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bInstitute of Crop Science, University of Hohenheim, Stuttgart, Germany

ABSTRACT
Experiments with two factors are commonly analyzed using two-way
analysis of variance, where testing significance of interaction is
straightforward. However, using bilinear models, interaction can be
analyzed further. The additive main effects and multiplicative inter-
action (AMMI) model uses singular value decomposition for partition-
ing interaction into multiplicative terms, such that the first terms
typically account for a large portion of the sum of squares, whereas
the last terms are of minor importance. This model is used extensively
for analysis of genotype-by-environment interaction in multi-environ-
ment trials. A recurring question is how to determine the number of
terms to retain in the model. If data is replicated, which is usually the
case, the FR test can be used for this purpose. The simple parametric
bootstrap method is another option, although this test was developed
for unreplicated data. Since both of these tests of significance may be
applied in cases with replication, researchers need advice on which of
the methods to use. We discuss several statistical models and show
that the two methods address different questions.
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1. Introduction

Multi-environment trials compare genotypes in varying environments, i.e., locations.
Since relative performance of genotypes depends on environments, the focus is typically
not only on average performance of genotypes over environments, but also on geno-
type-by-environment interaction. Estimates of this interaction determine which geno-
types farmers choose to grow in their special environments. The additive main effects
and multiplicative interaction (AMMI) model (Gauch 1988) is a popular method for the
analysis. The AMMI model includes additive main effects of genotypes, additive main
effects of environments, and multiplicative effects of genotype-by-environment inter-
action. The multiplicative effects are estimated using singular value decomposition.
Usually just one or two multiplicative terms are retained in the model, although it is
possible to include more. The question about how many multiplicative terms to include
in the AMMI model for a specific multi-environment trial is crucial for the conclusions
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from the analysis about how different genotypes perform in varying environments, and
thus decisive for which genotypes are actually cultivated.
Many methods have been proposed for testing the significance of the multiplicative

terms of the AMMI model. No exact tests exist, but under the common assumption of
normally distributed observations with homogeneous variance, the FR test (Piepho
1995) and the simple parametric bootstrap (SPBÞ test (Forkman and Piepho 2014) are
useful options.
Using the SPB test, only genotype-by-environment means must be known, since

information about variance within genotype-by-environment combinations is not uti-
lized. The SPB test is also applicable when there are no replicates. The FR test, on the
other hand, requires information about variance within genotype-by-environment com-
binations, since this information is needed for computation of the FR statistic. Thus, the
FR test cannot be applied if there are no replicates. Most commonly in practice, the
researcher has access to replicates and then faces the choice of using either the SPB test
or the FR test. Some researchers have used both tests and found that in practice they
often give different results (Plav�sin et al. 2021). In the present article, we shall examine
why the tests typically give different results, as this has not been investigated before.
The FR test and the SPB test were proposed for different statistical models. In both

models, the response variable is the genotype-by-environment means. Both models
include an intercept, fixed effects of genotypes and environments, and a sum of multi-
plicative interaction terms. In addition, both models include normally distributed
residual error terms. However, different assumptions were made for the variance of this
error term. The model for which the FR test was proposed uses an error variance that is
inversely proportional to the number of replicates within genotype-by-environment
combinations. This is the pure within-environment error variance of genotype means.
The model for which the SPB test was proposed, by contrast, uses a larger error vari-
ance, comprising both the pure error variance and residual, unexplained, inter-
action variance.
In this article, we derive a unified model, which includes both models as special cases.

This enables a comparison between the two tests, with regard to which hypotheses they
test and how they work under different scenarios. Furthermore, we show how the vari-
ance components of this model can be estimated.
The new model includes an intercept, fixed effects of genotypes and environments, a

sum of fixed multiplicative interaction terms, random residual interaction, and random
replication error. Thus, the residual terms of the models for the FR test and the SPB test
are replaced by two terms: a random residual interaction and a random replication
error. Since the model includes both fixed and random effects of interaction, we call
this model a mixed-interaction model.
Our mixed-interaction model is related to several early-proposed models that are still

much used for analysis of genotype-by-environment interaction. Specifically, there is a
strand of work on stability analysis, starting with Yates and Cochran (1938) and further
developed by Finlay and Wilkinson (1963), who regressed genotype-by-environment
means on environment means. Since regression cannot explain all interaction, residuals
from the regression lines must comprise interaction, which is modeled as random.
Eberhart and Russell (1966) extended this work by fitting genotype-specific residual
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variance components. Shukla (1972) provided a framework that explicitly modeled repli-
cated data and separated plot error from residual interaction. However, in their regres-
sion approach, not only plot error and genotype-by-environment interaction effects, but
also environmental main effects, are random. Replacing environment means by random
effects in the Finlay and Wilkinson (1963) regression leads to factor-analytic models
(Gogel, Cullis, and Verbyla 1995; Piepho 1997), which are mixed-effects model exten-
sions of fixed-effects AMMI models. Factor-analytic models are fitted using iterative
residual maximum likelihood procedures, which may sometimes not converge. Singular
value decomposition is more convenient in this regard, since it is easily performed using
fast and stable computer routines, and has by construction no convergence issues.
The Finlay and Wilkinson (1963) model is a linear regression model, which includes

the assumption of random deviations from the line. The AMMI model generalizes the
Finlay and Wilkinson (1963) model from simple regression to multiple regression. The
regressors of the AMMI model are latent environmental variables. In our mixed-inter-
action model, the random residual interaction term is the random deviation from the
latent multiple regression model. Gauch (1988) proposed a similar model, with residual
interaction in addition to random replication error, but did not specify residual inter-
action as fixed or random.
Malik, Forkman, and Piepho (2019) compared the SPB test and the FR test under the

assumption of a model without any random interaction, i.e., using the model for which
the FR test was proposed. However, that comparison did not explain the fundamental
difference between the two tests with regard to which hypotheses they are testing and
the results are limited to the special case of no random residual interaction.
The purpose of this article is to show that the SPB test and the FR test aim at differ-

ent null hypotheses. This fact, which has not been noticed before, is clarified by the
introduction of the mixed-interaction model. The performance of the tests is investi-
gated through simulation. Finally, the article aims to provide recommendations on
which test should be used.
Sections 2.1–2.3 discuss models proposed earlier for analysis of multi-environment

trials. Section 2.4 introduces the mixed-interaction model. Section 2.5 proposes a
method for estimating the variance components of this model. Section 2.6 presents the
FR test and the SPB test in the framework of the mixed-interaction effects model.
Section 2.7 highlights the difference between the null hypotheses of the two tests.
Section 3 provides an example, which illustrates the use of the two tests. Section 4
presents a simulation study, which shows how the two tests perform under different
mixed-interaction model scenarios. Section 5 discusses practical consequences and gives
advice on which test to use depending on the aim of the analysis.

2. Models and methods

2.1. Linear fixed-effects models

In a multi-environment experiment for comparison of I genotypes in J environments,
with R replicates per environment, let yijr denote the yield in the rth replicate of the of
the ith genotype in the jth environment. We will assume that, at each environment, a
randomized compete block design is used. Furthermore, we will assume that all
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genotypes are tested in all environments, which is a common situation in official crop
variety testing. Such multi-environment experiment data can be analyzed using the lin-
ear fixed-effects model

yijr ¼ lþ ai þ nj þ gjr þ hij þ eijr (1)

where l is an intercept, ai is a fixed effect of the ith genotype, nj is a fixed effect of the
jth environment, gjr is a fixed effect of the rth complete block in the jth environment,

hij is a fixed effect of interaction between the ith genotype and the jth environment,
and eijr is a random residual error assumed to be normally distributed: eijr � Nð0, r2EÞ:
Let yij� ¼

PR
r¼1 yijr=R: Then,

yij� ¼ lþ ai þ bj þ hij þ eij: (2)

where bj ¼ nj þ
PR

r¼1 gjr=R and eij: ¼
PR

r¼1 eijr=R:

2.2. Linear mixed-effects models

Multi-environment trials can also be analyzed using linear mixed-effects models. With
fixed effects of genotypes and random effects of environments (Shukla 1972; Patterson
1978), the model can be written

yij� ¼ lþ ai þ bj þ sij þ eij: (3)

where bj � Nð0, r2BÞ, sij � N 0, r2S
� �

and all other terms are defined as in (2). The
interaction is random because one of the main effects is random (Piepho, B€uchse, and
Emrich 2003). Alternatively, effects of genotypes and environments may be modeled as
random and fixed, respectively (Smith, Cullis, and Gilmour 2001):

yij� ¼ lþ ai þ bj þ sij þ eij: (4)

where ai � Nð0, r2AÞ and all other terms are defined as in (2) and (3). This is a popular
model used for genomic selection in breeding. However, in that application, effects of
genotypes as well as effects of interaction are correlated according to an observed gen-
omic relationship matrix (Montesinos-L�opez et al. 2018). Such information is not usu-
ally available in official variety testing.
It is also possible to use a model with fixed main effects for environments and geno-

types, but random effects for their interaction:

yij� ¼ lþ ai þ bj þ sij þ eij: (5)

where all terms are defined as in (3) and (4). If some genotypes are missing in some
environments, Model (3) may be preferable to Model (5), because by Model (3), inter-
environment information about the differences between the genotypes can be recovered.
However, this information is often small, as the variance between environments is usu-
ally large (Piepho and M€ohring 2006). When the dataset is balanced, Models (3) and
(5) give exactly the same results as regards differences between estimated marginal
genotype means. Two-way models with fixed main effects of treatments and experi-
ments, and random treatment-by-experiment interaction, i.e., similar to Model (5), are
commonly used in meta-analysis (Piepho, Williams, and Madden 2012).
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2.3. Bilinear models

The Finlay and Wilkinson (1963) regression model for analysis of genotype-by-environ-
ment interaction can be written as

yij� ¼ lþ ai þ /iwj þ sij þ eij: (6)

where l, ai, sij and eij: are defined as in (5), and /i is the sensitivity of the ith genotype
to a latent environmental variable wj (Piepho 1999). In practice, environment means are
often used as estimates of wj, even though these are not the least-squares estimates
(Digby 1979; Mandel 1995). Models with multiplicative terms, such as /iwj, are known
as bilinear models (Gabriel 1978).
Mandel (1971) proposed a partitioning of the interaction into a sum of multiplicative

terms. For the application of multi-environment trials, this model is known as the
AMMI model (Gauch 1988). The AMMI model for I cultivars observed in J environ-
ments can be written as

yij� ¼ lþ ai þ bj þ
XMþ1

m¼1

cimkmdjm þ pij (7)

where l, ai and bj are defined as in (5), pij � Nð0, r2PÞ and
PMþ1

m¼1 cimkmdjm is the singu-

lar value decomposition of the I � J matrix H ¼ yij� � l� ai � bj � pij
� �

: Specifically,

cim is the ith element of the mth left-singular vector of H, djm is the jth element of
the mth right-singular vector of H, km is the mth singular value of H, and M ¼
minðI � 1, J � 1Þ: The rank of the matrix with elements yij� � yi�� � y�j� þ y���

� �
is at

most M, because of rows and columns being centered. The rank of H, however, is
at most M þ 1: Singular values are assumed to be sorted in decreasing order,
i.e., k1 � k2 � ::: � kMþ1 � 0: Note that some or all of these singular values can be
0. If main effects of genotypes, ai, are omitted from (7), then the resulting model is the
genotype main effects and genotype-by-environment interaction effects (GGE)
model (Yan et al. 2000), which is another popular model for analysis of multi-environ-
ment trials.

Let y::: ¼
PI

i¼1

PJ
j¼1 yij:= IJð Þ denote the grand mean, yi:: ¼

PJ
j¼1 yij:=J the mean for

the ith genotype, and y:j: ¼
PI

i¼1 yij:=I the mean in the jth environment. The parame-

ters of Model (7) can be fitted in two steps using the method of least squares (Gabriel
1978). In the first step, l is estimated as y:::, ai as yi: � y:::, and bj as y:j: � y:::: These

are the unique least-squares estimates given the constraints
PI

i¼1 ai ¼ 0 and
PJ

j¼1 bj ¼
0: In the second step, the I � J matrix Ĥ ¼ yij: � yi: � y:j: þ y:::

� �
is subjected to singu-

lar value decomposition, which yields M positive singular values k̂1, k̂2, :::, k̂M , such

that k̂1 � k̂2 � ::: � k̂M � k̂Mþ1 ¼ 0 The ðM þ 1Þth singular value, k̂Mþ1, is 0 since the

rank of Ĥ is M:
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2.4. The mixed-interaction model

When there are R replicates per environment, i.e., when yij� ¼
PR

r¼1 yijr=R, we may

assume that pij ¼ sij þ
PR

r¼1 eijr=R, where sij � Nð0, r2SÞ and eijr � Nð0, r2EÞ: Then

r2P ¼ r2Sþr2E=R and

yij� ¼ lþ ai þ bj þ hij þ sij þ eij� (8)

where hij ¼
PMþ1

m¼1 cimkmdjm and eij� ¼
PR

r¼1 eijr=R: Model (8) is essentially the AMMI
model for replicated data (Gauch 1988), with the addition of the explicit assumptions
that sij � Nð0, r2SÞ and eij� � Nð0, r2E=RÞ: In Model (8), genotype-by-environment
interaction has been decomposed into a fixed part, hij, and a random part, sij: We refer
to Model (8) as the mixed-interaction model.
Through this decomposition, the AMMI model can be viewed as a generalization of the

Finlay and Wilkinson (1963) regression model (6), which also includes two random terms: sij,
which is the departure from the regression line, and eij:, which is the experimental error term.
Whereas Model (6) describes the fixed-effects interaction with a single multiplicative term,
Model (8) uses at mostM þ 1 non-zero multiplicative terms. These can be regarded as regres-
sions on latent predictor variables. Consequently, the random interaction term, sij, in (8), is still
a deviation from regression. In addition,Model (8) includesmain effects, bj, of environments.

When r2S > 0, the sum of the multiplicative terms and the random interaction can,

through singular value decomposition, be written hij þ sij ¼
PMþ1

m¼1 c
0
imk

0
md

0
jm: With this

notation, Model (8) becomes

yij� ¼ lþ ai þ bj þ
XMþ1

m¼1

c
0
imk

0
md

0
jm þ eij� (9)

when r2S > 0: In the other event, when r2S ¼ 0, Model (8) is

yij� ¼ lþ ai þ bj þ
XMþ1

m¼1

cimkmdjm þ eij� (10)

Model (8) is an extension of Models (5) and (10), since Model (5) is the special case

that
PMþ1

m¼1 cimkmdjm ¼ 0, which occurs when k1 ¼ 0, and Model (10) is the special

case that r2S ¼ 0: When both these special cases occur, there is no genotype-by-environ-
ment interaction at all. In the following, we will assume the mixed-interaction-effects
model (8), since this model covers all cases.

2.5. Estimation of variance components in the mixed-interaction model

The variance component r2E of (8) is readily estimated as the error mean square (MSE),
defined as

MSE ¼ SSE
DF

(11)

where SSE and DF are the error sum of squares and error degrees of freedom, respect-

ively. Using Model (1), SSE ¼ PI
i¼1

PJ
j¼1

PR
r¼1 yijr � yij: � y:jr þ y:j:

� �2 and DF ¼
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J I � 1ð ÞðR� 1Þ: When the design does not include blocks but is completely random-

ized, the block effects, gjr, must be omitted from (1). In that case, SSE ¼
PI

i¼1

PJ
j¼1

PR
r¼1 yijr � yij:

� �2 and DF ¼ IJðR� 1Þ:
It is more challenging to estimate r2S of (8) when

PMþ1
m¼1 cimkmdjm 6¼ 0: However,

when k1, k2, :::, kj of (8) are large as related to rP and kjþ1 ¼ kjþ2 ¼ ::: ¼ kMþ1 ¼ 0,

then the joint distribution of k̂
2
jþ1=r

2
P, k̂

2
jþ2=r

2
P, :::, k̂

2
M=r

2
P is approximately central

Wishart distributed (Muirhead 1978) such that the expected value of
PM

m¼jþ1 k̂
2
m is

approximately I � 1� jð Þ J � 1� jð Þr2P: Under this condition, r2P can be estimated as
the residual interaction mean square (MSR) divided by R, where

MSR ¼ R
PM

m¼jþ1 k̂
2
m

I � 1� jð Þ J � 1� jð Þ (12)

Thus, r2S can be estimated as

r̂2
S ¼

MSR�MSE
R

, j ¼ 0, 1, :::M � 1 (13)

In the special case of Model (5), MSR ¼ R
PI

i¼1

PJ
j¼1 ðyij: � yi: � y:j: þ y:::Þ2=

I � 1� jð Þ J � 1� jð Þ� �
, at which (13) is an unbiased estimator of r2S:

2.6. Tests for significance of multiplicative terms

Under the same condition as required for estimation of r2S using (13), the SPB method
can be used for sequentially testing the hypotheses H0 : kjþ1 ¼ 0 in Model (7),

where j ¼ 0, 1, :::,M � 2: The SPB test uses as test statistic T ¼ k̂
2
jþ1=

PM
m¼jþ1 k̂

2
m:

The distribution for this test statistic, under the null hypothesis, is simulated through
repeated sampling of ðI � 1� jÞ � ðJ � 1� jÞ matrices of standard normally distrib-
uted values. For each random sample, Tb is computed as the ratio of the first squared
singular value to the sum of all squared singular values. The distribution of Tb thus
obtained, when b ¼ 1, 2, :::, B, where B is large, is the simulated distribution of the
test statistic T under the null hypothesis.
The FR test was proposed for testing the hypotheses H0 : kjþ1 ¼ 0 in Model (10),

where j ¼ 0, 1, :::,M � 1: Thus, with the FR test, it is possible to test one null hypoth-
esis more than with the the SPB test. The FR test uses as test statistic FR ¼ MSR=MSE,
where MSE and MSR are defined as in (11) and (12), respectively. The FR test statistic
should be compared with an F distribution with I � 1� jð Þ J � 1� jð Þ and DF degrees
of freedom, where DF is the error degrees of freedom, defined as in (11).
Assuming Model (8), with pij ¼ sij þ eij�, where r2S > 0, the SPB method is readily

applicable. However, Model (8) is not on the form required for the FR test as specified
by Piepho (1995), since Model (8) includes not just a single random error term, but
two random terms, sij and eij�: Still, if there are replicates, i.e., R > 1, the FR test can be

used for testing the hypotheses H0 : k
0
jþ1 ¼ 0, in Model (9), where j ¼ 0, 1, :::,M � 1:

1722 J. FORKMAN ET AL.



The SPB test and the proposed estimator (13) of the interaction variance, r2S, utilize
the above mentioned Muirhead (1978, 23) approximation requiring the first j singular
values to be large at testing H0 : kjþ1 ¼ 0: If this condition is not fulfilled, i.e., if kj is

small or moderate, then in our experience
PM

m¼jþ1 k̂
2
m tends to be smaller

than I � 1� jð Þ J � 1� jð Þr2P: Since also k̂
2
jþ1 tends to be smaller when the condition

is not fulfilled, the effect on the test statistic T ¼ k̂
2
jþ1=

PM
m¼jþ1 k̂

2
m is not clear.

However, the effect on the FR test statistic, as written FR ¼ R
PM

m¼jþ1 k̂
2
m=

I � 1� jð Þ J � 1� jð ÞMSE
� �

is obvious. This test statistic will be smaller if the condi-
tion is not fulfilled, giving significant results less often. In the simulation study of
Section 3, these properties of the SPB and FR tests will be explored.

2.7. The SPB and the FR tests aim at different hypotheses

Models (8) and (9) can be written together as

yij� ¼ lþ ai þ bj þ
XMþ1

m¼1

cimkmdjm þ sij þ eij� ¼ lþ ai þ bj þ
XMþ1

m¼1

c
0
imk

0
md

0
jm þ eij�

The null hypotheses of the SPB test is

H0 : kjþ1 ¼ 0

whereas the null hypothesis of the FR test is

H0 : k
0
jþ1 ¼ 0

By generalizing the Finlay-Wilkinson regression model (6) into an AMMI model that
includes a random departure from regression, sij, we have in this article uncovered the
difference in intention between the two tests. Since we now know that the two methods
test different null hypotheses, it is no longer surprising that they usually give different
results with regard to how many multiplicative terms are significant.

Because k
0
jþ1 � kjþ1 and

PI
i¼1

PJ
j¼1 e

2
ij� �

PI
i¼1

PJ
j¼1 sij þ eij�ð Þ2, the FR test typically

gives more significant results than the SPB test. This is illustrated by the follow-
ing example.

3. Example

Shafii and Price (1998) studied an AMMI analysis of a multi-environment trial in win-
ter rapeseed. The data is easily accessible, since it is included as the shafii.rape-

seed dataset of the agridat package (Wright 2021) of R. We shall use the part of
the experiment that was carried out in 1989. This subset comprises I ¼ 6 genotypes
investigated in J ¼ 9 environments, with R ¼ 4 observations per genotype and environ-
ment. Genotypes 1–6 are Dwarf, Jet, Cascade, Bridger, Glacier, and Bienvenu, respect-
ively. Environments 1–9 are TGA, NC, GGA, SC, VA, TN, NY, WA, and ID,
respectively. Observations are yield (tonnes/ha).
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An initial two-way analysis of variance using Model (1) shows that there are significant
main effects of genotypes (F ¼ 2:92, p ¼ 0:016), significant main effects of environments
(F ¼ 219:62, p < 0:001) and a significant genotype-by-environment interaction
(F ¼ 6:42, p < 0:001). Since the interaction is significant, this is analyzed further.
With main effects removed, the transpose of the interaction matrix is

Ĥ
T ¼

�0:68 �0:33 0:59 0:83 �0:24 �0:17
0:17 �0:45 �0:29 0:18 0:12 0:26

�0:11 0:07 �0:08 �0:57 0:40 0:30
�0:87 �0:81 0:82 0:86 �0:14 0:14
�0:02 0:23 �0:35 �0:21 0:21 0:14
0:22 0:41 �0:67 �0:24 �0:29 0:56
0:58 0:20 �0:68 �0:19 0:15 �0:07
0:07 0:10 0:69 0:75 �0:35 �1:26
0:64 0:58 �0:04 �1:42 0:15 0:09

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

The singular values of Ĥ are: k̂1 ¼ 3:00, k̂2 ¼ 1:57, k̂3 ¼ 1:14, k̂4 ¼ 0:68,

and k̂5 ¼ 0:46:
Using the FR test, three multiplicative terms are significant, but using the simple

parametric bootstrap test, only the first multiplicative term is significant, as reported in
Table 1. The choice of test may have practical consequences. In a model with three
multiplicative terms retained, Bienvenu is the best genotype for environment GGA
(Georgia). In a model with a single multiplicative term retained, however, Dwarf is the
best genotype for environment GGA. In the Discussion, we argue that the FR test is
preferable for this question, and thus recommend Bienvenu for environment GGA.

4. Simulation study

4.1. Design

A simulation study was performed to illustrate the main differences between the FR and
SPB tests. Observations were repeatedly simulated following the model

yijr ¼ ci1k1dj1 þ ci2k2dj2 þ sij þ eijr (14)

where i ¼ 1, 2, :::, 15; j ¼ 1, 2, :::, 10; and r ¼ 1, 2, 3, 4, thus simulating multi-
environment trials comparing fifteen genotypes in ten environments with four replicates
per genotype and environment. Eight specific combinations of parameter values were
simulated. In all cases, r2E ¼ 1: Table 2 lists the settings for the other three parameters:
k1, k2 and r2S: In Cases 1 and 2, there were no multiplicative terms (k0 ¼ 0Þ: In Cases 3
and 4, a mild first multiplicative term was present (k1 ¼ 2Þ, and in Cases 5–8, a strong
first multiplicative term (k1 ¼ 10Þ: In Cases 5 and 6, the second multiplicative term was
zero, whereas in Cases 7 and 8, a mild second multiplicative term was assumed
(k2 ¼ 2Þ: Cases with and without random interaction (r2S ¼ 0 and 0:04, respectively)
were explored, as listed in Table 2. When the interaction variance, r2S, is 0.04, the inter-
action standard deviation, rS is 0.2, i.e., one fifth of the error standard deviation, rE:
This value of rS was chosen because it proved to illustrate the differences between the
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tests well. For each of the eight cases, 100, 000 datasets of 10 � 15 � 4 ¼ 600 observations
were randomly generated following Model (14).
For each case, multiplicative terms were generated as follows. In the qth simulation,

q ¼ 1, 2, :::, 100 000, a 15� 10 matrix of random standard normally distributed val-

ues, zðqÞij , was generated and subjected to singular value decomposition: zðqÞij ¼
P10

m¼1 c
ðqÞ
im kðqÞm dðqÞjm : The first and second multiplicative terms were set to cðqÞi1 k1d

ðqÞ
j1 and

cðqÞi2 k2d
ðqÞ
j2 , respectively, where k1 and k2 were selected as specified in Table 2.

For the analyses, Model (1) without block effects was assumed. Consequently MSE

was estimated as
PI

i¼1

PJ
j¼1

PR
r¼1 yijr � yij:

� �2=ðIJ R� 1ð ÞÞ: The interaction variance r2S
was estimated using (13), employing j ¼ 0 in Cases 1 and 2, j ¼ 1 in Cases 3–6, and
j ¼ 2 in Cases 7 and 8. In Cases 1–4, the significance of the first singular value was

tested. Precisely, the null hypothesis H0 : k
0
1 ¼ 0 was tested using the FR test applied to

Model (9), and the null hypothesis H0 : k1 ¼ 0 was tested using the SPB test, with B ¼
1000 bootstrap samples, applied to Model (7). In Cases 5–8, the significance of the

second singular value was tested, i.e., the null hypotheses H0 : k
0
2 ¼ 0 and H0 : k2 ¼ 0

were tested using the FR test and the SPB test (B ¼ 1000Þ, respectively. Note that in
cases with no random interaction, i.e., in Cases 1, 3, 5 and 7, the two tests aimed at the

same null hypothesis, since in these cases k1 ¼ k
0
1 and k2 ¼ k

0
2: In addition, the hypoth-

eses H0 : k2 ¼ 0 and H0 : k1 ¼ 0 were tested in Cases 3 and 5, respectively.

Table 1. Test statistics and p-values when testing multiplicative terms in the Shafii and Price (1998)
example, using the FR test and the simple parametric bootstrap test with B ¼ 100 000 boot-
strap samples.

FR test SPB test

Multiplicative term FR p-value T p-value

1 6.42 <0.001 0.669 0.006
2 3.04 <0.001 0.556 0.377
3 2.10 0.009
4 1.30 0.237

Table 2. Average estimates of the variance r2S and frequencies (freq.) of significant results when
testing at significance level 0.05.

Parameter settings
Mean

FR test SPB test

Case k1 k2 r2S r̂2
S Null hypothesis Freq. Null hypothesis Freq.

1 0 0 0 0.000 H0 : k
0
1 ¼ 0 0.051a H0 : k1 ¼ 0 0.051a

2 0 0 0.04 0.040 H0 : k
0
1 ¼ 0 0.281b H0 : k1 ¼ 0 0.050a

3 2 0 0 �0.019 H0 : k
0
1 ¼ 0 0.181b H0 : k1 ¼ 0 0.131b

4 2 0 0.04 0.016 H0 : k
0
1 ¼ 0 0.517b H0 : k1 ¼ 0 0.109b

5 10 0 0 �0.001 H0 : k
0
2 ¼ 0 0.047a H0 : k2 ¼ 0 0.050a

6 10 0 0.04 0.039 H0 : k
0
2 ¼ 0 0.248b H0 : k2 ¼ 0 0.050a

7 10 2 0 �0.020 H0 : k
0
2 ¼ 0 0.194b H0 : k2 ¼ 0 0.138b

8 10 2 0.04 0.013 H0 : k
0
2 ¼ 0 0.503b H0 : k2 ¼ 0 0.115b

a)Frequency of Type I error,
b)Power.
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4.2. Results

Table 2 presents the average estimate of the interaction variance and the observed frequen-
cies of significant results when testing these hypotheses at level 0.05. On average, the esti-
mator (13) of the interaction variance r2S performed well in Cases 1, 2, 5 and 6. In Cases 1

and 2, this estimator is unbiased. In Cases 5 and 6, the agreement between r̂2
S and r2S was

good as consequence of the highest positive singular value, k1, being large, such that the
necessary condition for the Wishart approximation was met. However, in Cases 3 and 4,
with k1 ¼ 2, and in Cases 7 and 8, with k2 ¼ 2, the highest positive singular value was not
sufficiently dominating, thus resulting in less good estimates of the interaction variance.
In case of no multiplicative terms and no random interaction (Case 1), both tests

showed Type I error rates close to the nominal level 0.05 (Table 2). Figures 1a and b, for
the FR test and the SPB test, respectively, show that these tests are exact when testing the
significance of the first singular value, since the quantiles of the simulated p-values agrees
perfectly with the quantiles of a uniform distribution on the interval from 0 to 1.
In Case 2, which included no multiplicative terms but a random interaction, using the

FR test, the first singular value was significant at level 0.05 in 28.1% of the cases (power),
whereas the frequency of significant results of the SPB test was the same as the nominal
level, 5.0% (Type I error). The bend in Figure 1c of the curve below the 45

�
reference line

shows that the FR test resulted in more significant results than would a random draw from
a uniform distribution, regardless of the chosen level of significance. The addition of the
random interaction, as compared to Case 1, increased the probability of a large first singu-
lar value, which resulted in a raised frequency of significant FR tests. Since in Case 2, inter-
action is present, the result 0.281 (Table 2) is the estimated power of the FR test, when
performed at significance level 0.05. If r2S had been larger than 0.04, an estimated power
larger than 28.1% would have been expected, because the larger this variance, the larger
the expected effects of interaction. The SPB test yielded the same frequency of significant
results at all levels of significance (Figure 1d). This result illustrates the property of the
SPB test that it does not test the significance of random interaction. On the contrary, the
SPB test is designed for detecting patterns in the data that is not random, but systematic.
Cases 3 and 4 both investigate power, since in these cases k1 ¼ 2, which implies that

also k
0
1 > 0: Both in case of no random interaction (Case 3) and in case of random

interaction (Case 4), the FR test was more powerful than the SPB test (Table 2). The dif-
ference between the methods was larger in Case 4 than in Case 3, since the SPB test
does not test for random interaction, but the FR test does. As shown in Figure 2, these
conclusions are valid also for other levels of significance than 0.05, where Case 3 is pre-
sented in Figures 2a and b, and Case 4 in Figures 2c and d. The curves are more
bended in Figures 2a and c, for the FR test, than in Figures 2b and d, which show

results for the SPB test. Note that in Case 3, since k
0
1 ¼ k1, the two methods test the

same hypothesis, while in Case 4, since k
0
1 6¼ k1, different hypotheses are tested.

In Cases 5–8, the second singular value, k2, was tested, assuming the presence of a
first multiplicative term with a strong singular value, k1 ¼ 10: Simulation results for
these cases were very similar to those for Cases 1–4, where Case 5 corresponds to Case
1, and so on (Table 2, Figures 3–4). The SPB test maintains the correct type I error rate
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although a random interaction is added, as seen by comparing Case 6 with Case 5 in
Table 2.
In order to investigate the importance of the Muirhead (1978, 23) condition for the

performance of the FR and SPB tests, the hypothesis H0 : k2 ¼ 0 was tested in Case 3,
where k1 was not large. The observed frequencies of significant results were 0.013 and
0.021, for FR and SPB, respectively.
One might falsely get the impression from Table 2 that neither the FR test nor the

SPB test are powerful methods, because the largest estimated power was only 0.517.
However, power depends on effect size. As an example, in Case 5, the frequency of

Figure 1. Quantiles of observed p-values, at testing H0 : k1 ¼ 0, versus quantiles of the uniform dis-
tribution. Results are based on 100 000 simulated datasets following model (14) with k1 ¼ k2 ¼ 0:
(a) FR test, r2S ¼ 0; (b) SPB test, r2S ¼ 0; (c) FR test, r2S ¼ 0:04; d) SPB test, r2S ¼ 0:04:
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significant results at testing H0 : k1 ¼ 0 instead of H0 : k2 ¼ 0 was 1.000 for both the FR
test and the SPB test, although this result was not included in Table 1. We refer to the
original articles (Piepho 1995; Forkman and Piepho 2014) for more information about
the power of these tests.

5. Discussion

The SPB test investigates null hypotheses regarding the fixed-effects part of the inter-
action, whereas the FR test examines null hypotheses regarding the sum of the fixed and

Figure 2. Quantiles of observed p-values, at testing H0 : k1 ¼ 0, versus quantiles of the uniform dis-
tribution. Results are based on 100 000 simulated datasets following Model (14) with k1 ¼ 2 and
k2 ¼ 0: (a) FR test, r2S ¼ 0; (b) SPB test, r2S ¼ 0; (c) FR test, r2S ¼ 0:04; d) SPB test, r2S ¼ 0:04:
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the random interaction. The choice between the two tests depends on the aim of the
analysis. If the aim is to find patterns in the interaction that are larger than would be
expected by random genotype-by-environment interaction, then the SPB test is the right
choice. If, however, research aims at finding out whether or not there is any interaction
at all in the data, regardless of this interaction being fixed or random, and how many
multiplicative terms are needed for describing this total interaction, then the FR test
should be chosen.
In reality, there is almost certainly some genotype-by-environment interaction in a

multi-environment trial. If so, the null hypothesis H0 : k
0
1 ¼ 0 is always rejected by the

Figure 3. Quantiles of observed p-values, at testing H0 : k2 ¼ 0, versus quantiles of the uniform dis-
tribution. Results are based on 100 000 simulated datasets following Model (14) with k1 ¼ 10 and
k2 ¼ 0: (a) FR test, r2S ¼ 0; (b) SPB test, r2S ¼ 0; (c) FR test, r2S ¼ 0:04; d) SPB test, r2S ¼ 0:04:
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FR test, provided there are sufficiently many replicates. This is in contrast to the SPB
test, which may give non-significant results also in studies with very large numbers of
replicates, specifically when genotype-by-environment interaction is purely random. The
FR test is used for determining if the residual interaction mean square is significantly
larger than the error mean square. Using the FR test, the aim is to separate the part of
the estimated genotype-by-environment interaction that is not a result of insufficient
replication from the part that might be.
In cases with no random genotype-by-environment interaction at all, but just vari-

ance between replicates, hypotheses coincide. Based on the results of this study, as long

Figure 4. Quantiles of observed p-values, at testing H0 : k2 ¼ 0, versus quantiles of the uniform dis-
tribution. Results are based on 100 000 simulated datasets following Model (14) with k1 ¼ 10 and
k2 ¼ 2: (a) FR test, r2S ¼ 0; (b) SPB test, r2S ¼ 0; (c) FR test, r2S ¼ 0:04; d) SPB test, r2S ¼ 0:04:
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as the two methods perform similarly with regard to Type I error, the FR test is prefer-
able to the SPB test when there is no random genotype-by-environment interaction,
since the FR test is more powerful than the SPB test in this situation. The FR test of the
first singular value is equivalent to a test of interaction in analysis of variance. The
results of the simulation showed that it is possible to use the FR test of the first singular
value for testing the entire genotype-by-environment interaction also if this interaction
comprises random components.
The choice between the two methods is a choice regarding sij in the equation for

Model (8) as signal or noise. If sij is regarded as signal, i.e., if interest is in interaction
including this term, irrespective of it being random or not, then this term should be
included in the sum of multiplicative terms, as in Model (9), for which the FR test can
be used. If, on the other hand, sij is regarded as noise, then the SPB test can be
employed for testing the significance of the singular values of Model (8), where sij
is random.
AMMI analyses can be aimed at many questions. For determining which genotype

performs best in some specific environment, we recommend the FR test, because here
the sij term is regarded signal. For this question, it does not matter if interaction is fixed
or random. Similarly, for the question of which environment is best for a specific geno-
type, the FR test is the preferred method. For the question of how environments should
be grouped into mega-environments, however, we recommend the SPB test. Here, the
purpose is to divide the environments into groups of environments that are similar with
respect to how genotypes perform. These mega-environments will probably be used in
the future, for new genotypes, i.e., for others than just those included in the experiment.
If such a division is to be sustainable, it is required that the interaction is systematic,
not just random. In this case, the sij term is regarded noise. Similarly, in order to find
out which genotypes respond similarly under different environmental conditions, the
SPB test is the more relevant of the two. This is so if we want to be able to generalize
the conclusions to a population of environments from which the studied environments
can be considered as a sample. In practice, the environments are usually experimental
stations, and we want to generalize the results to the entire region to which the experi-
mental stations belong. In summary, we recommend the FR test for narrow inference,
which is confined to the investigated genotypes and environments, and we recommend
the SPB test for broad inference, which extends beyond the experiment.
As discussed in Section 2, not only the SPB test, but also the FR test is conditioned

on the singular values of the null model being large. This property of both tests calls
for using a sequential testing procedure, starting with testing the significance of the first
singular value, and proceeding with testing the significance of the following singular val-
ues, one at a time, until a non-significant result is obtained.
The FR test is comparatively robust against nonnormality and heteroscedasticity, espe-

cially for testing the first singular value (Piepho 1995). The SPB test, however, is not
(Forkman and Piepho 2015). Malik et al. (2018) proposed tests that are similar to the
SPB test, but more robust. Thus, if data is nonnormal or heteroscedastic, and the aim
of the research is to discern multiplicative terms in the data that have larger singular
values than could be expected by random genotype-by-environment interaction, then
those tests can be recommended rather than the FR and SPB tests. If the aim is rather
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to discern multiplicative terms in the data that have larger singular values than could be
expected by random variance between replicates, the resampling-based methods pro-
posed by Malik, Forkman, and Piepho (2019) is, due to its better properties as regard
robustness, an even better choice than the FR test.
Singular value decomposition requires complete matrices, i.e., every genotype must

occur in every environment. In multi-environment crop breeding trials, this require-
ment is often not fulfilled. In official crop variety testing, however, data is usually bal-
anced within years. For analysis of multi-environment trials using singular value
decomposition, Gauch and Zobel (1990), Paderewski (2013), Garc�ıa-Pe~na et al. (2016),
Arciniegas-Alarc�on et al. (2014), Arciniegas-Alarc�on, Garc�ıa-Pe~na, and Krzanowski
(2016), and Arciniegas-Alarc�on, Garc�ıa-Pe~na, and Rodrigues (2020) have proposed
methods for imputation of missing values. As regards the FR statistic, imputation is
needed for computation of MSR: In case the numbers of replicates varies between the
observed combinations of genotypes and environments, an approximate value of R must
be used in (12). The error mean square, MSE, can be computed although some values
are missing. Once values have been imputed, it is possible to use the FR test as well as
the SPB test, although it is unclear what effects the imputation may have on the tests’
performance, depending on the extent of missing values. Linear mixed models, on the
other hand, can usually be fitted even if not all genotypes are included in all environ-
ments. For correct inference, however, the missing values must be missing at random
(Piepho and M€ohring 2006).
The FR test was introduced in 1995 when the randomized complete block design was

more commonly used in crop variety testing. Nowadays more advanced design, such as
alpha design (Patterson and Williams 1976), partially replicated design (Cullis, Smith,
and Coombes 2006), and row-column design with or without spatial balance (Piepho,
Williams, and Michel 2015, Piepho, Michel, and Williams 2018), are probably more
common than at that time. With these more advanced designs, it is not obvious which
mean square should be used in the denominator of the FR test. The SPB test operates
on means and does not need an estimate of the pure within-environment error vari-
ance. However, the assumptions of independence and homoscedasticity may be violated
when the experimental design is complex. In this case, the AMMI model should be fit-
ted using generalized least squares instead of ordinary least squares (Hadasch et al.
2018). More research is needed on how to perform a SPB test in this situation. The fact
that the test works well with balanced data suggests that it would be worthwhile to
explore options for extensions to the unbalanced case.
In plant breeding, genomic selection utilizes marker information for prediction. A com-

monly used model is our model (4) with fixed effects of environments and random effects
of genotypes and genotype-by-environment interaction, but assuming genetically corre-
lated random effects. The genomic covariance matrix is usually constructed using marker
information rather than ancestral information (VanRaden 2008, Montesinos-L�opez et al.
2018). In recent times, machine-learning methods have been explored for prediction in
multi-environment trials. This novel research has shown that yield and other traits in
multi-environment trials can be successfully predicted using deep learning methods
(Montesinos-L�opez et al. 2018; Khaki and Wang 2019), or using deep kernel or Gaussian
kernel methods for genomic selection (Crossa et al. 2019). When marker-information is
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incorporated into a factor-analytic model (Burgue~no et al. 2007), the same question about
the number of multiplicative terms arises. Information criteria can be used to select the
model order (Verbyla 2019). Alternatively, for the purpose of significance testing, one may
revert to a fixed-effects model and then, having selected the model order, switch back to
the mixed-effects model.
In summary, when the multi-environment trial includes replicates within environ-

ments, the researcher may use either the SPB test or the FR test for assessing signifi-
cance of multiplicative terms of genotype-by-environment interaction in AMMI models.
The SPB test investigates whether there are patterns in the interaction, i.e., multiplica-
tive terms that are larger than expected by random interaction. The FR test explores
which estimates of multiplicative terms are larger than one might expect due to variance
between replicates within genotype-by-environment combinations. The SPB test investi-
gates the fixed part of the interaction, whereas the FR test investigates the total
interaction.
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