reduction of the covariance compared to a permanent sample. Thus, the planner
needs to be aware of these trade-offs when dealing with complex surveys.
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